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1 Introduction

The Hodrick and Prescott (1980, 1997) filter (the HP-filter hereafter) has become a standard
method for removing trend movements in the business cycle literature. The filter has been
applied both to actual data (see e.g. Backus and Kehoe, 1992, Blackburn and Ravn, 1992,
Brandner and Neusser, 1992, Danthine and Girardin, 1989, Danthine and Donaldson, 1993,
Fiorito and Kollintzas, 1994, and Kydland and Prescott, 1990) and in studies where artificial
data from a model are compared with the actual data (see e.g. Backus, Kehoe and Kydland,
1992, Cooley and Hansen, 1989, Hansen, 1985, and Kydland and Prescott, 1982).

Although the use of the HP-filter has been subject to heavy criticism (see e.g. Canova,
1994, 1998, Cogley and Nason, 1995, Harvey and Jaeger, 1993, King and Rebelo, 1992, or
Soderlind, 1994), it has withstood the test of time and the fire of discussion remarkably well.
Thus, although elegant new band-pass filters are being developed (see Baxter and King,
1999, Baxter, 1994, and Christiano and Fitzgerald, 1999), it is likely that the HP-filter will
remain one of the standard methods for detrending.

Most applications of this filter have been to quarterly data but data is often only available
at the annual frequency while in other cases monthly data might be published. This raises
the question of how one can adjust the HP-filter to the frequency of the observations so
that the main properties of the results are conserved across alternative sampling frequencies.
While most researchers have followed Hodrick and Prescott (1980, 1998) and used the value
of 1600 for the smoothing parameter when using quarterly data, there is less agreement in
the literature when moving to other frequencies. Backus and Kehoe (1992) use a value of
100 for annual data while Correia, Neves and Rebelo (1992) and Cooley and Ohanian (1991)
suggest a value of 400.

Baxter and King (1999) have recently shown that a value of around 10 for annual data is
much more reasonable. They arrive at this value by visually inspecting the transfer function
of the HP-filter for annual data and comparing it to a bandpass filter. A similar value has
already been obtained earlier by Hassler et al (1992) by investigating the average cycle length
obtained in a time series of output.

This paper complements these insights, using two different analytical approaches. The
first approach uses the time domain and focuses on the ratio of the variance of the cyclical
component to the variance of the second difference of the trend component: this ratio is
often used for calculating the smoothing parameter. For a particular benchmark stochastic
process, it is shown that time-aggregation changes this ratio by the fourth power of the
observation frequency. The second approach uses the frequency domain and investigates the

transfer function of the HP filter, thereby obtaining a general result. Again, a change-of-



variable argument shows that one should adjust the HP parameter with approximately the
fourth power of the frequency change. Both approaches therefore yield a value of around
1600/4* = 6.25 for annual data, which is close to the value of 10 given in Baxter and King
(1999).

We then show that our recommendations work extremely well on US GDP data: Using
a value of the smoothing parameter of 6.25 for annual data and 1600 for quarterly data
produces almost exactly the same trend. This leads us to reconsider the business cycle
“facts” reported in earlier studies. As an example, we cast doubt on a finding by Backus
and Kehoe (1992) on the historical changes in output volatility and return instead to older
conventional wisdom (Baily, 1978, Lucas, 1977): output volatility turns out to have decreased
after the Second World War.

The remainder of the paper is organized as follows. Section 2 presents the HP-filter
and provides the first, time-domain-based approach, whereas section 3 provides the second,
frequency-domain-based approach. In Section 4, we recompute some facts about business

cycles. Finally Section 5 concludes.

2 A time-domain perspective

The HP-filter removes a smooth trend 7; from some given data y; by solving

T

min 3 (g = 7)° + A (71 = 70) = (7= 71))°)

t=1

The residual y; — 7; (the deviation from the trend) is then commonly referred to as the
“business cycle component”.

The filter involves the smoothing parameter A which penalizes the acceleration in the
trend relative to the business cycle component. Researchers typically set A = 1600 when
working with quarterly data. However, data does not always come at quarterly intervals. It
may even be desirable to move to annual, monthly or some other time interval of observation
instead.

Thus, the question arises how the HP filter should be adjusted for the frequency of
observations. This question is the focus of this paper. We do not investigate whether the
HP filter is desirable per se or aim at a comparison to some optimal band pass filter as in
Baxter and King (1999). Rather we take it as granted that a researcher wishes to filter the
data using the HP filter, and ask how the parameter A\ should be adjusted when changing
the sampling frequency.

A popular perspective on the smoothing parameter in the literature is to consider the



decomposition of some given time series y; into a trend 7, and a cycle ¢,
Y =T+ C (1)

If ¢; as well as the second difference of 7 are normally and independently distributed, then
the HP filter is known to be optimal, and A is given as the ratio of the two variances,
A = 0?2 /0%, (see Hodrick and Prescott, 1980, 1997, or King and Rebelo, 1993). Generally,
the HP filter is not optimal for estimating this decomposition. In particular, even if the
HP filter is optimal for (1), it is unlikely to be optimal when time-aggregating the process
(1) because time-aggregation usually introduces moving average terms. As our focus is on
adjusting A, when changing the frequency of observation, we shall however ignore the issue of
optimal filtering, and instead simply focus on the question of how the ratio of the variances
change. Below we look at the adjustment of the smoothing parameter using a continuous
time approach. In the appendix we show how one can derive similar results using a discrete
time approach and we relate the results more directly to the theory of optimal filtering.

It is convenient to consider a benchmark continuous-time version of (1) which satisfies the
conditions stated above, i.e. where the cycle as well as the second difference of the trend are
independently and normally distributed, taking the form of Brownian motion increments.
We then analyze the change in the variances when observing the process at discrete time

intervals. Let y; be the "flow” dz; of some stochastic process z; with
dz, = Tydt + o dW} (2)

where

dr, = mdt, dp, = o.dW}? (3)

and dW} and dW? are two independent Brownian motions. There are two possibilities for
observing the process at some discrete time interval «, say: these observations may be time
aggregated (or time averaged) or they may be sampled at these discrete time intervals, see
Christiano and Eichenbaum (1986).

Consider time aggregation first, i.e. for some length o > 0, consider observing

a
Ytia = / 0 dztfs = Tt;a + Ct;a
s=

where

a
Tt,a = ,UtfsdS

s=0

(6%
Coa = / oed W]
S

=0



For any stochastic process x;, define the a-differencing operator
Agry = 14 — 4o

We are interested in how )
o (Ct;a)
o? (Azﬁt;a)

Ao =

changes with a.!
Clearly,

UQ(Ct;a) = aaf = a02(ct;1)

For Airt;a, introduce first z; = A, 7, and write it as

Ty = / (,u't—sl - Mt—a—sl) dsy
s1=0

(0% (6
= / / dftt—s, —s,d51
$1=0 Js2=0

Substitute du;_s, —s, = T1—s,—s,dS2 and repeat this calculation to obtain an expression of the

second a-difference,

«a «a «a
2 2
A04’7—15;04 = 07 d”t—s Cso—s d82d81
1—82—S3
s1=0 Js2=0 Js3=0
3o

= O'T/ A(s; a)dW2
5=0

where

(e «

A(s;a) = / / Lio,a)(5 — 51 — s52)dsads,

$1=0 Js2=0
and where the last equality was obtained by a change of variables, s = s; + s 4+ s3. The
variance is therefore given by

3o
o? (Aiﬁ;a> =0, /_0 A(s;a)?ds (4)

While one could calculate A(s;a), one does not have to. Simply observe that
A(s;a) = a?A(s/a; 1)

With one more change of variable to § = s/« in (4), we finally find

2 (A2 _ 5
o (AaTt;a> =« 0'.,-[

§=0

3
A(3;1)%d5 = a°0? (A%Tt;l)

and hence

)\a == E)\l

1One can equally well divide the processes by a to obtain time averaging rather than time aggregation:

this makes no difference for A\, and the calculation is very similar.
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i.e., the HP parameter A\ should be adjusted with the fourth power of the frequency change.
This finding will be reconfirmed in section 3, using another approach.

For sampling at discrete time intervals « the calculations become simpler yet. Suppose
we observe? the flow y; = dz; at intervals a. The diffusion part still has variance o2dt. What

needs to be calculated is the variance of A%7;. The same calculation as above leads to

«a «a
2 _ 2
Al = / / o dWi .
$1=0 Jso
2«

[ Bl
s=0

where
o

B(s;a) = / Ljo,)(s — 51)ds1 = aB(s/a; 1)

s1=0

Similar to the calculation above,

Ao _oedt 1
@ o2(A21) 37!

i.e., the smoothing parameter for the HP filter should be adjusted using the third power of
«. This result differs from the fourth-power result for time-averaged data above, but also
differs from the literature suggestion of adjusting with the second or the first power of a.

In practice, one may therefore wonder whether adjustment with the fourth or the third
power is more appropriate. Our recommendation here is to always use the fourth power
rather than the third. First, most macroeconomic time series are time-averaged, so that the
calculation above would suggest adjusting with the fourth power anyhow. But even for the
sampling case, simulations of the process above shows that adjusting with the fourth power
rather than the third produces essentially the same trend. The next section can be read as

an explanation, why this is the case.

3 A Frequency-Domain Perspective

An alternative way to look at the issue is from a frequency domain perspective. This allows
us to provide a general result, as we no longer need to assume the special structure (2,3).
The transfer function of the HP-filter is given by (see e.g. King and Rebelo, 1993)

h(w: \) = 41 — cos(w))?

~ 1+4M(1 — cos(w))? (5)

27 Observing” should be understood here in the sense that the continous-time limit approximates some

discrete-time process at very small time intervals.



This filter is similar to a high-pass filter (see e.g. Ravn and Uhlig, 1997, or Baxter and
King, 1999, for a plot of the transfer function). Choosing different values for A is comparable
to choosing different values for the cut off point of the high pass filter.

Let h(w; A1) be the filter representation for quarterly data and let h(w/s; As) be the filter
representation for an alternative sampling frequency s, where we let s be the ratio of the
frequency of observation compared to quarterly data (s = 1/4 for annual data or s = 3 for

monthly data). Then, ideally, we would like to have:
h(w; A1) & h(w/s; As) (6)

While this cannot hold exactly for all w, it should hold at least approximately®. In order to
derive the appropriate adjustment rule A\, one could, in principle, find A, as to minimize some
distance metric between h(w; A1) and h(w/s; \;). However, we take a short-cut to this and
specify a simple functional rule for this adjustment process: We apply the simple criterion

to multiply A with some power of the frequency adjustment, i.e. to choose
)\S = Sm)\l (7)

Thus, the problem is to choose m so as to fit (6).

Consider a marginal change in the observation frequency ratio s around s = 1, and look
at its differential impact on the HP-filter. For the correct adjustment, is should be the case
that

d
gh(u)/s; As) &~ 0 (8)

where % denotes the total derivative with respect to s. For each w and s, this equation can

be solved for the parameter m = m(s,w): one finds:

w/ssin (w/s)

m(s,w) = 21 — cos (w/s)

(9)

If the power specification is appropriate, then this expression should be approximately con-
stant over the range of “relevant” frequencies w. Inspection of the transfer function shows
that it suffices to restrict attention to values 0 < w < m/5, see Ravn and Uhlig, 1997. Ta-
ble 1 lists values of m = m(1l,w) = m(s,ws) for w in this range. The values in this table
suggest that m = 4 or something close to it is an excellent choice if one wishes to make the
transfer function invariant to the frequency of observation, thereby reconfirming the results

of section 2 for time-aggregated data. The analysis furthermore shows that m = 4 is the

3By this equation we do not mean to say that the HP-filter is “optimal” in any sense; Rather it says that
as the frequency of the observations is altered, the filter - being optimal or not - should have approximately

the same properties.



exact outcome only at w = 0: otherwise, a slightly lower number between, say, m = 3.8 and
m = 4 might be more appropriate.

Thus, for Aguarterty = 1600, this implies that Agppua = 1600/4* = 6.25 (or 8.25 for
m = 3.8) and Apontniy = 1600 - 3* = 129600 (104035 for m = 3.8).

Given these results, we now check how well this adjustment rule works in practise. We
examine US real GDP from the Bureau of Economic Analysis for the period 1947-2000
sampled at the quarterly and the annual frequency. We compare the trend component of the
quarterly data using Aguerterty = 1600 with the trend components of the annual data using
Aannual = 400, 100, 25, or 6.25. The results are shown in Figure 1.* This picture clinches our
case once more: the trend component of the quarterly data using Aguerterty = 1600 and the
trend component of the annual data using Agnnua = 6.25 are practically identical whereas

large differences are visible for A.nua = 400, 100 or 25.

4 Recomputing the Facts.

Based on the above analysis it seems natural to ask whether the modification of the rule
for adjusting the smoothing parameter matters for reported business cycle “facts”. As an
application we recompute of some of the results reported by Backus and Kehoe (1992) for
a cross-section of OECD countries using historical annual data: these authors have used
Aannual = 100 while we shall use Ay nua = 6.25.

One of Backus and Kehoe’s (1992) most interesting findings was that output volatility was
higher in the interwar period than during the postwar period but that there is no general
rule as far as a comparison of the postwar period with the prewar (pre WWI) period is
concerned. This result is in contrast to the conventional wisdom of e.g. Burns (1960), Lucas
(1977), and Tobin (1980) that output volatility declined after WWII relative to both earlier
periods. Another interesting result was that prices changed from generally being procyclical
before World War II to being countercyclical thereafter.

Table 3 lists the results for output volatility when using our recommended value for
the smoothing parameter. We find, that the difference in volatility between the prewar
and the postwar period generally narrows, and that for most countries, there has been a
decline in volatility in the postwar period relative to either the interwar period or the prewar

period.5 In contrast to Backus and Kehoe (1992) these results are in line with the traditional

4In order to make the results visually clearer, we have removed a linear trend from the HP-filter trend

components.
®By this we do not mean to challenge Romer’s (1989) argument that the high prewar volatility is due to

measurement error. One should however notice that e.g. UK data do not suffer from these measurement



wisdom quoted above. This is an important result that Baily (1978) and Tobin (1980) have
interpreted in terms of stabilization policy.

Table 4 reports the results for the cyclical behavior of the price level. There, and except
for Norway, our results reconfirm the finding by Backus and Kehoe (1992), that prices have
become countercyclical in the postwar period and that the interwar period

historically was the period where procyclicality was most pronounced. I.e., this result
seems to be fairly robust to the choice of the smoothing parameter. These results are also
in line with other studies, see e.g. Cooley and Ohanian (1991) and Ravn and Sola (1995).

5 Conclusions

This paper provides an analytic investigation into how the smoothing parameter \ of the HP
filter should be adjusted, when changing the frequency of observation. The major conclusion
is that the parameter A should be adjusted according to the fourth power of a change in the
frequency of observations. For annual observations, this suggest to set A = 6.25, which is
close to the value found in Baxter and King (1999), but different from the value A = 100 or
A = 400 typically found in the literature. Some well-known comparisons of business cycles
moments across countries and time periods have been recomputed, using the recommended
fourth-power adjustment. In particular, we cast doubt on a finding by Backus and Kehoe
(1992) and return instead to older conventional wisdom (Baily, 1978, Lucas, 1977, Tobin,
1980): based on the new HP-Filter adjustment rule, output volatility turns out to be lower

in the postwar period compared to the prewar period.
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6 Appendix: Temporal Aggregation: An Optimal Fil-
ter Approach

This appendix describes the link between optimal filters and the adjustment of the smoothing
parameter in the HP-filter to the frequency of observations. Here we use a discrete time
approach and the appendix extends Section 2 to this case and shows the temporal aggregation
problem’s properties in more detail.

In order to make the connection between temporal aggregation and the choice of the
smoothing parameter in the HP filter, we need to relate the HP-filter to the properties of
the time-series under consideration. A particular helpful way of making this connection is
to look at “optimal filters”.

Suppose that a time-series under consideration can be written as:

Y =Tt + ¢

where ¢; is the “cyclical component”. Suppose also that these two components are generated
by ARIMA processes:

where L is the lag operator (defined by L*x; = x;_), and e; ~ nid (0,02), &; ~ nid (0, c?),
and e; and €, are orthogonal. Whittle (1963) have shown that the optimal signal extraction
filter for the trend component (defined by R (L)y; = 7) is given by:

F (L)
R(L) = D(L) + F (L)
where
_ B(D)B.(LTY
P = Ao
_ B.(L)B- (L) ,
P = a4 ma, @™

The trend component for the HP-filter can be written as:

HP _ 1
R = 1+X(1—L)*(1—L1)?

12



As highlighted by Hodrick and Prescott (1980) and King and Rebelo (1993) sufficient
condition for optimality of the HP-filter are: (a) A, (L) = (1 — L)?, (b) B.(L) = A. (L) =
B.(L) =1, and (c) A\ = 0%/02.

Let yf" N denote the N -period sum of y; (“average sampled” in Christiano and Eichen-
baum’s, 1986, terminology). Similarly let yf N denote a point-in-time sampled variable (so
that y; is sampled at periods 1,1+ N,1+ 2N, ...).

FN .
y; " is defined as:

N-1

Z Y = Z T+ ) = Tt Y Ct (10)

s=0
where:

N—-1 N—-1
7= Y = (Z LS) T (11)

s=0 s=0

N-1 N-1
ch = ch:<z Ls>ct (12)
s=0

For a variable that is point-in-time sampled, we have that:

y o= g (13)
= 5 (14)
N = ¢ (15)

Since the intervals over which the series are temporally aggregated are non-overlapping,
the cyclical components will be independently distributed over time and ¢; " ~ nid (0, No?2),
&N~ nid (0, 02).

Thus, we can concentrate on the properties of the second differences of the “trend”

components given by:

3
AGTN = <Z LS) n=(1—- L) Hy (L)n
2
AgrN = <Z LS) n=(1— L) Hy (L)n
where:

HE (L (Z L5>3 = 3(21) hE (s) L* (16)

13



hE (s) = N(s+1—max(s— N +1,0))
Y mn(VIN 1) (1)
j=max(s—N+1,0)
N-1 2 2(N-1)
HY (L) = (Z LS> = > h}(s)L*
s=0 s=0

hy(s) = N —min(N,|N —s—1]) (18)

The second difference of the trend component has an MA(2) structure for the average
sampled data and an MA(1) structure for the point-in-time sampled data (see Christiano and
Eichenbaum, 1986, for a general continuous time treatment of this issue®). Thus, A%

and A?VTtSN are (unconditionally) mean zero normally distributed variables. The variances

3(N-1)
(% 0]

(2(%1) hS ) 2m3 +m
3

of these second differences are given by":

2 2 _FN\2 _ nF 2 pF
9FN = E<AN7—t > = Dyoz, Dy

O'ZvﬂN = E(A?\,TtS’N> = D}o?, DY,

and the autocovariances are given by:

E (D3N Ml = (Z hE (s) hE ( s—zN))

s=ilN

S ( m*—1
(A AN Ty ’LN) == Z hN h S—ZN) mUT

s=ilN

where the analytical results again was derived by Working (1960). It is possible to show
that:

A}i_r)nooE (ANTt ?VTtF%) Jo? =~ 0.40
A}E%OE(AQ PN A2 B QN) Jo? = 0.015
]\}EHOOE(ANTt MTEN) Jo2 = 0.25

6Their results do not carry over directly to our case because one of their auxiliary assumptions (a rational

representation of the integral of continous time first difference function) is violated in our example.
"The analytical result for 0%’ ~ was derived originally by Working (1960) for the temporal aggregation

of a random walk that “average sampled”. When the first difference of the variable is a random walk, this

result applies to the point-in-time temporal aggregation.
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This implies that the HP filter no longer is “optimal” filter for the temporally aggregated
data. The optimal filter will now be given by:

RPN (L) BEN (L) BEY (L71)
BPN (L) BPN (LY + A (1 — L)* (1 — L1)?

RS,N (L) BEN (L) B;?’N (L_l)
SN (L) BIN (L) + A(1— L) (1 — L)

where BEN (L) is a lag polynomial of order 2, and B3Y (L) is a lag polynomial of order 1.
Nevertheless, we can still provide some insights from this approach. Since the temporally
aggregated data are serially correlated, the optimal filter will associate a larger proportion
of the movements in the data with movements in the trend. Thus, since the HP-filter
will associate more movements in the data to the trend the lower is A, ignoring the serial
correlation when adjusting A can be though of as providing an upper bound for this parameter
when moving from high frequency data to low frequency data.

Table 1 lists the results from adjustments of the smoothing parameter ignoring the prob-
lem of serial correlation. In this table N denotes the frequency at which the data is generated
(i.e. N =4, for example, the frequency is a quarter). For each N we then compute the values
of variance of the cyclical component and the second difference of the trend component at
the monthly, quarterly and annual frequency. We then assume that Agyartersy (the value of
the smoothing parameter at the quarterly frequency) is equal to 1600 and given this we can
compute Apontnry (for N > 12) and Agpnuar. These values will correspond to “upper bounds”
for the annual data (as just explained) and “lower bounds” for the monthly data.

Thus, for average sampled data we obtain (for N > 4) a value of \ypuq in the neigh-
borhood of 6-7 if Aguerterty = 1600. For point-in-time aggregated variables, we find that the
implied value of the smoothing parameter at the annual frequency is close to 25.

These values differ significantly from A, = 100 or 400, previously applied in the
literature but are close to the values suggested by Hassler et al (1992) and Baxter and King
(1999) for the case of average sampled data and N sufficiently large. Our analytical argument
complements both of these studies and provides a more general insight into the issue.

At the monthly frequency, the appropriate value of the smoothing parameter appears
to be quite sensitive to the frequency at which the data is generated. However, for large
“enough” values of N, the implied value of the smoothing parameter is around 130000 for

averaged data and 44000 for point-in-time sampled data.
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w 0 7/20 =/10 =/5
m(L,w) |4 3.992 3.967 3.868

Table 1: The optimal power adjustment at frequency w for an adjustment locally around a
quarterly sampling rate. As one can see, the optimal adjustment is generally between 3.8 and

4.0 at the relevant frequencies.

Standard Deviations (%) n=4 n=2*
[.Prewar  ILInterwar III.Postwar | I/IIT TII/IIT | I/TI1 1I/IIT

Australia 3.77(0.37) 2.47(0.35) 1.40(0.14) |2.69 1.77 |33 2.5
Canada 3.13(0.27) 5.06(0.77) 1.50(0.21) |2.09 3.38 |20 4.4
Denmark 2.20(0.17) 2.45(0.37)  1.35(0.15) 1.63 182 |[1.6 1.8
Germany 2.32(0.21) 5.26(0.88) 1.80(0.24) [1.29 292 |15 44
Ttaly 2.13(0.20) 2.60(0.30) 1.51(0.14) | 141 1.72 |12 18
Japan 2.10(0.27) 2.47(0.38) 1.45(0.18) | 145 1.70 |0.8 1.0
Norway 1.07(0.09) 2.89(0.56) 1.06(0.12) |1.01 272 |11 2.0
Sweden 1.73(0.22) 2.41(0.47) 1.03(0.09) |1.68 234 |17 26
United Kingdom | 1.54(0.16) 2.50(0.30) 1.27(0.17) |1.21 197 |13 2.1
United States | 3.30(0.35) 4.91(0.70) 1.58(0.17) |2.09 3.11 |1.9 4.1
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Table 2: Output Volatility. * Numbers from Backus and Kehoe (1992). Numbers in paren-

theses are standard errors computed from GMM estimations of the unconditional moments.




n=4 n=2*
[.Prewar || IL.Interwar || III.Postwar || [.Prewar || II.Interwar || III.Postwar
Australia | 0.29 0.30 -0.26 0.60 0.59 -0.47
(0.14) (0.18) (0.18) (0.10) (0.12) (0.11)
Canada | 0.11 0.69 -0.01 0.41 0.77 0.12
(0.15) (0.12) (0.15) (0.13) (0.08) (0.16)
Denmark | 0.18 0.02 -0.60 0.18 -0.26 -0.48
(0.12) (0.26) (0.09) (0.12) (0.25) (0.11)
Germany | 0.04 0.86 -0.17 -0.01 0.71 0.01
(0.13) (0.06) (0.14) (0.15) (0.09) (0.16)
Italy 0.01 0.14 -0.33 -0.02 0.58 -0.24
(0.10) (0.15) (0.14) (0.11) (0.09) (0.14)
Japan -0.49 -0.18 -0.37 -0.45 0.03 -0.60
(0.11) (0.25) (0.18) (0.11) (0.22) (0.10)
Norway | 0.47 0.16 0.57 0.65 0.16 -0.63
(0.11) (0.16) (0.10) (0.08) (0.19) (0.08)
Sweden | -0.08 0.23 -0.38 0.15 0.30 -0.53
(0.17) (0.09) (0.09) (0.13) (0.10) (0.07)
U.K. 0.16 0.14 -0.72 0.26 0.20 -0.50
(0.14) (0.24) (0.08) (0.12) (0.21) (0.14)
U.S. 0.05 0.75 -0.25 0.22 0.72 -0.30
(0.11) (0.09) (0.21) (0.11) (0.13) (0.16)

Table 3: The Correlation of Prices and Output. *Numbers taken from Backus and

Kehoe (1992). Numbers in parentheses are standard errors.
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Point-in-time Averaged

N )\monthly )\annual )\monthly )\annual
- 36.04 |- 11.03

- 27.9 - 7.05
12 | 30400 26.3 75200 6.57
24 | 38933 25.1 115520  6.33
52 | 53418 25.1 173804  7.27
365 | 44634 24.8 136396  6.18
730 | 43195 25.2 129586  6.32

o~

Table 4: The values of the smoothing parameter at the quarterly and at the annual frequency

derived from the properties of termporally aggregated time-series
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Figure 1. Trend Components
008 1 of US Real GDP
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Figure 1: The Figure illustrates the HP-filter trend components of US real GDP sampled
either at the quarterly frequency and using Aguarterty = 1600 (the full drawn line) or at
the annual frequency using alternative values for Ainnua- FOr Apnpua = 6.25 the trend

components are practically identical. To make the figure clearer we have taken a linear

trend out of the HP-filter trend components.
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