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Abstract

The paper advances the log-generalized gamma distribution as a
suitable generator of conditional skewness. Based on the NYSE
composite daily returns an asMA-asQGARCH model along with
skewness dynamics is estimated. The results indicate a skewness
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symmetry. The conditional variance and skewness measures are
negatively correlated.
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1. Introduction

Harvey and Siddique (1999) recently proposed a modelling approach for conditional
skewness in financial time series and also presented some empirical results. While
there is no dispute about the existence of skewness in returns, there appears to be
a shortage of well-established economic explanations for this phenomenon. Chen,
Hong and Stein (2000) summarize previous explanations and advance their sugges-
tion that it is investor heterogeneity that plays a central role. The heterogeneity is
due to differences in opinion about fundamental value and to some investors facing
short-sales constraints. Harvey and Siddique’s (1999) focus is empirical and they use
the noncentral ¢-distribution for modelling. This distribution therefore potentially
also accounts for fat-tailedness. Computationally their approach is, however, quite
demanding. Recently, Premaratne and Bera (2000) advanced the Pearson type IV
distribution, that closely resembles the noncentral ¢-distribution, as a computation-
ally simpler alternative.

We propose and study the usefulness of an alternative distribution — the log
generalized gamma — that allows for skewness and other features in the distri-
bution through a single distribution characteristic ¢ (e.g., Stacey, 1962, Prentice,
1974, Farewell and Prentice, 1977). The normal and extreme-value distributions are
among the special cases. Numerically this specification is simpler than the paramet-
ric Harvey and Siddique (1999) model or seminonparametrically formulated models
(e.g., Brunner, 1992). In addition, we focus directly on the basic density charac-
teristic and then only indirectly on skewness. This is in contrast to Harvey and
Siddique’s approach which starts from a skewness model and has to solve a pair of
nonlinear equations at each time point and at each iterative step in order to get
to the basic parameters required for conditional maximum likelihood estimation.
If our idea of a more direct modelling was applied to the noncentral ¢-distribution
considerable gains in computational time relatively theirs would likely be obtained.

Empirically we study the NYSE composite daily returns, January 2, 1981 —
December 31, 1999 (T' = 4956) and partly re-use the study of Brénnés and De
Gooijer (2000).

2. Model and Estimation

The present modelling exercise extends the one of Brénnis and De Gooijer (2000,
hereafter BDG) by adding a more flexible density that allows for skewness in inno-
vations. Their model has as conditional mean the asMA specification E(y|Y; 1) =
er = 0p+ X, 0Fut, + 38 07w, where uf = max(0,u;), u; = min(uy, 0), and

Y: = (y1,-..,¥:) is the information set (Wecker, 1981, Brinnis and De Gooijer,



1994). The conditional variance is an asQGARCH specification V (y|Y; 1) = h? =
o+ X (af i+ apu ) + X0, B, + X0, 3k, (BDG). These conditional
moments catch shocks u; asymmetrically. One may view the conditional mean as
containing not a full risk measure h2 but an unrestricted reduced form of such a mea-
sure. The suggested approach does not depend on the precise nature of these mo-
ment specifications but can be varied according to context. Let v; = v — E(y¢|Y: 1)
be the zero mean prediction error. In the model u; = v, = e;h;, where h; > 0 is
the conditional standard deviation. The random variable ¢, has zero mean, unit
variance, and is assumed to be conditionally independent of h;.

We think of ¢; as a standardization of a log-generalized gamma (LGG) distributed
variable (cf. the Mathematical Appendix for details). This family of densities has
a characteristic ¢ € (—00, 00), which indicates the member. For some ¢ values well-
known distributions arise, e.g., ¢ = 0 corresponds to a normal distribution, ¢ = 1
to an the extreme-value distribution, and ¢ = —1 to the reciprocal extreme-value
distribution. The LGG density is negatively skewed for positive g values, while
negative ¢ corresponds to positive skewness. Symmetry only emerges for ¢ = 0. The

LGG distribution to be used for estimation is

() = { ah al(q2)7 *exply *w = exp()]/Dla ). 4 #0

(27h2) "% exp(—3u?/h?), g=0" (1)

where w = gou/h+qu, i = q (g 2)—q tlng 2% and 0? = ¢ 2’ (¢ %) with ¢(z) =
OInT(z)/0x and ¢'(x) = O(x)/Oz. The skewness of € is s = o 3¢ 39" (¢ ?).
Here, )®(z) = 0*InT(z)/0z* are t-functions and T'(.) is the gamma function
(Abramowitz and Stegun, 1965).

By estimating the unknown parameter ¢ from data, evidence of an asymmetric &,
distribution may be found. Note, however, that even for a symmetric ¢; distribution
the marginal distribution of y; is generally asymmetric due to the nonlinearities in
the model.

The main idea of this paper is to add a conditional skewness specification indi-
rectly in terms of ¢q. Using the structures of the first two conditional moments we

may write

r1 9 T3
@ = ko + > _(KFuf + k7w ) + D i+ Y Vg
i=1 i=1 i=1
With estimates of ¢;, estimates of the skewness s; = 03¢, %" (¢, ?) can easily be
calculated. Since we have estimates of ¢; we can also obtain conditional kurtosis
and higher conditional moments or graph the conditional density for any ¢.
Given the density function in (1), conditional maximum likelihood estimation

is quite straightforward. For the empirical results given in the next section, the



RATS 5.0 package was employed. The required 1-functions were evaluated in terms
of numerical differencing of InI'(z) rather than by approximating functions (cf.
Abramowitz and Stegun, 1965). To estimate the parameters both the SIMPLEX

and BFGS routines were employed.

3. Results

The estimation results are based on the NYSE composite daily returns (defined
as ¥ = 100[In(l;) —In(Z;_1)], where I, is the price index), January 2, 1981 — De-
cember 31, 1999 (4956 observations, source: Datastream). Table 1 summarizes the
main estimation results. The first part reproduces estimation results for the asMA-
asQGARCH model obtained under the normal distribution assumption for &, cf.
BDG, and is included for comparison. In terms of conditional mean estimates a
notable change between the specifications is the increase in the constant term, 6,
as ¢ is introduced and allowed to vary. This is partly due to the constant threshold
of zero in forming the {u; } and {u; } sequences. Allowing for skewness by the use
of ¢ there may be larger probabilities for negative u; values. Depending on signs of
parameter estimates this may then have an enhancing effect on the constant term.
The estimates of the low u;" lags appear to become smaller, while those of the u;",
lag becomes larger. The changes for the u, lags are smaller. There are no sign
changes in neither é; nor in izf For the latter all estimates except for the persis-
tence parameter become smaller. Using the response time measure of BDG we find
very small differences between the three models. On average all measures respond
to news within the day.

In the asMA-asQGARCH model with a constant ¢, we get ¢ = 0.223 or the
skewness measure § = —0.23. A rather similar ¢ estimate was obtained for a pure
asMA model. In both cases a normality assumption on &; can be rejected. For
the full model we note the very small effect of lagged ¢;_;. This indicates that the
distribution of £; can be expected to shift shape very quickly. In Figure 1 we plot the
effects of u;_; on the conditional variance (h?) and on the skewness parameter (g;) for
the full model. Introducing a variable ¢q function indicates less and a more symmetric
impact on h? of the lagged u; 1 values. The effect on ¢, of u, ; is quite asymmetric
and at its smallest for u;_; =~ 2.8. Figure 2 plots the conditional skewness against
the observations and reveals that skewness is smallest for small values on 1;, while
for larger absolute values on g; there will always be negative skewness.

There is roughly a linear negative relationship between the skewness §; and ¢;
(8; = 0.199 —1.964;, R? = 0.98). This suggest two things. First, we should expect to
get analogous lag structures whether we model as here or in terms of a model for s;

(from which ¢; would be solved for estimation purposes, cf. the Harvey and Siddique
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Table 1: Parameter estimates for the conditional mean (é;), the conditional variance

(h2) and conditional skewness (¢;) models. Standard errors in parentheses

Cond.
Model Moment Estimate
asMA- é; 0.004 + 0.109 ;" ;+ 0.056 @ o— 0.045 4, 4
(0.009)  (0.014) (0.012) (0.014)
Sy g
asQGARCH h? 0.010 — 0.032 4;" ;— 0.096 7, ;+ 0 059 4y 4+ 0.905 h
(0.002)  (0.006) (0.006) 0.002) (0.002)
(e; normal) In L = —5802.9, LBlo(ut/ht) = 5.90, LBio(u t/htz) = 6.23,
@i = 0.827, Skewness = —0.68, Kurtosis = 6.93
asMA- € 0.021 + 0.098 @;" ;+ 0.032 4, ,— 0.070 @
(0.017)  (0.027) (0.025) (0.024)
Q87 Q8
asQGARCH(q) h? 0.000 — 0.002 4, ;— 0.079 7, ;+ 0. 033 uy_1+ 0.935 h
(0.002)  (0.010) (0.029) (0.0 (0.003)
q 0.223
(0.005)
62 = 0.825, Skewness = —0.85, Kurtosis = 9.01
Full model € 0.025 + 0.099 4;" ;+ 0.027 4, o— 0.066 ;" 4
(0.002)  (0.011) (0.010) (0.013)
+0.042 4,_,— 0.044 4,_,
R (0.004) (0.002)
h? 0.003 — 0.012 @;"~ —0066’&{_—1—0041@ 1+0932h
(0.000)  (0.005) (0.016) (0.009) (0.003)
AR R A 2T i s 07

InL = —57265, LBlo(Ut/ht) = 705, LBlo( t/h?) = 1069,
&Z = 0.825, Skewness = —0.82, Kurtosis = 8.54

Notes: LBjg(uy) is the Ljung-Box test against serial correlation in u;. In L is the

log-likelihood function value.
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Figure 1: Effects of u; ; on conditional variance (left, for h? ; = 0, solid line asMA-
asQGARCH, dotted line asMA-asQGARCH(q), dot-dashed line Full model) and

conditional skewness (right, for ¢;_1 = 0).
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Figure 2: Skewness measure §; versus observations ;. (Note that one far outlying

observation y; = —21.5 is not included. For that observation the skewness measure
has its smallest value s, = —17.4 and the conditional variance its largest value
h2 = 22.8.)
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Figure 3: The standarized density of ¢; for ¢ = 0.2 (the bell shaped curve) and
q = 8.52.

(1999) approach). Second, using the relationship between §; and §; we see that the
estimated effects for ¢; will have changed signs and be doubled in size for 5;. On
comparison with Harvey and Siddique (1999) we find a negative but smaller effect
of the skewness in the previous period. In our case, we find no smaller persistence
in the conditional variance.

Figure 3 shows the standardized ¢, density for two selected values on ¢. For the
black Monday of October 1987 (y; = —21.5) the estimated ¢, = 8.52, while most
¢;s are between 0.05 and 0.3. Hence, the extreme shape for the ¢; = 8.52 case only
arises once. The density for ¢, = 0.2 is very close to the shape of a standardized

normal density function.

4. Discussion

The present approach is based on a direct modelling of a distributional characteristic
(g:) rather than on the skewness (s;), which is a function of the characteristic. We
could apply the same approach to the noncentral ¢-distribution used by Harvey and
Siddique (1999). That distribution contains two distribution characteristics, and
we could model both or the main determinant of skewness, i.e. the noncentrality
parameter. In a future paper the details of such an approach will be given and
compared to the results reported here.

The parameters were estimated by the use of a general purpose econometric

program package, so that application to other series should be straightforward. Our



experience with respect to the estimates of parameters was positive on all accounts.
Only for the full model did we have to re-estimate multiple times before we managed
to get reasonable estimates of the standard errors. The use of analytical derivatives

for the covariance matrix could presumably reduce this problem.

Mathematical Appendix

Let the random variable V' have the log generalized gamma density
fv(v) =T~ (k) exp(kv — )

(cf. Prentice, 1974). As k — oo, V is normally distributed. To obtain the nor-
mal density for a finite parameter value, Prentice advocates transformation and
re-parametrization. Set W = k'2(V — Ink) so that fi(w) = k=2 exp(k'/?w +
kInk — ke* ") /T'(k) and re-parametrize with ¢ = k~'/2. This gives the density
fw(w) = lal(g7*)*"

Since V has the cumulant generating function InT'(¢ 2 + 0) — InT'(q~2) the first

explg 2(qw—e?)]/T(q2) for which the normal arises as ¢ — 0.

moments are 1)(q~2),1'(¢7*) and 1" (¢~%). Using the result on cumulant generating
functions of Cramér (1945, p. 187) for linear transformations we easily obtain the
moments for the random variable W: p = E(W) = ¢ (¢ %) — ¢ llng %,0% =
Var(W) = g %¢'(q %), and skewness s = q 39" (q72).

To obtain zero mean and unit variance, set ¢ = (W — p)/o to obtain the density
f(e) = olgl(g7®)7 * x explg~2(goe + qu — e27519%)] /T (¢~2). In addition, we need the

density for the innovation u = eh € (—o0, 00):

oh~Yql(¢H)"”
I'(q=2)

This density forms the basis for conditional maximum likelihood estimation of the

flu) = explg (qou/h + qu — e/ ).

parameters generating q, u, and h.
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