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1 Introduction

Collective action often takes the form of two or more groups contesting an

issue. If this "issue" can be represented by a price V, groups formally compete

with one another by expending e�ort or money in order to win the prize and

a contest game results. Contest theory has entered many areas of economic

theorizing; e.g. R&D-competition, rent-seeking or lobbying e�orts, election

campaigns, promotion races and legal battles have all been modelled and

analyzed as contests. Most of these applications - even if competition between

groups of agents is concerned - feature contests over a private good. The

literature on contests over prizes, which exhibit features of a group-speci�c

public good, is not well-developed, despite the fact that contests over those

goods are frequent and stimulate, if not require collective action.

Katz et al. (1988) were the �rst to analyze a rent-seeking contest over a public

good. In their model rent-seeking behavior among (homogenous) groups

reduces (in equilibrium) to rent-seeking behavior among individuals, a feature

that is reproduced by two variants of their model (for heterogenous groups)

due to Baik (1993) and Baik et al. (2001). Those models only di�er in

the speci�cation of the contest success functions. All of them use Nash

equilibrium to determine solutions. The non-intuitive results derived from

these models have been criticized by Riaz et al. (1995), who consider a more

general model with preferences of contestants over public and private goods,

which is not a proper contest anymore.

In this paper the basic modelling of the problem as a contest is fully main-

tained, but we apply a di�erent solution concept. Instead of Nash equi-

librium, which presupposes rational actors, we explore the implications of

evolutionary stability of behavior. An evolutionarily stable strategy (ESS)

represents the most basic solution concept from evolutionary game theory.

It yields a re�nement of Nash equilibrium, if applied to in�nitely large pop-

ulations of players. It need, however, not coincide with Nash equilibrium in

�nite population games. In fact, Leininger (2002) shows that ESS is always

di�erent from Nash equilibrium in the case of classic (private good) contests

among individuals. We demonstrate in this paper that ESS can also fruit-

fully be applied to public good contests and argue its case vis-a-vis Nash

equilibrium. ESS predicts intuitively more sensible behavior and sheds new

light on the free-rider problem, which infests the competing groups.

The paper is organized as follows: section 2 reviews the reference model

of Katz et al. (1988); section 3 introduces the notion of an ESS for �nite
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asymmetric player games. In section 4 ESS is applied to the public good

contest of section 2; the main result (Theorem 1) shows, that a (global)

ESS does not exist, if each group has at least two members (and is hence

susceptible to free-riding). Section 5 proves existence of a unique local ESS

and explores its properties in detail. Section 6 concludes.

2 The reference model

Katz et al. (1988) examine the following model of a contetst for a pure public

good, which directly builds on seminal work on individual rent-seeking

by Tullock (1967,1980). Two locations contest a prize, which is valued at

V by each individual in each of the two locations, e.g. V could represent

public funds to be used for an environmental clean-up in either of the

two locations. Other example might include the employment providing

allocation of government agencies in one of the two locations, a classic

example is provided by the contest of the two cities of Bonn and Berlin for

capital status after reuni�cation in Germany (see Leininger, 1993).

There are n individuals living at location 1 and m individuals at location

2. Hence the prize exhibits the property of a group-speci�c (resp. local)

public good. It is assumed that the probability of location i = 1; 2 winning

the prize is given by the ratio of the total amount of expenditures (resp.

e�ort) in the contest by individuals in location i to the total amount of

expenditures by all individuals in both locations.

Hence the contest success function is given by

pi(x1; : : : ; xn; y1; : : : ; ym) =

Pn

k=1 xkPn

k=1 xk +
Pm

j=1 yj
i = 1; 2

where xk; k = 1; � � � ; n, denotes expenditure by individual k in location 1

and yj denotes expenditure of individual in location 2.

Expected pro�t for player k in location 1 is therefore given by

�k(x1; : : : ; xn; y1; : : : ; ym) =

Pn

k=1 xkPn

k=1 xk +
Pm

j=1 yj
�V�xk k = 1; : : : ; n

while expected pro�t for j in location 2 is given by

�j(x1; : : : ; xn; y1; : : : ; ym) =

Pm

j=1 yjPn

k=1 xk +
Pm

j=1 yj
�V�yj j = 1; : : : ; m
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Note that players simultaneously interact at an intra-group level and an

inter-group level, the inter-group competition will a�ect intra-group behavior

and vice versa.

One can show:

Proposition 1 (Katz et al.,1988) There exists a unique Nash equilib-

rium in pure stratagies, in which each player bids according to

x� = x�k =
1
4n
� V , if he belongs to location 1, and

y� = y�k =
1
4m
� V , if he belongs to location 2.

Aggregate expenditures amount to 1
2
� V and

p1(x
�; ::; x�; y�; ::; y�) = p2(x

�; ::; x�; y�; ::; y�) = 1=2.

Hence the total e�ort expended in the contest is independent of group size

and equals one-half of the value of the rent. Moreover, total expenditures by

each location are the same in equilibrium, thus they are equally likely to win

the prize. This neutrality of group size is explained by the fact that whilst

the free-rider problem increases with group size, the aggregate prize for the

group also increases with group size. The negative incentive e�ect of another

group member on e�ort by fellow group members, who partially free-ride on

the new member's contribution, is exactly o�set by the contribution of the

new member. As a result, groups (of identical players) behave in a public

good contest like single individuals in a private good context and reproduce

Tullock's (1980) equilibrium results for rent-seeking between individuals for

a privat good at an aggregate level. These non-intuitive features of the model

have been critized by Riaz et al. (2001), who consider a more general model

borrowed from the literature on public good provision, in which preferences

depend on the public good as well as a private good. In this more general

context they prove, that total e�ort expenditures do depend on groupsize(s)

in a positive way. Their model, however, does not conform well to the theory

of contests in general, or the literature on rent-seeking in particular. In the

following we shall develop an analysis of the pure contest model of Katz et

al.(1988) which exhibits a more intuitiv relationship between the intra-group

incentives to free-ride and inter-group competitive forces.

3 Evolutionary stability of behavior

Ideas from evolutionary game theory �nd more and more applications outside

the narrow con�nes of biological contexts. They have become increasingly
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popular in economics as a guide to the formulation of economic develop-

ment in general and the evolution of economic processes in particular. One

of the most basic concepts of evolutionary game theory is the notion of an

evolutionarily stable strategy (ESS) as de�ned by Maynard Smith (Maynard

Smith and Price (1973), Maynard Smith (1974,1982)). Its de�nition neatly

shortcuts the full study of a detailed dynamic process by formalizing neces-

sary requirerments for a stable rest point of such a process. It is this notion

of a solution concept that shall be used to analyze contests for a pure local

or group-speci�c public good.

Generally speaking, evolutionary game theory lends itself to a belief-free anal-

ysis of interactive decisions, it therefore requires less than \full rationality\,

if the latter is understood as utility maximization under optimal usage of

all relevant information, which in interactive decisions includes preferences

and beliefs of opponents. Strategy selection in evolutionary game theory is

basically governed by - the economically meaningful - desire of beating the

average. It is hence not surprising that quite often economic phenomena,

which seem to contradict \traditional\ rational theories, can be explained by

resort to evolutionary arguments (the literature on experimental economics

provides ample examples).

Hehenkamp, Leininger and Possajennikov (2001) have demonstrated the

scope and usefulness of the solution concept ESS for contests by reanalyzing

Tullock's (1980) classic rent-seeking model. The unique Nash equilibrium

in that model is not evolutionarily stable. Still, an ESS exists precisely in

those circumstances that do admit existence of a Nash equilibrium. The most

prominent feature of the unique ESS is, that it implies underdissipation of

the rent, if the rent-seeking technology exhibits decreasing returns to scale,

full rent dissipation with constant returns to scale, and overdissipation (!)

with increasing returns to scale (see Hehenkamp et al. (2001)).

In order to analyze the public good case of a contest from the point of view

of evolutionary stability, we have to adapt the solution concept ESS to the

asymmetric group context of the present contest.

Recall that a strategy is evolutionarily stable, if a whole population, which

uses that strategy (or standard of behavior), cannot be invaded by a small

group of mutants using a di�erent (\mutant\) strategy. The emphasis of

the evolutionary approach is not on explaining actions as a result of choice,

but on the di�usion of behavioral forms in groups (as a result of learning,

imitation, reproduction or otherwise).

In a �nite population of r = n + m individuals the smallest meaningful
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number of mutants is one, hence we de�ne:

De�nition: (Scha�er, 1988):

i) Let a strategy (standard of behavior) x be adapted by all play-

ers i; i = 1; : : : ; r. A mutant strategy �x 6= x can invade x, if

the pay-o� for a single player using �x (against x of the (r � 1)

other players) is strictly higher than the pay-o� of a player using

x (against (n � 2) other players using x and the mutant player

using �x).

ii) A strategy xESS is evolutionarily stable, if it cannot be invaded by

any other strategy.

Since Scha�er's reformulation of ESS for �nite populations applies to sym-

metric games with identical roles for players, we have to use Selten's (1980)

general technique to \symmetrize\ an asymmetric game in order to make it

analyzable by ESS.

Players of the present contest can assume one of two roles, either they become

a member of the group in location 1 or they become a member of the group

in location 2. Nature assigns these roles to each of the r = n + m players

with probabilities n

n+m
for group 1 resp. m

n+m
for group 2. After the role

assignment the contest takes place. A strategy for a player in the symmetric

version of the contest game re
ects behavior conditional on roles, i.e. it

speci�es behavior for group 1-membership, x say, and group 2-membership,

y say. Figure 1 illustrates the situation for player i.

individual i 2 f1; : : : ; rg

�
�

�
�

�
�

group 1

x  !

@
@
@
@
@
@

group 2

y
contest

Fig.1 Role assignment and behavior

n
n+m

m
n+m

Since a player expects with probability n
n+m

(resp. m
n+m

) to become assigned

membership of group 1 and play x (resp. group 2 and play y) his expected
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pay-o�, if viewed as an individual of the monormorphic population of r =

(n +m) players using the role-conditioned strategy (x; y), is

�(x; : : : ; x; y; : : : ; y) =
n

n +m

� n � x

n � x+m � y
V�x

�
+

m

n+m

� m � y

n � x+m � y
V�y

�
:

Such a population game (Selten, 1980) is necessarily symmetric and we can

apply the solution concept ESS (as de�ned above) to it. We de�ne:

De�nition: (x�; y�) is an evolutionarily stable strategy (ESS) if it cannot be

invaded by an alternative strategy (xM ; yM) 6= (x�; y�).

We now formalize ESS in the context of the pure public good contest of

Katz et al. (1988).

4 Public Good Contest: an evolutionary

analysis

Let (x; y) be a (role-conditioned) strategy, which is adopted by all players;

(x; y) can be invaded, if there exists (xM ; yM) such that

�M(xM ; x; : : : ; x; yM ; y; : : : ; y) > �l(xM ; x; : : : ; x; yM ; y; : : : ; y)

l = 2; : : : ; m+ n;

we denote the pay-o� of player 1, the mutant, by �M and the identical

pay-o� of all other players, l = 2; : : : ; n, by �NM .

As a consequence a strategy (x�; y�) is an ESS if and only if

(�) �M(xM ; x
�; : : : ; x�; yM ; y

�; : : : ; y�) � �NM(xM ; x
�; : : : ; x�; yM ; y

�; : : : ; y�)

for all (xM ; yM) 6= (x�; y�).
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A useful and informative reformulation of condition (*) is, that (x�; y�) is an

ESS if it solves

(��) max(xM ;yM ) �M(xM ; x
�; ::; x�; yM ; y

�; ::; y�)��NM (xM ; x
�; ::; x�; yM ; y

�; ::; y�)

(**) shows that in an ESS, i.e. when all players use the strategy (x�; y�), a

player behaves as if maximizing the pay-o� di�erence between his and the

average pay-o� of other players. In particular, a player need not maximize

his expected pay-o� (as in Nash-equilibrium) in an ESS. His aim is to

beat the average pay-o� and this goal is not only furthered by high own

pay-payo�, but also by a low(er) pay-o� of rivals! Behavior in an ESS,

that lowers rivals' pay-o�s has been termed "spiteful" (Hamilton, 1971).

It can occur in the present context via lowering the opponents' (group)

probability of winning the contest. Hence the free-riding problem within a

group becomes intertwined with relative competition between groups. For

the latter relative group size should matter and one would expect that larger

groups su�er more from the free-rider problem than smaller groups. As

a consequence total expenditures should decline with relative size ofm and n.

We look at these issues in detail now. We have that

��

M(xM ; x
�; ::; x�; yM ; y

�; ::; y�) =
n

n+m

h (n� 1) � x� + xM

(n� 1) � x� + xM +m � y�
�V �xM

i

+
m

n+m

h (m� 1) � y� + yM

n � x� + (m� 1) � y� + yM
�V�yM

i
and

�NM� (xM ; x
�; : : : ; x�; yM ; y

�; : : : ; y�)

=
n

n +m

h n

n+m

� (n� 1) � x� + xM

(n� 1) � x� + xM +m � y�
� V � x�

�

+
m

n +m

� n � x�

n � x� + (m� 1) � y� + yM
� V � x�

�i

+
m

n +m

h n

n+m

� m � y�

m � y� + (n� 1) � x� + xM
� V � y�

�

+
m

n +m

� (m� 1)y� + yM

n � x� + (m� 1)y� + yM
� V � y�

�i

The �rst term of ��

M refers to the possible role of the mutant as a member

of group 1, the second refers to the possible role as a member of group
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2. ��

NM consists of the analogue two terms for a non-mutant taking into

account that the mutant can have either role.

If we substitute these two expressions into the maximization problem (**)

we get, that an ESS must solve (after some tedious rearrangements)

(M) max(xM ;yM)

n n �m

(n+m)2
�
(n� 1)x� + xM �m � y�

(n� 1)x� + xM +m � y�
�V�

n

n +m
(xM�x

�)

+
n �m

(n+m)2
�
(m� 1)y� + yM � n � x�

(m� 1)y� + yM + n � x�
�V�

m

n +m
(yM�y

�)
o

The �rst-order conditions are (by the quotient rule)

i) n�m

(n+m)2
�
(n�1)x�+xM�m�y��(n�1)x��xM+m�y�

((n�1)x�+xM+m�y�)2
� V � n

n+m
= 0

ii) n�m

(n+m)2
�
(m�1)y�+yM�n�x��(m�1)y��yM+n�x�

((m�1)y�+yM+n�x�)2
� V � m

n+m
= 0

After some manipulations these yield

i') m
n+m
�

2m�y�

((n�1)x�+xM+m�y�)2
� V = 1

ii') n

n+m
�

2n�x�

((m�1)y�+yM+n�x�)2
� V = 1

Since the solution must be symmetric in roles, we impose

yM = y� and xM = x� , which gives us

m

n +m
�

2my�

(n � x� +m � y�)2
� V = 1 =

n

n+m
�

2nx�

(n � x� +m � y�)2

Consequently, m2
� y� = n2 � x� (R)

9



If we substitute this into i') we get

2

n+m
�

n2 � x�

(n � x� + n2

m
x�)2

� V = 1 or

2n2

(n+m)(n + n2

m
)2 � x�

� V = 1 and therefore

x� =
2n2

(n+m)
�

m2

n2(m + n)2
� V = 2 �

m2

(n +m)3
� V

and from this it follows that

y� = 2 �
n2

(m+ n)
� V:

Note that this unique interior solution of (**) resp. (M) coincides with the

Nash equilibrium of the previous section, if and only if m = n! Katz et

al. (1988) assume a "regular, interior solution" (p. 51) for the �rst-order

condition of the Nash equilibrium problem. Checking for boundary solutions

(see Appendix) reveals, that { for all m and n { this assumption is indeed

satis�ed; i.e. the interior Nash solution is a global one for the model under

consideration. This is not true for our unique interior ESS-candidate:

Theorem 1: There is no evolutionarily stable strategy in a public good con-

test for V , if each group has at least two members.

Proof: We will show that a mutant free-rider, who uses strategy (xM ; yM) =

(0; 0) always can invade (xESS; yESS), the only interior candidate for

an ESS. Obviously, free-riding itself is not an ESS either.

So let player 1 use strategy (xM ; yM) = (0; 0), while player i; i =

2; : : : ; r, still uses (x�; y�) = (xESS; yESS). If we can show, that the

relative pay-o� for 1 is positive, the claim is proven. We have

�1(0; x
ESS; ::; xESS; 0; yESS; ::; yESS)� �i(0; x

ESS; ::; xESS; 0; yESS; ::; yESS)

=
n

n+m

� (n� 1) � x�

(n� 1) � x� +m � y�
� V

�
+

m

n+m

� (m� 1) � y�

n � x� + (m� 1) � y�
� V

�

�
n

n +m

h n

n +m

� (n� 1) � x�

(n� 1) � x� +m � y�
�V�x�

�
+

m

n+m

� n � x�

n � x� + (m� 1) � y�
�V�x�

�i

10



�
m

n +m

h n

n +m

� m � y�

m � y� + (n� 1) � x�
�V�y�

�
+

m

n+m

� (m� 1) � y�

n � x� + (m� 1) � y�
�V�y�

�i

=
n

(n+m)

�
1�

n

n+m

� (n� 1) � x�

(n� 1) � x� +m � y�
�V+

m

(n+m)

�
1�

m

n+m

� (m� 1) � y�

n � x� + (m� 1) � y�
�V

�
n

(n +m)
�

m

(n+m)
�

n � x�

n � x� + (m� 1) � y�
�V�

m

(n+m)

n

(n+m)
�

m � y�

m � y� + (n� 1) � x�
�V

+
n

n+m
�x�+

m

n+m
�y�

=
n

(n+m)
�

m

(n+m)
�

(n� 1) � x�

(n� 1) � x� +m � y�
�V+

m

(n+m)
�

n

(n+m)
�

(m� 1) � y�

n � x� + (m� 1) � y�
�V

�
n

(n +m)
�

m

(n+m)

n � x�

n � x� + (m� 1) � y�
�V�

n

(n +m)
�

m

(n+m)

m � y�

m � y� + (n� 1) � x�
�V

+
n

(n+m)
�x�+

m

n+m
�y� > 0 if and only if

(divide by n

n+m
�

m

n+m
)

�(n� 1) � x� �m � y�

(n� 1) � x� +m � y�
+
(m� 1) � y� � n � x�

n � x� + (m� 1) � y�

�
�V +

n+m

m
�x�+

n+m

n
�y� > 0

We now substitute x� = 2m2

(n+m)3
�V and y� = 2n2

(n+m)3
�V and collect terms, which

yields after tedious manipulations (see Appendix) the equivalent condition

that

m � n3 � 2n3 + n �m3
� 2m3 + 2n2m2 + 2n �m� n2m� nm2 > 0;

Write this as

(m� 2)n3 + (n� 2)m3 + [n2 �m(2m� 1)� n �m(m� 2)] > 0

and it is immediate, that all three terms of the sum are non-negative and

the last one is strictly positive for n > 1 and m > 1; i.e. both groups need

to be "groups" in the proper sense of the word. One contestant alone in a

"group" cannot su�er from free-riding of group members. This completes

the proof. q.e.d.

Theorem 1 is remarkable, it nicely illustrates the di�erent stability condi-

tions embodied by Nash equilibrium and ESS. Take the case when m = n

and hence both solution candidates coincide. While (x�; y�) = ( 1
4n
V; 1

4n
V )
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is stable against all Nash deviations, it is not stable against all mutants.

When considering a deviation from x� = 1
4n
V a Nash player compares his

pay-o� after the deviation with his pay-o� before the deviation; whereas

an ESS-player { according to the as if -interpretation of a relative pay-o�

maximizer { compares his pay-o� after the deviation with the other players

pay-o� after the deviation. In a private good contest for V (see Hehenkamp,

Leininger and Possajenikov, 2001, and Leininger, 2002) the latter consider-

ation always leads to a higher expenditure than in Nash equilibrium, since

Nash equilibrium always occurs at a solution, that yields a positive value of

the �rst derivative of the relative pay-o� function. A marginal increase of ex-

penditures therefore increases relative pay-o� (Leininger, 2002, Proposition

1). Heuristically, a marginal increase of expenditures beyond the Nash equi-

librim level has second-order negative e�ect on a player's own pay-o� (as the

�rst derivative of his pay-o� function is zero at the Nash equilibrium level)

and a �rst-order negative e�ect on other players' pay-o� (as cross derivatives

in Nash equilibrium are always negative). As a consequence the di�erence

between own and others pay-o�s increases. In a public good contest this in-

centive to increase one's expenditure is counteracted by the free-rider prob-

lem: although an increase above the Nash level still advances one's position

in relation to member's of the other group, it puts oneself at a disadvantage

in relation to fellow members of the own group; they free-ride on additional

"spiteful" e�ort. An extreme free-rider, who puts in zero e�ort regardless of

his role, can even invade the only candidate ESS (x�; y�) as Theorem 1 shows.

(The "same" extreme free-rider cannot upset Nash equilibrium). Free-riding

is { from a point of view of ESS { sensible spiteful behavior against (ex

post) members of the own group. It is costless in terms of expenditures and,

somewhat perversely, increases (ex post) the pay-o� of members of the other

group (which works towards a decrease in one's own relative pay-o�), but it

increases one's own pay-o� by even more. An important reason for the latter

is, that in the ex ante-calculus of role conditioned behavior a player has a

reduced incentive to guard himself against such a deviant, since he might

bene�t from it (in relative terms), if he happens to become a member of

the other group. Free-riding is thus even more destabilising in evolutionary

equilibrium than in Nash equilibrium, which is governed by absolute (own)

pay-o� considerations. I.e. "rationality" helps to stabilize behavior and bring

about predictable patterns of expenditures.
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5 Local evolutionary equilibrium

The damaging message of Theorem 1 is now put into perspective with the

help of our unique interior candidate solution (x�; y�) of the last section. We

shall show, that this candidate solution is an ESS-solution, if we introduce

a restriction due to Al�os-Ferrer and Ania (2001), who de�ne the notion of

a local evolutionarily stable strategy (local ESS) for �nite populations of

players.

De�nition: A strategy �xESS is local evolutionarily stable, if it cannot be

invaded by any strategy from a neighbourhood of �xESS.

Clearly, any ESS as de�ned before quali�es as a local ESS, since non-

invadability there refers to all other strategies, not just local ones. Since

our strategy sets are connected continua in Euclidian space, neighbourhood

is straightforwardly de�ned with respect to Euclidian norm d(x; y); i.e.

B(�x; Æ) = fx 2 Rjd(�x; x) < Æg

Local evolutionary stability requires that mutants enter with behavior sim-

ilar to the one used before mutation. In an evolutionary context this re-

quirement has almost natural appeal. Although we have not modelled an

adjustment dynamics to ESS, we note that the most popular dynamics used

in evolutionary game theory (like e.g. replicator dynamics) portray agents

as boundedly rational agents, who either learn, imitate or experiment with

limited information about the environment. In our particular context of a

contest between two groups of agents for a public good, those behavioral re-

strictions, which forbid behavior too deviant from group behavior, may stem

from group norms or homogeneity enforcing sanction mechanism (those may

have developed in response to the content of Theorem 1).

We can now state

Theorem 2: There is a unique local evolutionarily stable strategy in a pub-

lic good contest for V . It is given by (x�; y�) =
�

2m2

(n+m)3
V; 2n2

(n+m)3
V
�
.

Proof: Consider the maximization problem (M) again and restrict it to

choices from (xM ; yM) 2 B(x�; y�; Æ). Then any local maximizer, that

is symmetric in roles, is seen to be a local ESS. In particular, (x�; y�)

is a local ESS. Moreover, the derivation preceding Theorem 1 shows,
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that (x�; y�) =
�

2m2

(n+m)3
V; 2n2

(n+m)3
V
�
is the only interior candidate for a

local ESS. Note, that the free-riding option (0; 0) is not a local ESS.

q.e.d.

Because of Theorem 2 we identify (x�; y�) with evolutionary equilibrium and

discuss some properties of evolutionary equilibrium behavior. We �rst relate

it to Nash equilibrium behavior.

Corollary: Nash equilibrium in a public good contest for V is (local) evo-

lutionarily stable, if and only if the groups are of the same size (i.e. if

m = n).

Furthermore we have

Proposition 2:

In a public good contest for V total expenditure in evolutionary

equilibrium is always less or equal than in Nash equilibrium.

Proof:

Total expenditure in Nash equilibrium is 1
2
�V , whereas in evolutionary

equilibrium it is given by

n �
2m2

(n+m)2
� V +m �

2n2

(n+m)3
� V =

2mn

(n +m)2
� V

2m � n

(n+m)2
� V �

1

2
� V , 2m � n > n2 +m2

, (n�m)2 � 0

The latter always holds. q.e.d.

Proposition 2 is in contrast to private good contests, for which the opposite

relationship holds (Leininger, 2002). We have already seen that { albeit in

some unexpected way { the free-rider option in the evolutionary game is far

more e�ective than in the Nash game. This not only accounts for Proposition

2, but also for the following properties, which are in strong contrast to the

neutrality properties of Nash equilibrium in public good contests.
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Proposition 3:

In evolutionary equilibrium the following holds true:

i) If relative group size n

m
increases, then total contest expenditures

decrease.

ii) A larger group always spends less than a smaller group.

iii) A group's probability of winning the contest is decreasing in own

group size and increasing in rival group size:

px�(x
�; : : : ; x�; y�; : : : ; y�) =

m

n +m
;

py�(x
�; : : : ; x�; y�; : : : ; y�) =

n

n+m

Proof:

i) We have that total expenditures equal

2m � n

(n+m)2
� V =

2 � n
m

(1 + n

m
)2
� V

Consequently,
d

d( n
m
)

� 2 � n
m

(1 + n
m
)2
� V

�
< 0 ;

if we assume - without loss of generality - that n > m.

ii) We have from condition (R) that in equilibrium m2
� y� = n2 � x�

holds. Setting m � y� = Y � and n � x� = X�, this reads as

m � Y � = n � X� which implies that the larger group spends

less tha the smaller group on aggregate. (Note that in Nash

equilibrium (section 2) X� = Y � holds).

iii) Obvious from

px�(x
�; : : : ; x�; y�; : : : ; y�) =

n � x�

n � x� +m � y�
=

m

n +m

py�(x
�; : : : ; x�; y�; : : : ; y�) =

m � y�

n � x� +m � y�
=

n

n +m

q.e.d.

15



We now turn to individual rent-seeking in each role:

Proposition 4:

In evolutionary equilibrium it holds true that

i) individual expenditures decrease with increasing size of a contes-

tant's own group; and

ii) individual expenditures decrease (increase) with increasing rival

group size, if the rival group is at least twice (at most half) the

size of a contestant's own group.

Proof:

i) x� = 2m2

(n+m)3
� V is decreasing in n and

y� = 2n2

(n+m)3
� V is decreasing in m.

ii) We have dx�

dm
= 4m(n+m)3�2m2

�3(n+m)2

(n+m)6
� V >

< 0

if and only if m<
>2n resp. n

m

>

<

1
2
.

The reasoning for dy�

dn
is completely analogous. q.e.d.

The interesting part of Proposition 4 is illustrated in Figure 2:

-

6

m

n

��
��

��
��

��
��

��
�

�
�
�
�
�
�
�
�
�
��

I

n=2m

n=1
2
m

II

III

area I: dx�

dm
> 0 anddy

�

dn
< 0

area II: dx�

dm
> 0 anddy

�

dn
> 0

area III: dx�

dm
< 0 anddy

�

dn
> 0

Fig.2: Critical relative group size

Areas I and III represent "lop-sided" contests: one group is more than

twice as large as the other one and stands no chance, because of endemic

free-riding: a further increase in the number of its members even allows

members of the rival group to reduce their e�orts! Only, if groups are similar
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enough in size; i.e. none is at least twice the size of the other, do members

of both groups respond with an increase of expenditures in the number of

their rivals.

6 Conclusion

We have studied a model of collective rent-seeking over a public good due

to Katz et al. (1988) from an evolutionary point of view by applying the

solution concept of an evolutionary stable strategy (ESS). It is known, that

for rent-seeking over a private good ESS always di�ers from Nash equilib-

rium (Leininger, 2002). It turns out that the free-rider problem is even more

severe in evolutionary equilibrium than for Nash players: a (global) ESS

does not exist in our model as the only candidate solution can be invaded

by a free-rider strategy (Theorem 1). However, the candidate solution is the

unique local ESS of the model (Theorem 2). This evolutionary solution is

not neutral with respect to group size(s), which is in contrast to an arti�cial

property of Nash equilibrium. Rent-seekers collectively always spend less in

evolutionary equilibrium than rational Nash players would do (Proposition

2). Their behavior is exclusively determined by relative group size n

m
: collec-

tive expenditures decrease with an increase of n
m
and the larger group always

spends less than the smaller group (Proposition 3). Individual expenditures,

too, vary with relative group size in an intiuitive, but non-monotone way

(Proposition 4).

Other than these formal results, we like to conclude that evolutionary analysis

based on the notion of evolutionary stability yields qualitatively more sensible

predictions for behavior of contestants than rational analysis based on Nash

stability. A further message of the paper is, that collective rent-seeking e�orts

for public goods will be small, a provider of a public good, who wishes to

encourage rent-seeking contributions needs to resort to additional measures.
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Appendix

A) Interiority of Nash solution:

Nash equilibrium pay-o� for a group 1 member is given by

U1(x
�; y�) =

1

2
V �

1

4n
� V:

Free-riding by choosing x1 = 0 instead of x1 = x� gives 1 pay-o�

(n� 1) � x�

(n� 1)x� +m � y�
� V =

n�1
4n

n�1
4n

+ 1=4
� V:

Now
1

2
V �

1

4n
� V �

n�1
4n

n�1
4n

+ 1=4
� V

, 1=2�
1

4n
�

1

1 + n

n�1

=
n� 1

2n� 1

, n� 1=2� 1=2 +
1

4n
� n� 1

, n� 1 +
1

4n
� n� 1

The interior solution dominates free-riding for a member of group 1. The

proof for a member of group 2 is completely analogous.

B) Proof of Theorem 2:

Substitution of x� = 2m2

(n+m)3
�V and y� = 2n2

(n+m)3
�V yields the condition

"
(n� 1) � 2m2

(n+m)3
�m � 2n2

(n+m)3

(n� 1) � 2m2

(n+m)3
+m � 2n2

(n+m)3

+
(m� 1) � 2n2

(n+m)3
� n � 2m2

(n+m)3

n � 2m2

(n+m)3
+ (n� 1) � 2n2

(n+m)3

#
� V

+
(n +m)

m
�

2m2

(n+m)3
� V +

(n +m)

n
�

2n2

(n+m)3
� V � 0

Now multiply both sides with
(n+m)3

V
and get - equivalently -

(n� 1)m2
�m � n2

(n� 1)m2 +m � n2
+

(m� 1)n2 � n �m2

n �m2 + (n� 1) �m2
+

2m

(n+m)2
+

2n

(n+m)2
� 0
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or - tediously -

((n� 1)m2
�m � n2)(n �m2 + (n� 1) �m2) + ((m� 1)n2 � n �m2)((n� 1)m2 +m � n2)

((n� 1)m2 +m � n2)(n �m2 + (n� 1)m2)

+
2

n+m
� 0

which is equivalent to

(1� n�m)m2
� n2

((n� 1)m2 +m � n2)(n �m2 + (n� 1) �m2)
+

2

n+m
� 0

or
2

n +m
�

(n+m� 1)m2
� n2

((n� 1)m2 +m � n2)(n �m2 + (n� 1) �m2)
:

After multiplication and collection of terms we get

mn3 � 2n3 + nm3
� 2m2 + 2n2m2 + 2nm� n2m� nm2

� 0

which is the equation used in the proof.
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