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1  Introduction

The output gap, defined as the proportional deviation of realised from potential
output, is one of the most important indicators of the cyclical state of the econ-
omy. In many models, the output gap is a key determinant of inflation and an
argument in the Central Bank objective function (see, e.g., Clarida/ Galí/ Gertler
1999). From the viewpoint of time series analysis, the estimation of the output
gap requires the decomposition of the observed output series into the non-
stationary trend and the stationary cycle component. In many studies a variety
of detrending techniques is used to carry out the trend-cycle decomposition
(see e.g., Giorno et al. 1995, Canova 1998). In recent years, the use of ad hoc
filters (e.g., the Hodrick-Prescott or the Baxter-King filter) has become more and
more popular among macroeconomists. As is well known, ad hoc filters have a
couple of disadvantages as they are typically independent of the time series
under investigation (see Cogley/Nason 1995, Maravall 1995, Benati 2001).

In this study, an Unobserved Components (UC) Model is employed for decom-
posing German real GDP into the trend, cycle, seasonal and irregular compo-
nents. As Harvey/Jaeger (1993) argue, this class of models provides a useful
framework as they “are explicitly based on the stochastic properties of the data”.
They are based on interpretable and well-defined models for the individual
components, are very flexible in accomodating peculiar features of the time se-
ries and can be scrutinised by rigorous tests.

Unobserved Components Models have been used for an analysis of the GDP
series of various countries (see, e.g.,  Watson 1986, Clark 1987, Harvey/Jaeger
1993, Flaig 2001 for the US, Kichian 1999 for Canada or Gerlach/Smets 1998
for the EMU area). For Germany, a first analysis has been presented in Flaig
(2000). The novel feature in this study is a systematic exploration of how we
should specify the different components (trend, cycle, season) in an optimal
way and an investigation whether the total cycle can be broken up into several
subcycles with different periodicity.

The organisation of the paper is as follows: In section 2, we present the eco-
nometric model and the alternative specification of the components. Section 3
provides the empirical results for German real GDP from the first quarter of
1960 to the second quarter of 2001. The final section contains a short summary
and some concluding remarks. 
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2   An Unobserved Components Model for Quarterly Data

The basic assumption underlying Unobserved Components Models is that an
observed time series ty  can be decomposed into several components which

have an economic interpretation (for a general discussion see Harvey 1989;
Maravall 1995). In the following, we decompose the logarithm of real GDP into
the unobserved components  trend T ,  season S ,  cycle C ,  the working day
effect D  and the irregular I :

(1) tttttt IDCSTy ++++= .

The trend component represents the long-run development of GDP and is
specified as a random walk with a possibly time-varying drift rate tµ :

(2) ttttt DTTT εγµ +++= −− 111 .

tDT  (the level intervention) is a dummy variable which can take the values 0 or

1. If this variable is set to 1 in a specific period, the trend component jumps
permanently by the amount 1γ  from that period onwards.  The level impulse tε

is a white noise variable with mean zero and variance  2
εσ .

The drift rate tµ  is allowed to vary over time and is also defined as a random

walk:

(3) tttt DD ξγµµ ++= − 21 .

tDD   (the drift intervention) is a dummy variable which can take the values 0 or

1. If it is set to 1 in a specific period, the drift rate shows a jump and the level a
kink. The drift impulse  tξ   is a white noise variable with variance  2

ξσ .

Two different approaches are used for modelling the seasonal effects. The first
formulation starts from the dummy variable method where it is assumed that the
seasonal effects over four consecutive quarters sum to zero. We then simply
add a white noise disturbance term to allow for changing seasonal patterns. The
model is given in a recursive form by

(4) ( ) ttttt SSSS ω+++−= −−− 321 ,
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where  tω  is a white noise random variable with zero mean and variance  2
ωσ .

The second formulation starts from the idea that the seasonal effect at time t
can be specified as the sum of two cycles with the seasonal frequencies  2/π
(period of four quarters) and  π  (period of two quarters):

(5) 2,1, ttt SSS += .

Following Harvey (1989), we specify each seasonal cycle by a stochastic recur-
sive formula:

(6) 
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∗S   appears only by construction and has no intrinsic interpretation.

2/ii πλ ≡ ,  2,1=i ,  denotes the seasonal frequencies and  ( )*
,, , itit ωω  are two

uncorrelated white noise random variables with common variance  2
iω

σ . Note

that for  2=i , equation (6) collapses to

(6a) 2,2,22, ttt SS ω+−= − .

The cycle component is also specified by two different approaches. In the first
approach, it is represented by a stationary autoregressive process of order p:

(7) tptpttt CCCC κϕϕϕ ++++= −− ...121 .

The white noise variable  tκ   with variance  2
κσ    is the cycle shock.

In the second approach, we specify the cycle tC  as the sum of  M  subcycles:

(8) it

M

i
t CC ,

1
∑
=

= .

Each subcycle is specified as a vector  AR (1)  process:

(9) 
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The shocks  it ,κ and  ∗
it ,κ are assumed to be uncorrelated white noise variables

with common variance 2
iκ

σ . 

The period of subcycle i is  C
iλπ /2 .  The damping factor iρ  with  0 < iρ  < 1

ensures that  itC ,  evolves as a stationary ARMA (2,1) process  with complex

roots in the AR-part (see Harvey 1989). This guarantees a quasi-cyclical be-
haviour of  itC , . The shocks induce a stochastically varying phase and ampli-

tude of the wave-like process. The cycle tC  is an ARMA (2 M,  2 M-1) process

with restricted  MA-parameters.

The working day effect  tD  is specified by

(10) ( )TDTDD tt /lnβ= ,

where  tTD  is the number of working days in period t and  TD  is the average

number of working days over the estimation period. This formulation ensures
that the working day effect has approximately a zero average over the estima-
tion period.

The irregular component comprises a deterministic and a stochastic compo-
nent:

(11) ttt uDII += 0γ .

The deterministic component  tDI0γ  (the impulse intervention) captures outliers

which reflect identifiable events and  tu  reflects temporary shocks which are

modelled as a stochastic variable.  tu  is assumed to be a white noise variable

with variance  2
uσ .

It is assumed that all disturbances are normally distributed and are independent
of each other. This is the usual assumption to assure the identification of the
parameters (see, e.g., Watson 1986).

Estimation of the model parameters is carried out by maximum likelihood in the
time domain. The initial values for the stationary cycle components are given by
the unconditional distribution and for the nonstationary trend, drift and seasonal
components by a diffuse prior. The filtered and smoothed values of the unob-
served components are generated by the Kalman filter.



5

The unobserved components shown in figure 2 und figure 3 are the values from
a fixed interval smoother (for details see Harvey 1989).

3 Empirical Analysis

3.1 Data

In our empirical analysis we use quarterly data for German GDP from 1960:1 to
2001:2 (figure 1). The GDP series is represented in logs. The solid line shows
the raw data used in the following study (Source: DIW, Vierteljährliche Volks-
wirtschaftliche Gesamtrechnung; Statistisches Bundesamt, Fachserie 18). The
break in 1991:1  is attributable to three different reasons. Until 1990:4, GDP
refers to West Germany, is measured in prices of 1991 and is defined according
to the old System of National Accounts. From 1991:1 on, GDP covers unified
Germany, is measured in prices of 1995 and defined according to the new
European System of Accounts (see Strohm et al. 1999).  The dashed line rep-
resents the fictitious development of the West-German GDP up to 1990 when it
had the same value in 1991 as all-German GDP (actually, it was calculated by
adding the value of 0.234, the logarithmic difference between the two GDP val-
ues in 1991). In order to allow for some flexibility, the basic models are esti-
mated by including a level intervention  1:91DT  in equation (2).

The number of working days are compiled by the Deutsches Institut für
Wirtschaftsforschung (for a short discussion see Müller-Krumholz 1999).
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Figure 1:  Real GDP  (in logs)

Note: The solid lines represent the original data for West Germany (left part)
and all-Germany (right part), the dashed line the fictious series obtained
by proportional adjustment (for details see text).

A first look at figure 1 reveals some important characteristics of the GDP series
which should be captured by a sensible model. First, the long-run growth rate is
certainly not constant over time. The most important break seems to occur
around 1973, but other changes in the drift rate may happened in the late
eighties and early nineties. Secondly, around the trend, there seems to exist a
pronounced cycle with troughs in 1967, 1975, 1982 and 1993. It remains to be
analysed whether some further cycles exist which cannot be detected by visual
inspection of the time series. Thirdly, the seasonal variation is time varying. And
fourthly, special events occur at irregular intervals which should be controlled
for by specifying an impulse variable. One example is the unusual low value in
the first quarter of 1963 which can be explained by an extremely cold winter.
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3.2 Empirical Results

In a first step, we estimate a stochastic model without any drift intervention ef-
fects. The only deterministic elements are an impulse dummy in 1963:1 which
captures an unusual cold weather effect and a level intervention in 1991:1 in
order to control for an unobserved shift due to the already mentioned change in
the data.

We carried out the estimation for each combination of two variants of seasonal
specification (trigonometric versus dummy variables) and five versions of the
cycle specification (trigonometric cycle with one, two and three subcycles and
an autoregressive cycle with two and four lags, respectively). Summary statis-
tics are presented in table 1.

Comparing the fit measures and test statistics between the top and bottom
panel, one can see that the specification of the seasonal effect by a sum of
sine-cosine waves with stochastically varying phase and amplitude clearly
dominates the specification by a set of dummy variables plus a stochastic dis-
turbance. With respect to the formulation of the cycle component, we note that
an autoregressive cycle with four lags does not perform better than the model
with only two lags. In case of a trigonometric specification of the cycle, the re-
sults are not so obvious. The information criteria select a model with just one
cycle. A visual inspection of the estimated subcycles reveales that a model with
two subcycles yields some interesting results whereas a third subcycle is negli-
gible.

With respect to the cycle component, the subsequent analysis is carried out for
a model with a trigonometric specification with two subcycles and an autore-
gressive model with two lags. In both cases, the seasonal component is speci-
fied as a trigonometric model. The aim is to modify the basic specification in
order to improve the fit of the model in a parsimonious way.

In a first step, we examined the recursive residuals for large values which can
be interpreted as outliers. The two most important events seem to have hap-
pened in 1979:2 and 1984:2. The latter date represents a strike in the metal
industry. The interpretation of the first is not so obvious. A somewhat specula-
tive explanation may be the then emerging fear of rising oil prices, and the an-
nounced increase of the VAT rate in the third quarter which may have led to
higher purchases in the second quarter. Despite this interpretation problem, an
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impulse dummy was included in the second quarter of 1979 and 1984, respec-
tively.

Table 1:  Summary Statistics for the Model without a Drift Intervention

logLik AIC SIC LB JB RRσ

Trigonometric  Season

Trigonometric Cycle
   1 Subcycle
   2 Subcycles
   3 Subcycles

480.4
482.7
483.9

-928.7
-927.3
-923.7

-879.4
-868.8
-855.9

3.7
2.4
2.3

0.5
0.1
0.1

0.0122
0.0120
0.0118

AR Cycle
   2 Lags
   4 Lags

482.3
482.4

-932.4
-928.6

-883.4
-873.2

2.0
2.0

0.2
0.2

0.0120
0.0120

Dummy  Variable  Season

Trigonometric Cycle
   1 Subcycle
   2 Subcycles
   3 Subcycles

476.1
478.2
479.3

-922.1
-920.2
-916.7

-875.9
-864.8
-851.9

11.5
10.3
10.3

0.6
0.6
0.6

0.0125
0.0123
0.0121

AR Cycle
   2 Lags
   4 Lags

478.0
478.1

-925.9
-922.1

-979.7
-869.7

9.3
9.3

0.4
0.4

0.0124
0.0123

Note: logLik denotes the maximised value of the likelihood function, AIC the
Akaike information criterion, SIC the Schwartz information criterion, LB
the Ljung-Box-statistic with 12 lags, JB the Jarque-Bera test statistic
(critical value at 5% significance level: 6.0) and  RRσ  the standard devia-
tion of the recursive residuals.
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In the following, we estimate three models which differ from each other with re-
spect to the specification of the trend component. In all versions, the variance of
the level shock  tε  turned out to be zero. The results in Tables A1 and A2 are

for the restricted model where 2
εσ is restricted to be zero.

Model I contains no deterministic drift intervention. The estimated parameters
and summary statistics are presented in column 2 in Table A1 (in the appendix)
for the trigonometric specification of the cycle component and in Table A 2 for
the purely autoregressive specification. The positive value of the standard de-
viation of the slope disturbance, ξσ , “allows” the trend component to smoothly

adjust to the lower growth rates after 1973 and to their transitory increase in the
late eighties (dashed lines in the left panel in Figure 2).

The smooth behaviour of the trend component is very problematic when in real-
ity a sharp break occured in a specific period. The most prominent candidate for
such a break is the period of the first oil price shock.

To account for this event, Model II induces a drift intervention term in 1973:3.
This dummy variable captures a large part of the variability of the trend growth
in the model with a trigonometric specification of the cycle and even all in the
model with the AR specification.

The fit of the model improves considerably (see the summary statistics in Ta-
bles A1 and A2). A somewhat disturbing effect is the implication for the cyclical
component, especially for the model with the AR specification where ξσ has an

estimated value of zero (see Table A2). The high growth rates in the late eight-
ies / early nineties are (almost) totally attributed to the cycle which implies a
very long and pronounced upswing during the eighties and an almost ten year
cyclical downturn until 2000.

This somewhat implausible shape of the cycle can be avoided when we add in
Model III a deterministically specified increase in the drift rate around the year
1989. Some experimentation yields as the optimal start point the second quarter
of 1987 and as the end point the third quarter of 1992. The reason for this tem-
porary increase in the trend growth rate may be the decline in oil prices in
1985/86 and an population increase since 1987 due to the immigration of native
Germans from Eastern Europe. In addition, around 1990 we observe an un-
usual high investment boom induced by German unification.



10

The inclusion of two drift interventions yields an impressive improvement in all
fit criteria. Therefore, Model III is our preferred version. The trend and cycle
components generated by this specification are shown in Figure 2 as the solid
lines.

The trend component shows three kinks in 1973, 1987 and 1992. The cycle
component generated by the two versions (trigonometric, AR) are almost indis-
tinguishable. The trigonometric version identifies two cycles with a period of 4.1
and 8.1 years, respectively. This finding is compatible with “classical” ideas of
the Kitchen-cycle (with a period of two to four years) and the Juglar-Cycle (with
a period of eight to ten years).

The seasonal component and the working day effect are displayed in Figure 3.
The most important change in seasonal pattern occurred about 1970 where the
amplitude sharply decreased. The working day effect is smaller in magnitude,
but is important for a good representation of the short-run fluctuations. Estimat-
ing models without incorporating a working day effect yields significantly worse
fit criteria but leaves the trend and cycle components largely unaffected. The
main effect is an increase in the variance of the irregular component.
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Figure 2:  Trend and Cycle Components for Models I and III

Note:  The top panel represents the model with two subcycles in the trigonomet-
ric specification of the cycle component, the bottom panel the model with
an (AR(2)-specification. The solid lines show the results for model III
(drift with three deterministic interventions), the dashed lines for model I
(purely stochastic model).
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Figure 3:  Seasonal Component and Working Days Effect
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4  Conclusions

The aim of this paper is to characterise the most important salient features of
German GDP before and after unification. By using an Unobserved Compo-
nents Model, it is possible to decompose the observed GDP series into the
trend, the cycle, the season and a working day effect.

The most important findings can be summarised as follows:

1.  The trend component shows four different regimes. From the beginning of
the sample in 1960 until 1973, the long run growth rate is about 4.2 %, be-
tween 1974 and 1987 about 1.8 %, between 1987 and 1992 about 3.6 %,
and since then about 1.4 %. These figures show the dramatic decline in the
growth rate of potential output over the last 40 years.

2.  It seems that two cycles can be identified with a period of about four and
eight years, respectively. The old idea about Kitchin- and Juglar-cycles, ad-
vocated by Schumpeter, Hansen, among others, has still merits for business
cycle analysis.

3.  The seasonal pattern is changing over time. The amplitude of the seasonal
variations sharply declines in the early seventies and after re-unification. The
last phenomenon may be partly attributable to some changes in the calcula-
tion of GDP. The empirical results show that a trigonometric seasonal model
with two disturbance terms yields a significantly better fit than the stochastic
dummy variable model with only one disturbance term. For a better short-run
representation of the GDP series it is useful to account explicitly for the
variation in the number of working days.

These findings have some important consequences for business cycle research
and the modelling of macroeconomic data. First, great care should be exercised
in specifying the short-run dynamics of GDP. The seasonal component shows a
remarkable variability which cannot be reasonably captured by a stochastic
dummy variable specification. In addition, the varying number of working days
explains a great deal of the short-run variation of growth rates. The importance
of this effect for macroeconomic models and VAR-systems is not clear and
should be explored in future research. Secondly, all models with a constant drift
rate are clearly misspecified. The real problem is not to choose between a de-
terministic linear trend and an autoregressive unit root with a constant drift rate.
One needs no formal test to see that the mean growth rate is lower after 1973
than it was before. So, any reasonable model should allow for a variable drift



14

rate. The relevant question is whether the changes in the drift rate are caused
by very infrequent events which would suggest an efficient specification as a
deterministic intervention or by frequent and typically small shocks in which
case a stochastic random walk specification of the drift rate is appropriate. The
results in this paper suggest that the former approach yields a more satisfactory
model (for similar results for US GDP see Flaig 2001). Thirdly, the analysis of
cyclical regularities which are at the heart of classical business cycle theory
promises new and important insights into the nature of capitalist market econo-
mies. 

From a methodological standpoint, structural time series modelling provides a
useful tool for time series analysis of macroeconomic data. This approach can
be extended in several directions. The most promising direction may be a multi-
variate setting where several variables share common trends and/or common
cycles (see Apel/Jansson 1999 or Flaig/Plötscher 2000).

Appendix:   Estimation  Results

Tables A1 and A2 present the estimation results for three different specifica-
tions of the drift rate (the long-run growth rate):

Model I: No deterministic drift intervention.

Model II: Deterministic drift intervention in 1973 : 4.

Model III: Deterministic drift intervention in 1973 : 4; 1987 : 2,  and 1992 : 3.

The rationale of the dates chosen for the interventions is explained in the text.
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Table  A 1:  Estimation results for the trigonometric specification of the cycle

Model  I Model  II Model  III
Trend

ξσ

( )4732 :γ
( )2872 :γ
( )3:922γ

 0.0007
―
―
―

( 4.8)  0.0003
-0.0059
―
―

( 2.1)
( 2.8)

―
-0.0061
 0.0048
-0.0060

(21.2)
(  7.9)
(  6.4)

Season
1ω

σ

2ω
σ

 0.0023
 0.0011

( 6.0)
( 4.3)

 0.0023
 0.0010

( 6.2)
( 4.5)

 0.0024
 0.0011

(  6.9)
(  6.5)

Cycle
1ρ

1λ

1κ
σ

2ρ

2λ

2κ
σ

 0.9448
 0.3877
 0.0033
 0.9694
 0.1819
 0.0037

(41.1)
(10.9)
(  6.6)
(52.1)
(  6.7)
(  6.9)

 0.9595
 0.3968
 0.0024
 0.9641
 0.1493
 0.0052

(27.8)
(12.6)
(  1.6)
(44.4)
(  4.5)
(  2.7)

 0.9379
 0.3829
 0.0037
 0.9797
 0.1950
 0.0027

(40.2)
(11.1)
(  6.9)
(75.2)
(11.4)
(  6.5)

Irregular
uσ
( )1:633γ
( )2:793γ
( )2:843γ

 0.0000
-0.0502
 0.0191
-0.0203

( 0.0)
( 5.2)
( 3.1)
( 2.2)

 0.0001
-0.0501
 0.0193
-0.0202

( 0.1)
( 4.9)
( 3.2)
( 1.9)

 0.0001
-0.0499
 0.0192
-0.0204

(  0.1)
(  5.6)
(  3.4)
(  1.8)

Working day
effect
γ  0.3007  ( 6.4)  0.2929 ( 6.4)  0.2933 (  6.6)
LogLik  491.4  492.8  504.8
Akaike -944.7 -945.7 -967.6
SIC -886.2 -884.0 -902.9

RRσ  0.0114  0.0114  0.0106

LB  5.4  6.4  5.4
JB  0.5  1.1  2.8

Note:  t-values in parentheses. The summary statistics are explained in Table 1.
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Table  A 2:  Estimation results for the AR (2) specification of the cycle

Model  I Model  II Model  III
Trend

ξσ

( )4732 :γ
( )2:872γ
( )3:922γ

 0.006
―
―
―

( 3.9)
 
 0.0000
-0.0053
―
―

( 0.0)
( 6.4)

―
-0.0063
 0.0048
-0.0058

(10.7)
(  4,4)
(  3.8)

Season
1ω

σ

2ω
σ

 0.0025
 0.0012

( 6.9)
( 7.0)

 0.0025
 0.0012

( 6.8)
( 8.6)

 0.0026
 0.0012

(  7.3)
(  5.8)

Cycle
1ϕ

2ϕ

κσ

 1.6142
-0.6764
 0.0046

(30.0)
(15.6)
(12.7)

 1.6039
-0.6489
 0.0049

(24.6)
(  9.6)
(22.4)

 1.6133
-0.7070
 0.0042

(42.2)
(19.1)
(14.9)

Irregular
uσ
( )1:633γ
( )2:793γ
( )2:843γ

 0.0000
-0.0489
 0.0196
-0.0207

( 0.0)
( 4.3)
( 3.7)
( 2.6)

 0.0003
-0.0489
 0.0196
-0.0207

( 0.1)
( 4.2)
( 3.7)
( 2.0)

 0.0003
-0.0490
 0.0196
-0.0208

(  0.1)
(  4.9)
(  4.0)
(  2.3)

Working day
effect
γ  0.3008 ( 7.2)  0.2997 ( 7.4)  0.2954 (  7.2)
LogLik  492.3  496.1  502.1
Akaike -952.5 -958.1 -968.1
SIC -903.3 -905.7 -912.7
RRσ  0.0113  0.0111  0.0107

LB  2.7  2.4  4.1
JB  0.3  0.7  1.7

Note:  t-values in parentheses. The summary statistics are explained in Table 1.
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