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1 Introduction

In many economic contexts several principals control a common agent and each of those principals

is directly affected by the actions imposed on the common agent by the other principals through

their bilateral contracts with the agent. Examples of such direct externalities abound and cover

many different settings like competition under nonlinear pricing, tax competition between different

jurisdictions, regulatory oversight by rival agencies, market-makers dealing with common liquidity

traders on financial markets, competition on insurance or loan markets among insurers or lenders,

and lastly competition between retailers dealing with a common manufacturer.

In standard models corresponding to the examples described above, a decision consists of a

transfer and an output. Decision rules can thus be identified with price-output pairs (i.e., nonlinear

price schedules) and the analysis of nonlinear prices in common agency environments becomes an

interesting theoretical question. To address this broad issue, this paper investigates the equilibria

of common agency games in a simple economic environment where principals compete through

nonlinear schemes. This meaningful economic environment involves two competing retailers (the

principals) producing perfect substitutes with intermediate goods which are bought from a common

manufacturer (the agent).

Importantly, two different kinds of externalities are at play simultaneously in our model. First,

each principal’s action (the intermediate output he requests from the manufacturer) affects the

agent’s utility function (the cost of the retailer) and there are thus indirect contractual externalities

as in Stole (1991), Martimort (1992 and 1996) and Mezzetti (1997). Second, and contrary to this

earlier common agency literature, each principal’s action also affects the other principal’s utility

function since both principals share the markets for the final good they produce. Hence, there

are now also direct contractual externalities between the principals. The contractual activity of

principal 2 directly affects principal 1’s utility function.

In such a framework, and following the tradition of standard principal-agent models, we charac-

terize the set of implementable allocations, i.e., the set of allocations obtained as pure-strategy Nash

equilibria of the common agency game with deterministic mechanisms. We find a remarkably large

set of such equilibria under complete information between the principals and the common agent they

control. A whole range of outputs is sustainable as equilibrium outcomes of the common agency

game in which principals compete through nonlinear prices. This multiplicity arises from the exis-

tence of out-of-equilibrium messages in the equilibrium tariffs offered by both principals. Including

these out-of-equilibrium messages in their tariffs, the principals are able to precommit themselves

to distort their strategic behavior on the final market through the contract they respectively offer

to the agent. This commitment value of contracts has no equivalent in a monopolistic screening

environment and can only be achieved through extending mechanisms with out-of-equilibrium op-

tions. Those options are used as implicit veto threats to prevent other principals from deviating
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from a given allocation.

Under complete information, common agency games are thus plagued with multiple equilibria.

When contractual activities are complements in the agent’s utility function we demonstrate that

any output between the classical monopoly and the Cournot outcomes can be sustained in equilib-

rium because out-of-equilibrium messages tend to soften competition between the principals. When

contractual activities are instead substitutes, any output between the Cournot and the Bertrand

outcomes can now be sustained as out-of-equilibrium messages tend to harden competition be-

tween the principals. Strikingly, the Cournot outcome always emerges as the unique symmetric

equilibrium of the common agency game where principals use direct revelation mechanisms. By

suppressing out-of-equilibrium messages, those mechanisms eliminate the principals’ precommit-

ment ability. Common agency environments offer therefore a significant failure of the Revelation

Principle when applied to the agent’s underlying type space.1

Given the multiplicity of equilibrium outcomes which exist under complete information, we

rationalize a unique choice from the set of equilibrium conjectures by explicitly introducing asym-

metric information between the principals and their common agent. Given that asymmetric infor-

mation is the most often heard motivation for justifying the use of complex nonlinear schemes, this

approach has a strong argument in its favor.2

To introduce asymmetric information, we assume that some parameter of the agent’s cost

function is unknown to both principals. We first derive the symmetric and differentiable pure-

strategy equilibria of this common agency game when the distribution of the cost parameter has

a fixed and finite support. Adverse selection introduces incentive compatibility constraints which

restrict the slope of the equilibrium tariff at all equilibrium outputs. Indeed, by enlarging the set

of outputs which are chosen along the equilibrium path, asymmetric information reduces the set

of off-the-equilibrium-path behaviors which are consistent with an equilibrium. Compared to the
1Epstein and Peters (1996) demonstrate that a larger, universal message space exists for which the revelation

principle is valid, but constructing such universal message spaces is currently an obstacle in common agency models.
2Our study of nonlinear pricing games is actually more general than it first appears, and has something to say

about equilibria in large communication-mechanism common agency games. To see this, we can use a variation of the
taxation principle, following the approach in Martimort and Stole (1999); a similar idea is independently developed
in Peters (2001). There, we demonstrate that although the revelation principle cannot easily be applied to common
agency environments (i.e., it would require a universal message space along the lines developed in Epstein and Peters
(1996)), it is not difficult to use an extension of the taxation principle from agency theory – what we call the delegation
principle – to characterize the set of equilibria from all message games. Specifically, we show that any equilibrium
in a any common-agency communication-mechanism game is also an equilibrium to a game in which each principal
chooses a menu of distributions of allocations to offer the agent (from some set of menus restricted to correspond with
the original message space limitations) and the agent chooses an element from each principal’s offered menu. The
main restriction in our analysis over general communication mechanism games, therefore, is to limit the principals
to offering menus with only deterministic outcomes (i.e., nonlinear price-quantity schedules) rather than allowing
for more general menus of distributions (i.e., nonlinear price-quantity lottery schedules). We are not aware of any
equilibrium generated by lotteries that is not also generated by nonlinear prices, but at present we cannot state that
this restriction is without loss of generality. A secondary restriction is that the nonlinear pricing equilibrium gives
rise to smooth quantity allocations as a function of type. Given that monotonicity of outputs is a typical requirement
of incentive compatibility, and that such monotonicity implies that nonlinear pricing schedules are almost everywhere
smooth, this restriction is not overly strong in our opinion.
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case of complete information, the equilibrium set shrinks significantly when nonlinear tariffs must

satisfy incentive compatibility constraints at all equilibrium outputs.

Even when adding asymmetric information on a bounded support, a full range of equilibrium

conjectures remains feasible. Asymmetric information with a distribution of the adverse selection

parameter having a bounded support falls short of selecting a unique equilibrium even though it sig-

nificantly restricts the equilibrium set. However, asymmetric information may offer a quite powerful

selection device when the support of the distribution of the private information parameter increases

without bound. We show that a unique robust equilibrium survives this procedure. Because all out-

puts arise in equilibrium with some probability, and the incentive constraints completely tie down

the relationship between outputs and marginal prices, the multiplicity of conjectures consistent

with equilibrium behavior disappears.

Section 2 presents our common agency model. We discuss there the direct contractual external-

ities between rival principals. Section 3 analyzes the case of complete information and shows that

a large set of equilibria are sustained with general nonlinear prices. We compare also this set to the

equilibrium obtained with simple direct revelation mechanisms. Section 4 extends the analysis to

delegated agency games and shows the outputs are the same as under the intrinsic common agency

setting of section 3. Section 5 provides the analysis of our common agency game under asymmetric

information. We discuss how asymmetric information between the principals and their common

agent may help to select among all previous equilibria. Section 6 selects a unique equilibrium con-

jecture by perturbing the information structure, and section 7 demonstrates the robustness of the

selection in delegated agency games. Section 8 concludes.

2 A Common Agency Model with Direct Externalities

We begin with a description of a common game between two retailers (the principals Pi for i = 1, 2)

selling perfect substitutes on a final market. Each unit of final good qi is produced with a one-to-one

production function from one unit of an intermediate good i. Those two intermediate goods are

produced by a single manufacturer (the agent A).

This common agent has a quasi-linear utility function which is symmetric and concave in (q1, q2):

U = y − C(q1, q2, θ)

where y is a monetary transfer and qi is the production of intermediate good i. C(·) is the common

agent’s cost function which is symmetric and convex in (q1, q2), increasing in q1 and q2 and such

that the standard sorting assumptions Ciθ > 0 for i = 1, 2 are both satisfied. For technical reasons,

we also assume that Cθ(·) is convex in (q1, q2). θ is a parameter reflecting the cost efficiency of this

common agent.
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Whenever possible, we state our results with the greatest generality by keeping a general expres-

sion for the cost function. However, for tractability and to insure the sufficiency of some arguments,

we will sometimes assume that C(·) is quadratic. In this case, we will have:

C(q1, q2, θ) = θ(q1 + q2) +
1
2
(q2

1 + q2
2) + λq1q2.

The parameter λ ∈] − 1, 1] represents the relationship between q1 and q2 in the agent’s utility

function. The intermediate goods are complements in the agent’s utility function when λ < 0 and

substitutes when λ > 0.3 The case of complements is obtained, for instance, when the production of

both final goods requires access to a common network.4 The case of substitutes is obtained instead

when final goods are produced from a common input which must be allocated between the two lines

of production. This last setting can be viewed as a model of intra-brand competition or vertical

contracting along the lines of Hart and Tirole (1990), O’Brien and Shaeffer (1992) and McAfee and

Schwartz (1994). Alternatively, with substitutes, and slightly relabeling variables, the setting we

analyze can be viewed as a split-award auction along the lines of Anton and Yao (1989).5 In such

procurement models, producers share the final market for efficiency reasons but offer nonlinear bid

schedules to a common buyer who decides how much to buy from each sellers.

The common agent gets some reservation utility exogenously normalized to zero if he decides

not to produce both intermediate goods. In a first step of our analysis, we consider a model of

intrinsic common agency in which the agent produces simultaneously either both intermediate

goods or none. In a second step of the analysis, we check that the equilibrium outputs of the

intrinsic common agency game still emerge under the more complicated delegated common agency,

i.e., when the agent may choose to work with only one of the competing principals. In this case,

the agent has an outside option which is type-dependent and determined by the contract of the

sole principal with whom he may choose to work.

The agent’s efficiency parameter is his private information. It is drawn from the set Θ = [θ, θ̄]

according to a common knowledge distribution F (·) with positive density f(·). This distribution

satisfies the monotone hazard rate property, d
dθ

(
F (θ)
f(θ)

)
> 0 for all θ ∈ Θ.

Inverse demand on the market for the homogeneous final good is denoted by P (Q) with P ′(·) <

0, P ′′(·) ≤ 0. Q = q1 +q2 is the total output produced by the principals. We will sometimes assume

that P (·) is linear and, in this case, P (Q) = a−Q.

To simplify, and without loss of generality, we assume that principal Pi produces a quantity qi

at no cost. Principal Pi’s profit is thus given by:

Vi(ti, qi, q−i) = P (qi + q−i)qi − ti
3When λ = 0 the two intermediate goods are unrelated. When λ = 1, the intermediate goods are perfect

substitutes; i.e., U = y − (θQ + 1
2
Q2), where Q = q1 + q2.

4This can be viewed as a highly stylized model of competition between telephone companies on the market for
long-distance calls when the latter companies have access to a local loop controlled by a third company.

5See also Wilson (1979) and Bernheim and Whinston (1986) for related models of share auctions.

5



when he buys a quantity qi of intermediate i at price ti and P−i puts a quantity q−i on the final

market.

Finally, we assume that principal Pi can only contract with the common agent on activity qi.

For instance, Pi has neither the auditing rights nor the monitoring technologies to observe and,

thus, contract on q−i. In the same way, Pi cannot contract on Pj ’s contract because the latter

contract is not observable by Pi. Anti-trust rules may also forbid such reciprocal contracting in the

industrial organization setting we analyze here.6

Typically, a pure strategy deterministic contract between Pi and A is a nonlinear schedule ti(qi)

mapping the agent’s choice of output into the transfer paid by principal Pi.7 Applying a generaliza-

tion of the taxation principle, Martimort and Stole (1999) show that there is no loss of generality

in considering this class of deterministic nonlinear prices if the modeler is interested in common

agency equilibria with deterministic mechanisms. The essence of this Taxation Principle is that

extending nonlinear prices to allow further messages on top of quantity choices is of no additional

value. From the agent’s point of view, communication-per-se is of no value, only the payoff-relevant

consequences of such communication. Hence, communication can be replaced with a decentralized

menu of choices that are undominated. For example, in the seemingly more general game in which

offered nonlinear price schedules depend upon the messages sent by the agent, we could replace the

mechanism with the upper envelope of transfers without any strategic consequences for either the

principals or the agent. Since pure-strategy equilibria have a natural economic appeal, we further

restrict our attention to pure-strategy equilibria in deterministic nonlinear prices.8

Note that the production contracted upon by P−i with the common agent enters directly into

Pi’s objective function. We thus have an instance of direct contractual externalities. This novelty

of the modeling in the common agency literature under adverse selection stands in sharp contrast

with the models developed by Stole (1991) and Martimort (1992). In these latter papers, we

both assumed that contractual externalities between the principals occur only because the agent’s

marginal utility for contractual activity i depends also on contractual activity j 6= i, however that

this activity, j, does not enter directly into Pi’s utility function.9

The intrinsic common agency game unfolds as follows:
6Katz (1987) shows in the related context of delegation games between principal-agent pairs that such reciprocal

conditioning of contracts may imply the nonexistence of a contract equilibrium.
7These mechanisms are deterministic since the agent chooses an output and not a distribution of outputs among

which the principal could randomize. Not only do these randomizations seem unrealistic in the real world and hardly
observed in the case of nonlinear pricing, but they also require that judicial courts can enforce these randomizations.
This may be quite problematic since any deviation away from the randomization which has been contracted upon can
only be detected statistically after many such realizations of the contract. Such detections are instead not feasible in
the one-shot relationships that we analyze here.

8Nonetheless, even within this class of equilibria, we find that out-of-equilibrium messages play a significant role
in describing the set of equilibrium outcomes. It is noteworthy that because mixed-strategy equilibria are also limits
of pure-strategy equilibria of games of incomplete information between the principals, the pure-strategy equilibria of
such Bayesian common agency games could be obtained using the same techniques as in the present paper.

9Laffont and Martimort (1997) call direct (resp. indirect) externalities type 2 (resp. type 1) externalities.
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1. First, nature draws θ. This parameter is be known only by the common agent under the case

of asymmetric information or by all players under complete information.

2. Principals non-cooperatively offer nonlinear price schedules.

3. The common agent accepts or refuses both contracts.

4. If he refuses, the common agent gets his reservation utility normalized at zero. If he accepts, he

chooses an amount of intermediate good to produce and receives the corresponding transfer.

In the case of a delegated common agency game that we analyze also below, stage 3 of the timing

above is replaced by

3’. The common agent chooses to accept both, one, or none of the contracts.

In this latter case, a common agency equilibrium arises if the agent gets more utility by taking

both contracts than by taking only a contract offered by only one of the principals.

3 Equilibria of the Intrinsic Common Agency Game under Com-
plete Information

3.1 Multiplicity of Equilibria and the Role of Out-Of-Equilibrium Messages

For tractability and to achieve a complete characterization of the set of common agency equilibria

under complete information, we shall focus on the class of twice-differentiable nonlinear prices

defined over a sufficiently large domain of quantity, and we restrict our attention to symmetric

equilibria; from here on, when we use the phrase symmetric, differentiable equilibrium, we imply

precisely these restrictions.

In this initial section, we explore settings of complete information in which both principals know

the value of θ. Hence, we are interested in equilibria in which, for a fixed θ, the principals play a

game in designing optimal nonlinear price schedules to offer the agent. Hence, transfer functions

will have a second argument to account for the observed and verifiable type of the agent: ti(qi, θ).

When we consider incomplete information, this dependence is removed.

For further reference, we define the following output allocations:

• The Bertrand symmetric output, qb(θ), satisfies:

P (2qb(θ)) = C1(qb(θ), qb(θ), θ);

For this outcome, the price of one unit of final good equals its marginal cost of production.
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• The Cournot symmetric output, qc(θ), satisfies:

P (2qc(θ)) + qc(θ)P ′(2qc(θ)) = C1(qc(θ), qc(θ), θ).

The marginal revenue of each competing retailer equals then the marginal cost of production. As

we will see in Proposition 2 below, in a constrained game in which the competing retailers are not

allowed to offer anything other than a single output and corresponding price, the Cournot outcome

emerges for familiar reasons. In an unconstrained setting, the Cournot outcome need not emerge.

• The monopoly symmetric output, qm(θ), satisfies:

P (2qm(θ)) + 2qm(θ)P ′(2qm(θ)) = C1(qm(θ), qm(θ), θ).

The marginal revenue made by a coalition of both competing principals equals the marginal cost of

production. This is the outcome achieved had the principals being cooperating in their contractual

offers to the common agent.

It is immediate to check that qm(θ) < qc(θ) < qb(θ) as a result of a greater exercise of market

power on the final good market when one varies outcomes from Bertrand, to Cournot, and then to

monopoly.

To determine retailer 1’s optimal choice of transfer, t1(q1, θ), let us take as given the nonlinear

price t2(q2, θ) offered by P2 to the common agent in an equilibrium of the intrinsic common agency

game. This allows us to define the agent’s optimal choice of q2, given q1 is supplied to retailer P1.

q∗2(q1, θ) ≡ arg max
q2

t2(q2, θ)− C(q1, q2, θ).

Assuming that the maximand t2(q2, θ) − C(q1, q2, θ) is sufficiently regular such that its optimal

solution is uniquely characterized by a first-order condition, we can define q∗2(q1, θ) by the expres-

sion:10

t′2(q
∗
2(q1, θ)) = C2(q1, q

∗
2(q1, θ), θ) ∀ (θ, q1).11 (1)

Under complete information, P1’s best response is to implement a production q1 and a transfer

t1 = t1(q1, θ) which are solution to the following problem:

max{t1,q1}P (q1 + q∗2(q1, θ))q1 − t1
10We will check ex post to make show that the agent’s program is indeed concave, so that providing that the

transfer functions are defined over a broad domain to exclude corner solutions, the first-order approach is valid.
11This first-order condition states that, at the equilibrium point, the nonlinear schedule offered by a principal is

equal to the common agent’s marginal cost with respect to output for this principal. Even if its spirit is somewhat
similar, this first-order condition should not be confused with the “truthfulness” requirement imposed in other common
agency games under complete information by Bernheim and Whinston (1986) and Grossman and Helpman (1994).
These latter authors analyze settings where the contracting abilities of each principal are similar, i.e., each final
producer can contract on the whole vector of intermediate goods (q1, q2). The agent’s action choice is then defined
by a first-order condition similar to (1) when the common agent has a continuum set of actions to choose from. For
differentiable equilibria, the slopes of the nonlinear schedule t2(·) offered by principal P2 at the equilibrium point
reflects his marginal utility with respect to all contracting variables. Hence, the denomination “truthful”.
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subject to

t1 + t2(q∗2(q1, θ), θ)− C(q1, q
∗
2(q1, θ), θ) ≥ 0, (2)

where q∗2(q1, θ) is defined through the first-order condition (1). (2) is the agent’s participation

constraint which stipulates that the agent has to accept both contracts (rather than none) in the

intrinsic common agency game.

The following proposition characterizes the full-information pure-strategy equilibrium of our

intrinsic common agency game with deterministic and twice-differentiable nonlinear tariffs.

Proposition 1 : Under complete information, a necessary condition for an output q(θ) to belong

to the set of symmetric, differentiable equilibrium outputs of the intrinsic common agency game

are:

• q(θ) ∈ [qc(θ), qb(θ)] when the intermediate goods are substitutes in the agent’s utility function;

• q(θ) ∈ [qm(θ), qc(θ)] when the intermediate goods are complements in the agent’s utility func-

tion.

• the agent gets zero rents.

When C(·) is quadratic, the above conditions are sufficient (i.e., for any q(θ) satisfying the above

boundaries, there exist transfer functions which implement these outputs in equilibrium.)

Proposition 1 establishes that the intrinsic common agency game under complete information is

plagued with a large set of equilibria. The reason for this multiplicity is simple. Let us fix θ which

is known to the principal. By offering a smooth nonlinear price schedule for this value of θ , the

principal Pi not only controls the agent’s equilibrium production of intermediate good qi but also

how the agent behaves around this equilibrium point following any unexpected contractual offer

made by principal P−i. This extra control of the agent’s behavior off-the-equilibrium path changes

the degree of the principals’ competition on the final market. Out-of-equilibrium messages play

the role of implicit veto threats to prevent either principal from inducing the agent to produce a

different output than that conjectured in equilibrium.12

• The First-order Approach: To understand the exact origin of this multiplicity and in partic-

ular the extra control that a principal can have on the agent by using extended nonlinear prices,

it is useful to introduce more notation and to first discuss the first-order approach used in deriving

these equilibria of the intrinsic common agency game. To characterize the common agent’s behav-

ior with a first-order condition, we first assume that the nonlinear tariff t−i(q−i) offered by P−i

12Of course, if θ is not observable, a distinct nonlinear price schedule cannot be offered for each θ, and hence we
may expect this multiplicity to be significantly curtailed when θ is information privately held by the agent. The
corresponding analysis will be done in Section 4.
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is differentiable and second that it is concave. Henceforth, we focus a priori on common agency

equilibria with nonlinear tariffs which satisfy these conditions, and then we check ex post that the

derived equilibrium tariffs do indeed justify our working assumption.

In fact, the first-order approach is valid for all output qi, i.e., both for outputs on and off

the equilibrium path. This requires implicitly that the tariff t−i(q−i) be conveniently extended

for outputs which may lie outside the set of equilibrium outputs. Under complete information,

quadratic nonlinear prices defined over the whole real lines will in fact be enough to validate this

first-order approach as shown in the Appendix.13

• The Case of Substitutes: With substitutes, any degree of competition between the Cournot

and the Bertrand outcomes can be implemented as an equilibrium outcome. The intuition for the

fact that competition between the principals raises outputs is rather straightforward. Indeed, since

the common agent can always substitute away production of intermediate good 1 against production

of intermediate good 2, each principal pays at the margin too much for the intermediate good he

wants the agent to produce. In equilibrium, the agent increases the production of both intermediate

goods with respect to a situation where the principals would have cooperated in making their

contractual offers. Too much final output is placed on the market. The contractual externality

between the principals is positive in marginal returns to output, resulting in excessive activities in

both relationships.

The intuition for the multiplicity of equilibria is also easy to grasp. Different equilibrium

outputs correspond to different slopes of the symmetric nonlinear equilibrium tariff around these

equilibrium points. Indeed, by offering a nonlinear price schedule which is conveniently extended

outside the set of equilibrium outputs, P2 can control P1’s incentives to capture the final market.

This is done at the contracting stage by stipulating with extra messages how the agent’s production

of intermediate good q1 should evolve when P1 deviates from his equilibrium offer. (1) shows that

t2(·) can be used by P2 as an implicit threat to veto any desire of P1 to increase his own production.

In a sense, each principal aims at becoming the Stackelberg leader on the final market by using

the first stage of contracting with the agent. Various degrees of convexity of these equilibrium

nonlinear prices however, correspond thus to different conjectures on the degree of competition

which actually arises on the final market.

Equilibrium outputs which are close to the upper bound of the equilibrium set correspond to

the least cooperative outcomes and to the flattest tariffs around the equilibrium point. The agent’s

incentives to substitute the production of intermediate good q1 against q2 are then exacerbated if

P1 deviates and tries to exert more of his market power by reducing his own production of the
13This first-order approach with nonlinear prices was first used in Martimort (1992) in a common agency model

with no direct externality and asymmetric information. In this setting also, constructing these extensions turns out
to be necessary when concavity of the social surplus function is not sufficiently great. Interestingly, Klemperer and
Meyer (1989) in a related model of competition in supply functions also use extended supply functions to validate a
quite similar first-order approach.
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final good. The upper bound of the equilibrium set thus corresponds to the Bertrand outcome.

Equilibrium outputs which are close to the lower bound of the equilibrium set correspond instead

to the least competitive outcomes and the steepest schedules around the equilibrium point. This

lower bound corresponds to the classical Cournot outcome. In this case, principal Pi has passive

conjectures about how the agent changes his production of intermediate good q−i following any

unexpected offer he receives from Pi. Interestingly, this Cournot outcome is the most cooperative

outcome achieved through bilateral contracting. We show in the Appendix that imposing the

optimality of the agent’s decision problem, together with the first-order conditions of the principals’

programs, forces at least this minimal amount of competition between the principals.

• The Case of Complements: With complements, any degree of competition between the

monopoly and the Cournot outcomes can now be implemented as an equilibrium outcome. Equi-

librium outputs which are close to the upper bound of the equilibrium set correspond again to the

least cooperative outcomes. However, the equilibrium nonlinear price is now rather steep around

the equilibrium point. Indeed, the agent’s incentives to reduce the production of intermediate qi are

exacerbated if principal P−i tries to contract his own production of final good. The upper bound of

the equilibrium set corresponds now to the Cournot outcome. Equilibrium outputs which are close

to the lower bound of the equilibrium set correspond to the most cooperative outcomes and the

flattest schedules around the equilibrium point which is consistent with the global concavity of the

agent’s problem. The corresponding lower bound is thus the monopoly solution which maximizes

the aggregate payoff of the organization.

Under complete information, we obtain the striking result that decentralized contracting with

two competing principals may involve no loss of generality. One equilibrium of the common agency

game with direct externalities implements the same outcome as under a cooperative behavior. The

lack of coordination between the principals can be circumvented by conveniently specifying the

out-of-equilibrium messages of the individual tariffs. Of course, decentralized contracting may also

involve a significant loss of profit from the principals’ point of view if one is interested in the whole

set of equilibrium outcomes of the common agency game. Indeed, the contractual externalities

on the marginal returns to output between the principals are now negative resulting, generally, in

excessively low activities in both bilateral relationships.

The next corollary summarizes the discussions above on the slope of the nonlinear equilibrium

schedule in the case of a quadratic cost function.

Corollary 1 : Under complete information and when C(·) is quadratic, the symmetric equilibrium

nonlinear price t(q, θ) is such that:

• when intermediate goods are substitutes t′′(q(θ), θ) = 1−λ if q(θ) = qb(θ) and t′′(q(θ), θ) =

−∞ if q(θ) = qc(θ).
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• when intermediate goods are complements t′′(q(θ), θ) = −∞ if q(θ) = qc(θ) and t′′(q(θ), θ) =

1 + λ if q(θ) = qm(θ).

More precisely, we can easily parameterize the equilibrium outputs in the case where P (·) is

linear and C(·) is quadratic by the value of the second derivative of the symmetric nonlinear price

t(q, θ) at the equilibrium point q(θ).

Corollary 2 : Under complete information, when C(·) is quadratic, the symmetric equilibrium

outputs are such that:

q(θ)P ′(2q(θ)) + P (2q(θ)) = θ + (1 + λ)q(θ) +
λq(θ)P ′(2q(θ))

1− ν
, (3)

where ν ∈]−∞, 1−λ] in the case of substitutes, and where ν ∈ [1+λ, 1] in the case of complements.

The symmetric nonlinear price t(q, θ) which implements the equilibrium output q(θ) above can

be taken to be quadratic and:

t(q, θ) = t(q(θ), θ) + t′(q(θ), θ)(q − q(θ)) +
ν

2
(q − q(θ))2, (4)

where t(q(θ), θ) = θq(θ) + (1+λ)
2 q2(θ) and t′(q(θ), θ) = θ + (1 + λ)q(θ).

This quadratic specification of the nonlinear price which implements a given output will be

particularly useful in specifying the equilibrium under delegated common agency.

3.2 Equilibrium without Out-Off Equilibrium Messages

Interestingly, the Cournot outcome, which is a bound of the equilibrium set both under substitutes

and complements, can also be implemented as an equilibrium outcome of a common agency game

played with direct revelation mechanisms in this complete information setting.

A deterministic direct revelation mechanism offered by principal Pi is a pair {ti(θ), qi(θ)} stipu-

lating a monetary transfer and a given quantity of intermediate good i. These mechanisms involve

no extra transfer-output pair on top of that actually used in equilibrium. In the case of com-

plete information, the agent’s report on his type is trivial since the type space is reduced to a

singleton. The nonlinear prices corresponding to these direct mechanisms consist thus of a single

price-quantity pair.

Proposition 2 : The Cournot output qc(θ) is the unique equilibrium of the intrinsic common

agency game under complete information with direct revelation mechanisms.
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This result is not very surprising in view of previous discussions. With a direct revelation mecha-

nism, principal P−i cannot control the agent’s behavior off the equilibrium path for any unexpected

contractual offer made by Pi. The common agent does not change his production of intermediate

q−i following such an unexpected offer. Conjectures about the agent’s behavior off the equilibrium

path are passive. These passive conjectures implement the same outcome as what is obtained with

extended nonlinear prices which are very steep around the equilibrium point. Indeed, with very

steep nonlinear prices, the agent does not change his production for P−i when Pi deviates.

Even if direct mechanisms may seem quite appealing in a complete information environment,

the comparison of Propositions 1 and 2 confirms the unavailability of the Revelation Principle (at

least a version of it with deterministic mechanisms). The set of equilibrium outcomes achieved with

indirect mechanisms differs significantly from the set of equilibrium outcomes achieved when both

principals are restricted to use direct mechanisms. This latter result confirms a finding of Martimort

and Stole (1998) where we analyze less structured games between competing principals.14 More

precisely, this comparison shows that focusing on this particular class of mechanisms involves a

quite important loss of generality even in meaningful economic environments.15

3.3 Relationship with the Literature

• Direct versus Indirect Contractual Externalities: The multiplicity of equilibria obtained

with indirect mechanisms and complete information only arises because we have considered a set-

ting with direct externalities between the principals. Indeed, in the framework of Stole (1991)

and Martimort (1992 and 1996) which involves no direct externalities, the equilibrium outcome

under complete information is the same whether principals offer nonlinear prices or only direct

mechanisms.

To confirm this result, let us consider a slightly modified version of the present framework in

which principals are monopolies on segmented markets. The inverse demand on each market is now

P (qi). Let us now also define the monopoly symmetric output, q̃m(θ), as:

P (q̃m(θ)) + q̃m(θ)P ′(q̃m(θ)) = C1(q̃m(θ), q̃m(θ), θ).

This output maximizes the aggregate payoff of the coalition made of both principals and the agent.

Proposition 3 : (Stole (1991) and Martimort (1992)) Under complete information and without

direct externalities, the unique pure-strategy symmetric equilibrium of the intrinsic common agency

game achieves the monopoly outcome, q(θ) = q̃m(θ).
14See also Peck (1996) for a related example in the case of a multiprincipal-multiagent model.
15The fundamental reason for the failure of the Revelation Principle is that direct mechanisms are, by definition,

unable to convey information on how a principal would like the agent to react to a deviation made by the other
principal. In the vocabulary of Epstein and Peters (1996), direct mechanisms based on the agent’s report on his
information only are unable to convey market information.
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Without direct externalities, the equilibrium contract offered by P1 to the common agent takes into

account that the latter optimally adapts his production of intermediate good q1 to any change in

q2 induced by P2’s deviation. A small change in q2 away from the equilibrium value has now only a

second-order effect on the aggregate payoff of the coalition between the principal P1 and the agent

since output q2 does not affect directly P1’s payoff. Hence, P1 has no incentive to use the agent’s

behavior as an implicit veto threat against any possible deviation by P2.

On the contrary, in the case of direct externalities, a small change in q2 away from the equilibrium

value has also a first-order effect on the payoff of the coalition made of P1 and A through the

change in q∗1(q2, θ) it induces. Out-of-equilibrium messages help the principals to construct an

equilibrium where they behave more (resp. less) aggressively on the final good market than with

direct mechanisms when this externality is positive (resp. negative).

• Vertical Contracting: In the whole literature on vertical contracting, a single principal deals

with several agents.16 Each agent is directly affected by the trades between the principal and the

other agents. The distribution of bargaining which is assumed by this literature is exactly the

mirror image of that made in the present paper. Instead of having the principals willing to extract

the common agent’s rent, the agent (in our framework) offers a set of bilateral contracts to the

principals and is willing to push them to their reservation values normalized at zero. A bilateral

contract between Pi and A stipulates both a transfer ti and a trade qi. With private offers, the

agent cannot credibly commit to the monopoly trades which would maximize the aggregate payoff

of the overall coalition. Henceforth, each principal Pi must form beliefs about what offers are made

to his competitors when he contemplates an agent’s deviation (ti, qi) away from the equilibrium

value (t∗i , q
∗
i ). McAfee and Schwartz (1994) analyze passive beliefs which are such that the principal

Pi infers nothing from this deviation on what is the contractual agreements signed between other

principals and the agent. Those contracts remain equal to their equilibrium values (t∗−i, q
∗
−i).

Interestingly, passive beliefs play the same role in the vertical contracting environment as in our

common agency game. In both cases, they generate the same Cournot outcome.

• Delegation and Competition between Principal-Agent Pairs: Our findings on the mul-

tiplicity of equilibria of the common agency game with nonlinear prices are clearly related to the

literature on delegation in competing principal-agent pairs with publicly observable contracts an-

alyzed in Katz (1987), Ferschtman, Judd and Kalai (1991) and Kühn (1997) among many others.

This literature also shows that a large set of equilibria can be sustained when competing principals

try to influence the behavior of their respective agents before agents play a game on their behalf.

The differences with our common agency game are threefold: first, under common agency, the con-

tracts do not need to be publicly observable to get a multiplicity of equilibrium outcomes. Second,

in common agency games, the interaction between the principals’ contracts comes directly from

the fact that the common agent’s utility function depends on both contractual activities. Tracing
16See Segal (1999) who synthesizes much of the results of the literature on vertical contracting.
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out how the agent changes his behavior in response to an unexpected contractual offer amounts to

solving a simple decision problem. In delegation games, the behavior of the non-cooperating agents

following a deviation by any principal is instead obtained from the continuation Nash equilibrium

played by the agents. In particular, the principals need not suffer from direct externalities to get

a multiplicity of equilibria. All that matters for this multiplicity is that the overall payoff of a

given principal-agent pair depends on the contracting decision taken in other pairs through a direct

externality affecting agents. Indeed, a small change in q2 away from its equilibrium value has a

first-order effect on the payoff of the coalition made of P1 and A1 through the change in q∗1(q2, θ) it

induces. Out-of-equilibrium messages can cause the principals to behave more or less aggressively

depending on the sign of this externality.

4 Equilibria of the Delegated Common Agency Game under Com-
plete Information

We now move to the case where the agent can choose to take only one of the equilibrium contracts

offered by the principal.

We are going to first characterize the best response of P1 to a given nonlinear tariff t2(·, θ)
offered by P2. Under delegated agency, we must consider the possibility that the agent only takes

the contract t2(·, θ). Suppose he does so, then he gets a utility:

U2(θ) = maxq2 t2(q2, θ)− C(0, q2, θ).

To compute this expression, we need to know the expression of t2(·) for all outputs and in particular

for those which are different from the equilibrium output.

Principal P1’s best response to a given nonlinear tariff t2(·) offered by P2 is obtained as a

solution to the following problem:

max{t1,q1}P (q1 + q∗2(q1, θ))q1 − t1

subject to (2) and

t1 + t2(q∗2(q1, θ))− C(q1, q
∗
2(q1, θ), θ) ≥ U2(θ). (5)

(5) is the new agent’s participation constraint which stipulates that the agent prefers to accept

both contracts rather than only P2’s contract.17

Which participation constraint is binding in the problem above affects the transfer t1 paid by

P1 at a best response and thus the equilibrium distribution of surplus. It does not affect the output

chosen in a best response, however.
17One may initially entertain the possibility that P1 may want to offer a contract which will induce the agent to

exclusively contract with P1. This would require

max
q1

t1(q1, θ) − C(q1, 0, θ) ≥ max

{
max

q2
t2(q2, θ) − C(0, q2, θ), max

q1,q2
t1(q1, θ) + t2(q2, θ) − C(q1, q2, θ)

}
.

15



Proposition 4 : Under complete information and when C(·) is quadratic, any equilibrium output

q(θ) of the intrinsic common agency game with twice differentiable nonlinear prices is also an

equilibrium output of the delegated common agency game.

In the corresponding symmetric equilibrium of the delegated common agency game, the agent gets

zero rent when intermediate goods are complements and a strictly positive rent when intermediate

goods are substitutes.

Under delegated common agency, the agent has the extra option of playing one principal against

the other. With complements, this outside option is not binding and what matters for assessing

the distribution of surplus between the three agents is the possibility that the agent rejects both

contracts. With substitutes instead, this outside option is now binding. Even though we are under

complete information, the common agent obtains some strictly positive rent. The extra option has

thus strong distributive consequences but no allocative impact since the set of equilibrium outputs

in the two games are the same.

5 Equilibria of the Intrinsic Common Agency Game under Asym-
metric Information

It may seem a priori odd to use a whole nonlinear price schedule to control the agent in a world of

complete information and no uncertainty. The standard motivation for looking at those complex

schemes relies generally on the fact that the principal is unable to discriminate among the different

possible types of the agent in a private information self-selection setting. Therefore, we now turn

to the case of asymmetric information in the framework of our intrinsic common agency game.

5.1 Computing Best-Responses

Before proceeding to a systematic investigation of the pure-strategy equilibria of the common agency

game under asymmetric information, we propose a general algorithm which helps to characterize

the best-response of a principal to any pure-strategy nonlinear contract offered by his rival.

For any nonlinear price t2(·) offered by P2, there is indeed no loss of generality in looking for

P1’s best-response within the class of direct revelation mechanisms of the form {t1(θ̂), q1(θ̂)} where

θ̂ is the agent’s report to P1. Any payoff that P1 can achieve when he offers a mechanism with some

If these constraints were binding in a symmetric equilibrium, then it must be the case that

max
q1

t1(q1, θ) − C(q1, 0, θ) = max
q2

t2(q2, θ) − C(0, q2, θ).

Hence, all profits would be bidded away to the agent in such a candidate equilibrium. Given this outcome, it would be
optimal for one of the principals to deviate and offer a contract which would induce the agent to commonly contract
with the two principals. Hence, the relevant constraints are those in (5) above.
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general communication space can also be achieved with such a direct revelation mechanism. Here,

we simply apply the standard Revelation Principle to determine the outputs implemented by P1 at

his best response to a given deterministic nonlinear price t2(·) offered by P2. Of course, in equilib-

rium, nonlinear prices must be best responses to each other. To validate the first-order approach,

we extend the nonlinear schedules offered by both principals for out-of-equilibrium outputs.18

However, different nonlinear prices offered by P2 affect differently the agent’s incentives to

produce for P1 and therefore P1’s incentives to distort his consumption of intermediate good 1 for

informational reasons. In other words, for a given coalition between a principal and the agent, the

trade-off between extraction of the agent’s informational rent and maximization of the aggregated

payoff of this coalition depends on the other contract signed by the agent.

To capture this effect mathematically in a clear manner, let us thus define the agent’s indirect

utility function vis-à-vis P1 as:

Û1(q1, θ) = maxq2 t2(q2, θ)− C(q1, q2, θ). (6)

This indirect utility function gives the maximal payoff of an agent with type θ when his production

for P1 is q1 and when he chooses his output q2 optimally. When t2(·) is defined over the whole real

line, differentiable and sufficiently concave, q∗2(q1, θ) is again defined by the first-order condition (1).

Note that different nonlinear tariffs t2(q2) correspond to different indirect functions Û1(q1, θ) and

therefore to possibly different best responses by P1. For notational ease, we leave the dependence

of Û1(q1, θ) on P2’s contract implicit.

For a given indirect utility function, finding P1’s best response to t2(·) is a task which is by

now standard from the methodology of single principal-agent optimal contracting problems. The

standard implementability conditions must be satisfied by this contractual best response. The only

difference with standard contracting problems comes from the fact that P1 suffers from the direct

externality exerted by P2’s contracting. However, from a technical point of view, the difficulty is to

ensure that P1’s problem is concave since, again this concavity is endogenous and depends on the

price schedule t2(·) offered by P2. We show in the Appendix that this concavity is ensured when

the support of the distribution of types is small enough and C(·) is quadratic, but also, when the

symmetric equilibrium schedule t(·) is quadratic. This latter case arises, for example, when F (·) is

uniform, P (·) linear and C(·) is quadratic and for the equilibrium we select in Proposition 7.

For convenience, let us also define the U(θ) as the common agent’s informational rent:

U(θ) = maxθ̂ t1(θ̂) + Û1(q1(θ̂), θ). (7)
18Note that, under asymmetric information, the active portion of the nonlinear price schedule associated with the

equilibrium direct mechanisms {ti(θ), qi(θ)} is of the form ti(q
−1
i (qi)) and is defined only over the domain Qi =

{qi|qi = qi(θ) for some θ}. Using these limited, non-extended nonlinear prices when computing best responses would
require the modeler to compute the principal’s benefit of making a subset of types with non-zero measure bunch on
the corner of the tariff offered by his rival. Such analysis would require giving up (1) as a characterization of the best
choice of the agent for any output chosen in the rival’s nonlinear price. Stole (1999) does so in the case of indirect
externalities and shows that these extensions may not be needed.
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It turns out that the implementability conditions of P1’s best response can be expressed more

easily in terms of the informational rent-output pair {U(θ), q1(θ)} rather than in terms of the

transfer-output pair {t1(θ), q1(θ)}. The following lemma is standard in the self-selection literature.

Lemma 1 : If Û1
1θ(q1, θ) ≤ 0 for all (q1, θ), a pair {U(·), q1(·)} is implementable if and only if, for

all θ ∈ Θ, the following two conditions are satisfied:

• first-order condition,

U̇(θ) = Û1
θ (q1(θ), θ); (8)

• second-order condition,

q1(θ) is non-increasing. (9)

The informational rent-output pair {U(θ), q1(θ)} chosen at a best response by P1 is therefore

solution to the following program:

max
{U(θ),q1(θ)}

∫ θ̄

θ
(P (q1(θ)+ q∗2(q1(θ), θ))q1(θ)+ t2(q∗2(q1(θ), θ))−C(q1(θ), q∗2(q1(θ), θ), θ)−U(θ))f(θ)dθ

subject to (8)-(9) and

U(θ) ≥ 0 for all θ ∈ Θ (10)

which is the agent’s participation constraint. We will use this program throughout when computing

the best response of each principal.

Importantly for what follows, the standard single-crossing or Spence-Mirrlees property, Û1
1θ(q1, θ) ≤

0, which is usually assumed to obtain a well-behaved monotonic solution to principal P1’s prob-

lem, can no longer be postulated a priori. Instead, the implicit dependence of Û1(q1, θ) on P2’s

contract implies that this single-crossing property is endogenous and may or may not arise at the

equilibrium of the common agency game. Nevertheless, we focus in what follows on pure strategy

equilibria where this single-crossing property emerges in both indirect utility functions vis-à-vis

either principal.

5.2 Equilibria Set under Intrinsic Common Agency

For further references, we define:

• The virtual Cournot symmetric output as q̃c(θ) such that:

P (2q̃c(θ)) + q̃c(θ)P ′(2q̃c(θ)) = C1(q̃c(θ), q̃c(θ), θ) +
F (θ)
f(θ)

C1θ(q̃c(θ), q̃c(θ), θ).

18



• The virtual monopoly symmetric output as q̃m(θ) such that:

P (2q̃m(θ)) + 2q̃m(θ)P ′(2q̃m(θ)) = C1(q̃m(θ), q̃m(θ), θ) + 2
F (θ)
f(θ)

C1θ(q̃m(θ), q̃m(θ), θ).

The first output schedule corresponds to standard Cournot outcome when costs have been replaced

by virtual costs to capture the effect of informational asymmetries between the principals and their

common agent. The second output schedule corresponds to the monopoly outcome when those

virtual costs are counted twice.19 Because there is no information rent for θ, we have q̃c((θ)) = qc(θ)

and q̃m((θ)) = qm(θ). Also, because there is no corresponding notion of virtual Bertrand because

no information rents are captured by either firm.

We can now state the following proposition which describes the set of common agency symmetric

equilibria of the game under asymmetric information.

Proposition 5 : Assuming the concavity of the principals’ problem and the agent’s single-crossing

property, a necessary condition for an output schedule q(θ) to be implemented in a symmetric equi-

librium of the intrinsic common agency game is that it satisfies the following differential equation:

q̇(θ) = −
C1θ(q(θ), q(θ), θ)

(
P (2q(θ)) + q(θ)P ′(2q(θ))− C1(q(θ), q(θ), θ)− F (θ)

f(θ) C1θ(q(θ), q(θ), θ)
)

C12(q(θ), q(θ), θ)
(
P (2q(θ)) + 2q(θ)P ′(2q(θ))− C1(q(θ), q(θ), θ)− 2F (θ)

f(θ) C1θ(q(θ), q(θ), θ)
) ,

(11)

with the appropriate boundary conditions below:

• when intermediate goods are substitutes, q(θ) ∈ [q̃c(θ), qb(θ)].

• when intermediate goods are complements, q(θ̄) ∈ [q̃m(θ̄), q̃c(θ̄)].

When C(·) is quadratic and F (·) satisfies the monotone hazard rate property, the principals’ pro-

grams are concave, the agent’s single-crossing property holds, and these necessary conditions are

also sufficient for characterizing equilibrium outputs.

Moreover, only the least efficient type θ̄ makes zero informational rent in any equilibrium of the

intrinsic common agency game.

Under asymmetric information, the slope of the symmetric equilibrium nonlinear price t(q)

is defined at any equilibrium point q(θ) in such a way that the following first-order condition

characterizes the agent’s choice for all θ:

t′(q(θ)) = C1(q(θ), q(θ), θ). (12)
19This output schedule would be implemented by the principals’ non-cooperative behavior if they were both con-

tracting on the whole production Q on the final market and not on their respective productions. This double
informational distortion which enters the virtual costs summarizes the double rent extraction phenomenon which
arises in this context.
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By specifying an adverse selection problem around any value of θ, the slope of the equilibrium

schedule in the neighborhood of this value θ is completely defined. The convexity of the equi-

librium schedule at an equilibrium point is a priori not as free as under complete information.

Differentiating (12) with respect to θ yields the following expression defining the second derivative

of the equilibrium nonlinear price at an equilibrium point:

t′′(q(θ))− C11(q(θ), q(θ), θ) =
C1θ(q(θ), q(θ), θ)

q̇(θ)
+ C12(q(θ), q(θ), θ). (13)

The convexity of the nonlinear price at any equilibrium point which, from the discussion in Section

3, describes the degree of competition between the principals, is thus completely determined by

how equilibrium output evolves in the neighborhood of this equilibrium point.

The slope of this output schedule is itself determined by two forces playing simultaneously.

First, as in standard one-principal-agent models, each principal Pi wants to reduce the amount of

intermediate good qi he requests from the agent in order to limit the latter’s informational rent.

This incentive distortion depends on the distribution of the agent’s types through its hazard rate.

Second, as under complete information, Pi has also strategic incentives to increase his profit on the

final market by strategically employing the agent against P−i.

As a result of the principals’ incentives to reduce the amount of intermediate goods they request

from the common agent for informational reasons, the equilibrium set is now strictly within two

boundaries. These boundaries (respectively, q̃c(θ) and q̃m(θ) under complements, and q̃c(θ) and

qb(θ) under substitutes) correspond to the limits of the equilibrium sets obtained under complete

information (Proposition 1) for the most efficient type θ but not elsewhere. Asymmetric information

therefore reduces significantly the equilibrium set. These output boundary results are summarized

in the next proposition.

Proposition 6 : The output schedules q(θ) implemented in any symmetric differentiable equilib-

rium of the common agency game are such that:

• when intermediate goods are substitutes, q̃c(θ) < q(θ) < qb(θ) ∀θ ∈ (θ, θ̄].

• when intermediate goods are complements, q̃m(θ) < q(θ) < q̃c(θ) ∀θ ∈ [θ, θ̄).

As under complete information, a symmetric equilibrium nonlinear price is also relatively steep

around the Cournot outcome and flat far away from this point. We check this for the case of a

quadratic cost function.

Corollary 3 : Assume that C(·) is quadratic, the symmetric equilibrium nonlinear price t(q) is

such that:
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• when intermediate goods are substitutes t′′(q(θ)) = 1 − λ if q(θ) = qb(θ) and t′′(q(θ)) =

−∞ if q(θ) = qc(θ).

• when intermediate goods are complements t′′(q(θ̄)) = −∞ if q(θ̄) = q̃c(θ̄) and t′′(q(θ̄)) =

1 + λ if q(θ̄) = q̃m(θ̄).

This Corollary confirms that asymmetric information is in fact still consistent with as many

conjectures about the agent’s behavior as available under complete information once the support

of the distribution of θ remains bounded. In the case of substitutes (resp. complements), this

flexibility comes from the freedom of equilibrium conjectures available at the lowest (resp. highest)

type of the distribution. Once, this choice for a boundary point of (11) is made, the equilibrium

schedule is fully pinned down by the incentive compatibility constraint (12).20

6 Equilibrium Selection under Intrinsic Common Agency with a
Uniform Distribution

The goal of this section is to understand which of the equilibrium conjectures available under

complete information can be rationalized by introducing convenient perturbations of the information

structure. The rationalization we use is that a focal equilibrium of the common agency game

under complete information should be the limit of equilibria of a game where principals have

only an imperfect knowledge of the adverse selection parameter θ. More precisely, the slope of

the complete information equilibrium nonlinear price which is selected should be derived from

equilibrium behavior in the neighborhood of this point once a complete distribution of the adverse

selection parameter has been stipulated. In this case, the out-of-equilibrium outputs included in

a nonlinear equilibrium price under complete information become equilibrium outputs for some

particular type of the agent in a model with asymmetric information. As shown in Section 4,

asymmetric information on a bounded support fails short of selecting a unique equilibrium even

if it helps to reduce the equilibrium set. To further refine the set of reasonable conjectures which

can sustain an equilibrium under complete information, we now consider perturbations of the

information structure consisting in expanding infinitely the support of the distribution of types.

The selected equilibrium should be robust to such extensions of the type space. Our definition of

a robust equilibrium is that the corresponding output schedule q(θ) should remain an equilibrium

when the spread of the distribution increases without bound. While we proceed by focusing on
20Note that the multiplicity of symmetric equilibria obtained under asymmetric information and direct externality

has fundamentally the same origins as under complete information: the desire of the principals to precommit them-
selves. This should be contrasted with the multiplicity of equilibria which emerges in the case of complements and
no direct externalities. Stole (1991) and Martimort (1992) show indeed that this multiplicity comes from the fact
that the differential equation characterizing the equilibrium output schedules is not Lipschitz and has a singularity
for the lowest type of the distribution.
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uniform distributions, this is primarily for tractability. The intuition that, as the support of the

agent’s type space increases the degrees of freedom in the equilibrium set is reduced, is more general.

The next proposition gives conditions ensuring that such a robust equilibrium exists.

Proposition 7 : Assume that P (·) is linear, C(·) is quadratic, and that F (·) is uniform on the

interval [θ, θ̄]. Denote by q(θ|θ, θ̄) the output schedule corresponding to any symmetric equilibrium

of the common agency game when the support of type is [θ, θ̄]. Then, we have:

• When intermediate goods are substitutes (resp. complements) q(θ|θ, θ̄) is an equilibrium sched-

ule of the common agency game when the support of type is restricted to [θ, θ̄′] (resp. [θ′, θ̄])

for any θ̄′ < θ (resp. θ′ > θ). This allows to simply denote these solutions by q(θ|θ) (resp.

q(θ|θ̄)).

• When intermediate goods are substitutes (resp. complements), there exists a q∗(θ), which is

an equilibrium output function from the common agency game, such that as θ̄ increases to

+∞ (resp. as θ decreases to −∞)21, we have:

lim
θ̄→+∞

E[q(θ|θ)− q∗(θ)|θ, θ̄] = 0

( resp. lim
θ→−∞

E[q(θ|θ̄)− q∗(θ)|θ, θ̄] = 0, )

where E[·|θ, θ̄] denotes the expectation operator with respect to a uniform distribution over

[θ, θ̄] and where q∗(θ) is the output schedule of an equilibrium of the common agency game

which holds for any possible support [θ, θ̄]. Both with substitutes and complements, q∗(θ) is

the unique symmetric equilibrium of the common agency game under asymmetric information

having a linear output schedule:

q∗(θ) = q∗(θ)− β∗(θ − θ)

where β∗ > 0 and q∗(θ) ∈ (qc(θ), qb(θ))

The logic of the selection device used above is to look at the family of solutions of (11) when the

distribution for θ has an increasingly larger support. We further assume that the distribution is

uniform to keep unchanged the value of the hazard rate even when the support of this distribution

is extended. Then, any solution of (11) on a given interval remains an equilibrium output for a

perturbed common agency game obtained when the spread of the distribution increases. However,

as shown in Proposition 7, the equilibrium set of outputs shrinks as the spread of the distribution

increases. Indeed, both in the cases of complements and of substitutes, we show that any solution
21Of course, to extend the spread of the distribution one must be ready to consider negative cost parameters or

infinite ones. Those two perturbations are thus only meaningful when the demand intercept a is sufficiently large.
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of (11) converges in expectation to the unique linear solution q∗(θ) to (11). This latter equilibrium

is the only one which survives these extensions of the support of the distribution.22

Asymmetric information on an unbounded support makes any output into an equilibrium output

for some type even if the probability of this particular types becomes quite small as the spread of

the distribution increases. In the limiting case of an infinitely large support, only a single conjecture

is consistent with equilibrium behavior.

For all types, the equilibrium schedule q∗(θ) is strictly within the set of equilibria described

in Proposition 6. The only equilibrium under complete information which can be rationalized as

being the limit of asymmetric information equilibria when the support of the distribution increases

without bound entails neither the maximal amount of cooperation nor the maximal amount of

competition between the principals.

To fix ideas, let us take the case of perfect substitutes, i.e., λ = 1. We find that β∗ = 1
3 and

qc(θ) =
a− θ

5
< q∗(θ) =

2(a− θ)
9

< qb(θ) =
a− θ

4
,

where a is the demand intercept. Finally, the conjectures about how the agent adapts his production

of intermediate good 2 for any unexpected change in the production of intermediate good 1 is just

the mean of the passive conjectures held under Cournot competition (∂q∗2(q1,θ)
∂q1

= 0) and the very

reactive conjectures held under Bertrand competition (∂q∗2(q1,θ)
∂q1

= −1), namely:

∂q∗2(q1, θ)
∂q1

=
1

t′′(q∗2(q1, θ))− 1
= −1

2
.

Because the equilibrium schedule q∗(θ) is linear in θ, it is invertible. Let denote by θ∗(q) its

inverse. We have:

θ∗(q) = θ +
q∗(θ)− q

β∗

or

θ∗(q) = θ̄ +
q∗(θ̄)− q

β∗
.

Moreover, the slope of the symmetric equilibrium schedule t∗(·) at any point q∗(θ) satisfies

t∗
′
(q∗(θ)) = θ + (1 + λ)q∗(θ)

or

t∗
′
(q) = θ∗(q) + (1 + λ)q

for any q in the range of q∗(·). Substituting,

t∗
′
(q) = θ̄ + (1 + λ)q∗(θ̄) +

(
1 + λ− 1

β∗

)
(q − q∗(θ̄)). (14)

22Note that q∗(·) being linear, the nonlinear equilibrium schedule t(q) is quadratic.
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Consistently with our extensions of the support of types over the whole real line, this linear expres-

sion of t∗
′
(q) will be also extended even for outputs which may lie outside the range of q∗(·).

Since the least efficient type’s participation constraint is binding in equilibrium, direct integra-

tion of (14) yields:

t∗(q) = t∗(q∗(θ̄)) +
(
θ̄ + (1 + λ)q∗(θ̄)

)
(q − q∗(θ̄)) +

(
1 + λ− 1

β∗

)
(q − q∗(θ̄))2

2
. (15)

with t∗(q∗(θ̄)) = θ̄q∗(θ̄) + (1+λ)
2 (q∗(θ̄))2. Hence, the nonlinear tariff t∗(·) is quadratic in q just as in

the case of complete information.

•Relationship with the Literature: The reader may have recognized that our technique of

introducing large perturbations in the support of the distribution to select a unique equilibrium

bears some resemblance with the important work of Klemperer and Meyer (1989). These authors

are interested in the analysis of a game where two suppliers of an homogeneous final good compete

with supply functions when the demand they face is uncertain. In our context, this would amount

to envision a game where principals compete by offering demand functions qi(p) to the common

agent when there is some uncertainty on its marginal cost. The difference with our model are thus

threefold. First, we have considered competition in nonlinear prices instead of demand functions.

Different quantities are thus bought by a principal at different prices. This is not the case with

demand functions. Second, we have explicitly modeled the choice of the common agent instead of

relying on an exogenous Walrasian auctioneer. Third, and quite importantly, we assume adverse

selection instead of ex ante uncertainty. With cost uncertainty at the time of contracting, the

agent’s participation constraint is active at the ex ante stage and the conflict between incentive

and participation constraints disappears.

Let us thus consider that both principals still compete with nonlinear prices ti(qi) but that

contracting takes now place at the ex ante stage. Formally, we can show that the23 necessary and

sufficient condition (when C(·) is quadratic) satisfied by an equilibrium schedule q(θ) under ex ante

uncertainty is that q(θ) is a solution to the following differential equation:

q̇(θ) = − C1θ(q(θ), q(θ), θ) (P (2q(θ)) + q(θ)P ′(2q(θ))− C1(q(θ), q(θ), θ))
C12(q(θ), q(θ), θ) (P (2q(θ)) + 2q(θ)P ′(2q(θ))− C1(q(θ), q(θ), θ))

, (16)

with the following initial condition:

• when intermediate goods are substitutes, q(θ) ∈ [qc(θ), qb(θ)].

• when intermediate goods are complements, q(θ̄) ∈ [qm(θ̄), qc(θ̄)].

With ex ante uncertainty, the virtual cost functions which enter both the numerator and the

denominator of (11) disappear and are replaced by simple cost functions. The solutions of the

differential equation (16) do not depend on the distribution of θ but only on its support.
23Proof available upon request.
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When the support of the distribution gets larger, one can also select a unique equilibrium by

extending the spread of the distribution and this can be done, contrary to what we have done with

adverse selection, irrespectively of the distribution of θ which is assumed. This equilibrium is the

linear solution:

qkm(θ) = qkm(θ)− βkm(θ − θ).

In the case of perfect substitutes (λ = 1), one can show that βkm = 1
2 −

√
3

6 < β∗ = 1
3 . This clearly

shows that once asymmetric information arises at the ex ante contracting stage, concerns for rent

extraction matter so that the tendency to reduce output for large θ becomes greater than under ex

ante uncertainty.

7 Delegated Common Agency under Asymmetric Information

Under delegated common agency, a new constraint must be added to the principal’s problem. This

new participation constraint stipulates that the agent’s rent under common agency must be greater

than the rent U2(θ) he would get by taking only the contract t2(·) offered by P2.

The informational rent-output pair {U(θ), q1(θ)} chosen at a best response by P1 is therefore

solution to the following program:

max
{U(θ),q1(θ)}

∫ θ̄

θ
(P (q1(θ)+ q∗2(q1(θ), θ))q1(θ)+ t2(q∗2(q1(θ), θ))−C(q1(θ), q∗2(q1(θ), θ), θ)−U(θ))f(θ)dθ

subject to (8)-(9)-(10) and

U(θ) ≥ U2(θ) for all θ ∈ Θ (17)

which is the new agent’s participation constraint under delegated common agency.

Under complete information, we showed that delegated common agency has never any allocative

impact but has distributive consequences only in the case of substitutes. Key to our result was

the fact that, thanks to the fact that the equilibrium schedule can be taken as quadratic, we were

able to compute the utility U2(θ) of the agent in case he contracts only with principal P2 and

to show how. Under asymmetric information, the equilibrium schedule of the intrinsic common

agency game is not always quadratic, making it harder to assess the role of the new participation

constraint. It is only quadratic for the equilibrium schedule t∗(·) selected in Section 6. Instead of

doing a complete analysis which would consist in assessing whether any equilibrium schedule q(θ)

of the intrinsic common agency game remains an equilibrium schedule of the delegated common

agency game, we are going to focus only on the selected equilibrium q∗(θ) which corresponds to a

quadratic tariff.

Proposition 8 : Under asymmetric information and when C(·) is quadratic, P (·) linear and F (·)
uniform, the equilibrium output q∗(θ) of the intrinsic common agency game is also an equilibrium

output of the delegated common agency game.
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In the corresponding symmetric equilibrium of the delegated common agency game, the least

efficient agent gets zero rent when outputs are complements and a strictly positive rent when outputs

are substitutes.

8 Conclusion

This paper has contributed to the analysis of common agency games along several lines. First,

we have characterized the set of equilibria outcomes of an intrinsic common agency game when

there exist direct externalities between the principals. We have shown that Folk Theorem like

results hold in such a context. Second, we have shown that the equilibrium outputs of the intrinsic

common agency game still holds under delegated common agency. The distribution of surplus

may be different. Third, we have isolated the source of this multiplicity of equilibria in both

games: the principals’ desire to manipulate the agent’s behavior even out of the equilibrium.

These manipulations can only be achieved with indirect mechanisms stipulating transfers for out-

of-equilibrium output choices. As a consequence, direct revelation mechanisms fail to replicate the

equilibrium outcomes achieved with indirect mechanisms: a failure of the Revelation Principle in

common agency games. Finally, to refine within the set of these possible equilibrium conjectures, we

have introduced asymmetric information. We have derived the equilibrium schedules of the common

agency game with asymmetric information. Asymmetric information does somewhat restrict the

set of symmetric equilibrium outcomes for a given distribution on a finite support. Moreover, we

have been able to pin down a unique robust equilibrium only by considering increasingly larger

spreads for the uniform distribution of the adverse-selection parameter. This equilibrium output

also arises under delegated common agency.
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Appendix

Proof of Proposition 1 and Corollaries 1 and 2: We take as given the nonlinear price t2(q2, θ)

offered by P2 to the common agent and suppose that t2 −C is sufficiently concave such that there

exists a unique maximizer defined by the first-order condition, (1). (We later check that the agent’s

objective function is sufficiently concave to justify our working assumption.) Define

q∗2(q1, θ) ≡ arg max
q2

t2(q2, θ)− C(q1, q2, θ).

Under complete information, P1’s problem is thus:

max
{t1,q1}

P (q1 + q∗2(q1, θ))q1 − t1

subject to

t1 + t2(q∗2(q1, θ), θ)− C(q1, q
∗
2(q1, θ), θ) ≥ 0. (18)

• Differentiating (1) w.r.t. q1 yields the following relationship, true for all (q1, θ):

(t′′2(q
∗
2(q1, θ), θ)− C22(q1, q

∗
2(q1, θ))

∂q∗2(q1, θ)
∂q1

= C12(q1, q
∗
2(q1, θ), θ). (19)

In P1’s problem, (18) is binding since the principal wants to reduce as much as possible the transfer

he offers to the agent. Inserting the value of t1 thus obtained into the maximand, the principal’s

objective function can be written as a function, V (q1, θ), of q1 and θ. A necessary condition for

optimality is the agent’s first-order condition (1); we will show that ex post the agent’s objective

is globally concave when cost is quadratic, hence this condition is also sufficient. Optimizing w.r.t.

q1 yields:
∂V

∂q1
(q1, θ) = q1P

′(q1 + q∗2(q1, θ))
(

1 +
∂q∗2(q1, θ)

∂q1

)
+ P (q1 + q∗2(q1, θ))

−C1(q1, q
∗
2(q1, θ), θ)− (−t′2(q

∗
2(q1, θ), θ) + C2(q1, q

∗
2(q1, θ), θ))

∂q∗2(q1, θ)
∂q1

= 0. (20)

From (1) and (19), the RHS above can be simplified and we get for a symmetric equilibrium such

that q1(θ) = q2(θ) = q(θ) and t1(·) = t2(·) = t(·):

q(θ)P ′(2q(θ)) + P (2q(θ)) = C1(q(θ), q(θ), θ)−
q(θ)P ′(2q(θ))C12(q(θ), q(θ), θ)
t′′(q(θ), θ)− C11(q(θ), q(θ), θ)

. (21)

• In any differentiable equilibrium, it is necessary that the agent’s objective function is locally

concave at the equilibrium choice. This imposes two conditions on the Hessian of this symmetric

problem:

t′′(q(θ), θ)− C11(q(θ), q(θ), θ) ≤ 0 for all θ. (22)

and

(t′′(q(θ), θ)− C11(q(θ), q(θ), θ)) ≥ C2
12(q(θ), q(θ), θ) for all θ. (23)

• We use these necessary local concavity conditions to derive the boundaries of the equilibrium

sets.
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• The case of substitutes: Substituting the condition (22) into (21) and noting that C12 > 0:

q(θ)P ′(2q(θ)) + P (2q(θ)) ≤ C1(q(θ), q(θ), θ). (24)

C(·) being convex, P ′(·) < 0 and P ′′(·) ≤ 0 ensure that (24) implies that q(θ) ≥ qc(θ).

Inserting (23) into (21) yields:

P (2q(θ)) ≥ C1(q(θ), q(θ), θ). (25)

From C(·) being convex, P ′(·) < 0 and P ′′(·) ≤ 0, (25) implies that q(θ) ≤ qb(θ).

• The case of complements: Inserting the condition (22) into (21) and noting that C12 < 0, we

get:

q(θ)P ′(2q(θ)) + P (2q(θ)) ≥ C1(q(θ), q(θ), θ). (26)

From C(·) being convex, P ′(·) < 0 and P ′′(·) ≤ 0, (26) implies that q(θ) ≤ qc(θ).

Substituting (23) into (21) yields:

2q(θ)P ′(2q(θ)) + P (2q(θ)) ≤ C1(q(θ), q(θ), θ). (27)

From C(·) being convex, P ′(·) < 0 and P ′′(·) ≤ 0, (27) implies that q(θ) ≥ qm(θ).

• Note that, from (21), q(θ) depends only on the second derivative of the symmetric equilibrium

tariff t(q) at the equilibrium point. Let us denote by t′′(q(θ), θ) = ν this second derivative. varying

ν while respecting the concavity of the agent’s program, we will show that quadratic nonlinear

prices have thus enough flexibility to implement those equilibrium outputs. For those quadratic

nonlinear prices and when C(·) is also quadratic, (22) and (23) amount respectively to

ν ≤ 1, (28)

(ν − 1 + λ)(ν − 1− λ) ≥ 0. (29)

Global concavity of the agent’s problem requires that

t′′(qi, θ)− Cii(q1, q2, θ) ≤ 0 for all (q1, q2) i = 1, 2, (30)

and

(t′′(q1, θ)− C11(q1, q2, θ))(t′′(q2, θ)− C22(q1, q2, θ)) ≥ C12(q1, q2, θ) for all (q1, q2). (31)

Global concavity is guaranteed as soon as these quadratic prices are extended over the whole

real line. Note that, since in equilibrium the agent’s participation constraint is binding and the

agent’s objective function is concave, we have 2t(q(θ), θ)−C(q(θ), q(θ), θ) = 0 ≥ t(q1, θ)+ t(q2, θ)−
C(q1, q2, θ) for all (q1, q2).
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•Using (21), equilibrium outputs can be parameterized by ν and, in the case where C(·) is quadratic,

we find:

q(θ)P ′(2q(θ)) + P (2q(θ)) = θ + (1 + λ)q(θ) +
λq(θ)P ′(2q(θ))

1− ν
, (32)

where ν ∈]−∞, 1−λ] in the case of substitutes, and where ν ∈ [1+λ, 1] in the case of complements

to insure that (28) and (29) both hold.

When P (·) is also linear, we finally find:

q(θ) =
a− θ

4 + λ ν
ν−1

(33)

In the case of substitutes (λ > 0), ν ∈]−∞, 1− λ]. Hence, q(θ) takes values in [qc(θ), qb(θ)] where

qc(θ) = a−θ
4+λ and qb(θ) = a−θ

3+λ . In the case of complements (λ < 0), ν ∈ [1 + λ, 1] and q(θ) takes

values in [qm(θ), qc(θ)] where qm(θ) = a−θ
5+λ .

• Let us check the concavity of each principal’s problem. Taking into account that ∂q∗2(q1,θ)
∂q1

= λ
ν−1 ,

we obtain:

∂2V

∂q2
1

(q1, θ) = q1P
′′(q1 + q∗2(q1, θ))

(
1 +

λ

ν − 1

)2

+ 2P ′(q1 + q∗2(q1, θ))
(

1 +
λ

ν − 1

)
−

(
1 +

λ2

ν − 1

)
.

(34)

The first term is negative thanks to P ′′(·) ≤ 0. The second term is negative since, both with

complements and substitutes,
(
1 + λ

ν−1

)
> 0 and P ′(·) < 0. Taking into account that ν < 1, the

third term has the sign of ν−1+λ2. With substitutes, ν−1 ≤ −λ and thus ν−1+λ2 ≤ λ(λ−1) ≤ 0

and the third term on the right-hand-side of (34) is also negative insuring concavity of the principal’s

problem. With complements, −ν + 1 ≥ −λ and thus ν − 1 + λ2 ≥ λ(λ + 1) ≥ 0 and the third term

on the right-hand-side of (34) is still negative insuring again concavity of the principal’s problem.

2

Proof of Proposition 2: Assume that P2 offers the direct revelation mechanism {t2(θ), q2(θ)},
then P1’s problem is:

max{t1,q1}P (q1 + q2(θ))q1 − t1

subject to

t1 + t2(θ)− C(q1, q2(θ), θ) ≥ 0. (35)

Again (35) is binding at the optimum of P1’s problem. Inserting the corresponding value of t1 into

P1’s objective function, observing that the corresponding maximand is concave in q1 and optimizing

with respect to q1 yields:

q1P
′(q1 + q2(θ)) + P (q1 + q2(θ)) = C1(q1, q2(θ), θ). (36)
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In a symmetric equilibrium, we obtain q1(θ) = q2(θ) = qc(θ). 2

Proof of Proposition 3: The proof starts as that of Proposition 1. (20) must be replaced by

∂V

∂q1
(q1, θ) = q1P

′(q1)+P (q1)−C1(q1, q
∗
2(q1, θ), θ)+(t′2(q

∗
2(q1, θ), θ)−C2(q1, q

∗
2(q1, θ), θ))

∂q∗2(q1, θ)
∂q1

= 0.

(37)

The first-order condition t′2(q
∗
2(q1, θ), θ)−C2(q1, q

∗
2(q1, θ), θ) characterizes the agent’s choice of out-

put. Hence, since in a symmetric equilibrium, conjectures must be correct and thus q∗2(q, θ) = q =

q̃m(θ). It is routine to check that the same outcome can be implemented with direct mechanisms.

2

Proof of Proposition 4: We take as given the nonlinear price t2(q2) offered by P2 to the common

agent and compute P1’s best response. We conjecture that this schedule has the same slope and the

same curvature as in the case of intrinsic common agency. The difference with the case of intrinsic

common agency may come from the nature of the binding participation constraint. This schedule

is thus of the form:

t2(q2, θ) = t2(q(θ), θ) + t′(q(θ), θ)(q2 − q(θ)) +
ν

2
(q2 − q(θ))2, (38)

where again t′(q(θ), θ) = θ + (1 + λ)q(θ).

With this expression, we can compute U2(θ). Indeed t2(q2, θ) − C(0, q2, θ) is strictly concave

in q2 when ν < 1, a condition which holds because of the global concavity of the agent’s problem

under intrinsic common agency.

Let us denote by q̂2(θ) = arg maxq2 t2(q2, θ) − C(0, q2, θ) the optimal output chosen by the

agent when he takes only contract t2(·). This output is obtained through a first-order condition:

t′2(q̂2(θ), θ) = θ + q̂2(θ)

or to put it differently

q̂2(θ) =
(

1 + λ− ν

1− ν

)
q(θ). (39)

We can easily check that q̂2(θ) > q(θ) if and only if λ > 0.

Given the slope and the curvature of t2(·) which is the same as under intrinsic common agency,

P1 induces the same output q1 as under intrinsic common agency. Hence, the symmetric equilibrium

outputs are the same under delegated and under intrinsic common agency. The only remaining
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variable to be found is the value of the intercept t(q(θ), θ) of the symmetric equilibrium schedule

at the equilibrium point.

With the value of q̂2(θ) found above, we can compute:

U2(θ) = td(q(θ), θ) + t′(q(θ), θ)(q̂2(θ)− q(θ)) +
ν

2
(q̂2(θ)− q(θ))2 − C(0, q̂2(θ), θ).

After tedious computations, we get:

U2(θ) = td(q(θ), θ)− θq(θ)− q(θ)2

2

(
1− λ2

1− ν

)
. (40)

In equilibrium, each principal reduces as much as possible the transfer he offers to the common

agent so that one of the participation constraint is binding. Hence, the value of t(q(θ), θ) is solution

to the equation:

2t(q(θ), θ)− C(q(θ), q(θ), θ) = max
{

0, t(q(θ), θ)− θq(θ)− q(θ)2

2

(
1− λ2

1− ν

)}
. (41)

Let us assume that the right-hand side above is 0. Then, we have

t(q(θ), θ) = θq(θ) +
(1 + λ)q(θ)2

2

and we must have

t(q(θ), θ) < θq(θ) +
q(θ)2

2

(
1− λ2

1− ν

)
,

which holds when λ
(
1 + λ

1−ν

)
< 0 but 1 + λ

1−ν > 0 from the global concavity of the agent’s

problem under intrinsic common agency. Hence, the latter inequality holds when λ < 0, i.e., for

complements. In this case, the agent gets zero rent in equilibrium.

Let us now assume that the right-hand side of (41) is not 0. Then, we have

t(q(θ), θ) = θq(θ) +
q(θ)2

2

(
1 + 2λ +

λ2

1− ν

)
and we must have

t(q(θ), θ) > θq(θ) +
(1 + λ)q(θ)2

2

which holds again when λ
(
1 + λ

1−ν

)
> 0 but 1 + λ

1−ν > 0 from the global concavity of the agent’s

problem under intrinsic common agency. Hence, the latter inequality holds when λ > 0, i.e., for

substitutes. In this case, the agent gets a strictly positive rent in equilibrium. Then, this rent is

U2(θ) = q2(θ)λ
(

1 +
λ

1− ν

)
.

2
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Proofs of Propositions 5 and 6:

• (8) indicates that U(·) is decreasing because

Û1
θ (q1(θ), θ) = −Cθ(q1(θ), q∗2(q1(θ), θ), θ) < 0.

Hence, the participation constraint (10) is binding only at θ̄. Henceforth:

U(θ) = −
∫ θ̄

θ
Cθ(q1(z), q∗2(q1(z), z), z)dz.

Inserting into the principal’s objective function and integrating by parts, the objective function to

be optimized pointwise becomes a function of q1 only, namely:

V (q1, θ) = q1P (q1 + q∗2(q1, θ)) + Û1(q1, θ) +
F (θ)
f(θ)

Û1
θ (q1, θ).

Assuming concavity of V (·) with respect to q1 (this is checked ex post) and optimizing pointwise

w.r.t. q1 yields:

q1P
′(q1 + q∗2(q1, θ))

(
1 +

∂q∗2(q1, θ), θ)
∂q1

)
+P (q1 + q∗2(q1, θ)) + U1

1 (q1, θ) +
F (θ)
f(θ)

U1
1θ(q1, θ) = 0. (42)

Using again the Envelope Theorem:

Û1
1 (q1, θ) = −C1(q1, q

∗
2(q1(θ), θ), θ)

Û1
1θ(q1, θ) = −C1θ(q1, q

∗
2(q1, θ), θ)− C12(q1, q

∗
2(q1, θ), θ)

∂q∗2(q1, θ)
∂q1

where ∂q∗2(q1,θ)
∂q1

is well-defined from the fact that t2(·) is twice differentiable. Inserting into (42)

yields for a symmetric equilibrium such that q1(θ) = q2(θ) = q(θ):

q(θ)P ′(2q(θ)) + P (2q(θ)) = C1(q(θ), q(θ), θ) +
F (θ)
f(θ)

C1θ(q(θ), q(θ), θ)

+
C12(q(θ), q(θ), θ)

t′′(q(θ))− C11(q(θ), q(θ), θ)

(
F (θ)
f(θ)

− q(θ)P ′(2q(θ))
)

. (43)

However, t′(q(θ)) = C1(q(θ), q(θ), θ) for all θ. Differentiating w.r.t. θ yields:

(t′′(q(θ))− C11(q(θ), q(θ), θ))q̇(θ) = C12(q(θ), q(θ), θ))q̇(θ) + C1θ(q(θ), q(θ), θ).

Inserting into (43) yields (11).

• We now establish the bounds on q(θ):

• The case of substitutes (C12 > 0). We prove that q(θ) ∈ [q̃c(θ), qb(θ)] for all θ. First we show

that if q(θ) ∈ [qc(θ), qb(θ)], then the solution to (11) starting from this point remains in the

set [q̃c(θ), qb(θ)] for all θ.
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Suppose that there exists θ̂, the first value of θ greater than θ, such that q(θ̂) = qb(θ̂). We

have then:

q̇(θ̂) = − C1θ

2C12
< q̇b(θ̂) = − C1θ

C11 + C12 − 2P ′ < 0.

Hence, q(θ) > qb(θ) for θ ∈ (θ̂ − ε, θ̂) where ε is small enough. A contradiction.

Suppose that there exists θ̂, the first value of θ greater than θ, such that q(θ̂) = q̃c(θ̂). We

have then:

q̇(θ̂) = 0 > q̇c(θ̂)

when d
dθ

(
F (θ)
f(θ)

)
> 0, C(·) and Cθ(·) are convex. This holds when C(·) is quadratic. Hence,

q(θ) < q̃c(θ) for θ ∈ (θ̂ − ε, θ̂) where ε is small enough. A contradiction.

Second, we prove that no solution exists with q(θ) 6∈ [qc(θ), qb(θ)]. Consider (43) evaluated

at θ. The following two relationships emerge (where the inequalities follow from applying the

agent’s local second-order condition):

q(θ)P ′(2q(θ))+P (2q(θ))−C1(q(θ), q(θ), θ) = −q(θ)P ′(2q(θ))
(

C12(q(θ), q(θ), θ)
t′′(q(θ))− C11(q(θ), q(θ), θ)

)
< 0,

P (2q(θ))− C1(q(θ), q(θ), θ) = −q(θ)P ′(2q(θ))
(

C12(q(θ), q(θ), θ)
t′′(q(θ))− C11(q(θ), q(θ), θ)

+ 1
)

> 0.

Hence, qc(θ) ≤ q(θ) ≤ qb(θ).

• The case of complements (C12 < 0). We prove that q(θ) ∈ [q̃m(θ), q̃c(θ)] for all θ. First, we

show that if q(θ̄) ∈ [q̃m(θ̄), q̃c(θ̄)], then a solution to (11) going through this point stays within

the set [q̃m(θ), q̃c(θ)].

Suppose that there exists θ̂, the last value of θ smaller than θ̄ such that q(θ̂) = q̃m(θ̂). We

have then:

q̇(θ̂) = −∞ < ˙̃qm(θ̂).

But q(θ) is increasing when q(θ) < q̃m(θ) by (11), and it cannot be that q(θ) is a solution to

(11) going through q(θ̄) and q(θ) ∈ [q̃m(θ), q̃c(θ)] for all θ. A contradiction.

Suppose next that there exists θ̂, the last value of θ smaller than θ̄, such that q(θ̂) = q̃c(θ̂).

We have then:

q̇(θ̂) = 0 > ˙̃qc(θ̂)

when d
dθ

(
F (θ)
f(θ)

)
> 0, C(·) and Cθ(·) are convex. This holds when C(·) is quadratic. Hence,

q(θ) > q̃c(θ) for θ ∈ (θ̂, θ̂ + ε) where ε is small enough. A contradiction.

Second, we prove that no solution exists with q(θ) 6∈ [qm(θ), qc(θ)]. It is immediate to check

that if this were not the case, then (11) implies that q̇(θ) > 0. This further implies that the

agent’s choice is not incentive compatible (assuming the agent’s single-crossing property is

satisfied) and thus this solution cannot be part of any common agency equilibrium.
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• We now turn to the global concavity of the agent’s problem:

• The case of substitutes: Using (11), we have:

t′′(q(θ))− C11(q(θ), q(θ), θ)

=
C12(q(θ), q(θ), θ)

q(θ)P ′(2q(θ) + P (2q(θ))− C1(q(θ), q(θ), θ)− F (θ)
f(θ) C1θ(q(θ), q(θ), θ)

×
(
−q(θ)P ′(2q(θ)) +

F (θ)
f(θ)

C1θ(q(θ), q(θ), θ)
)

. (44)

Since q(θ) > q̃c(θ), the R.H.S. above is negative. Moreover, |t′′(q(θ)) − C11(q(θ), q(θ), θ)| ≥
C12(q(θ), q(θ), θ) since P (2q(θ)) ≥ C1(q(θ), q(θ), θ) when q(θ) ≤ qb(θ).

The fact that t′′(q(θ)) − C11(q(θ), q(θ), θ) ≤ 0 and that |t′′(q(θ)) − C11(q(θ), q(θ), θ)| ≥
C12(q(θ), q(θ), θ) proves that the Hessian of the type θ-agent’s problem is negative semi-

definite at (q(θ), q(θ)) for any θ and any equilibrium schedule q(θ). Hence, the agent’s ob-

jective function is locally concave at this point. To have global concavity of the agent’s

problem, we need more. This Hessian must be negative semi-definite at all pairs (q1, q2).

When C(·) is quadratic, the Hessian of the agent’s problem is negative semi-definite at all

pairs (q1 = q1(θ), q2 = q2(θ′)) since 0 ≥ −λ ≥ t′′(q1)− 1 and 0 ≥ −λ ≥ t′′(q2)− 1. Thus, (30)

and (31) both hold. For outputs which lie outside the range of the equilibrium schedule q(θ),

the equilibrium tariff is extended in a quadratic (and continuously differentiable) way so that

these conditions also hold.

• The case of complements: Since q(θ) < q̃c(θ), the R.H.S. of (44) is again negative. More-

over, |t′′(q(θ)) − C11(q(θ), q(θ), θ)| > |C12(q(θ), q(θ), θ)| since P (2q(θ)) + 2q(θ)P ′(2q(θ)) >

C1(q(θ), q(θ), θ) + 2F (θ)
f(θ) C1θ(q(θ), q(θ), θ) when q(θ) ≥ qm(θ). The Hessian of the agent’s

problem is thus definite negative at all pairs (q1, q2) when C(·) is quadratic.

The fact that t′′(q(θ)) − C11(q(θ), q(θ), θ) ≤ 0 and that |t′′(q(θ)) − C11(q(θ), q(θ), θ)| ≥
|C12(q(θ), q(θ), θ)| proves that the Hessian of the type θ-agent’s problem is negative at (q(θ), q(θ))

for any θ and any equilibrium schedule q(θ). Hence, the agent’s objective function is lo-

cally concave at this point. To have global concavity of the agent’s problem, we need

more. This Hessian must be negative at all pairs (q1, q2). When C(·) is quadratic, the

Hessian of the agent’s problem is definite negative at all pairs (q1 = q1(θ), q2 = q2(θ′)) since

0 ≥ −λ ≥ t′′(q1)− 1 and 0 ≥ −λ ≥ t′′(q2)− 1. Finally, (30) and (31) both hold. For outputs

which lie outside the range of the equilibrium schedule q(θ), the equilibrium tariff is extended

in a quadratic (and continuously differentiable) way so that these conditions also hold.

• We now check that the indirect utility function vis-à-vis either principal satisfies the Spence-

Mirrlees single-crossing property, Û i
iθ(q, θ) ≤ 0 for all q and i = 1, 2. In fact, we have, for any

38



equilibrium point q(θ′):

Û i
iθ(q(θ

′), θ) = −Ciθ(q(θ′), q∗−i(q(θ
′), θ), θ)− C−iθ(q(θ′), q∗−i(q(θ

′), θ), θ)
∂q∗−i(q(θ

′), θ)
∂q

.

Omitting arguments, taking into account that C(·) is quadratic, and using symmetry, the RHS

above is

= −
(

1 +
λq̇(θ′)

λq̇(θ′) + 1

)
.

Using (11), this RHS becomes: P (2q(θ′))− C1(q(θ′), q(θ′), θ′)

q(θ′)P ′(2q(θ′))− F (θ′)
f(θ′)


which is negative since q(θ′) ≤ qb(θ′) for all θ′. Because, t(·) is extended over the whole real line

in a quadratic way, the latter inequality holds for all q even those for which there does not exist θ′

such that q = q(θ′).

• Let us provide conditions ensuring the concavity of V (q1, θ) with respect to q1. We can rewrite:

V (q1, θ) = q1P (q1 + q∗2(q1, θ)) + t2(q∗2(q1, θ))− C(q1, q
∗
2(q1, θ), θ)−

F (θ)
f(θ)

Cθ(q1, q
∗
2(q1, θ), θ).

Thus, in the case where C(·) is quadratic:

∂V

∂q1
(q1, θ) = q1P

′(q1 + q∗2(q1, θ))
(

1 +
∂q∗2(q1, θ)

∂q1

)
+ P (q1 + q∗2(q1, θ))

−θ − q1 − λq∗2(q1, θ)−
F (θ)
f(θ)

(
1 +

∂q∗2(q1, θ)
∂q1

)
(45)

and

∂2V

∂q2
1

(q1, θ) = q1P
′′(q1 + q∗2(q1, θ))

(
1 +

∂q∗2(q1, θ)
∂q1

)2

+ 2P ′(q1 + q∗2(q1, θ))
(

1 +
∂q∗2(q1, θ)

∂q1

)

−
(

1 + λ
∂q∗2(q1, θ)

∂q1

)
+

∂2q∗2(q1, θ)
∂q2

1

(
q1P

′(q1 + q∗2(q1, θ))−
F (θ)
f(θ)

)
. (46)

But ∂q∗2(q1,θ)
∂q1

= λ
t′′(q∗2(q1,θ))−1 where t(·) is a symmetric equilibrium nonlinear price which satisfies

the conditions (30) and (31) and thus, both with substitutes and complements,
(
1 + ∂q∗2(q1,θ)

∂q1

)
> 0

(obtained from (30)) and
(
1 + λ

∂q∗2(q1,θ)
∂q1

)
> 0 (obtained from (31)). The first term on the right-

hand-side above is negative thanks to P ′′(·) ≤ 0, the second term is also negative thanks to P ′(·) < 0.

The third term is also negative. Hence, the concavity of V (q1, θ) with respect to q1 is ensured when
∂2q∗2(q1,θ)

∂q2
1

(
q1P

′(q1 + q∗2(q1, θ))− F (θ)
f(θ)

)
is positive. Note that this latter condition is satisfied if,

in equilibrium, t(·) is quadratic since then ∂2q∗2(q1,θ)

∂q2
1

= 0. This holds for the linear equilibrium

q∗(θ) = q∗(θ) − β∗(θ − θ) discussed in Proposition 7. This condition also holds provided that, for
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all equilibria and whatever the distribution of types, t′′(·) remains almost constant, i.e., when θ̄− θ

is small enough. 2

Proof of Corollary 3: Immediate from (13) and Proposition 5. 2

Proof of Proposition 7: Under the assumptions of Proposition 7, (11) becomes:

λq̇(θ) = −a− θ − (4 + λ)q − 2(θ − θ)
a− θ − (5 + λ)q − 3(θ − θ)

. (47)

• The first point of the proposition is easy to obtain. The solutions to the differential equation (47)

only depend on their value at the lower bound of the support in the case of substitutes and at the

upper bound of the support in the case of complements.

• We look for a linear solution to (47) of the form q(θ) = q(θ)−β(θ−θ). Differentiating (47) yields

therefore:

λβ =
(4 + λ)β − 2
(5 + λ)β − 3

(48)

or β solution to

(5 + λ)λβ2 − 4(1 + λ)β + 2 = 0.

The only solution to this second degree equation such that the corresponding nonlinear price satisfies

both (30) and (31) is:

β∗ =
2(1 + λ)−

√
2(2 + λ2 − λ)

λ(5 + λ)
. (49)

Being given this value of β∗ on can compute q∗(θ) such that:

λβ∗ =
a− θ − (4 + λ)q∗(θ)
a− θ − (5 + λ)q∗(θ)

,

and one finds

q∗(θ) =
(a− θ)(1− λβ∗)

2− λ +
√

2(2 + λ2 − λ)
.

• We now check that all solutions to (47) converge towards the solution above as ∆θ increases. We

focus on the case of substitutes where we fix θ and enlarges θ̄. The case of complements can be

treated similarly by fixing θ̄ and decreasing θ.

We first write (47) as a system of autonomous differential equations in q and θ − θ depending

on some parameter t:
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λ
dq

dt
= −(a− θ − (4 + λ)q − 2(θ − θ)), (50)

d(θ − θ)
dt

= a− θ − (5 + λ)q − 3(θ − θ). (51)

A particular solution to this system is obtained with q0 = a−θ
2+λ and θ0 − θ = − a−θ

2+λ .

The general solution to (50)-(51) solves:

λ
dq̃

dt
= (4 + λ)q̃ + 2θ̃, (52)

dθ̃

dt
= −(5 + λ)q̃ − 3θ̃ (53)

where q̃ = q − q0 and θ̃ = θ − θ0.

Differentiating (52) with respect to t and using (52) again and (53) to eliminate dθ̃
dt and θ̃, we

get:

λ
d2q̃

dt2
− 2(2− λ)

dq̃

dt
− (2 + λ)q = 0. (54)

The general solution to this second-order differential equation is :

q̃ = Aez1t + Bez2t, (55)

where z1 and z2 are roots of λz2 − 2(2− λ)z − (2 + λ) = 0 and one finds:

z1 =
2− λ−

√
2(2− λ + λ2)
λ

,

z2 =
2− λ +

√
2(2− λ + λ2)
λ

.

Note that z1 < 0 and z2 > 0. A and B are obtained from the conditions

q̃(0) = q(θ)− q0 = A + B,

where q(θ) ∈ [qc(θ), qb(θ)] and from (52)

θ̃(0) = θ − θ0 =
λz1 − (4 + λ)

2
A +

λz2 − (4 + λ)
2

B.

Note also that, from (52),

θ̃(t) =
1
2

(
λ

dq̃

dt
− (4 + λ)q̃(t)

)
=

1
2

((λz1 − (4 + λ))Aez1t + (λz2 − (4 + λ))Bez2t).

When t goes to −∞, q̃

θ̃
behaves as 2

λz1−(4+λ) which is equal to the slope of the linear solution to

(47), i.e., −β∗ exactly. Finally,

q̃(t) + β∗θ̃(t) = A

(
1 +

β∗

2
(λz1 − (4 + λ))

)
ez1t + B

(
1 +

β∗

2
(λz2 − (4 + λ))

)
ez2t.
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The first term in the right-hand-side above is equal to zero by definition of β∗. The second goes

to zero as t goes to −∞ since z2 > 0. Hence q̃(t) + β∗θ̃(t) goes to zero as t goes to −∞. Finally,

q(θ) + β∗(θ − θ) converges towards q∗(θ) when t goes to −∞.

Hence, whatever the solution to the differential equation (47), q(θ|θ), we have:

lim
θ→∞

q(θ|θ) = q∗(θ).

Since, those solutions are independent on the upper bound of the support of the uniform distribution

θ̄. It is thus immediate that

lim
θ̄→∞

E[q(θ|θ)− q∗(θ)] = 0.

2

Proof of Proposition 8: We take as given the quadratic price t∗d(q2) offered by P2 to the common

agent and compute P1’s best response in the case of a delegated common agency game. This

schedule t∗d(q2) has the same derivative as the symmetric equilibrium tariff t∗(q2) of the intrinsic

common agency game (see equation (15)). Hence, for any output q2, we have:

t∗
′

d (q2) = θ̄ + (1 + λ)q∗(θ̄) +
(

1 + λ− 1
β∗

)
(q − q∗(θ̄)).

With this expression, we can compute U2(θ). Indeed t2(q2)−C(0, q2, θ) is strictly concave in q2

when λ < 1
β∗ , a condition which holds as it can be checked by using (49).

Let us still denote by q̂2(θ) = argmaxq2t2(q2)−C(0, q2, θ). This output is thus obtained through

a first-order condition:

t∗
′

d (q̂2(θ)) = θ + q̂2(θ)

or to put it differently

q̂2(θ) =
q∗(θ)

1− λβ
. (56)

We can easily check that q̂2(θ) > q(θ) if and only if λ > 0.

Given the slope and the curvature of t∗d(·) which are the same as under intrinsic common agency,

P1 induces the same output q1 as under intrinsic common agency in a best response if the agent’s

participation constraint is only binding at θ̄ and the nature of the binding participation constraint

(0 or U2(θ̄)) determines the value of t∗d(q(θ̄)). In this case, the equilibrium output q∗d(θ) remains

an equilibrium output of the delegated common agency game. The only remaining variable to be

found is the value of the intercept t(q(θ)) of the symmetric equilibrium schedule at the equilibrium

point.

42



We are first going to prove that U(θ) has a greater slope (in absolute terms) than U2(θ) when

the principal induces an equilibrium output q∗(θ) in a best response to t∗d(q2). Indeed, we have:

U̇(θ) = −2q∗(θ)

and

U̇2(θ) = −q̂2(θ).

Moreover, |U̇(θ)| > |U̇2(θ)| for all θ when 1−2λβ∗ > 0. This inequality obviously holds when λ < 0

(complements). Using (49), we can check that this inequality also holds when λ > 0 (substitutes).

In equilibrium, each principal reduces as much as possible the transfer he offers to the common

agent so that one of the participation constraint of the least efficient type is binding. Hence, the

value of t∗d(q
∗(θ̄)) is solution to the equation:

2t∗d(q
∗(θ̄))− 2θ̄q∗(θ̄)− (1 + λ)(q∗(θ̄))2 = max(0, t∗d(q

∗(θ̄)) + (θ̄ + (1 + λ)q∗(θ̄))(q̂2(θ̄ − q∗(θ̄))

+
1
2

(
1 + λ− 1

β∗

)
(q̂2(θ̄)− q∗(θ̄))2 −

(
θ̄q̂2(θ̄) +

(q̂2(θ̄))2

2

)
). (57)

Let us assume that the right-hand side of (57) is 0. Then, we have

t∗d(q
∗(θ̄)) = θq∗(θ̄) +

(1 + λ)q∗(θ̄)2

2

and we must have

t∗d(q
∗(θ̄)) + (θ̄ + (1 + λ)q∗(θ̄))(q̂2(θ̄ − q∗(θ̄))

+
1
2

(
1 + λ− 1

β∗

)
(q̂2(θ̄)− q∗(θ̄))2 −

(
θ̄q̂2(θ̄) +

(q̂2(θ̄))2

2

)
< 0.

The left-hand side above is equal to λ
2(1−λβ∗)(q

∗(θ̄))2 which is negative when λ < 0 (complements).

In this case, the binding participation constraint of the least efficient type is 0.

Let us assume that the right-hand side (57) is strictly positive. Then, we have

t∗d(q
∗(θ̄)) = 2θ̄q∗(θ̄) + (1 + λ)(q∗(θ̄))2 + (θ̄ + (1 + λ)q∗(θ̄))(q̂2(θ̄ − q∗(θ̄))

+
1
2

(
1 + λ− 1

β∗

)
(q̂2(θ̄)− q∗(θ̄))2 −

(
θ̄q̂2(θ̄) +

(q̂2(θ̄))2

2

)
.

Then, we must have

t∗d(q
∗(θ̄)) + (θ̄ + (1 + λ)q∗(θ̄))(q̂2(θ̄ − q∗(θ̄))

+
1
2

(
1 + λ− 1

β∗

)
(q̂2(θ̄)− q∗(θ̄))2 −

(
θ̄q̂2(θ̄) +

(q̂2(θ̄))2

2

)
> 0.

The left-hand side above is equal to λ
2(1−λβ∗)(q

∗(θ̄))2 which is positive when λ > 0 (substitutes). In

this case, the binding participation constraint of the least efficient type is strictly positive. 2
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