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1 Introduction

The theory of contests and tournaments has been developed in specific

context, such as rent-seeking, technological competition and labor markets,

well outside the confines and with little reference to auction theory. Only

recently was it recognized that contests (e.g. wars of attrition) are examples

of socalled all-pay auctions, whose analysis can be fully integrated in the

main body of auction theory (Amann and Leininger 1995, 1996, Krishna

and Morgan, 1997, Mashin, 2000).

A similar statement applies to experimental investigations of contests, which

begin with examinations of rent-seeking behavior in various institutional

settings (Millner and Pratt 1989, 1991, Shogren and Baik, 1991). Experi-

ments on all-pay auctions, which try to draw on and connect to the large

experimental literature on auctions, are very recent (Amann and Leininger,

1997, Barut et al. 1999).

A standard auction like the first or second price auction is formally turned

into an all-pay auction by a simple change of the payment rule: instead

of requiring only the bid by the successful bidder to be paid, one requires

all bids to be paid (by all bidders, irrespective of whether they win or

not); still the highest bid only wins. This stylized all-pay structure is

present in many economic competitions, which { roughly speaking { require

investment expenditures; i.e. outlays which are non-retrievably sunk. In

the auction paradigma such an outlay is treated as a bid, it has to be

paid unconditionally (in particular it is not contingent on winning like in

standard auctions) and hence all (participants) pay.

The recognition of all-pay auctions as an important part of auction theory

and economics (see e.g. Klemperer, 2000) is taken one step further here: we

claim that useful insights { both theoretically and behaviorally { can be

gained by viewing all auctions as all-pay auctions. This is done by treating

conditional bids in standard auctions as non-conditional, but refundable

bids. The refunds are incorporated into the pay-offs of a lottery that, in

effect, is offered to each bidder in equilibrium of any auction. The first

price all-pay auction serves as a benchmark as the lottery implied by this

auction format is very simple and evident: a bidder with valuation v pays

with his bid for a lottery, that either pays v (if she wins) or 0 (if she does

not win), equilibrium of the auction game only determines the odds of the

two outcomes. Analogously, the first-price auction (winner-only-pays) offers
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to a bidder with valuation v for her bid b a lottery, which either pays v (if

she wins) or b (if she does not win). This view allows for a simple consistent

way to compare bidding behavior of different bidders in different auctions,

that can draw on well-established theory and empirical evidence of choice

behavior over lotteries.

The paper is organized as follows: section 1 gives a brief derivation (and

full statement) of the revenue equivalence theorem as this forms the basis

of much of the later analysis. Section 2 comments on the special status

of Vickrey and all-pay auction and presents the "all-pay view", which is

developed further in section 4. Section 5 comments on implications for

experimental evidence on all-pay auctions and contests.

2 The IPV-Model and Revenue Equivalence

An auctioneer wishes to sell an indivisible object to one of n buyers, n � 2,

indexed i = 1; : : : ; n. Each buyer's reservation value, vi, i = 1; : : : ; n, is

distributed according to the same distribution function

F : [0; �v]! [0; 1] :

The draws of the respective values, vi, i = 1; : : : ; n, are independent of

each other, so that from the auctioneer's point of view the random variable

v = (v1; : : : ; vn) has the distribution function

G(v1; : : : ; vn) = F (v1) � F (v2) � � �F (vn)

A bidding strategy for any bidder i = 1; : : : ; n can be represented by a

function

bi : [0; �v]! IR+

with bi = bi(vi) denoting the (observed) bid of player i.

A typical auction (and the effects of its particular rules) can be represented

by two functions per player

her probability of winning: pi(b1; : : : ; bn) and

her (expected) payment: ei(b1; : : : ; bn) i = 1; : : : ; n:
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Note, that all of these 2n functions depend on the bids submitted by all

players.

These two functions summarize for each player individually the content of the

interactive decision problem present in an auction. They suffice to calculate

a bidder's expected pay-off (whom we { for simplicity { portray here as being

risk-neutral) as

ui(b1; : : : ; bn) = pi(b1; : : : ; bn) � vi � ei(b1; : : : ; bn) (1)

when she knows b = (b1; : : : ; bn):

A Bayesian Nash equilibrium of the bidding game applies, if the chosen

bidding functions
�
b
�

1(v1); : : : ; b
�

n(vn)
�
satisfy, for each player i = 1; : : : ; n,

and all vi 2 [0; �v]

Ev
�i
ui

�
b
�

1(v1); : : : ; b
�

i (vi); : : : ; b
�

n(vn)
�
� Ev

�i
ui(b

�

1(v1); : : : ; bi; : : : ; b
�

n(vn))

for all bi � 0.

Here v�i denotes the vector (v1; : : : ; vi�1; vi+1; : : : ; vn); i.e. the expectation

is taken w.r.t the distribution of other players' valuations.

The equilibrium problem becomes tractable { and also special {, if one

looks for a symmetric equilibrium, in which all players use the same bidding

strategy b(v) = b1(v) = : : : = bn(v):

Then player i's pay-off maximization problem can be written as a function

of her own bid only in the reduced form of

max ui(b; vi)

or, in more detail,

max �pi(b) � vi � �ei(b)

whose solution gives b�(vi) for any vi 2 [0; �v].

�pi(b) now represents the expected value of the probability of winning for

player i when she bids b and �ei gives her expected payment. More formally,

�pi(b) = Ev
�i

�
pi

�
b(v1); : : : ; b(vi�1); b; b(vi+1); : : : ; b(vn)

��

�ei(b) = Ev
�i

�
ei

�
b(v1); : : : ; b(vi�1); b; b(vi+1); : : : ; b(vn)

��
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It is well-known that, if a symmetric equilibrium bidding function exists, it

must be monotonic in the player's valuation; i.e. different valuations lead to

different bids in equilibrium:

vi > v
0

i ) b(vi) > b(v0i)

This intuitive property means that b(�) is invertible and hence behavior (i.e.

a bid) is a sufficient statistic for a player's type or identity. Consequently,

�pi(b) = �pi
�
b(v)

�
= Prob

�
b(vj) � b(v)

�
j 6=i

= Prob (vj) � v)j 6=i

= F (v)n�1 =: ~pi(v) = ~p(v)

Note, that we now for the first time assume, that the highest bidder wins

the auction (with certainty).

Accordingly, ui becomes

ui(b) = ui

�
b(v)

�
= ~p(v) � v � �ei

�
b(v)

�
=: ~ui(v)

In equilibrium b(v) is selected optimally, so by the envelope theorem we get

~u0i(v) = ~pi(v) = ~p(v)

which translates into

~ui(v) =

vZ
0

u
0

i(x) dx =

vZ
0

~p(x) dx

=

vZ
0

F (x)n�1 dx =: ~u(v)

Immediately, expected payment in equilibrium for player i becomes

~ei(v) = ~p(v) � v � ~u(v) = F (v)n�1 � v �

vZ
0

F (x)n�1 dx =: ~e(v)

The last two substitutions show, that we have derived the contents of the

celebrated Revenue Equivalence Theorem (RET): in equilibrium a bidder's
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expected pay-off ~ui(v) = ~u(v), her probability of winning ~pi(v) = ~p(v) and

her expected payment ~ei(v) = ~e(v) have all been traced to her identity v

as the sole determinant. I.e. the particular rules of an auction, that guide

behavior of a rational bidder of any given identity, are unimportant for the

determination of expected revenue for the seller. The latter is simply equal

to the expectation of the sum of the expected payments over all bidders.

Only the distributional law of bidders' characteristics matters, differences

in auction design get neutralized by the then different optimal behavior

of bidders (in equilibrium). Hence RET amounts to a neutrality theorem

regarding auction design, if this design task accepts the basic rule, that the

highest bidder wins the auction. For completeness sake, we give a precise

statement of the theorem:

Revenue Equivalence Theorem:

If any of n risk-neutral bidders has a privately known valuation, which

is independently drawn from a common, strictly increasing, continuous

distribution F (v) on [0; �v], then any auction mechanism which

a) gives the objects to the bidders with the highest valuations and

b) gives zero surplus to any bidder with the lowest valution

yields the same expected revenue and the same expected payment for

a bidder with valuation v (provided each bidder only bids for at most

one of the objects).

The stated generalization to auctions of several (identical) objects with unit

demand is obvious from the one object case: the chain of arguments just

starts out with a different ~p(v).

What are exected revenues for the seller over all these auctions? By defintion

and the expression derived above for ~e(v) we get

R = n � Ev

�
~e(v)

�
= n �

�vZ
o

�
v � F (v)n�1 �

vZ
0

F (x) dx
�
dv

and revenue R is seen to depend on F (�) and n, the number of bidders,

irrespective of the particular auction rules.
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The integrand in this expression, ~e(v), allows an economically most impor-

tant interpretation:

Mathematically, the expression derived for ~e(v) can be shown to be

equal to the expected value of the second highest valuation (among the

independently drawn v1; : : : ; vn) conditional on v being the highest valuation.

To see this recall from the theory of order statistics, that the density of the

random variable r-lowest value drawn, Vr (i.e. V1 < V2 < : : : < Vn), is given

by

fr(v) =
n!

(r � 1)!(n� r)!
� F (v)r�1 �

�
1� F (v)

�n�r
� f(v)

r = 1; : : : ; n:

Consequently, the conditional density of Vr given the value of Vs = v with

s > r is then determined by a sample of size (s� 1) only whose elements are

all smaller than v; i.e. for x < v

frjVs=v(x) =
(s� 1)!

(r � 1)!(s� r � 1)!
�
F (x)r�1

�
F (v)� F (x)

�s�r�1

F (v)n�1
� f(x):

From this it follows, that with s = n and r = n� 1

fn�1jVn=v(x) =
(n� 1)!

(n� 2)!
�
F (x)n�2

�
F (v)� F (x)

�0
F (v)n�1

� f(x)

= (n� 1) �
F (x)n�2

F (v)n�1
� f(x)
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which gives

E(Vn�1jVn = v) =

vZ
0

x � fn�1jVn=v(x) dx

=

vZ
0

(n� 1) � x � F (x)n�2 � f(x) dx �
1

F (v)n�1

=
1

F (v)n�1

vZ
0

�
F (x)n�1

�
0

� x dx

=
1

F (v)n�1

h
F (v)n�1 � v �

vZ
0

F (x)n�1 dx

i

by partial integration

= v �

vZ
0

�
F (x)

F (v)

�n�1

dx

The factorial form of this expression after partial integration is identical to

the product
1

~p(v)
� ~e(v)

as precisely these terms have been derived above as expressions for 1
~p(v)

and

~e(v).

Hence in all symmetric auction games covered by RET it is true, that

~e(v) = ~p(v) � E(Vn�1 j Vn = v) (�)

A rational bidder with valution v always chooses her bid b in such a way,

that { conditional on this bid winning, the probability of which is ~p(v) {

her expected payment is equal to the expected value of the second highest

valuation among all bidders. The latter is the correct (ex ante) opportunity

cost of her winning, which she has to make up for with her payment. This

opportunity cost is the valuation of that bidder, who would receive the item

if the winner did not participate.
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3 Vickrey auction and All-Pay auction

A particular and all-important feature of the Vickrey auction; i.e. the

second-price winner-only-pays auction, is that it aligns its pricing rule

directly with this always present (ex ante) equilibrium pricing feature of

efficient auctions expressed by (*):

conditional on winning its rules exactly stipulate payment of the second-

highest bid.

This immediately reveals the celebrated truth-telling property in (dominant!)

equilibrium of the Vickrey auction: with b2(v) denoting the equilibrium bid-

ding schedule a bidder with valuation v 2 [0; �v] must expect payment of

�e
�
b2(v)

�
= �p

�
b2(v)

�
� E

�
b2(Vn�1)jVn = v

�
(V )

But as shown above �e
�
b2(v)

�
= ~e(v) and �p

�
b2(v)

�
= ~p(v), and hence

~p(v) � E
�
b2(Vn�1jVn = v

�
= ~p(v) � E(Vn�1jVn = v) for all v;

which implies that b2(Vn�1) = Vn�1 must hold in order to reconcile (V) with

(*) as a special case. (This follows from the continuous relationship between

the order statistic Vn and Vn�1 as a function of v and continuity of b2.)

Thus b2(v) = v, (*) is generally useful for a very economical (and slightly

heuristic) derivation of equilibrium bidding strategies. Riley and Samuelson

(1981) directly computed from it the solution of the first-price auction: since

only the winner pays her bid b = b1(v), it must hold that

~e(v) = ~p(v) � b1(v)

with b1(�) denoting the equilibrium bidding strategy. This gives

b1(v) = E(Vn�1jVn = V ) = v �

vZ
0

�
F (x)

F (v)

�n�1

dx

; i.e. a bidder "shades" her bid below her valuation. This technique was

further exploited by Wolfstetter (1995) to derive the solution br(v) for the

r-th price auction (see below). Obviously, bidders bid less than their true

valuation in the first-price auction, because the opportunity cost of a bid

is "overstated" by its pricing rule. As Wolfstetter (1995) shows, they bid
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more than their valuation in equilibrium of the n-th price auctions for n �

3, because then the opportunity cost is "understated" by the pricing rule.

Only the Vickrey auction leads them to bid their true valuations, because its

pricing rule is precisely in line with opportunity cost. To see this from (*)

denote by br(v) the equilibrium bidding schedule of the r-th price auction.

Then

�e
�
br(v)

�
= �p

�
br(v)

�
� E

�
br(Vn�(r�1))jVn = v

�
;

since only the winnner pays an amount equal to the expected value of the

bid of the bidder with the r-th highest valuation (monotonicity of br) given

the highest valuation is equal to the valuation of the player considered. The

RET and (*) then imply that

E

�
br(Vn�(r�1))jVn = v

�
= E(Vn�1jVn = v) for all v 2 [0; �v]:

Vn > Vn�1 resp. Vn�(r�1) < Vn�1, r > 2, now means that b1(V1) < V1

(underbidding) resp. br(Vn(r�1) > Vn�(r�1) (overbidding) in order to satisfy

the above equation.

The Vickrey auction has for this reason often served as a "benchmark"

for judging bidding behavior in auctions (by assessing and explaining

"deviations" from truth-telling). This status of the Vickrey auction derives

from eÆciency considerations: an auction is efficient, if the buyer with

the highest valuation gets the object in equilibrium of the auction game

(here we assume absence of externalities in order to legitimately equate

private and social benefits of the resulting allocation)1. Since bidding one's

valuation is a (dominant) equilibrium in the second-price auction, efficiency

is a most obvios property of it. But note, that all auctions covered by RET

{ by assumption of the theorem { satisfy efficiency. Also note, that it is not

true { but often falsely attributed to the Vickrey auction { that truth-telling

constitutes "non-strategic", sincere behavior in contrast to "bid-shading"

(for strategic; i.e. "opportunistic" reasons) in other auction formats. The

point is, of course, that the same strategic equilibrium considerations that

lead to bid shading in other formats lead to truth-telling in the second-price

format. In the following we propose a new 'reference auction' or benchmark,

namely the first-price all-pay auction, henceforth FPAPA, and show that

this gives a new access to comparative assessments of bidding behavior in

different auctions.

In the FPAPA all bids submitted by the bidders { including the losing ones

{ have to be paid for by the respective bidders and { as before { the highest

1Jehiel and Moldovanu (1996), Jehiel, Moldovanu and Stacchetti (1996) and Caillaud

and Jehiel (1998) consider the case with externalities among bidders.
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bidder wins the prize. Bidding in this auction represents an unconditional

commitment to pay the amount bid and therefore renders expected payment

(of a bidder) into a deterministic variable (from her point of view as a decision

maker). Her bid { and hence her (expected) payment { only depends on

her own information and not on information of other bidders. The FPAPA

is the only auction game [pi(b1; : : : ; bn); ei(b1; : : : ; bn)]
n
i=1 as defined in the

beginning with the property, that other players' information only enters into

a bidder's decision calculus via pi(�), her probability of winning, but not via

ei(�), her expected payment (as ei(b1; : : : ; bn) = ei(bi) = e(b) in this case).

More precisely, e(b) = b and thus (*) immediately gives

�b1(v) = : ~e(v) = ~p(v) � E(Vn�1 j Vn = v)

= F (v)n�1 �

h
v �

vZ
0

�
F (x)

F (v)

�n�1

dx

i

= F (v)n�1 � v �

vZ
0

F (x)n�1 dx

For analysis of the FPAPA under various informational assumptions see Baye,

Kovenock and Vries (1996), Amann and Leininger (1995, 1996) and Krishna

and Morgan (1997).

From a decision-theoretic point of view bidding in an all-pay auction is akin to

an insurance or gambling problem: the bidder makes an outlay with certainty

(her bid) to "buy" or claim a chance (amount of probability) of winning, a sit-

uation well-examined and understood (see e.g. Hirshleifer and Riley, 1984).

There is, however, a crucial difference: in a standard insurance or gambling

problem the transfers of ressources across different contingent states occurs

against the background of (exogenously) �xed probabilities. Here, in the

interactive decision context of the FPAPA game the actions of all bidders

endogenously determine the probabilities. More specifically, with the uncon-

ditional bid �b1(v) { like any other unconditional bid she could contemplate

{ the bidder de facto buys a lottery, that either pays v or 0. In equilibrium

the lottery pays

v with probability ~p(v) = F (v)n�1

0 with probability
�
1� ~p(v)

�
= 1� F (v)n�1
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For this lottery the (risk-neutral) bidder does not pay ~p�v, its expected value,

but { due to the strategic interaction with the finitely many other bidders {

somewhat less, namely ~p � E(Vn�1 j Vn). (For n!1; i.e. a "large" number

of independent draws, this expression is seen to approach ~p � v). This, in

the case of the FPAPA very natural interpretation of buying a lottery at a

certain price, is now shown to facilitate a general alternative explanation of

bidding behavior in auctions. We start out from the observation that the

odds ~p(v) : (1� ~p(v)) for winning/not winning are invariant over all auctions

covered by the RET.

4 Bidding behavior from an all-pay view-

point

Recall from above that in equilibrium of all auction games (covered by the

Revenue Equivalence Theorem) a bidder with valuation v 2 [0; �v] faces the

same odds of

p(v) = F (v)n�1 for winning and

1� ~p(v) for not winning

the item. At these identical odds every auction gane offers a di�erent

lottery in equilibrium. The nature and conditionality of different payment

rules only leads to different net payments of the implied lotteries. We now

systematically determine these "lotteries" and assess and compare their

respective values to a risk-neutral bidder.

So think of a bid submitted by a player as a payment (purchasing price)

for a lottery. Note then, that whereas in the FPAPA only probabilities

of contingencies (in the acquired lottery) are determined endogenously by

players' actions, it is in general probabilities and pay-offs in contingencies

that are subject to joint determination.

E.g. in the first-price auction (winner-only-pays), FPA, the (equilibrium)

bid, b, is expended for a lottery, that pays v with probability ~p(v) and b with

probability
�
1 � ~p(v)

�
. The pay-off in the case of not winning just reflects

the fact, that in this contingency the bid is refunded. Obviously, the lottery a

bidder "gets" in equilibrium of FPA dominates the one she gets in FPAPA as
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the latter one also pays v for winning, but 0 for losing; accordingly her bid in

the former is much higher than in the latter. The lower the lottery return in

the contingency 'not winning', the higher the commitment of a player to her

payment in a sunk cost sense. From this viewpoint bidding behavior across

different auction games is easily understood:

Let the number of bidders, n, and the joint distribution G(v1; : : : ; vn) of their

valuations be given. For any auction (covered by RET) it is true, that

a bidder with (private) valuation v, who bids b (according to a mono-

tonic equilibrium bidding function), buys a lottery p:

with probability ~p(v), receive v + a1

with probability (1� ~p(v)), receive a2 � b� a3.

Note, that only the parameters a1, a2 and a3 in the pay-offs depend on

the specific auction rules, but not the respective odds. More precisely, it

is the payment rule of an auction that, if different from the FPAPA-rule

"each bidder pays her bid", distorts the pay-off structure from (v; 0) in the

(winning, not winning)- contingencies to (v+a1; a2 �b�a3), with a1; a3 2 [0; b]

and a2 2 [0; 1], in a systematic way; i.e. a1 = a2 = a3 = 0 in the FPAPA.

Table I shows these lotteries for the r-th price auction, RPA, and the r-th

price all-pay auction, RPAPA, for a given bid b = b(v), that results from

any common monotonic bidding function b(�). A common b(�) is sufficient

to determine the odds at p : (1� p) with p = ~p(v) for any v 2 [0; �v].

Table I: Lotteries offered by different auctions (in equilibrium)

bid b = b(v)

nature of bid refundable (winner-only-pays)

odds p 1� p

first-price auction v b

second price auction v + (b� E(Bn�1jBn = b)) b

r-th price auction v + (b� E(Bn�(r�1)jBn = b)) b
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bid b = b(v)

nature of bid non-refundable (all-pay)

odds p 1� p

first-price auction v 0

second price auction v + (b� E(Bn�1jBn = b)) 0

r-th price auction v + (b� E(Bn�(r�1)jBn = b)) 0

Br denotes the order statistic for the r-th lowest bid; i.e.

Er

�
Bn�(r�1)jBn = b

�
is the expected value of the r-th highest bid given the

highest is b.

Note, that we do not aim for exceptional realism when assuming for reasons

of simplicity that in the RPAPA all bidders pay their bids except the highest

bidder, who wins and pays the r th highest bid (which is the (n-(r-1))-th

lowest bid), r = 1; : : : ; n. This may seem strange in that a loser may have

to pay more than the winner! However, one could easily replace this simple

rule by stipulating that all bidders pay their bids except for the (r-1) highest

bidders, who pay the r-th highest bid. Now a loser would never have to pay

more than the winner and could except a positive payment from the lottery,

if losing, namely the average difference between her bid and the r-th highest

bid in case her bid is among the (r-1) highest without actually being the

highest. This is expected to happen with probability
�
1� FBn�(r�1)

(b)
�
with

FBn�(r�1)
denoting the distribution function of the 'r-th highest bid' - order

statistic. This derivation just serves to illustrate, that any auction game can

be viewed this way. The socalled 'sad loser' - auction is an interesting case

in point: here the highest bidder wins the object and the lowest bidder { and

only the lowest one { has to pay her bid; this auction features refundable as

well as non-refundable bids. The pay-offs offered at odds (p; 1 � p) are in

this case (v+ b; (1�w) � b) with w = F (v)n�1+
�
1� F (v)

�n�1
, which makes

(1� w) the probability of neither winning nor sadly losing the auction for a

bidder of valuation v.(The sad-loser auction, too, is covered by RET.)

Let lr denote the lottery offered by the RPA and let �lr denote the one

offered by RPAPA. It is immediate from Table I:
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Proposition 1: Any risk-neutral bidder i, i = 1; : : : ; n, endowed with a

common bidding function b(�) would rank, for any v 2 [0; �v], the lot-

teries lr and �er as follows:

l1 < l2 < : : : < ln

_ _ _

�l1 < �l2 < : : : < �ln

I.e. ln is the most attractive one and �l1 the least attractive one, l1

(=FPA) and l2 (=Vickrey auction) are intermediate cases.

Of course, in equilibrium bidders { if bidding in different auction games

{ use di�erent common bidding schedules. Yet by the RET they always

expect the same (net) pay-off. Consequently Proposition 1 implies that

Corollary 2: Let F (v) be given and denote by br(v) resp. �br(v) the

equilibrium bids of a player with valuation v in RPA resp. RPAPA.

Then the following holds for all v 2 [0; �v]:

b1 < b2 < : : : < bn

_ _ _

�b1 < �b2 < : : : < �bn

Note that the "lowest" ranking is occupied by the first-price all-pay auc-

tion, FPAPA, in which expected payment only depends on a bidder's own

information. We claim

Lemma 3: The FPAPA exhibits the lowest maximal equilibrium payment

for a bidder of type v, v 2 [0; �v], among all auction games covered by

RET.

Proof: Laffont and Roberts (1996) as well as Maskin (2000) show, that for

any auction game A, for which a bidder's payment does not depend

on her type exclusively (but also on wether she wins or loses), there
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exists an equivalent all-pay auction game �A, that induces the same

expected payment and allocation at a lower maximal payment paid by

each type of bidder. It is easy to see that among those FPAPA with

ei(b1; : : : ; bn) = bi gives the lowest (maximal) payments.

This property of the all-pay mechanism features prominently, when bidders

are budget-constrained (see e.g. Laffont and Robert (1996), Che and Gale

1995) and Maskin (2000)): low equilibrium payments reduce the prospect

that those constraints become binding and lower their impact, if they are

binding. FPAPA may even be an optimal auction from the seller's point of

view under those circumstances (Laffont and Robert, 1996).

A useful implication of our analysis so far is, that FPAPA is strategically

equivalent to FPA. More precisely,

Proposition 4: With independent private values the first-price all-pay auc-

tion, FPAPA, and the first-price auction, FPA, are strategically equiv-

alent in the following sense:

If b1(v) is an equilibrium bidding strategy of the FPA then
�b1(v) = ~p(v) � b1(v) is an equilibrium bidding strategy of the FPAPA.

Proof: Obvious from (*) as b1(v) = E(Vn�1jVn = v) and �b1(v) = ~e(v):

Proposition 4 says that a player who places a conditional bid of b1(v) in

equilibrium of the FPA submits an unconditional bid of ~p1(v) � b1(v), with

~p(v) exactly describing her probability of winning, in the FPAPA. A little

further reflection leads to the intuitive insight, that

b1(v) =

vZ
0

x � fn�1jVn=v(x) dx and

�b1(v) =

vZ
0

x � fn�1(x) dx must hold.

Here fn�1 jVn=v (x) denotes the conditional density of the second-highest

valuation, whereas fn�1(x) denotes the (unconditional) density of the highest

valuation of the players other than the player holding valuation v (these are
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(n-1) bidders). We then readily confirm that the two densities just differ by

a factor ~p(v) = F (v)n�1 as

fn�1jVn=v(x) = (n� 1) �
F (x)n�2

F (v)n�1
� f(x) (see above) and

fn�1(x) = (n� 1) � F (x)n�2 � f(x)

(just differentiate the distribution function of the maximum of (n-1) i.i.d.

random variables distributed according to F (x), which is F (x)n�1).

Remark:

It is not true for r > 1, that RPA and RPAPA are strategically equivalent.

To see this consider the expressions for the expected payment of a bidder

who bids according to br(v) in RPA resp. �br(v) in RPAPA, which read

e

�
br(v)

�
= p(br(v)) � E

�
br(Vn�(r�1)jVn = v

�
and

e

�
�br(v)

�
= p(�br(v)) � E

�
�br(Vn�(r�1)jVn = v

�
+
�
1� p(�br(v))

�
� �br(v):

RET yields that e
�
br(v)

�
= e

�
�br(v)

�
= ~e(v), for all v 2 [0; �v],

and p

�
br(v)

�
= p

�
�br(v)

�
= ~p(v), hence (*) implies that

(RPA) E

�
br(Vn�(r�1))jVn = v

�
= E(Vn�1jVn = v) and

(RPAPA) E

�
�br(Vn�(r�1))jVn = v

�
+

1� ~p(v)

~p(v)
� �br(v) = E(Vn�1jVn = v)

Consequently, the relationship between bids in RPA and RPAPA is governed

by the equation

E

�
br(Vn�(r�1))jVn = v

�
= E

�
�br(Vn�(r�1))jVn = v

�
+

1� ~p(v)

~p(v)
� �br(v) (E)

for all v 2 [0; �v]
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Note that the expectation operators on both sides of the equation are applied

to the same (conditional) distribution. For r = 1 { and only in this case {

this distribution collapses into the single point v:

E
�
br(Vn)jVn = v

�
= E

�
�br(Vn)jVn = v

�
+

1� ~p(v)

~p(v)
� �br(v)

becomes br(v) = �br(v) +
1� ~p(v)

~p(v)
� �br(v)

=
1

~p(v)
� �br(v)

For r > 1 no such reduction is possible, instead, setting br(v) = a(v) � �br(v)

and inserting this into (E) yields

a(v) = 1 +
1� ~p(v)

~p(v)
�

�br(v)

E

�
�br(Vn�(r�1))jVn = v

�
and we see, that knowing the bid of type v in the RPAPA does not suffice

to infer her bid in the RPA, one has to know the bidding schedule �br(�).

5 Applying the all-pay view

In the light of Table I the stategic equivalence of FPAPA and FPA (Propo-

sition 4) can be put as follows:

equilibrium of FPAPA offers to a bidder with valuation v the lottery �l1:

�
�
�
�
�
�
�
��

H
H
H
H
H
H
H
HH

v

0

~p

1� ~p

equilibrium of FPA offers to the same bidder (under the same circumstances

regarding the probabilistic law of valuations) the lotery l1:
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�
�
�
�
�
�
�
��

H
H
H
H
H
H
H
HH

v

b
�

~p

1� ~p

with b
� = b(v).

As a risk-neutral bidder (with valuation v) can expect the same expected

pay-off from participation in each auction (RET), he should in effect be

indifferent between buying either of the two lotteries. I.e. if he prices (i.e.

buys) lottery �l1 at �b (with his bid in FPAPA) then he should price l1 at

b = 1
~p
� �b (and consequently bid this in FPA), because

~p � v � �b = ~p � v + (1� ~p) � b� if and only if b =
1

~p
� b�:

Conversely, paying b
� for l1 { as is done with fair accurancy on average in

FPA-experiments (see e.g. Davis and Holt (1993), chapter 8, or Kagel and

Roth, 1995, chapter 8) { should result in paying b = ~p � b� for �l1. This

simple "discounting" with the probability of winning, ~p, is definitely not

observed in FPAPA-experiments (see Amann and Leininger (1997) and

Barut, Kovenock and Noussair (1999)).

Amann and Leininger (1997) report substantial overbidding in the (single-

unit) FPAPA with revenues between 1.6 and 2.5 times the revenue of the

FPA experiments; i.e. revenue equivalence is clearly rejected. Barut et al.

(1999) show that with multiple units this marked difference between FPAPA

and FPA disappears, they become empirically revenue equivalent. The

bidding pattern over bidders with different valuations is in rough accordance

with symmetric Bayesian equilibrium in the case of FPA, but not in the case

of FPAPA, neither in the single-unit case of Amann and Leininger (1997)

nor in the multi-unit case of Barut et al. (1999). Bidding in the FPAPA

follows a dichotomous pattern in the following sense: for high valuations

bidding is frequently almost as close to the valuation as in the respective

FPA (and therefore much too high compared to Bayesian equilibrium); for

low and medium valuations it is frequently close to zero or zero. Bidders

either "go" for the unit or "stay out" of the competition. In the single-unit

case of Amann and Leininger (1997) two bidders on average go for the item,
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which generates the overexpenditures mentioned above. In the multiple-unit

case of Barut et al. this dichotomy in bidding behavior is also present in a

most pronounced way. But the consequences in terms of overexpenditures

get { statistically { completely washed out by the fact, that now more units

are available. Whereas Amann and Leininger find, that with 6 bidders for

a single unit revenue in FPAPA is about twice the revenue of FPA, Barut

et al. conclude with 6 bidders for two units that FPA and FPAPA are

revenue-equivalent. In both studies FPA performs much more efficient in

allocating the unit(s) than FPAPA, so even in the revenue-equivalent case

of Barut et al. bidders prefer to participate in FPA rather than FPAPA.

Applying the all-pay view of auctions as lotteries may help to explain this

kind of behavior: there is a substantial literature on choice over binary lot-

teries, in which several regularities in choice behavior { some of them incon-

sistent with the axioms of expected utility theory { have been observed (see

e.g. Holt and Davis (1993), chapter 8 or Kagel and Roth (1995), chapter 8).

This large body of literature has { at least to the author's knowledge { not

been linked to behavioral results of { equally large { literature on auction

experiments. (At least not in a direct way, there is a literature on the use of

lotteries in order to induce certain risk-preferences in auctions (see e.g. Sel-

ten, Sadrieh and Abbink, 1999), which has an entirely di�erent focus.) The

present approach to view auctions as purchases of (equilibrium) lotteries by

bidders suggests, that this could beneficially be done. E.g. if we interpret

the bids in FPA and FPAPA as the values attached to the equilibrium lot-

teries by bidders, then revenue dominance of FPAPA over FPA means, that

subjects prefer the former to the latter. However, when asked which auc-

tion game they prefer to play, they choose the latter. This is akin to the

phenomenon of "preference reversal" (Grether and Plott, 1979) observed in

individual choice over lotteries. It is not clear, what causes this behavior in

the "auction lotteries": standard explanations of "preference reversal" like

involvement of prospect theory do not work as the probabilities of winning

are identical in both lotteries. One possibility is to draw on findings of Sel-

ten, Sadrieh and Abbink (1999). Their result on choice and valuation of

binary lotteries led them to postulate a "background-risk effect": the higher

the variance in lottery pay-offs, the more pronounced is the presence of un-

certainty in the perception of the decision-makers. As a consequence they

become more risk-sensitive; i.e. more attention is paid to the presence of

uncertainty, which results in less stable, almost erratic behavior ( Selten et

al. coin the term "capriciousness"), that changes by leaps and bounds be-

tween risk-loving and risk-averse. The overall result is a larger derivation
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from expected value maximization. Uncertainty is much more prominent in

the lottery �l1 bought in FPAPA than it is in l1 bought in FPA. The larger

variance in pay-offs and the possibility of suffering a loss (ex post) in FPAPA

clearly triggers risk-sensitivity in bidders perception. At the same time the

presence of uncertainty in l1 of FPA may get repressed by an impression of

being " in control" of the variance in pay-offs, because it depends on the cho-

sen bid. This prevents bidders from realizing that application of the simple

linear discounting rule suggested by Proposition 4 is in their best interest.

6 Conclusion

We have viewed an auction as a process that generates (in equilibrium) a

binary lottery for each bidder, which the bidder " buys" and codetermines

with his bid. The first-price all-pay auction is shown to occupy a prominent

role in this view: it offers a "benchmark" lottery, in which pay-offs are

independent of bidders' behavior. Variation of the auction format leads to

variations in these lotteries. A particular informative class of variations is the

one across the set of auctions covered by the revenue equivalence theorem.

They all generate lotteries with probabilities identical to those of the all-

pay auction lottery, so that differences between them can be understood by

assessing deviations in their pay-offs from the benchmark lottery.
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