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Local Warming and Violent Conflict in North and South Sudan1 

 

 

Margherita Calderone2, Jean-Francois Maystadt3, and Liangzhi You4 

 

 

Abstract: Weather shocks and natural disasters, it has been argued, represent a major threat to national 

and international security. Our paper contributes to the emerging micro-level strand of the literature on 

the link between local variations in weather shocks and conflict by focusing on a pixel-level analysis for 

North and South Sudan at different geographical and time scales between 1997 and 2009. Temperature 

anomalies are found to strongly affect the risk of conflict. In the future the risk is expected to magnify in 

a range of 21 to 30 percent under a median scenario, taking into account uncertainties in both the 

climate projection and the estimate of the response of violence to temperature variations. Extreme 

temperature shocks are found to strongly affect the likelihood of violence as well, but the predictive 

power is hindered by substantial uncertainty. Our paper also sheds light on the vulnerability of areas 

with particular biophysical characteristics or with vulnerable populations. 
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1. Introduction 

Climate change and natural disasters, it has been argued, represent a major threat to national and 

international security by increasing resource scarcity and competition and inducing health problems 

(Homer-Dixon 1994, 2007; Sachs 2005; Steinbruner, Stern, and Husbands 2012).5 So far, these claims 

lack consensual empirical support and would deserve a more careful investigation of the specific 

channels linking climatic phenomena and conflict events (Salehyan 2008; Scheffran et al. 2012; 

Steinbruner, Stern, and Husbands 2012). Quantitative assessment of the climate-conflict nexus has 

largely been initiated by Miguel, Satyanath, and Sergenti (2004), who seminally used rainfall shocks on 

income growth to assess how the risk of conflict may increase in Africa south of the Sahara (SSA) when 

the opportunity cost to fight decreases.6 Since then, Burke et al. (2009) found that temperature 

variations increase the risk of conflict in SSA and, interestingly, temperature is the only significant 

climatic variable when included in the model along with rainfall. They suggest that earlier findings, 

including Miguel, Satyanath, and Sergenti (2004), about increased conflict due to lack of rainfall, might 

have been partly capturing the effect of higher temperature.7 The importance of temperature is also in 

line with the results by Zhang et al. (2007, 2011) showing that temperature variations are correlated 

with the frequency of wars in Europe and China in the preindustrial period. Offering an alternative 

approach to the one based on weather variations, Hsiang, Meng, and Cane (2011) further investigated 

the relationship between climate change and global patterns of civil conflicts. They exploited the 

dominant interannual mode of the modern climate, the El Niño–Southern Oscillation, to show that 

conflict is more likely during El Niño years (warmer and dryer in the continental tropics) relative to La 

Niña years. 

A recent paper by Klomp and Bulte (2012) revisits these cross-country analyses through a battery of 

robustness checks and finds little evidence linking global and local weather shocks and conflict. In line 

with the general review on the conflict literature by Blattman and Miguel (2010), Klomp and Bulte 

(2012, 26) call for moving beyond the conventional country-year focus and embracing shorter time 

intervals and subnational regions. The lack of robustness in previous cross-country findings may indeed 

result from the inability of country-level variables to capture the dynamics of local conflict events (for a 

discussion, see Buhaug and Lujala 2005 and Buhaug and Rod 2006). Using subnational units of analysis 

would allow us to overcome this shortcoming while preserving the robustness of the econometric 

approach recently advanced by scholars looking at the links between climatic variations and violence in 

SSA.8 On the one hand, Harari and La Ferrara (2012) exploit the grid-cell-level (1 degree over 1 degree) 

                                                           
5
 For example, Homer-Dixon (2007, l. 22) argues that “climate stress may well represent a challenge to 

international security just as dangerous-and more intractable-than the arms race between the United States and 
the Soviet Union during the Cold war or the proliferation of nuclear weapons among rogue states today.” 
6
 The robustness of these results has been discussed mainly in Ciccone (2011) and Miguel and Satyanath (2011). 

7
 The results by Burke et al. (2009) have raised a fierce debate between Buhaug (2010) and the same authors 

(Burke et al. 2010). Such a debate is described in Klomp and Bulte (2012). 
8
 A recent special issue of the Journal of Peace Research provided mixed evidence based on within-region or 

within-country analyses or case studies, but the overall assessment by the guest editor (Gleditsch 2012, 3) was that 
“so far there is not yet much evidence for climate change as an important driver of conflict.” Note that such mixed 
evidence was given also in the special issue of Political Geography (Nordas and Gleditsch 2007), which mainly 
reported qualitative or simple correlation analyses. 
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annual variation to study the relationship between weather shocks and conflict in Africa. They show that 

negative weather shocks (proxied by a new drought index), occurring during the growing season of the 

main crops, significantly increase the incidence of conflict. On the other hand, Raleigh and Kniveton 

(2012) and O’Loughlin et al. (2012) propose regional analyses focused on East Africa. Based on geo-

referenced (2.5 degree) data, Raleigh and Kniveton (2012) assess the link between rainfall anomalies 

and conflict events in Uganda, Ethiopia, and Kenya and find that the frequency of violent events 

increases in periods of extreme rainfall variations. O’Loughlin et al. (2012) evaluate the role not only of 

precipitation, but also of temperature changes at a finer resolution (grid of 1 degree) using similar data 

and including nine entire countries (Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, 

Tanzania, and Uganda). They show that wetter deviations from the precipitation norms decrease the risk 

of conflict, whereas warmer than normal temperature raises the risk. 

Our paper is complementary to such studies, in particular the above-referenced ones about East Africa, 

even if they do not specifically include Sudan in their research area. But beyond the exclusive focus on 

Sudan and the finer grid-cell resolution (0.5 degree)9, our paper differs by adopting a more restrictive 

methodological approach. Our main results are estimated using a fixed-effects framework at both pixel 

and quarterly levels. This framework not only isolates the impact of climatic variations from specific 

control variables—such as the population, the distance to the nearest urban center (Raleigh and 

Kniveton 2012), the crop production index, and the infant mortality rate (O’Loughlin et al. 2012)—but 

also from all the other characteristics that are time constant at the grid-cell level. Although we will 

discuss the way our results change when a different framework is chosen, we consider an approach 

based on cell-level fixed effects more likely to reduce estimation bias compared to an approach based 

on adding a limited number of potentially endogenous control variables (Angrist and Pischke 2009). In 

this respect, our methodology is closer to Maystadt, Eckers, and Mabiso (2013), who, using monthly and 

regional variations and focusing on the role of the livestock market as a channel of transmission, found a 

strong relationship between more frequent and intense temperature-based droughts and the 

occurrence of violent conflict in Somalia. 

Furthermore, our paper contributes to the spatially disaggregated strand of the literature on the links 

between weather shocks and conflict by assessing the validity of the analysis at different geographical 

and time scales and by reviewing a series of proxies for weather shocks previously used in the literature 

in an inconsistent way. More precisely, we estimate the relationship between local warming and violent 

conflict between 1997 and 2009 in North and South Sudan, controlling for time dummies, grid-cell fixed 

effects, and area-specific time trends. Following Burke et al. (2012), we then project the changes in 

violent conflict by 2030 under different climate models and scenarios and show that the uncertainty in 

the projections increases when the extreme nature of temperature shocks is captured. The available 

data do not allow us to test the different channels linking weather shocks to conflict, but we assess how 

                                                           
9
 A geographical grid is an agreed, defined, and harmonized grid net for a region or the whole world with 

standardized location and size of grid-cells. A grid-cell is also called a pixel whose size is the resolution of the grid. 
The resolution is expressed in degree/minute/second as the longitude and latitude or it can be expressed in length 
units (e.g. km and meters), treating the earth as a flat surface. For example, 0.5 degree pixel is also commonly 
referred to 50kmx50km, 5 minute 10kmx10km or 30 second 1kmx1km. 
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some characteristics magnify or reduce the strength of such relationship. Therefore, our discussion 

about the heterogeneous effects sheds light on the vulnerability of areas with particular biophysical 

characteristics or with vulnerable populations. 

 

2. Background 

Sudan is known for having experienced two civil wars after independence in 1956, but it actually has a 

long-lasting history of repeated conflict events starting well before independence. Like many African 

conflicts, the Sudan conflict took its roots in the colonization period.10 Most scholars agree that the 

divide between the north and the south was fueled by the British colonizers who favored social and 

economic investment in the north under the so-called Southern Policy implemented between 1920 and 

1947 (Ali, Elbadawi, and El-Bathani 2005). After independence, such structural divide was exacerbated 

by the northern elite that came into power and led to 17 years of civil war (known as the first civil war) 

between the north and the south. A peace settlement, the Addis Ababa Peace Accord, was reached in 

1972, but the then president, Nimeri, aggravated grievances in the south by redesigning the border to 

include oil-producing areas in the northern territory, by grabbing land through the development of 

mechanized farming, and by exploiting the divisions between various groups within the south. As a 

result, the Sudan People’s Liberation Army (SPLA) was created in 1983 with external support from 

Ethiopia. The second Sudanese civil war was then triggered as a continuation of the first civil war and 

lasted until 2005, when it ended with the signature of the Comprehensive Peace Agreement that paved 

the way for a referendum in January 2011 and for the independence of South Sudan in July 2011. 

Although the exact figures are a subject of debate (Duffield 2001), the dramatic history of violence in 

Sudan resulted in more than 1.9 million civilian deaths between 1983 and 1998 (more than 600,000 

since 1993, according to Burr 1998) and about 5 million displaced people (United Nations Environment 

Programme, UNEP 2007). 

Behind this national scene and the description of the civil war as an opposition between the north and 

the south, local conflict events also multiplied within North and South Sudan (Johnson 2011). The 

exploitation of resources, once the source of warfare financing, became a warfare objective in itself.11 At 

the same time, conflict events evolved from ethnic tensions between the north and the south to local or 

regional conflicts increasingly reported to be linked to environmental factors. The study by UNEP (2007, 

70) was certainly instrumental in maintaining that “competition over declining natural resource was one 

of the underlying causes of the conflict” and in pointing to four specific conflict-contributing categories 

of natural resources: “oil and gas reserves, Nile waters, hardwood timbers, rangeland, and rain-fed 

                                                           
10

 Johnson (2011) even points to the establishment by the Turco-Egyptians of an exploitive relationship between 
the centralizing power of the state and the peripheries (including South Sudan) before the nineteenth century, 
mainly through the institutions of slavery and slave trading. Such historical factors echo the findings of Nunn 
(2008) on the legacy of slave trade for contemporaneous economic development. 
11

 As quoted by Ali, Elbadawi, and El-Bathani (2005), “the Sudan People’s Liberation Army/Movement, instead of 
being a genuine national liberalization movement, degenerated into an agent of plunder, pillage and destructive 
conquest.” 
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agricultural land (and associated water points).” In particular, in marginalized areas, conflict was 

intensified by the expansion of large semimechanized farms and the subsequent loss of access to land 

for both smallholders and pastoralists (Keen and Lee 2007). Keen and Lee (2007, 17), for example, 

reported that the area of land taken up by rain-fed semimechanized agriculture increased from about 2 

million feddans (that is, about 0.84 million hectares) at the beginning of the 1970s to 14 million feddans 

(that is, about 6 million hectares) by 2003. 

In addition, pastoralist and agropastoralist communities have been increasingly under pressure by the 

combination of population growth and more frequent and intense droughts. In Sudan, agriculture—that 

accounted for 30–40 percent of GDP between 1996 and 2010 (Benke 2012)—remains extremely 

vulnerable to droughts, whereas the climatic conditions appear to have become harsher to cope with. 

According to UNEP (2007), an estimated 50- to 200-kilometer southward shift of the boundary between 

desert and semidesert has occurred since the 1930s, and the remaining semidesert and low rainfall land 

are at considerable risk of further desertification. Thus, the vulnerability of semiarid areas to climatic 

stresses and shocks is more likely to intensify in the decades to come. 

However, the link between resource scarcity and conflict is far from being trivial. Scholars and 

policymakers have equalized resource scarcity to an incentive for conflict (Homer-Dixon 1994), 

especially for Sudan and pastoralist communities (UNEP 2007; Hendrickson, Armon, and Mearn 1996), 

but detrimental weather shocks may also reduce the value of the resources that are fought over. In 

particular, Butler (2007) and Kevane and Gray (2008) argued that weather patterns only weakly 

corroborated the claim that climate change caused the Darfur conflict and concluded that the United 

Nations overestimated the case. Certainly, there is still a need to understand which conditions make the 

link between resource scarcity and conflict hold in one direction or another. That is the main objective 

of our empirical analysis. 

 

3. Empirical Analysis 

 

Methods 

We combine climatic and conflict data for each 0.5 degree grid-cell (i) of Sudan and for each quarter (t) 

from 1997 until 2009 to examine the relationship between weather shocks (Weatheri,t) and conflict 

occurrence (Conflicti,t). Accordingly, we estimate the following baseline equation: 

Conflicti,t = c + αi + φt + ti,t + η Weatheri,t + β Xi,t + εi,t              (1) 

The dependent variable, Conflicti,t, is given by the quarterly sum of violent conflict events by grid-cell (i). 

Our main variable of interest, Weatheri,t, seeks to capture weather deviations and extreme events at the 

grid-cell (i) and quarter (t) levels. Since there is no consensus, yet, on the best way to assess the impact 

of weather shocks on socioeconomic outcomes, we propose a series of proxies most likely to capture 

deviations from normal conditions and the nonlinearity induced by extreme events. First, we apply the 
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anomaly transformation: precipitation and temperature quarterly data are transformed into anomalies, 

that is, deviations from the long-term quarterly mean, divided by the long-run quarterly standard 

deviation.12 Such anomaly transformation has become standard and is frequently adopted in the 

economic literature (for example, Maccini and Yang 2009; Barrios, Bertinelli, and Strobl 2010; Marchiori, 

Maystadt, and Schumacher 2012; Dell, Jones, and Olken 2012; Harari and La Ferrara 2012). In addition, 

we introduce the quadratic term of the weather anomalies as a first indication of nonlinearity. Second, 

similar to Schlenker, Hanemann, and Fisher (2006); Schlenker and Roberts (2009); and Harari and La 

Ferrara (2012), we isolate the component of climate variability that is relevant for agriculture interacting 

the weather variables with an indicator identifying the growing period by state (De-Pauw and Wu 

2012).13 In particular, we try to capture extreme events that could lead to yield losses by defining a 

dummy for positive and negative deviations happening during the growing period above one (or two) 

standard deviation(s). Furthermore, we consider also a cell-specific threshold for extreme events and 

introduce a dummy equal to one for deviations below 15 (or 10 or 5) percent and above 85 (or 90 or 95) 

percent of the grid-cell-specific distribution in the growing period (as in Brückner 2010 and Burke, Gong, 

and Jones 2011). Finally, to assess more accurately temperature shocks on agriculture, we follow the 

approach introduced by Schlenker, Hanemann, and Fisher (2006) that suggests exploiting daily data to 

compute degree-days transformation. Based on agronomist literature specifically for SSA, Schlenker and 

Lobell (2010) define a lower threshold at 10 degrees Celsius and a higher threshold at 30 degrees 

Celsius. The two variables are considered together to capture the nonlinearity of temperature shocks 

(see also Schlenker and Roberts 2009). The first variable, “moderate degree-days,” provides the sum of 

degree-days above the lower threshold of 10 degrees Celsius and below the upper threshold of 30 

degrees Celsius.14 The second variable, “extreme degree-days,” sums the number of degree-days above 

the upper threshold of 30 degrees Celsius. The two variables are expressed in degree-days per quarter 

(or the concerned period in the robustness checks) and then transformed into anomalies as in Dillon, 

Mueller, and Salau (2011). Similar to Schlenker, Hanemann, and Fisher (2006), these variables are 

interacted with our state-level indicator of the growing period, and a quadratic term is introduced to 

capture nonlinear effects. As a last robustness check, we follow the approach of Harari and La Ferrara 

(2012), and we compute for each grid-cell quarter the Standardized Precipitation–Evapotranspiration 

Index (SPEI), a multiscalar drought index that offers the advantage of being based on both precipitation 

and temperature. 

We estimate equation (1) with a linear least squares specification because nonlinear models with fixed 

effects yield inconsistent slope estimates due to the incidental parameter problem (King and Zeng 2001; 

Greene 2004). To be able to draw causal inferences, we introduce in the equation grid-cell fixed effects 

(αi) and time dummies (φt). Therefore, we investigate how climate changes (compared to the pixel 

mean) affect the frequency of conflict events within each grid-cell (compared to the mean). In addition, 

                                                           
12

 The quarterly basis for the normal conditions is used to correct for seasonality effects. 
13

 We chose this indicator defined by state because, even if it’s not disaggregated by crop, it performs better than 
an indicator based on crop calendars only defined for the whole of Sudan or for macro-regions (FAO crop calendar 
tool). 
14

 In other words, a day with a temperature below 10 degrees results in 0 degree-days, a day with a temperature 
between 10 and 30 degrees contributes to the number of degree-days above 10, and a day with a temperature at 
30 degrees Celsius records 20 degree-days. 
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we augment the specification by introducing a county-specific time trend (ti,t)
15 and the night-lights 

density (Xi,t). The former is included to reduce the threat of spurious parallel trends, whereas the latter is 

used as a proxy to capture changes in economic activities potentially unrelated to climate.16 However, 

we cannot reject the hypothesis that county-specific time trends’ and night-lights density’s get rid of 

interesting variations in the relationship between weather shocks and violent conflict, and 

consequently, we will show how our results change when we exclude such variables.17 

The introduction of grid-cell fixed effects is the main difference from the approach proposed by 

O’Loughlin et al. (2012), who prefer to introduce highly aggregated country dummies in their main 

estimations and who present a similar methodology just as a robustness check (O’Loughlin et al. 2012, 

Supporting Information, 5). Interestingly, when the authors use grid-cell fixed effects in place of country 

fixed effects (but without replacing yearly dummies by quarterly or monthly ones), precipitation 

anomalies do not affect the risk of conflict, whereas additional support is found for the role of hotter 

than usual temperatures in predicting greater conflict. We believe our approach is more likely to control 

for unobserved (time-constant) characteristics that may bias the estimated relationship between 

weather shocks and conflict at the grid-cell level. Nevertheless, we acknowledge that the use of fixed 

effects at a disaggregated level has recently been questioned by some scholars because the effects 

absorb most of the variation, making the identification rely on slight margins. Dealing with climatic 

variables, this might lead to the amplification of measurement errors, as Fisher et al. (2012) point out. 

Thus, we will show that our results are confirmed even when we use the more commonly preferred 

random-effects estimation with dummies at the state level (suggesting that our findings are not driven 

by measurement errors). 

Moreover, we cluster the standard errors at the county level to reduce potential problems generated by 

time and spatial dependency within Sudanese counties. In addition, bearing in mind the recent debate 

on the importance of explicitly modeling such dependency in the process itself (Harari and La Ferrara 

2012), we will control for serial and spatial correlation by transforming equation (1) into a simple 

dynamic model (using the Arellano-Bover/Blundell-Bond estimator) and into a dynamic model with the 

spatial lags of the independent variables included. This latter model has the advantage of being 

straightforward since adding the spatial lags does not involve serious econometric problems. The pitfalls 

of the model are that it does not allow correcting the standard errors for clustering at the county level, it 

does not take into account the fact that spatial correlation might also be present directly in conflict itself 

through cross-cell spillovers, and it offers estimates affected by a simultaneity bias. As Harari and La 

Ferrara (2012, 12) remark, in the typical case of positive covariance of spatial lags and independent 
                                                           
15

 There are 117 counties in North and South Sudan. 
16

 Several papers have shown that the importance of environmental variables may be downplayed by the inclusion 
of political and economic variables (Raleigh and Urdal 2007). The use of grid-cell fixed effects and time dummies 
already reduces the importance of time-constant political or economic factors and of those factors that would 
affect equally over time the units of observations. Adding night-lights, the best proxy of economic activity at the 
local level, offers a further robustness check. Nevertheless, we cannot exclude that night-lights are capturing 
relevant variation or act as a bad control (Angrist and Pischke 2009). We therefore exclude that control (along with 
the time trend) to provide an upper-bound limit of the effect of extreme weather shocks on conflict and confirm 
that our findings do not change. The results are also similar when the lagged value of night-lights density is used. 
17

 See Results and Robustness Checks section. 
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variables, we will overestimate the interdependence effect and underestimate the cell-specific effect of 

weather shocks. Thus, the estimates of such model represent a credible lower bound for the effects of 

weather shocks on conflict. 

Finally, although our empirical strategy relies on quarterly variations in climatic variables to assess their 

effects on conflict, in section 4, we also exploit time-invariant local characteristics to evaluate the 

heterogeneous effects of the climate shocks and identify mitigating and exacerbating factors. 

 

Data 

Data on conflict events come from the Armed Conflict Location and Event Dataset (ACLED) presented by 

Raleigh et al. (2010).18 ACLED is the most recent, detailed, and widely used conflict dataset developed by 

the International Peace Research Institute of Oslo (PRIO). It specifies the exact location, the date, and 

other characteristics of conflict events based on news and reports within unstable states. Given its 

nature, it might be affected by selection in reporting, a drawback common to conflict datasets not based 

on surveys, but such reporting bias is not likely to be systematically correlated with our weather 

indicators and should not constitute a major problem for our identification strategy. Another drawback 

of these data is the lack of information about the number of causalities, but the monthly frequency of 

violent events should give us a fair approximation of the local intensity of conflict. We focus on violent 

conflict events, comprising battle, defined as “a violent interaction between two politically organized 

armed groups at a particular time and location”, and violence against civilians (one-sided violence), 

defined as “deliberate violent acts perpetrated by an organized political group, typically either a rebel or 

a government force, on an unarmed non-combatant” (ACLED Codebook version 2, 8 and 11). 19 In North 

and South Sudan, the number of 2,497 violent events represents the overwhelming majority of events 

(97 percent) reported in the ACLED dataset. Although our results do not depend on that restriction 

(results available on request), we exclude nonviolent events (establishment of rebel headquarters, 

nonviolent rebel presence, changes of territorial control without violence, and protests and riots) as 

they are not directly related to resource-based conflicts. 

Weather data are mainly generated from the University of East Anglia’s (UEA) Climatic Research Unit 

(CRU) Time Series (TS) dataset, version 3.1. This dataset provides monthly mean temperature and 

precipitation from January 1901 at 0.5 degree grid resolution (equivalent a 50-kilometer grid resolution). 

However, the accuracy of these data has been questioned. As explained in Mitchell and Jones (2005, 

702), values at the station level “were interpolated onto a continuous surface from which a regular grid 

of boxes of 0.5 degree was derived and, in order to ensure that the interpolated surface did not 

extrapolate station information to unwarranted distances, ‘dummy’ stations with zero anomalies were 

inserted in regions where there were no stations.” Thus, if the closest weather station with available 

data is too far, a long-term average value is used. The issue seems to be particularly important for 

                                                           
18

 See www.acleddata.com, downloaded in October 2012.  
19

 See http://strausscenter.org/codebooks/ACLED%202.0%20Codebook.pdf. 

http://www.acleddata.com/
http://strausscenter.org/codebooks/ACLED%202.0%20Codebook.pdf


 

9 
 

precipitation data.20 For North and South Sudan, Figures A.1.a and A.1.b illustrate the bias it introduces 

in the shape of the precipitation distribution. In spite of the critics,21 most studies on the climate-conflict 

nexus use this dataset, not only at the cross-country level (Miguel, Satyanath, and Sergenti 2004; Burke 

et al. 2009; Harari and La Ferrara 2012) but also at the regional level (Kevane and Gray 2008; Raleigh and 

Kniveton 2012; O’Loughlin et al. 2012) and the national level (Theisen 2012; Maystadt, Eckers, and 

Mabiso 2013). The CRU dataset is so widely used because it has the advantage of providing precipitation 

and temperature data from 1901 and, consequently, allows correcting for deviations from long-term 

normal conditions. Given the consensus confirming that data from 1901 to about 1950 are not accurate 

for SSA, anomalies have been computed based on a long-term reference period starting in 1949 as in 

O’Loughlin et al. (2012). In addition, considering the criticism expressed about data based on weather 

stations, we test the robustness of our analysis with an alternative satellite-based dataset covering the 

period from 1997 to 2009 and provided by the POWER project of the National Aeronautics and Space 

Administration (NASA) of the United States.22 Beyond offering a robustness check on the quality of the 

East Anglia data, these data also offer us the possibility to compute the degree-days variables based on 

daily data. Moreover, such data are based on a larger pixel size and thus allow us to show that our 

results are not affected by the so-called modifiable areal unit problem and, in particular, by the scale 

problem, “which is the variation in numerical results occurring due to the number of zones used in the 

analysis, and hence the possibility of obtaining different results for different resolutions” (Harari and La 

Ferrara 2012, 27). Finally, SPEI comes from SPEIbase, version 2.0, a global dataset with a spatial 

resolution of 0.5 degree latitude/longitude and temporal coverage between 1901 and 2009, based on 

the routine programmed by Vicente-Serrano et al. (2010).23 Compared to other multiscalar drought 

indexes, SPEI has the advantage of taking into account the joint effects of precipitation, potential 

evaporation, and temperature and therefore offers a more accurate measure of “effective” rainfall. 

Table A.1 summarizes the names, the construction, and the sources of all the weather variables used. 

Furthermore, we collect geo-referenced data on various geographical, economic, and social time-

invariant characteristics. Geographical data are similar to the variables employed by Dorosh et al. 

(2012), who explained to a greater extent the algorithms used for the estimations. Data on 

agroecological zones are based on the calculations of the FAO and the International Institute for Applied 

                                                           
20

 In our sample, out of 75,012 observations, there are only 18 observations with zero anomalies for mean 
temperatures, but there are, depending on the quarter, between 357 and 5,586 observations with zero anomalies 
for precipitations. 
21

 Kudamatsu et al. (2012, 6), among other scholars, stated that such an interpolation method is problematic for 
exploiting variation within location over time since weather stations with consistent time-series observations in 
most African countries are few and far between. For example, Kevane and Gray (2008), investigating the 
relationship between rainfall shocks and conflict in Darfur, noticed that rainfall station data for Darfur had been 
collected since the early 1990s only in three or four main towns. Similarly, some climatologists claim that only data 
based on satellite estimates can really cover the entire African continent at a suitably detailed resolution. Others, 
such as Lobell (2013), stress that the measurement errors resulting from the interpolation method may be 
particularly problematic for data on precipitation. 
22

 These data were obtained from the National Aeronautics and Space Administration (NASA) Langley Research 
Center POWER Project funded through the NASA Earth Science Directorate Applied Science Program. See 
http://power.larc.nasa.gov/index.php, downloaded in October 2012. 
23

 See http://sac.csic.es/spei/spei_index.html, downloaded in October 2012. 

http://power.larc.nasa.gov/index.php
http://sac.csic.es/spei/spei_index.html
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Systems Analysis, which combine data on land resources (climate, soil, and terrain) with a mathematical 

model for the estimation of potential biomass (Fischer et al. 2001). Crop-type data are drawn from the 

Spatial Production Allocation Model (2000, version 3, release 6) of the IFPRI. The IFPRI Spatial 

Production Allocation Model (You, Wood, and Wood-Sichra 2009) generates highly disaggregated, crop-

specific production data by a triangulation of any and all relevant background and partial information. 

This includes national or subnational crop production statistics, satellite data on land cover, maps of 

irrigated areas, biophysical crop suitability assessments, population density, secondary data on irrigation 

and rainfed production systems, cropping intensity, and crop prices. This information is compiled and 

integrated to generate “prior” estimates of the spatial distribution of individual crops. Priors are then 

submitted to an optimization model that uses cross-entropy principles and area and production 

accounting constraints to simultaneously allocate crops into the individual pixels of a Geographic 

Information System database. The result for each pixel (notionally of any size, but typically from 1 to 100 

square kilometers) is the area and production of each crop produced, split by the shares grown under 

irrigated, high-input rainfed, and low-input rainfed conditions (each with distinct yield levels). Data on 

road infrastructure are largely based on UNEP (2005) data,24 urban centers are identified using the 

Global Rural-Urban Mapping Project (2000) data from the Center for International Earth Science 

Information Network (CIESIN),25 and travel times are estimated based on an algorithm taking into 

account road quality, slope, biophysical characteristics of the land, and other factors (Thomas 2007). 

Data on population come from the fourth version of the African Population Database (UNEP/CIESIN 

2004);26 in particular, we use the population from 1990, which is based on intercensual 1983 through 

1993 growth rates at the county level (or at the state level for the areas not enumerated).27 Geo-

referenced yearly information on night-lights density comes from the database presented by 

Henderson, Storeygard, and Weil (2012), and data on livestock density (head/square km, 2005) are 

drawn from the Gridded Livestock of the World (Wint and Robinson 2007). Information on the location 

of ethnic groups is based on the University of Zurich’s Geo-referencing of Ethnic Groups dataset that 

relies on maps from the classical Soviet Atlas Narodov Mira.28 More specifically, we use anthropological 

studies to classify the different ethnic groups according to their main type of livelihood: pastoral 

(including nomad and seminomad groups), agropastoral, or mostly based on agriculture.29 Information 

about the distance to a major river or a lake comes from the Yale Geographically Based Economic 

Dataset (G-Econ, version 4.0) introduced by Nordhaus et al. (2006).30 

                                                           
24

 See the Global Environment Outlook Data Portal: http://geodata.grid.unep.ch. 
25

 See http://sedac.ciesin.columbia.edu/data/collection/grump-v1. 
26

 See the African Population Database 1960–2000, version 4: 
http://na.unep.net/siouxfalls/globalpop/africa/Africa_index.html. 
27

 Thus, such data are based on the following two census datasets: (1) Population Studies Center, “Population of 
Sudan and Its Regions, 1983 Census: Total Populations by Region, Province and District” (Wad Medani, Sudan: 
University of Gezira jointly with Department of Statistics, Census Office, 1983); and (2) Central Bureau of Statistics, 
“Population Census of Sudan 1993” (Khartoum, Sudan: Census Office, 1993). 
28

 See http://www.icr.ethz.ch/data/other/greg, downloaded in October 2012. 
29

 Pastoral groups include nomad (Baggara/Shoa Arabs) and seminomad (Karamojo, Teso, Zagawa, and Tubu) 
groups. Agropastoral groups include Hamitic (Lotuko, Bari, and Murle) and Nuba (Dago, Kadugli-Krongo, Koalib-
Tagoi, and Temaini) tribes. The other groups are considered mainly reliant on agriculture. 
30

 See http://gecon.yale.edu/data-and-documentation-g-econ-project, downloaded in October 2012. 

http://geodata.grid.unep.ch/
http://sedac.ciesin.columbia.edu/data/collection/grump-v1
http://na.unep.net/siouxfalls/globalpop/africa/Africa_index.html
http://www.icr.ethz.ch/data/other/greg
http://gecon.yale.edu/data-and-documentation-g-econ-project


 

11 
 

The descriptive statistics of the conflict- and weather-based variables are given in Table A.2. Figure A.2.a 

shows the time variation for the whole sample of the climatic data, along with the time variations of the 

first two climatic variables, that is, temperature anomalies and temperature shocks greater than one 

standard deviation, happening during the growing period. The time variation in the occurrence of 

conflict events is a case in point with major peaks corresponding to the main events reported by 

Johnson (2011).31 Figure A.2.b present the maps illustrating the location of violent events and the 

geographical variation of the aggregated values of the two climatic variables, chosen for presentation 

purposes.32 These figures constitute a first indication of a time and spatial correlation between 

temperature-related shocks and the frequency of conflict. However, on this basis, we cannot infer a 

causal relationship. The cross-country literature warns us about potential bias due to unobserved 

heterogeneity. Favorable climatic conditions (for example, moderate temperature) have been 

associated with better institutions (Acemoglu, Johnson, and Robinson 2002; Easterly and Levine 2003; 

Rodrik, Subramanian, and Trebbi 2004), faster transition out of agriculture (Diamond 1997; Masters and 

McMillan 2001), and hence, stronger economic growth (Sachs and Warner 1997; Nordhaus 2006; Dell, 

Jones, and Olken 2012). Although certainly reduced, the same concern applies within a country. For 

example, the preference for a more temperate climate by colonizers and its impact on institutions may 

well explain the differences in local governance between locations of North and South Sudan. Similarly, 

we cannot exclude that the time correlation is driven by common factors generating spurious 

correlations between weather shocks and conflict. The introduction of grid-cell fixed effects, time 

dummies, and county-specific parallel trends in the regression analysis should drastically reduce these 

threats to causal inference. 

 

Results and Robustness Checks 

Table A.3 summarizes the results of estimating equation (1) including only temperature indicators. 

Based on these results, a change in temperature anomalies of one standard deviation increases the 

frequency of violent conflict by 31 percent (partial effect expressed as a share of the mean value of 

violent conflict). In addition, a change of one standard deviation in moderate temperature shocks during 

the growing period increases conflict by about 21 percent (for the variables “Temp> 1 s.d.,” “Heat 

Shock> 1 s.d.,” or “Heat Shock Pctile85”). A change of one standard deviation in extreme temperature 
                                                           
31

 For example, the five major peaks correspond to particularly conflictive times in North and South Sudan. The 
first peak in 1997 (quarter 1) corresponds to operations conducted by the Ethiopian army in collaboration with 
SPLA and the operation launched in Central Equatoria; in 1999 (quarter 2), the resurgence of violence between the 
government of Sudan (GOS) and SPLA followed the agreement between GOS and Eritrea not to support each 
other’s rebel movement; in 2002 (quarter 2), the number of violent events surged as a result of the agreement by 
the GOS to allow the Ugandan army to pursue the Lord’s Resistance Army in Sudan and the intensification of 
fighting (including bombing) in Bhar al-Ghazal and Upper Nile as well as in the south; in 2008 (quarter 2) and 2009 
(quarter 1), fighting between SPLA and government militias intensified along the Kordofan–northern Bahr al-
Ghazal border as well as in Unity State and around the town of Malakal (in Upper Nile). 
32

 Violence frequently occurred in Darfur (around the three major cities of Nyala, El Fasher, and Geneina); in the 
bordering state with Uganda (Eastern Equatoria) given the recurrent involvement of the Lord’s Resistance Army in 
South Sudanese conflicts; in South Kordofan, Upper Nile, and Jonglei provinces (around the oil fields close to the 
town of Bentio); and in the Eastern part of North Sudan (Blue Nile and Kassala). 
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shocks during the growing period increases conflict by 27 percent (for “Temp> 2 s.d.” or “Heat Shock> 2 

s.d.”) or by 31 percent (for “Heat Shock Pctile90”). These partial effects (obtained based on regressions 

1 to 9 of Table A.3) reveal an interesting pattern according to which the impact of weather shocks, 

happening during the growing period, increases when our proxies capture more extreme events. This 

pattern is also confirmed when moderate and extreme events are distinguished with the use of degree-

days thresholds. Introducing the quadratic terms, moderate temperature shocks reduce conflict by 

about 12 percent, whereas extreme temperature shocks exacerbate violence by about 4 percent (see 

regressions 10 and 11 of Table A.3). This result also confirms that the choice of scale for the units of 

analysis does not drive our findings, given that the pixel size used in the NASA POWER dataset is much 

larger. All the partial effects relative to Table A.3 are summarized in Table 3.1, column 2. 

When estimated without time trends and night-lights density, the effects remain essentially unchanged 

(see Table A.4 and column 4 of Table 3.1). Adding rainfall-related variables indicates that precipitation 

variations do not affect the frequency of conflict and do not alter the coefficients of the temperature-

related variables (see Table A.5) or the relative partial effects (see column 6 of Table 3.1). These results 

clearly point to the role of temperature shocks in explaining variations in violence in North and South 

Sudan and are in line with recent evidence on the impact of temperature shocks on agricultural income 

in both developed (Schlenker and Roberts 2009; Lobell et al. 2013) and developing countries (Schlenkler 

and Lobell 2010; Lobell et al. 2011). However, they may still be sensitive to the choice of the 

specification adopted to estimate equation (1). 

Table 3.1—Partial effects for the number of violent events (Armed Conflict Location and Event 

Dataset) 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS and NASA POWER. 

Notes: Columns 1, 3, 5, 7, and 9 report only the coefficients that were statistically significant in the models’ 

equations. Descriptions of the weather variables are given in Table A.1. s.d. = standard deviation; part. eff. = partial 

effects. 

Therefore, we investigate the robustness of our results (1) to other proxies, functional forms, and data 

sources for precipitation shocks; (2) to other modeling choices, including the use of state fixed effects 

and state-level controls similar to that of O’Loughlin et al. (2012) or Raleigh and Kniveton (2012); (3) to 

other levels of aggregation, that is, monthly and yearly levels; and (4) to explicitly modeling time and 

spatial dependency. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

β / s.d part. eff. β / s.d. part. eff. β / s.d. part. eff. β / s.d. part. eff. β / s.d. part. eff.

Temp Anom 0.017 30.75 0.021 38.72 0.017 31.89 0.017 32.03 0.016 29.18

Temp Anom + Temp Anom Sq 0.021 39.3 0.022 41.14 0.021 39.3 0.013 24.13 0.014 26.33

Temp Shock > 1 s.d. Grow. Per. 0.011 21.24 0.01 18.26 0.011 20.48 0.013 23.33 0.011 20.13

Temp Shock > 2 s.d. Grow. Per. 0.014 26.68 0.016 29.37 0.014 26.44 0.014 26.19 0.012 21.74

Heat Shock > 1 s.d. Grow. Per. 0.011 21.32 0.01 19.08 0.011 20.77 0.013 24.43 0.009 16.98

Heat Shock > 2 s.d. Grow. Per. 0.014 26.91 0.016 29.6 0.014 26.67 0.014 26.26 0.012 22.03

Heat Shock Pctile85 Grow. Per. 0.012 21.84 0.011 20.63 0.012 21.52 0.013 24.38 0.009 17.44

Heat Shock Pctile90 Grow. Per. 0.017 31.32 0.017 32.41 0.017 30.93 0.016 30.38 0.013 23.47

Heat Shock Pctile95 Grow. Per. 0.016 30.06 0.018 33.18 0.016 29.77 0.016 30.14 0.013 24.4

Moderate DD Anom Grow. Per. -0.022 -11.14 -0.034 -16.96 -0.022 -11.14

Mod DD An GP + M DD An Sq GP -0.024 -11.85 -0.034 -17.29 -0.024 -11.85

Ext DD An GP + E DD An Sq GP 0.021-0.013 3.99 0.016 8.11 0.021-0.013 4.04 0.03-0.023 3.57 0.028 14.29

Table A3. Baseline model
Table A4. Model without       

time-trends & night lights

Table A5. Model including 

precipitation indicators
Table A18. Dynamic model

Table A19. Dynamic model 

with spatial lags
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First, we may wonder whether the fact that variations in precipitation do not affect violence is related to 

the lack of accuracy of the adopted proxies for precipitation shocks. In line with Harari and La Ferrara 

(2012), precipitation shocks may be better captured by variations in SPEI. Our results suggest that it is 

not the case for North and South Sudan, without altering the impact of temperature shocks (see Table 

A.6). We also exclude the possibility that the lack of impact of precipitation shocks may be driven by the 

absence of a time-lagging effect since including the time lags does not alter the coefficients of the 

temperature indicators and changes only slightly the partial effects (see Table A.7).33 Still, the 

explanatory dominance of temperature shocks in contrast to rainfall shocks might just be due to larger 

errors in measuring precipitation. For example, Lobell (2013) shows that the interpolation method used 

in the UEA CRU-TS dataset substantially underestimates the impact of precipitation on crop yields. 

Therefore, we collected information regarding the exact location of the weather stations employed by 

the University of East Anglia for its Sudan database to check that the interaction terms between the 

weather indicators and the distance from the nearest weather station were indeed not significant.34 This 

is a first indication that such measurement errors do not play much of a role in driving our results. In 

addition, we test the importance of precipitation shocks using the alternative NASA POWER dataset, and 

even in this case, we confirm the superiority of temperature shocks in explaining variations in violent 

conflict (see Table A.8). All the partial effects related to Tables A.6, A.7, and A.8 can be found in Table 

A.9. 

Second, we test the robustness of our results to the use of fixed effects at the highest level of 

aggregation (26 states in North and South Sudan), similar to O’Loughlin et al. (2012) and Raleigh and 

Kniveton (2012). Our results remain robust to such a modeling choice (see Table A.10); the coefficients 

of interest have the same direction and significance but are larger in magnitude, pointing to a possible 

upward bias. Adding the population by grid-cell (transformed into logarithm), an urban dummy, and the 

distance to roads and to international borders (transformed into logarithm) as control variables, like 

O’Loughlin et al. (2012), provides the expected signs without altering our main results (see Table A.11). 

Although introducing potential selection bias and changing the external validity of the results, we also 

implement a model with state fixed effects excluding the cells that never experienced violent conflict, 

similar to Raleigh and Kniveton (2012). Our results remain unaltered and the control variables proposed 

by the authors have the expected signs (see Table A.12). All the partial effects based on Tables A.10, 

A.11, and A.12 are summarized in Table A.13. 

Third, we confirm the validity of our findings using alternative time aggregations. When we estimate 

equation (1) at the monthly level, our results maintain the same signs (see Table A.14) and offer 

conclusions similar to the ones based on the estimates at the quarterly level, with the main difference 

that the introduction of two lags is needed to obtain effects of comparable magnitudes (see Table 

A.15)—as expected. At the yearly level, our results are equally confirmed (see Table A.16). Table A.17 

shows all the partial effects related to Tables A.14, A.15, and A.16. 

                                                           
33

 In Table A.7, column 6, we even find an unexpected negative sign for the lag of the precipitation deviation below 
two standard deviations, but this impact is not sufficiently robust to other specifications to deserve interpretation. 
34

 Data on the location of the weather stations were provided by Dr. D. Lister, senior associate of the University of 
East Anglia’s Climatic Research Unit, and by the help desk of the U.K. Centre for Environmental Data Archival. 
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Fourth, our results are robust to taking into account possible serial and spatial correlations. Table A.18 

and column 8 of Table 3.1 present the estimates and the partial effects of the dynamic panel model, 

whereas Table A.19 shows that even adding the spatial lags of the variables of interest does not change 

the previous findings. These spatial lags are obtained by multiplying the vector of observations by the 

matrix W, a normalized spatial matrix of order 1 (but the results appeared to be robust also to the 

choice of a matrix of order 2). There are spatial spillovers for temperature shocks, but they are 

sufficiently close to zero and do not alter the partial effects (see column 10 of Table 3.1). 

Therefore, the estimation of equation (1) indicates that extreme temperature shocks increase the 

frequency of conflict in North and South Sudan. Such impact appears to be robust to other proxies, 

functional forms, and data sources for precipitation shocks; to other modeling choices; to other levels of 

aggregation; and to explicitly modeling time and spatial dependency. With a view to our projection 

exercise, the most reduced-form set of estimations whose partial effects are given in column 4 of Table 

3.1 (excluding night-lights and time trends) can be considered an upper-bound limit of the effect of 

extreme weather shocks on conflict. On the contrary, the most structured set of models, that is, the 

dynamic model with spatial lags, represents the lower-bound limit of such an impact. 

 

Projections 

Projecting changes in the incidence of violent events under future climate change is far from trivial. 

Previous research has tended to rely on selected climate models and to overlook climate uncertainty in 

future temperature (and rainfall) changes. To incorporate that uncertainty into our projections, we 

follow the approach recommended by Burke et al. (2012) and applied in their study on conflict in SSA 

(Burke et al. 2009). Thus, we incorporate our estimated responses of conflict to climate (see Table 3.1) 

with climate projections for the corresponding Sub-Saharan subregion (Sahel) from 20 climate models 

and three scenarios resulting from the World Climate Research Project Program’s (WCRP) Coupled 

Model Inter-comparison Project phase 3 (CMIP3).35 Such models provide the expected change in 

temperature between 2030 and 1980–1999, expressed in degrees Celsius, for each model and scenario. 

To calculate the expected temperature in 2030 we summed the expected change at the quarter level 

and the average quarterly temperature for the period 1980–1999. Temperature anomalies in 2030 are 

then estimated considering the same long-term mean and standard deviation described in the previous 

section. A major assumption is that no adaptation behaviors or policies in addition to the ones already 

incorporated in our estimates will take place by 2030. Given the relatively short timeframe, the 

assumption seems reasonable. 

We apply the same method used by Burke et al. (2012) by distinguishing between climate and 

regression uncertainties. Climate uncertainty results from the difference in the various predictions for 

the expected change in monthly temperatures given by three possible scenarios and 20 possible climate 

                                                           
35

 We thank Marhsall Burke for sharing the data for the 20 following models — BCCR, CCCMA.T63, CCSM, CNRM, 
CSIRO, ECHAM, GFDL0, GFDL1, GISS.Aom, GISS.Eh, GISS.Er, HADCM3, HADGEM1, IAP, INMCM3, IPSL, MIROC.Hires, 
MIROC.Medres, MRI, and PCM—and the three following scenarios—B1, A1B, and A2. 
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models for each scenario. The expected impact on violent conflict is calculated by multiplying the 

expected percentage change in temperature anomalies by the coefficient showed in Table A.3. 

Regression uncertainty results from taking into account the variability given by the standard errors of 

the estimated coefficient. To quantify that uncertainty, we bootstrap 10,000 times the specification 

regressing temperature anomalies on violent conflict and we multiply the percentage change in 

temperature anomalies given by the median of the three scenarios by the coefficients obtained by 

bootstrapping. Total uncertainty results from taking into account both climate and regression 

uncertainty. According to Figure 3.1, all models predict more frequent violence as a result of projected 

temperature anomalies, with a 23.8 percent median projected increase by 2030. Such predictions are 

based on the partial effects obtained in our baseline model. Such additional increase would vary in a 

range between 21 and 30 percent for the lower-bound (dynamic model with spatial lags) and upper-

bound estimates (model excluding night-lights and time trends). Similar to Burke et al. (2012), climate 

uncertainty is a larger concern than regression uncertainty in predicting the changes in violence by 2030. 

Taking the ratio of the difference between the 95th and 5th percentiles for the climate-uncertainty-only 

projections and the regression-uncertainty-only projections, we find that climate uncertainty is about 

1.4 times larger than regression uncertainty. 

Figure 3.1—Importance of climate versus regression uncertainty in the projection of climate impacts 

on number of violent events in 2030, considering only temperature anomalies 

 
Source: Authors’ calculation based on WCRP CMIP3, UEA CRU-TS, and ACLED. 

We also perform similar projections using proxies for more extreme temperature shocks.36 As 

summarized in Table 3.2, the median projected impact is 10.2 percent when the shock is defined as a 

temperature deviation above one standard deviation, whereas the expected impact increases to 39.6 

and 75.9 percent for more extreme shocks (above two standard deviations and above 95 percent of the 

                                                           
36

 Boxplots are available on request. 
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pixel-specific distribution, respectively). However, the level of both climate and regression uncertainties 

does not allow us to give much interpretation to the projected changes in conflict due to changes in 

other proxies than temperature anomalies. Such a limit in our analysis confirms the difficulty of 

projecting how expected increases in temperature will translate into more frequent and more intense 

extreme events (Hansen, Sato, and Ruedy 2012; Rhines and Huybers 2013), hence the challenge to make 

predictions on the socioeconomic consequences of future extreme events. 

Table 3.2—Projected impacts on number of violent events in 2030, by weather variable 

Variable 
Median percentage impact 

under total uncertainty 

5th and 95th percentiles for 
percentage impact under total 

uncertainty 

Ratio of climate over regression 
uncertainty 

Tmp Anom 23.8 12.3, 41.5 1.4 

Heat Shock > 1 s.d. Grow. Per. 10.2 5.3, 17.9 0.8 

Heat Shock > 2 s.d. Grow. Per. 39.6 –10.6, 362.9 2.8 

Heat Shock Pctile95 Grow. Per. 75.9 –3.3, 238.1 1.4 

Source: Authors’ calculation based on WCRP CMIP3, UEA CRU-TS, and ACLED. 

Note: Variables are defined in Table A.1. 

 

 

4. Discussion 

Our empirical analysis clearly points to the negative role of extreme temperature shocks in North and 

South Sudan, but due to limited data availability, it cannot describe the channels through which such 

shocks affect conflict. To partially cover this gap, we exploit the heterogeneity in the impact of weather 

variables and identify mitigating and exacerbating factors of the relationship between weather shocks 

and violence.37 

The worst detrimental effect of climate change on African economies usually relates to decreased crop 

yields, in particular for maize, sorghum, millet, groundnut, and cassava (Jones and Thornton 2003; Lobell 

et al. 2008; Lobell and Burke 2010; Schlenker and Lobell 2010; Blanc 2012). The literature links this 

detrimental impact to a robust predictor of conflict: the relative change in income and, consequently, in 

the opportunity cost to participate in violence (Miguel, Satyanath, and Sergenti 2004; Burke et al. 2009; 

Blattman and Miguel 2010). However, in North and South Sudan, the presence of these crops is not a 

significant exacerbating factor (see Tables A.20.a through A.20.e). On the contrary, as summarized in 

Table 4.1, we find a mitigating impact when weather shocks occur in areas with a large share of land 

occupied by millet production (see Table A.20.c). This impact can be explained by the low sensitivity of 

the crop to temperature variations (thanks to its high threshold temperature, set in the agronomy 

literature at 35 degrees Celsius). Moreover, it produces a low but steady yield with little fertilizer 

                                                           
37

 As pointed by Gleditsch (2012, 6), “one of the lessons that the large N-community could learn from proponents 
of case studies is the emphasis on interaction terms.” Nevertheless, we cannot rule out that these interaction 
terms may be endogenous to conflict. We therefore consider this exercise primarily interpretative. 
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input,38 and it grows well in arid and semiarid environments, requiring less water compared to other 

grains.39 Table 4.1 and, in more detail, Tables A.20.a through A.20.e indicate that with the exception of 

millet, the presence of particular crops does not affect the relationship between weather shocks and 

conflict in Sudan—in line with the low percentage of national income that is on average derived from 

crops. 

Table 4.1—Mitigating and exacerbating factors of the climate-conflict nexus 

 
Source: Authors’ estimation based on ACLED and UEA CRU-TS. The sources for the interaction terms are detailed in 

the Data part of Section 3. 

Notes: Table 4.1 reports only the coefficients that were statistically significant in the models’ equations. The values 

of the interaction terms “Main Crop is Millet,” “Pastoral and Agropastoral Groups,” “Near to Major River,” and 

“Market Accessibility” are calculated for the dummy = 1. The values of the interaction terms “Goat Density” and 

“Share of Irrigated Land” are calculated for the median value. A description of the weather variables is given in 

Table A.1. vars = variables; s.d = standard deviation; part. eff. = partial effects. 

                                                           
38

 El-Dukheri, Damous, and Khojali (2004, 56) reported that between 1992 and 2004 millet had a mean yield of 99 
kilograms/feddans, with standard deviation equal to 17, while sorghum had a mean yield of 201 
kilograms/feddans, with standard deviation equal to 45 (data from the Sudan Statistics Department, General 
Administration of Planning and Agricultural Economics). 
39

 In particular, in Sudan, millet can grow in sandy soil (Goz land), whereas the other crops need to be cultivated in 
clay soil or near watercourses (Wadis land). These sandy areas (mostly in Darfur and Kordofan) are classified as 
marginal lands, unsuitable to and unfavorable for the cultivation of other crops. In case of shocks or of a negative 
yield-per-feddan trend, it’s easier to increase the cultivated area of millet and therefore to keep the same total 
production amount. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

β / s.d part. eff. β / s.d part. eff. β / s.d part. eff. β / s.d part. eff. β / s.d part. eff. β / s.d part. eff.

Temp Anom 0.02 37.86 0.015 27.33 0.048 33.16

Temp Shock > 1 s.d. Grow. Per. 0.014 26.59 -0.017 -46.86 0.0003 0.16 0.029 19.8

Temp Shock > 2 s.d. Grow. Per. 0.014 26.53 -0.016 -46.19 0.03 21.61

Heat Shock > 1 s.d. Grow. Per. 0.021 38.7 -0.016 -43.85 0.0004 0.19 0.008 15.38

Heat Shock > 2 s.d. Grow. Per. 0.021 38.89 -0.016 -44.22 0.0004 0.2 0.008 15.59

Heat Shock Pctile85 Grow. Per. 0.015 28.59 -0.02 -56.31 0.035 23.98

Heat Shock Pctile90 Grow. Per. 0.023 42.78 -0.021 -58.66 0.01 19.47 0.01 18.54 0.046 31.42

Heat Shock Pctile95 Grow. Per. 0.024 43.71 -0.019 -54.03 0.0004 0.22 0.008 15.44 0.058 39.81

β / s.d part. eff. β / s.d part. eff. β / s.d part. eff. β / s.d part. eff. β / s.d part. eff. β / s.d part. eff.

Temp Anom 0.108 54.04 -0.099 -72.56 0.022 41.28 -0.0005 -0.94 0.023 41.85

Temp Shock > 1 s.d. Grow. Per. 0.063 31.62 -0.084 -61.97 0.01 18.95 -0.001 -1.47 0.01 18.75 -0.02 -41.9

Temp Shock > 2 s.d. Grow. Per. 0.068 34.18 -0.089 -64.97 0.011 19.76 -0.001 -1.59 0.01 19.49 -0.018 -37.76

Heat Shock > 1 s.d. Grow. Per. 0.082 40.98 -0.057 -42.19 0.016 29.86 -0.001 -1.12 0.016 29.79 -0.022 -46.97

Heat Shock > 2 s.d. Grow. Per. 0.082 40.91 -0.056 -41.11 0.016 30.08 -0.001 -1.12 0.016 29.91 -0.018 -38.61

Heat Shock Pctile85 Grow. Per. 0.073 36.8 -0.09 -65.96 0.011 21.2 -0.001 -1.55 0.011 20.95 -0.017 -36.26

Heat Shock Pctile90 Grow. Per. 0.105 52.8 -0.095 -70.17 0.018 33.18 -0.001 -1.68 0.018 32.8 -0.017 -36.95

Heat Shock Pctile95 Grow. Per. 0.095 47.77 0.018 33.89 -0.001 -1.52 0.018 33.6 -0.019 -40.86

Table A21.c.  'Near to Major River' Table A21.d.  'Share of Irrigated Land' Table A21.e.  'Market Accessibility'

weather vars interaction term weather vars interaction term weather vars interaction term

Table A20.c.  'Main Crop is Millet' Table A21.a.  'Goat Density'
Table A21.b.  'Pastoral and Agropastoral 

Groups'

weather vars interaction term weather vars interaction term weather vars interaction term
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In accordance with the importance of livestock for livelihoods in North and South Sudan, our analysis 

points to three main significant factors. All partial effects are summarized in Table 4.1. First, Tables 

A.21.a and A.21.b indicate that the interaction terms with the proxies for the presence of pastoralist 

livelihoods (using goat densities or the presence of pastoral and agropastoral ethnic groups) constitute 

exacerbating factors and confirm the vulnerability of livestock to temperature shocks (Thornton et al. 

2009). Second, mitigating roles are found in Tables A.21.c and A.21.d for water availability and irrigation 

systems (when we interact our proxies of weather shocks with a dummy for grid-cells near a major 

river40 and with the share of irrigated land). The importance of water availability is not surprising, in 

particular in lowland areas where shocks on the limited amount of water have been reported to 

generate conflict about property rights and competition between pastoralists and other farmers. 

Interpretation about the role of irrigation systems is less obvious. The mitigating role of irrigation may 

point to a social benefit associated with the private benefits found for such investments (Lipton, 

Litchfield, and Faurèsc 2003; Smith 2004). However, our results should be taken with caution since we 

do not shed light on the potential of new investments that, it has been argued, are relatively limited in 

pastoralist areas (You et al. 2011; Headey, Taffesse, and You 2013). Third, Table A.21.e shows that the 

impact of weather shocks on conflict is largely mitigated by road and market accessibility (being within 

two hours’ reach from the nearest human settlement of 50,000 or greater population). Such result can 

be explained by market access’s facilitating destocking and restocking process and thus helping herders 

to smooth the detrimental impact of extreme weather shocks. 

Last, we want to point to recent evidence suggesting that the coping strategies that had traditionally 

been adopted in arid and semi-arid areas of the Horn of Africa are progressively breaking down due to 

different mutually reinforcing factors, such as population growth, spread of pests (for example, prosopis 

julifora), limited mobility, and fragmentation of grazing land (Lybbert et al. 2004; Devereux 2006; 

McPeak, Little, and Doss 2011). Our results on the security consequences of the vulnerability of these 

areas make action even more urgent. As critically reviewed by Headey, Taffesse, and You (2013), the 

existing literature in the field suggests not only improving the resilience of the livestock sector through 

improved veterinary services, access to credit, provision of emergency feed, and better access to water 

but also supporting income diversification, in particular through education investments. 

 

5. Conclusions 

Our analysis sheds light on the importance of enhancing resilience to weather shocks in North and South 

Sudan, in particular in arid and semiarid lowland areas, and therefore calls for more decisive and 

coordinated action to help herders better cope with shocks. Initiatives aimed at reducing vulnerability in 

the Horn of Africa should include support in destocking and restocking processes at times of drought 

through improved access to markets; development of insurance and credit markets, especially weather 

insurance schemes; and supply of income diversification opportunities through investment in irrigation 

                                                           
40

 A grid-cell is classified as “near to major river” if its distance to a major river is lower than the 25
th

 percentile. 
Similar results are obtained using a dummy for grid-cells near a lake. 
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(when profitable) and in education services adapted to a mobile population. Nevertheless, our analysis 

is limited in drawing clear policy recommendations. Understanding the returns on investment, also for 

conflict resilience, is certainly a path for further research. 
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Appendix:  Supporting Information 

 

 

Figure A.1.a—Distribution of precipitation anomalies 

based on the University of East Anglia’s Climatic Research Unit Time Series dataset 

 
 

Figure A.1.b—Distribution of temperature anomalies 

based on the University of East Anglia’s Climatic Research Unit Time Series dataset 

 
Source: Authors’ calculation based on UEA CRU-TS. 

Note: Prec_Anom = precipitation anomalies; Temp_Anom = temperature anomalies. 
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Table A.1—Description of the weather variables 

Variables Definition Source 

Temp (or Prec) Anom Temperature (or Precipitation) anomalies University of East Anglia 

Temp (or Prec) Anom Sq Squared term of temperature (or precipitation) anomalies University of East Anglia 

Growing Period Indicator defining the growing period by state De-Pauw and Wu (2012) 

Temp (or Prec) Shock > 1 
s.d. Growing Period 

Dummy =1 for positive and negative temperature (or precipitation) 
anomalies, during the growing period, above one standard deviation 

University of East Anglia 

Temp (or Prec) Shock > 2 
s.d. Growing Period 

Dummy =1 for positive and negative temperature (or precipitation) 
anomalies, during the growing period, above two standard deviations 

University of East Anglia 

Heat (or Wet) Shock > 1 s.d. 
Growing Period 

Dummy =1 for positive temperature (or precipitation) anomalies, 
happening during the growing period, above one standard deviation 

University of East Anglia 

Cold (or Dry) Shock > 1 s.d. 
Growing Period 

Dummy =1 for negative temperature (or precipitation) anomalies, 
happening during the growing period, above one standard deviation 

University of East Anglia 

Heat (or Wet) Shock > 2 s.d. 
Growing Period 

Dummy =1 for positive temperature (or precipitation) anomalies, 
happening during the growing period, above two standard deviations 

University of East Anglia 

Cold (or Dry) Shock > 2 s.d. 
Growing Period 

Dummy =1 for negative temperature (or precipitation) anomalies, 
happening during the growing period, above two standard deviations 

University of East Anglia 

Heat (or Wet) Shock 
Pctile85 Growing Period 

Dummy =1 for temperature (or precipitation) anomalies, happening during 
the growing period, above the 85 percentile 

University of East Anglia 

Cold (or Dry) Shock Pctile15 
Growing Period 

Dummy =1 for temperature (or precipitation) anomalies, happening during 
the growing period, below the 15 percentile 

University of East Anglia 

Heat (or Wet) Shock 
Pctile90 Growing Period 

Dummy =1 for temperature (or precipitation) anomalies, happening during 
the growing period, above the 90 percentile 

University of East Anglia 

Cold (or Dry) Shock Pctile10 
Growing Period 

Dummy =1 for temperature (or precipitation) anomalies, happening during 
the growing period, below the 10 percentile 

University of East Anglia 

Heat (or Wet) Shock 
Pctile95 Growing Period 

Dummy =1 for temperature (or precipitation) anomalies, happening during 
the growing period, above the 95 percentile 

University of East Anglia 

Cold (or Dry) Shock Pctile5 
Growing Period 

Dummy =1 for temperature (or precipitation) anomalies, happening during 
the growing period, below the 5 percentile 

University of East Anglia 

Moderate DD Anom   
Growing Period 

Moderate degree-days anomalies (10-30°C) happening during the growing 
period  

NASA POWER 

Extreme DD Anom      
Growing Period 

Extreme degree-days anomalies (30°C) happening during the growing 
period  

NASA POWER 

Moderate DD Anom Sq 
Growing Period 

Squared term of the moderate degree-days anomalies (10-30°C) happening 
during the growing period 

NASA POWER 

Extreme DD Anom Sq 
Growing Period 

Squared term of the extreme degree-days anomalies  (30°C) happening 
during the growing period 

NASA POWER 

Prec Anom (97-09) Precipitation anomalies NASA POWER 

SPEI Standardized Precipitation-Evapotranspiration Index SPEIbase 

Note: NASA POWER = POWER project of the National Aeronautics and Space Administration; SPEIbase = 

Standardized Precipitation–Evapotranspiration Index dataset. 
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Table A.2—Descriptive statistics of the weather variables 

 
 

NASA POWER dataset 

 

Source: Authors’ calculation based on ACLED, UEA CRU-TS, SPEIbase, and NASA POWER. 

Note: NASA POWER = POWER project of the National Aeronautics and Space Administration. Obs = number of 

observations; S.d. = standard deviation; Min = minimum; Max = maximum. 

  

Variables Obs Mean S.d. Min Max

Number of Violent Events (ACLED) 46,436 0.054 0.535 0 34

Temp Anom 46,436 1.046 0.765 -1.569 3.11

Temp Anom Sq 46,436 1.679 1.65 0 9.672

Temp Shock > 1 s.d. Growing Period 46,436 0.1673 0.373 0 1

Temp Shock > 2 s.d. Growing Period 46,436 0.036 0.186 0 1

Heat Shock > 1 s.d. Growing Period 46,436 0.157 0.364 0 1

Cold Shock > 1 s.d. Growing Period 46,436 0.01 0.101 0 1

Heat Shock > 2 s.d. Growing Period 46,436 0.036 0.185 0 1

Cold Shock > 2 s.d. Growing Period 46,436 0.0003 0.017 0 1

Heat Shock Pctile85 Growing Period 46,436 0.136 0.342 0 1

Cold Shock Pctile15 Growing Period 46,436 0.01 0.099 0 1

Heat Shock Pctile90 Growing Period 46,436 0.096 0.294 0 1

Cold Shock Pctile10 Growing Period 46,436 0.005 0.068 0 1

Heat Shock Pctile95 Growing Period 46,436 0.053 0.224 0 1

Cold Shock Pctile5 Growing Period 46,436 0.001 0.037 0 1

Prec Anom 46,436 -0.002 0.813 -2.212 6.893

Prec Anom Sq 46,436 0.661 1.734 0 47.519

Prec Shock > 1 s.d. Growing Period 46,436 0.042 0.2 0 1

Prec Shock > 2 s.d. Growing Period 46,436 0.006 0.075 0 1

Dry Shock > 1 s.d. Growing Period 46,436 0.019 0.136 0 1

Wet Shock > 1 s.d. Growing Period 46,436 0.023 0.15 0 1

Dry Shock > 2 s.d. Growing Period 46,436 0.0002 0.013 0 1

Wet Shock > 2 s.d. Growing Period 46,436 0.006 0.074 0 1

Dry Shock Pctile15 Growing Period 46,436 0.019 0.138 0 1

Wet Shock Pctile85 Growing Period 46,436 0.023 0.151 0 1

Dry Shock Pctile10 Growing Period 46,436 0.012 0.108 0 1

Wet Shock Pctile90 Growing Period 46,436 0.014 0.119 0 1

Dry Shock Pctile5 Growing Period 46,436 0.006 0.076 0 1

Wet Shock Pctile95 Growing Period 46,436 0.007 0.082 0 1

SPEI 46,428 -0.722 1.053 -7.001 6.96

Variables Obs Mean S.d. Min Max

Number of Violent Events (ACLED) 12,532 0.199 1.117 0 39

Moderate DD Anom Growing Period 12,532 -0.002 0.589 -3.817 3.067

Extreme DD Anom Growing Period 12,532 -0.006 0.266 -2.656 4.364

Moderate DD Anom Sq Growing Period 12,532 0.347 1.05 0 14.566

Extreme DD Anom Sq Growing Period 12,532 0.07 0.675 0 19.048

Prec Anom (97-09) 12,532 -0.0 0.961 -2.759 3.307
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Figure A.2.a—Graphs of the time series 

 

 

 
 

 

 

Source: Authors’ calculation based on ACLED and UEA CRU-TS. 

Note: Temp Anom = temperature anomalies; s.d. = standard deviation; Grow. Per. = growing period; Temp Shocks 

= temperature shocks. 
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Figure A.2.b— 

Location of violent events (Armed Conflict Location and Event Dataset) 
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Mean temperature anomalies 
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Number of temperature shocks greater than 1 standard deviation during the growing period 

 
 

Source: Authors’ calculation based on ACLED and UEA CRU-TS. 
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Table A.3—Effects of temperature shocks on violent conflict, model at the quarterly level 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level (except 

for regressions in columns 1 and 2). Descriptions of the weather variables are given in Table A.1. ACLED = Armed 

Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.022*** -0.003 0.019*** 0.017*** 0.019*** 0.017*** 0.018*** 0.016** 0.016**

(0.007) (0.012) (0.007) (0.006) (0.007) (0.006) (0.007) (0.007) (0.006)

0.013*

(0.007)

0.031**

(0.014)

0.077**

(0.034)

0.032**

(0.015)

0.023

(0.023)

0.078**

(0.035)

-0.007

(0.034)

0.034**

(0.017)

-0.012

(0.017)

0.057**

(0.023)

0.008

(0.022)

0.072**

(0.033)

-0.007

(0.032)

-0.038** -0.04**

(0.016) (0.015)

0.048 0.08**

(0.033) (0.034)

0.009

(0.015)

-0.02*

(0.012)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 12,532 12,532

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.03 0.09 0.09

Extreme DD Anom Sq 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period

Moderate DD Anom Sq 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period

Heat Shock Pctile90 

Growing Period

Number of Violent Events (ACLED)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period
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Table A.4—Effects of temperature shocks on violent conflict, model at the quarterly level without 

time-trend effects and night-lights density 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed 

and time-fixed effects and the growing period variable defined at the state level (except for regressions in columns 

1 and 2). Descriptions of the weather variables are given in Table A.1. ACLED = Armed Conflict Location and Event 

Dataset.  

*p < .1. **p < .05. ***p < .01. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.027*** 0.001 0.025*** 0.022*** 0.025*** 0.022*** 0.023*** 0.021*** 0.021***

(0.009) (0.012) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

0.013**

(0.006)

0.026**

(0.013)

0.085***

(0.03)

0.028**

(0.014)

0.01

(0.026)

0.086***

(0.03)

-0.002

(0.035)

0.0324*

(0.0164)

-0.0245

(0.0168)

0.059***

(0.022)

-0.011

(0.026)

0.08**

(0.032)

-0.031

(0.046)

-0.057** -0.059**

(0.023) (0.022)

0.046 0.061**

(0.036) (0.028)

0.005

(0.015)

-0.009

(0.013)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 12,532 12,532

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.004 0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.011 0.011

Heat Shock Pctile90 

Growing Period

Number of Violent Events (ACLED)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period

Extreme DD Anom Sq 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period

Moderate DD Anom Sq 

Growing Period
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Table A.5—Effects of weather shocks on violent conflict, model at the quarterly level 

 
 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.005 0.002 0.004 0.006 0.004 0.006 0.003 0.003 0.006

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

0.022*** -0.002 0.02*** 0.018*** 0.02*** 0.018*** 0.019*** 0.017** 0.017***

(0.007) (0.011) (0.007) (0.006) (0.007) (0.006) (0.007) (0.007) (0.007)

0.002

(0.003)

0.013*

(0.007)

0.013

(0.017)

0.03**

(0.013)

-0.045

(0.033)

0.077**

(0.034)

0.007

(0.024)

0.017

(0.033)

0.031**

(0.015)

0.021

(0.023)

-0.024

(0.028)

-0.046

(0.034)

0.078**

(0.035)

-0.005

(0.035)

-0.006

(0.027)

0.022

(0.033)

0.034**

(0.017)

-0.013

(0.016)

Prec Shock > 1 s.d. 

Growing Period

Number of Violent Events (ACLED)

Prec Anom

Temp Anom

Prec Anom Sq

Temp Anom Sq

Dry Shock Pctile15 

Growing Period

Temp Shock > 1 s.d. 

Growing Period

Prec Shock > 2 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Dry Shock > 1 s.d. 

Growing Period

Wet Shock > 1 s.d.     

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Dry Shock > 2 s.d. 

Growing Period

Wet Shock > 2 s.d.    

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Wet Shock Pctile85 

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period

(continues)



 

37 
 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level (except 

for regressions in columns 1 and 2). Descriptions of the weather variables are given in Table A.1. ACLED = Armed 

Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

-0.004

(0.03)

0.022

(0.05)

0.056**

(0.022)

0.006

(0.022)

0.027

(0.049)

-0.03

(0.03)

0.072**

(0.032)

-0.006

(0.032)

0.005 0.005

(0.011) (0.011)

-0.038** -0.04**

(0.016) (0.015)

0.048 0.081**

(0.033) (0.034)

0.009

(0.015)

-0.02*

(0.012)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 12,532 12,532

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.029 0.029 0.029 0.03 0.029 0.03 0.029 0.03 0.03 0.09 0.09

Dry Shock Pctile10 

Growing Period

Wet Shock Pctile90 

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period

Moderate DD Anom Sq 

Growing Period

Extreme DD Anom Sq 

Growing Period

Cold Shock Pctile10 

Growing Period

Dry Shock Pctile5 

Growing Period

Wet Shock Pctile95 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Prec Anom (97-09)

Heat Shock Pctile90 

Growing Period
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Table A.6—Effects of weather shocks on violent conflict, model at the quarterly level with the 

Standardized Precipitation–Evapotranspiration Index 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and SPEIbase. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level (except 

for regressions in columns 1 and 2). Descriptions of the weather variables are given in Table A.1. ACLED = Armed 

Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.003 0.0 0.002 0.003 0.002 0.003 0.003 0.002 0.003

(0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

0.023*** -0.003 0.02** 0.018** 0.02** 0.018** 0.019** 0.017** 0.017**

(0.008) (0.012) (0.008) (0.007) (0.008) (0.007) (0.008) (0.007) (0.007)

0.013*

(0.007)

0.03**

(0.014)

0.077**

(0.034)

0.031**

(0.015)

0.022

(0.023)

0.078**

(0.034)

-0.009

(0.036)

0.034**

(0.017)

-0.013

(0.017)

0.057**

(0.023)

0.007

(0.022)

0.072**

(0.032)

-0.008

(0.032)

Observations 46,428 46,428 46,428 46,428 46,428 46,428 46,428 46,428 46,428

Grid-cells 893 893 893 893 893 893 893 893 893

R-squared 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.03 0.03

Heat Shock Pctile90 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Number of Violent Events (ACLED)

SPEI

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period
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Table A.7—Effects of weather shocks on violent conflict, model at the quarterly level with the time 

lags of the weather variables 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.005 0.001 0.004 0.005 0.003 0.005 0.002 0.002 0.005

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

-0.001 0.004 -0.001 -0.002 -0.002 -0.002 -0.002 -0.003 -0.001

(0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

0.021*** -0.006 0.019*** 0.016*** 0.019*** 0.015*** 0.017*** 0.015** 0.015**

(0.006) (0.012) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

0.005 -0.029** 0.003 0.001 0.002 0.001 0.001 -0.0 0.001

(0.008) (0.011) (0.008) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

0.002

(0.003)

-0.003

(0.003)

0.013**

(0.007)

0.018***

(0.006)

0.014

(0.018)

-0.005

(0.014)

0.03**

(0.013)

0.012

(0.008)

-0.039

(0.035)

0.064

(0.04)

0.081**

(0.036)

0.069

(0.046)

0.008

(0.023)

-0.036

(0.026)

0.018

(0.034)

0.019

(0.023)

0.03**

(0.014)

0.015

(0.01)

0.021

(0.022)

-0.017

(0.026)

Temp Shock > 1 s.d. 

Growing Period

Number of Violent Events (ACLED)

Prec Anom

Prec Anom (t-1)

Temp Anom

Temp Anom (t-1)

Prec Anom Sq

Prec Anom Sq (t-1)

Temp Anom Sq

Temp Anom Sq (t-1)

Prec Shock > 1 s.d. 

Growing Period

Prec Shock > 1 s.d. 

Growing Period (t-1)

Cold Shock > 1 s.d.     

Growing Period

Temp Shock > 1 s.d. 

Growing Period (t-1)

Prec Shock > 2 s.d. 

Growing Period

Prec Shock > 2 s.d. 

Growing Period (t-1)

Temp Shock > 2 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period (t-1)

Dry Shock > 1 s.d. 

Growing Period

Dry Shock > 1 s.d. 

Growing Period (t-1)

Wet Shock > 1 s.d.     

Growing Period

Wet Shock > 1 s.d.     

Growing Period (t-1)

Heat Shock > 1 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period (t-1)

Cold Shock > 1 s.d.     

Growing Period (t-1)

(continues)
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

-0.025

(0.031)

-0.058*

(0.033)

-0.04

(0.036)

0.068*

(0.041)

0.082**

(0.037)

0.069

(0.046)

-0.01

(0.034)

0.06**

(0.028)

-0.006

(0.026)

-0.039

(0.026)

0.023

(0.034)

0.003

(0.021)

0.034**

(0.016)

0.021*

(0.012)

-0.014

(0.017)

-0.036

(0.031)

-0.002

(0.03)

-0.022

(0.035)

0.025

(0.051)

0.025

(0.03)

0.056**

(0.022)

0.038**

(0.017)

0.005

(0.022)

-0.005

(0.033)

Heat Shock > 2 s.d. 

Growing Period (t-1)

Cold Shock > 2 s.d.    

Growing Period

Cold Shock > 2 s.d.    

Growing Period (t-1)

Dry Shock > 2 s.d. 

Growing Period

Dry Shock > 2 s.d. 

Growing Period (t-1)

Wet Shock > 2 s.d.    

Growing Period

Wet Shock > 2 s.d.    

Growing Period (t-1)

Dry Shock Pctile15 

Growing Period

Heat Shock Pctile90 

Growing Period (t-1)

Wet Shock Pctile85 

Growing Period

Wet Shock Pctile85 

Growing Period (t-1)

Heat Shock Pctile85 

Growing Period

Heat Shock Pctile85 

Growing Period (t-1)

Cold Shock Pctile15 

Growing Period

Cold Shock Pctile15 

Growing Period (t-1)

Dry Shock Pctile10 

Growing Period

Dry Shock Pctile10 

Growing Period (t-1)

Wet Shock Pctile90 

Growing Period

Wet Shock Pctile90 

Growing Period (t-1)

Heat Shock Pctile90 

Growing Period

Dry Shock Pctile15 

Growing Period (t-1)

Heat Shock > 2 s.d. 

Growing Period

Cold Shock Pctile10 

Growing Period

Cold Shock Pctile10 

Growing Period (t-1)

(continues)
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Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level (except 

for regressions in columns 1 and 2). The description of the weather variables is given in Table A.1. ACLED = Armed 

Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.033

(0.049)

0.046

(0.06)

-0.026

(0.031)

0.039

(0.034)

0.072**

(0.032)

0.057*

(0.032)

-0.008

(0.032)

0.063

(0.078)

0.012 0.013

(0.008) (0.008)

0.01 0.009

(0.011) (0.011)

-0.034** -0.037***

(0.014) (0.014)

-0.056* -0.057*

(0.031) (0.031)

0.055* 0.088***

(0.031) (0.033)

0.017 0.025

(0.022) (0.037)

0.007

(0.015)

0.001

(0.008)

-0.02

(0.012)

-0.006

(0.016)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 12,291 12,291

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.029 0.030 0.029 0.030 0.029 0.030 0.029 0.030 0.030 0.094 0.094

Dry Shock Pctile5 

Growing Period

Dry Shock Pctile5 

Growing Period (t-1)

Wet Shock Pctile95 

Growing Period

Extreme DD Anom Sq 

Growing Period

Extreme DD Anom Sq 

Growing Period (t-1)

Moderate DD Anom 

Growing Period

Moderate DD Anom 

Growing Period (t-1)

Extreme DD Anom 

Growing Period

Extreme DD Anom 

Growing Period (t-1)

Moderate DD Anom Sq 

Growing Period

Moderate DD Anom Sq 

Growing Period (t-1)

Heat Shock Pctile95 

Growing Period

Heat Shock Pctile95 

Growing Period (t-1)

Cold Shock Pctile5   

Growing Period

Cold Shock Pctile5   

Growing Period (t-1)

Prec Anom (97-09)

Prec Anom (97-09) (t-1)

Wet Shock Pctile95 

Growing Period (t-1)
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Table A.8—Effects of weather shocks on violent conflict, model at the quarterly level based on the 

alternative precipitation dataset (National Aeronautics and Space Administration POWER project) 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level (except 

for regressions in columns 1 and 2). Descriptions of the weather variables are given in Table A.1. ACLED = Armed 

Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.002 0.00 0.002 0.002 0.002 0.002 0.002 0.003 0.002

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

0.022*** -0.002 0.019*** 0.018*** 0.019*** 0.017*** 0.018*** 0.016** 0.017**

(0.007) (0.012) (0.007) (0.006) (0.007) (0.006) (0.007) (0.006) (0.006)

0.013*

(0.007)

0.031**

(0.014)

0.077**

(0.034)

0.032**

(0.015)

0.023

(0.023)

0.078**

(0.035)

-0.009

(0.034)

0.035**

(0.017)

-0.011

(0.016)

0.058**

(0.023)

0.008

(0.022)

0.073**

(0.032)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436

Grid-cells 893 893 893 893 893 893 893 893 893

R-squared 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.03 0.03

Heat Shock Pctile90 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Number of Violent Events (ACLED)

Prec Anom (97-09)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period
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Table A.9—Partial effects for the number of violent events (Armed Conflict Location and Event 

Dataset) 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, SPEIbase, and NASA POWER. 

Notes: Columns 1, 3, 5, 7, and 9 report only the coefficients that were statistically significant in the models’ 

equations. Degree-days variables are not included in Tables A.6 and A.8 and thus in columns 1, 2, 5, and 6. 

Descriptions of the weather variables are given in Table A.1. NASA-POWER = National Aeronautics and Space 

Administration POWER project; s.d. = standard deviation; part. eff. = partial effects. 

 

  

(1) (2) (3) (4) (5) (6)

β / s.d part. eff. β / s.d. part. eff. β / s.d. part. eff.

Temp Anom 0.017 32.46 0.016 30.46 0.017 31.03

Temp Anom + Temp Anom Sq 0.021 39.3 0.022 40.83 0.021 38.99

Temp Shock > 1 s.d. Grow. Per. 0.011 21.11 0.011 20.9 0.012 21.45

Temp Shock > 2 s.d. Grow. Per. 0.011 21.25 0.011 20.5 0.012 21.52

Heat Shock > 1 s.d. Grow. Per. 0.014 26.61 0.015 28.06 0.014 26.68

Heat Shock > 2 s.d. Grow. Per. 0.014 26.85 0.015 28.29 0.014 26.95

Heat Shock Pctile85 Grow. Per. 0.012 21.77 0.012 21.52 0.012 22.09

Heat Shock Pctile90 Grow. Per. 0.017 31.26 0.017 30.93 0.017 31.54

Heat Shock Pctile95 Grow. Per. 0.016 30.02 0.016 30.14 0.016 30.22

Moderate DD Anom Grow. Per. -0.02 -10.11

Extreme DD Anom Grow. Per. 0.015 7.37

Mod DD An GP + M DD An Sq GP -0.022 -10.87

Ext DD An GP + E DD An Sq GP 0.023 11.7

Table A6. Model with the 

SPEI

Table A7. Model with the 

time lags

Table A8. Model based on 

NASA-POWER
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Table A.10—Effects of temperature shocks on violent conflict, model at the quarterly level without 

cell-fixed effects 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the state level. All regressions include state-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level (except 

for regressions in columns 1 and 2). Descriptions of the weather variables are given in Table A.1. ACLED = Armed 

Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.014 -0.015 0.012 0.01 0.012 0.01 0.011 0.009 0.009

(0.009) (0.015) (0.008) (0.007) (0.008) (0.008) (0.008) (0.007) (0.008)

0.015*

(0.008)

0.027*

(0.015)

0.082**

(0.036)

0.028*

(0.016)

0.021

(0.03)

0.083**

(0.037)

-0.019

(0.032)

0.033*

(0.018)

-0.013

(0.013)

0.054**

(0.022)

0.008

(0.018)

0.074**

(0.033)

0.003

(0.019)

-0.044** -0.047**

(0.022) (0.021)

0.065* 0.104***

(0.036) (0.03)

0.009

(0.014)

-0.024

(0.015)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436 12,532 12,532

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.027 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.066 0.066

Heat Shock Pctile90 

Growing Period

Number of Violent Events (ACLED)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period

Extreme DD Anom Sq 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period

Moderate DD Anom Sq 

Growing Period
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Table A.11—Effects of temperature shocks on violent conflict, model at the quarterly level without 

cell-fixed effects and with controls 

 
For Source and Notes, see Table A.10. *p < .1.  **p < .05. ***p < .01.  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.023** -0.004 0.021** 0.018** 0.02** 0.018** 0.019** 0.017** 0.017*

(0.01) (0.016) (0.009) (0.008) (0.009) (0.009) (0.009) (0.008) (0.009)

0.014

(0.009)

0.028*

(0.016)

0.085**

(0.037)

0.029

(0.017)

0.022

(0.03)

0.086**

(0.037)

-0.005

(0.079)

0.034*

(0.019)

-0.016

(0.015)

0.056**

(0.024)

0.005

(0.018)

0.076**

(0.033)

0.0002

(0.033)

-0.045** -0.048**

(0.021) (0.021)

0.071* 0.113***

(0.036) (0.033)

0.01

(0.015)

-0.026

(0.015)

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.031 0.031

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.028) (0.028)

0.379*** 0.378*** 0.379*** 0.379*** 0.379*** 0.379*** 0.379*** 0.379*** 0.379*** 0.393*** 0.394***

(0.112) (0.112) (0.112) (0.112) (0.112) (0.112) (0.112) (0.112) (0.112) (0.124) (0.124)

0.008* 0.008* 0.008* 0.008* 0.008* 0.008* 0.008* 0.008* 0.008* 0.023 0.023

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.014) (0.014)

-0.01 -0.014 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.014 -0.017 -0.017

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.0103) (0.01) (0.01) (0.059) (0.06)

Observations 43,680 43,680 43,680 43,680 43,680 43,680 43,680 43,680 43,680 12,064 12,064

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.054 0.054 0.054 0.055 0.054 0.055 0.054 0.055 0.055 0.094 0.094

Cold Shock Pctile15 

Growing Period

Extreme DD Anom Sq 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period

Moderate DD Anom Sq 

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Number of Violent Events (ACLED)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Distance to Border (Ln)

Urban Grid Cell

Population (Ln)

Distance to Road (Ln)

Heat Shock Pctile90 

Growing Period
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Table A.12—Effects of temperature shocks on violent conflict, model at the quarterly level without 

cell-fixed effects and with controls excluding cells that never experienced violent conflict 

 
For Source and Notes, see Table A.10. *p < .1.  **p < .05. ***p < .01. 
  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.06** -0.025 0.049* 0.043* 0.05** 0.042* 0.045* 0.04* 0.041

(0.027) (0.042) (0.025) (0.024) (0.024) (0.025) (0.024) (0.023) (0.025)

0.041**

(0.019)

0.089**

(0.037)

0.197**

(0.071)

0.087**

(0.04)

0.111

(0.14)

0.199**

(0.071)

-0.02

(0.269)

0.095**

(0.044)

-0.054

(0.06)

0.154***

(0.053)

0.028

(0.082)

0.205***

(0.07)

0.012

(0.102)

-0.056* -0.062*

(0.03) (0.03)

0.081* 0.135***

(0.046) (0.04)

0.011

(0.021)

-0.038**

(0.015)

0.028** 0.028** 0.028** 0.028** 0.028** 0.028** 0.028** 0.028** 0.028** 0.05** 0.0503**

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.024) (0.024)

-0.102** -0.1** -0.101** -0.101** -0.101** -0.101** -0.101** -0.102** -0.101** -0.206* -0.207*

(0.047) (0.047) (0.047) (0.047) (0.047) (0.047) (0.047) (0.047) (0.047) (0.106) (0.106)

0.013 0.014 0.013 0.013 0.014 0.013 0.013 0.014 0.013 0.038 0.038

(0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.04) (0.04)

Observations 13,572 13,572 13,572 13,572 13,572 13,572 13,572 13,572 13,572 7,124 7,124

Grid-cells 261 261 261 261 261 261 261 261 261 137 137

R-squared 0.059 0.06 0.06 0.061 0.06 0.061 0.06 0.061 0.061 0.102 0.102

Extreme DD Anom Sq 

Growing Period

Population (Ln)

Distance to Urban 

Center (Ln)

Distance to Border (Ln)

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period

Moderate DD Anom Sq 

Growing Period

Heat Shock Pctile90 

Growing Period

Number of Violent Events (ACLED)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period



 

47 
 

Table A.13—Partial effects for the number of violent events (Armed Conflict Location and Event 

Dataset) 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Columns 1, 3, 5, 7, and 9 report only the coefficients that were statistically significant in the models’ 

equations. Descriptions of the weather variables are given in Table A.1. s.d. = standard deviation; part. eff. = partial 

effects. 

 

  

(1) (2) (3) (4) (5) (6)

β / s.d part. eff. β / s.d. part. eff. β / s.d. part. eff.

Temp Anom 0.011 20.5 0.017 32.46 0.047 25.98

Temp Anom + Temp Anom Sq 0.025 47.28 0.023 42.98 0.074 40.81

Temp Shock > 1 s.d. Grow. Per. 0.01 18.75 0.01 19.3 0.035 19.28

Temp Shock > 2 s.d. Grow. Per. 0.01 18.68 0.01 19.29 0.034 18.58

Heat Shock > 1 s.d. Grow. Per. 0.015 28.23 0.016 29.27 0.042 23.25

Heat Shock > 2 s.d. Grow. Per. 0.015 28.53 0.016 29.56 0.043 23.44

Heat Shock Pctile85 Grow. Per. 0.011 21.07 0.012 21.77 0.035 19.35

Heat Shock Pctile90 Grow. Per. 0.016 29.45 0.017 30.77 0.049 27.05

Heat Shock Pctile95 Grow. Per. 0.017 30.97 0.017 31.64 0.051 27.78

Moderate DD Anom Grow. Per. -0.026 -13.12 -0.026 -13.24 -0.035 -10.16

Extreme DD Anom Grow. Per. 0.017 8.67 0.019 9.52 0.025 7.16

Mod DD An GP + M DD An Sq GP -0.028 -14.01 -0.028 -14.1 -0.039 -11.15

Ext DD An GP + E DD An Sq GP 0.028 13.89 0.03 15.09 -0.027+0.042 4.09

Table A10. Model without 

grid cell fixed effects

Table A11. Model without  

grid cell fixed effects & with 

controls

Table A12. As in Table A11 

excluding grid cells that 

never experienced conflict
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Table A.14—Effects of temperature shocks on violent conflict, model at the monthly level 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level (except 

for regressions in columns 1 and 2). Descriptions of the weather variables are given in Table A.1. ACLED = Armed 

Conflict Location and Event Dataset. 

*p < .1.  **p < .05. ***p < .01. 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.004*** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004**

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

0.0006

(0.0009)

0.004

(0.005)

0.017

(0.012)

0.005

(0.005)

-0.007

(0.008)

0.018

(0.012)

-0.02*

(0.012)

0.007

(0.006)

-0.009

(0.007)

0.014*

(0.008)

-0.009

(0.007)

0.022**

(0.011)

-0.016*

(0.009)

-0.011* -0.011*

(0.006) (0.006)

0.034** 0.021

(0.016) (0.013)

-0.007**

(0.003)

0.007

(0.008)

Observations 139,308 139,308 139,308 139,308 139,308 139,308 139,308 139,308 139,308 37,596 37,596

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.049 0.049

Extreme DD Anom Sq 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period

Moderate DD Anom Sq 

Growing Period

Heat Shock Pctile90 

Growing Period

Number of Violent Events (ACLED)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period
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Table A.15—Effects of temperature shocks on violent conflict, model at the monthly level with the 

time lags of the temperature variables 

 
 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.004*** 0.003** 0.004** 0.003** 0.004** 0.003** 0.003** 0.003** 0.003**

(0.001) (0.001) (0.002) (0.001) (0.002) (0.001) (0.002) (0.001) (0.001)

0.002 0.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

0.002 -0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001

(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

0.0003

(0.001)

0.001

(0.001)

0.003**

(0.001)

0.003

(0.005)

0.003

(0.003)

0.002

(0.004)

0.015

(0.011)

0.015*

(0.008)

0.026**

(0.012)

0.005

(0.005)

0.002

(0.004)

0.004

(0.004)

-0.007

(0.008)

0.007

(0.011)

-0.012

(0.008)

(continues)

Temp Shock > 2 s.d. 

Growing Period (t-2)

Heat Shock > 1 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period (t-1)

Heat Shock > 1 s.d. 

Growing Period (t-2)

Cold Shock > 1 s.d.     

Growing Period

Cold Shock > 1 s.d.     

Growing Period (t-1)

Cold Shock > 1 s.d.     

Growing Period (t-2)

Temp Shock > 2 s.d. 

Growing Period (t-1)

Number of Violent Events (ACLED)

Temp Anom

Temp Anom (t-1)

Temp Anom (t-2)

Temp Anom Sq

Temp Anom Sq (t-1)

Temp Anom Sq (t-2)

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 1 s.d. 

Growing Period (t-1)

Temp Shock > 1 s.d. 

Growing Period (t-2)

Temp Shock > 2 s.d. 

Growing Period
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.016

(0.011)

0.016*

(0.008)

0.028**

(0.012)

-0.021*

(0.012)

-0.009

(0.01)

-0.02

(0.013)

0.007

(0.006)

0.004

(0.004)

0.003

(0.005)

-0.01

(0.007)

-0.006

(0.006)

-0.008

(0.008)

0.014*

(0.007)

0.003

(0.004)

0.011*

(0.005)

-0.01

(0.007)

-0.014**

(0.006)

-0.013*

(0.007)

0.02*

(0.01)

0.018**

(0.007)

0.017*

(0.009)

-0.016*

(0.009)

-0.002

(0.007)

-0.011

(0.01)

(continues)

Cold Shock Pctile5   

Growing Period (t-2)

Cold Shock Pctile10 

Growing Period (t-2)

Heat Shock Pctile95 

Growing Period

Heat Shock Pctile95 

Growing Period (t-1)

Heat Shock Pctile95 

Growing Period (t-2)

Cold Shock Pctile5   

Growing Period

Cold Shock Pctile5   

Growing Period (t-1)

Cold Shock Pctile10 

Growing Period (t-1)

Cold Shock > 2 s.d.    

Growing Period (t-2)

Heat Shock Pctile85 

Growing Period

Heat Shock Pctile85 

Growing Period (t-1)

Heat Shock Pctile85 

Growing Period (t-2)

Cold Shock Pctile15 

Growing Period

Cold Shock Pctile15 

Growing Period (t-1)

Cold Shock Pctile15 

Growing Period (t-2)

Heat Shock Pctile90 

Growing Period

Heat Shock Pctile90 

Growing Period (t-1)

Heat Shock Pctile90 

Growing Period (t-2)

Cold Shock Pctile10 

Growing Period

Cold Shock > 2 s.d.    

Growing Period (t-1)

Heat Shock > 2 s.d. 

Growing Period

Heat Shock > 2 s.d. 

Growing Period (t-1)

Heat Shock > 2 s.d. 

Growing Period (t-2)

Cold Shock > 2 s.d.    

Growing Period
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Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level (except 

for regressions in columns 1 and 2). Descriptions of the weather variables are given in Table A.1. ACLED = Armed 

Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

-0.01* -0.01

(0.006) (0.006)

-0.004 -0.003

(0.004) (0.004)

-0.007 -0.009

(0.007) (0.007)

0.035** 0.023*

(0.016) (0.013)

-0.008 -0.007

(0.011) (0.012)

0.001 0.016

(0.014) (0.017)

-0.007**

(0.003)

0.001

(0.003)

0.001

(0.003)

0.007

(0.008)

-0.001

(0.004)

-0.009**

(0.004)

Observations 139,308 139,308 139,308 139,308 139,308 139,308 139,308 139,308 139,308 37,596 37,596

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.049 0.049

Extreme DD Anom Sq 

Growing Period (t-2)

Extreme DD Anom 

Growing Period (t-2)

Moderate DD Anom Sq 

Growing Period

Moderate DD Anom Sq 

Growing Period (t-1)

Moderate DD Anom Sq 

Growing Period (t-2)

Extreme DD Anom Sq 

Growing Period

Extreme DD Anom Sq 

Growing Period (t-1)

Moderate DD Anom 

Growing Period

Moderate DD Anom 

Growing Period (t-1)

Moderate DD Anom 

Growing Period (t-2)

Extreme DD Anom 

Growing Period

Extreme DD Anom 

Growing Period (t-1)
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Table A.16—Effects of temperature shocks on violent conflict, model at the yearly level 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects and night-lights. Descriptions of the weather variables are given in Table A.1. 

ACLED = Armed Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.118** -0.373*** 0.106* 0.091* 0.099* 0.088* 0.089 0.0752 0.0881

(0.058) (0.139) (0.057) (0.053) (0.054) (0.053) (0.054) (0.0531) (0.0531)

0.251***

(0.087)

0.081**

(0.031)

0.361**

(0.18)

0.096***

(0.033)

0.002

(0.08)

0.385**

(0.19)

-0.063

(0.082)

0.116***

(0.04)

-0.1

(0.073)

0.219***

(0.071)

-0.018

(0.074)

0.286**

(0.11)

0.057

(0.123)

-0.55** -0.559**

(0.23) (0.225)

0.12 0.225

(0.292) (0.289)

0.024

(0.312)

-0.267

(0.286)

Observations 11,609 11,609 11,609 11,609 11,609 11,609 11,609 11,609 11,609 3,133 3,133

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

R-squared 0.061 0.064 0.061 0.062 0.061 0.062 0.062 0.062 0.062 0.188 0.189

Extreme DD Anom Sq 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period

Moderate DD Anom Sq 

Growing Period

Heat Shock Pctile90 

Growing Period

Number of Violent Events (ACLED)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Cold Shock Pctile15 

Growing Period
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Table A.17—Partial effects for the number of violent events (Armed Conflict Location and Event 

Dataset) 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Columns 1, 3, 5, 7, and 9 report only the coefficients that were statistically significant in the models’ 

equations. Note that columns 3 and 4 refer to the additional effect of the variables listed plus their two time lags. 

Descriptions of the weather variables are given in Table A.1. s.d. = standard deviation; part. eff. = partial effects. 

 

  

(1) (2) (3) (4) (5) (6)

β / s.d part. eff. β / s.d. part. eff. β / s.d. part. eff.

Temp Anom 0.004 22.04 0.003 19.18 0.063 29.31

Temp Anom + Temp Anom Sq 0.003 17.7 0.003+0.005 42.36 -0.199+0.297 45.21

Temp Shock > 1 s.d. Grow. Per. 0.03 13.8

Temp Shock > 2 s.d. Grow. Per. 0.002+0.004 32.41 0.056 26.0

Heat Shock > 1 s.d. Grow. Per. 0.034 15.81

Heat Shock > 2 s.d. Grow. Per. 0.002+0.004 33.66 0.059 27.3

Heat Shock Pctile85 Grow. Per. 0.038 17.77

Heat Shock Pctile90 Grow. Per. 0.003 17.54 0.003+0.002 29.23 0.062 28.83

Heat Shock Pctile95 Grow. Per. 0.004 20.14 0.003+0.003+0.003 50.34 0.061 28.51

Moderate DD Anom Grow. Per. -0.005 -8.02 -0.004 -6.75 -0.187 -23.44

Extreme DD Anom Grow. Per. 0.007 10.73 0.008 11.3

Mod DD An GP + M DD An Sq GP -0.005-0.005 -15.19 -0.006 -8.5 -0.19 -23.82

Ext DD An GP + E DD An Sq GP 0.005-0.005 -0.11

Table A14. Model at the monthly 

level

Table A15. Model at the monthly 

level with the time lags

Table A16. Model at the yearly 

level
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Table A.18—Effects of temperature shocks on violent conflict, dynamic model at the quarterly level 

 
Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors are in parentheses. All regressions include time-fixed and time-trend effects, night-

lights, and the growing period variable defined at the state level (except for regressions in columns 1 and 2). 

Descriptions of the weather variables are given in Table A.1. ACLED = Armed Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01.  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.213*** 0.212*** 0.213*** 0.212*** 0.213*** 0.212*** 0.213*** 0.212*** 0.212*** 0.21*** 0.21***

(0.037) (0.037) (0.037) (0.037) (0.037) (0.037) (0.037) (0.037) (0.037) (0.044) (0.044)

0.023* 0.007 0.02* 0.019* 0.02* 0.019* 0.019* 0.018* 0.018*

(0.012) (0.01) (0.011) (0.01) (0.011) (0.01) (0.011) (0.011) (0.011)

0.008

(0.007)

0.034**

(0.013)

0.076*

(0.04)

0.036**

(0.014)

0.014

(0.032)

0.076*

(0.04)

0.034

(0.045)

0.038**

(0.016)

-0.03

(0.023)

0.055***

(0.021)

-0.003

(0.024)

0.072**

(0.031)

-0.018

(0.041)

-0.023 -0.027

(0.022) (0.022)

0.058 0.114*

(0.044) (0.059)

0.006

(0.014)

-0.034*

(0.02)

P-values of the Arellano-Bond Test for zero autocorrelation in first-differenced errors of order j

j =1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

j =2 0.9 0.9 0.896 0.898 0.896 0.897  0.898 0.903 0.901 0.613 0.607

Observations 45,543 45,543 45,543 45,543 45,543 45,543 45,543 45,543 45,543 12,291 12,291

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

Cold Shock Pctile15 

Growing Period

Number of Violent Events (ACLED)

Violent Events (t-1)

Temp Anom

Temp Anom Sq

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period

Cold Shock > 1 s.d.     

Growing Period

Heat Shock > 2 s.d. 

Growing Period

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Moderate DD Anom Sq 

Growing Period

Extreme DD Anom Sq 

Growing Period

Heat Shock Pctile90 

Growing Period

Cold Shock Pctile10 

Growing Period

Heat Shock Pctile95 

Growing Period

Cold Shock Pctile5   

Growing Period

Moderate DD Anom 

Growing Period

Extreme DD Anom 

Growing Period
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Table A.19—Effects of temperature shocks on violent conflict, dynamic model at the quarterly level 

with the spatial lags of the temperature variables 

 
 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.212*** 0.21*** 0.211*** 0.208*** 0.21*** 0.207*** 0.210*** 0.209*** 0.208*** 0.209*** 0.209***

(0.037) (0.037) (0.037) (0.037) (0.037) (0.036) (0.037) (0.037) (0.037) (0.043) (0.043)

0.021* 0.019 0.017 0.015 0.018* 0.015 0.018 0.016 0.015

(0.011) (0.011) (0.011) (0.009) (0.011) (0.009) (0.011) (0.011) (0.01)

0.052 -0.118** 0.053 0.031 0.047 0.031 0.041 0.032 0.035

(0.039) (0.048) (0.041) (0.039) (0.039) (0.039) (0.039) (0.04) (0.04)

0.001

(0.006)

0.096***

(0.026)

0.029**

(0.013)

0.158**

(0.064)

0.063*

(0.035)

0.575***

(0.216)

0.025*

(0.013)

0.149**

(0.063)

0.044

(0.034)

-0.386*

(0.231)

0.064*

(0.036)

0.594***

(0.215)

0.018

(0.042)

-5.733*

(3.031)

0.027*

(0.015)

0.171**

(0.067)

-0.001

(0.021)

-0.432*

(0.258)

Temp Anom Sq x W

Number of Violent Events (ACLED)

Violent Events (t-1)

Temp Anom

Temp Anom x W

Temp Anom Sq

Cold Shock > 2 s.d.    

Growing Period x W

Temp Shock > 1 s.d. 

Growing Period

Temp Shock > 1 s.d. 

Growing Period x W

Temp Shock > 2 s.d. 

Growing Period

Temp Shock > 2 s.d. 

Growing Period x W

Heat Shock > 1 s.d. 

Growing Period

Heat Shock > 1 s.d. 

Growing Period x W

Cold Shock > 1 s.d.     

Growing Period

Cold Shock > 1 s.d.     

Growing Period x W

Heat Shock > 2 s.d. 

Growing Period

Heat Shock > 2 s.d. 

Growing Period x W

Cold Shock > 2 s.d.    

Growing Period

Heat Shock Pctile85 

Growing Period

Heat Shock Pctile85 

Growing Period x W

Cold Shock Pctile15 

Growing Period

Cold Shock Pctile15 

Growing Period x W

(continues)
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Source: Authors’ estimation based on ACLED, UEA CRU-TS, and NASA POWER. 

Notes: Robust standard errors are in parentheses. All regressions include time-fixed and time-trend effects, night-

lights and corresponding spatial lag, the growing period variable defined at the state level, and the corresponding 

spatial lag (except for regressions in columns 1 and 2). Descriptions of the weather variables are given in Table A.1. 

ACLED = Armed Conflict Location and Event Dataset.  

*p < .1. **p < .05. ***p < .01. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.043**

(0.02)

0.302***

(0.092)

0.02

(0.025)

-0.438

(0.391)

0.059**

(0.028)

0.418***

(0.151)

-0.007

(0.041)

-0.741

(1.000)

-0.017 -0.021

(0.021) (0.022)

-0.656 -0.627

(0.434) (0.449)

0.058 0.107*

(0.044) (0.058)

0.023 -0.575

(1.14) (1.204)

0.005

(0.014)

0.235

(0.326)

-0.03

(0.021)

0.308

(0.945)

P-values of the Arellano-Bond Test for zero autocorrelation in first-differenced errors of order j

j =1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

j =2 0.902 0.915 0.907 0.922 0.909 0.923 0.912 0.918 0.92 0.611 0.606

Observations 45,543 45,543 45,543 45,543 45,543 45,543 45,543 45,543 45,543 12,291 12,291

Grid-cells 893 893 893 893 893 893 893 893 893 241 241

Heat Shock Pctile90 

Growing Period

Extreme DD Anom Sq 

Growing Period

Extreme DD Anom Sq 

Growing Period x W

Moderate DD Anom 

Growing Period

Moderate DD Anom 

Growing Period x W

Extreme DD Anom 

Growing Period

Extreme DD Anom 

Growing Period x W

Moderate DD Anom Sq 

Growing Period

Moderate DD Anom Sq 

Growing Period x W

Cold Shock Pctile10 

Growing Period

Cold Shock Pctile10 

Growing Period x W

Heat Shock Pctile95 

Growing Period

Heat Shock Pctile95 

Growing Period x W

Cold Shock Pctile5   

Growing Period

Cold Shock Pctile5   

Growing Period x W

Heat Shock Pctile90 

Growing Period x W
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Table A.20.a—Effects of temperature shocks on violent conflict 
Heterogeneity of the effects for “Main Crop is Maize” 

 
 

 

 

(1) (2) (3) (4) (5) (6) (7)

0.033*** 0.03*** 0.033*** 0.029*** 0.031*** 0.028** 0.029**

(0.012) (0.011) (0.012) (0.011) (0.012) (0.011) (0.011)

0.035**

(0.015)

0.106***

(0.033)

0.036**

(0.017)

0.017

(0.044)

0.107***

(0.034)

0.016

(0.052)

0.042**

(0.02)

-0.031

(0.026)

0.075***

(0.026)

-0.009

(0.047)

0.1***

(0.038)

-0.035

(0.07)

0.05

(0.061)

-0.021

(0.078)

0.027

(0.063)

0.471***

(0.158)

-0.021

(0.078)

-0.019

(0.06)

-0.056

(0.047)

-0.108***

(0.035)

-0.064

(0.066)

-0.073

(0.071)

Observations 30,212 30,212 30,212 30,212 30,212 30,212 30,212

Grid-cells 581 581 581 581 581 581 581

R-squared 0.006 0.007 0.006 0.007 0.006 0.007 0.007

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Cold Shock Pctile10 Grow. Per. X 

Main Crop is Maize

Heat Shock Pctile95 Grow. Per. X 

Main Crop is Maize

Temp Shock > 1 s.d. Grow. Per. X 

Main Crop is Maize

Temp Shock > 2 s.d. Grow. Per. X 

Main Crop is Maize

Heat Shock > 1 s.d. Grow. Per. X 

Main Crop is Maize

Cold Shock > 1 s.d. Grow. Per. X 

Main Crop is Maize

Heat Shock > 2 s.d. Grow. Per. X 

Main Crop is Maize

Cold Shock Pctile15 Grow. Per. X 

Main Crop is Maize

Heat Shock Pctile90 Grow. Per. X 

Main Crop is Maize

Heat Shock Pctile85 Grow. Per. X 

Main Crop is Maize
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This note describes tables A.20.a, A.20.b, A.20.c, A.20.d, A.20.e, A.21.a, A.21.b, A.21.c, A.21.d, and A.21.e. 

Source: Authors’ estimation based on ACLED and UEA CRU-TS. The sources for the interaction terms are detailed in 

the Data part of Section 3. 

Notes: Robust standard errors, in parentheses, are clustered at the county level. All regressions include cell-fixed, 

time-fixed, and time-trend effects; night-lights; and the growing period variable defined at the state level. 

Descriptions of the weather variables are given in Table A.1. ACLED = Armed Conflict Location and Event Dataset. 

*p < .1. **p < .05. ***p < .01. 
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Table A.20.b—Effects of temperature shocks on violent conflict  

Heterogeneity of the effects for “Main Crop is Sorghum” 

   

(1) (2) (3) (4) (5) (6) (7)

0.033*** 0.029*** 0.0328*** 0.029*** 0.031*** 0.028** 0.029**

(0.012) (0.011) (0.012) (0.011) (0.012) (0.011) (0.011)

0.043*

(0.025)

0.13

(0.079)

0.047

(0.028)

-0.033

(0.043)

0.13

(0.079)

0.008

(0.038)

0.051

(0.032)

-0.055*

(0.028)

0.082*

(0.045)

-0.066*

(0.038)

0.129*

(0.072)

-0.012

(0.022)

-0.013

(0.031)

-0.043

(0.096)

-0.018

(0.033)

0.1

(0.078)

-0.042

(0.096)

0.008

(0.057)

-0.017

(0.036)

0.037

(0.044)

-0.015

(0.054)

0.091

(0.076)

-0.057

(0.078)

-0.033

(0.098)

Observations 30,212 30,212 30,212 30,212 30,212 30,212 30,212

Grid-cells 581 581 581 581 581 581 581

R-squared 0.006 0.007 0.006 0.007 0.006 0.007 0.007

Cold Shock Pctile5 Grow. Per. X 

Main Crop is Sorghum

Heat Shock > 1 s.d. Grow. Per. X 

Main Crop is Sorghum

Cold Shock > 1 s.d. Grow. Per. X 

Main Crop is Sorghum

Heat Shock > 2 s.d. Grow. Per. X 

Main Crop is Sorghum

Cold Shock Pctile15 Grow. Per. X 

Main Crop is Sorghum

Heat Shock Pctile90 Grow. Per. X 

Main Crop is Sorghum

Heat Shock Pctile85 Grow. Per. X 

Main Crop is Sorghum

Cold Shock > 2 s.d. Grow. Per. X 

Main Crop is Sorghum

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Cold Shock Pctile10 Grow. Per. X 

Main Crop is Sorghum

Heat Shock Pctile95 Grow. Per. X 

Main Crop is Sorghum

Temp Shock > 1 s.d. Grow. Per. X 

Main Crop is Sorghum

Temp Shock > 2 s.d. Grow. Per. X 

Main Crop is Sorghum

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.
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Table A.20.c—Effects of temperature shocks on violent conflict  

Heterogeneity of the effects for “Main Crop is Millet” 

  

(1) (2) (3) (4) (5) (6) (7)

0.033*** 0.03*** 0.033*** 0.029*** 0.031*** 0.028** 0.029**

(0.012) (0.011) (0.012) (0.0110) (0.012) (0.011) (0.011)

0.038**

(0.016)

0.112***

(0.035)

0.039**

(0.017)

0.028

(0.045)

0.113***

(0.035)

0.016

(0.052)

0.045**

(0.021)

-0.032

(0.026)

0.078***

(0.027)

-0.009

(0.048)

0.105***

(0.039)

-0.034

(0.071)

-0.059***

(0.022)

-0.095**

(0.046)

-0.059**

(0.023)

-0.069

(0.055)

-0.096**

(0.046)

-0.075***

(0.027)

-0.002

(0.033)

-0.09***

(0.031)

-0.025

(0.053)

-0.104**

(0.041)

-0.041

(0.07)

Observations 30,212 30,212 30,212 30,212 30,212 30,212 30,212

Grid-cells 581 581 581 581 581 581 581

R-squared 0.006 0.007 0.006 0.007 0.006 0.007 0.007

Cold Shock Pctile5 Grow. Per. X 

Main Crop is Millet

Heat Shock > 1 s.d. Grow. Per. X 

Main Crop is Millet

Cold Shock > 1 s.d. Grow. Per. X 

Main Crop is Millet

Heat Shock > 2 s.d. Grow. Per. X 

Main Crop is Millet

Cold Shock Pctile15 Grow. Per. X 

Main Crop is Millet

Heat Shock Pctile90 Grow. Per. X 

Main Crop is Millet

Heat Shock Pctile85 Grow. Per. X 

Main Crop is Millet

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Cold Shock Pctile10 Grow. Per. X 

Main Crop is Millet

Heat Shock Pctile95 Grow. Per. X 

Main Crop is Millet

Temp Shock > 1 s.d. Grow. Per. X 

Main Crop is Millet

Temp Shock > 2 s.d. Grow. Per. X 

Main Crop is Millet

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.
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Table A.20.d—Effects of temperature shocks on violent conflict  

Heterogeneity of the effects for “Main Crop is Groundnut” 

  

(1) (2) (3) (4) (5) (6) (7)

0.034*** 0.03*** 0.033*** 0.029*** 0.031*** 0.028** 0.029**

(0.012) (0.011) (0.012) (0.011) (0.012) (0.011) (0.011)

0.025*

(0.014)

0.095**

(0.037)

0.024*

(0.014)

0.052

(0.049)

0.096**

(0.037)

0.017

(0.056)

0.029*

(0.018)

-0.024

(0.028)

0.062**

(0.025)

0.017

(0.055)

0.077**

(0.035)

-0.04

(0.093)

0.082

(0.063)

0.099

(0.152)

0.096

(0.069)

-0.137*

(0.074)

0.1

(0.153)

-0.009

(0.058)

0.092

(0.076)

-0.044

(0.05)

0.102

(0.106)

-0.103

(0.07)

0.17

(0.148)

0.035

(0.092)

Observations 30,212 30,212 30,212 30,212 30,212 30,212 30,212

Grid-cells 581 581 581 581 581 581 581

R-squared 0.006 0.007 0.007 0.007 0.007 0.007 0.008

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Cold Shock Pctile10 Grow. Per. X 

Main Crop is Groundnut

Heat Shock Pctile95 Grow. Per. X 

Main Crop is Groundnut

Temp Shock > 1 s.d. Grow. Per. X 

Main Crop is Groundnut

Temp Shock > 2 s.d. Grow. Per. X 

Main Crop is Groundnut

Cold Shock Pctile5 Grow. Per. X 

Main Crop is Groundnut

Heat Shock > 1 s.d. Grow. Per. X 

Main Crop is Groundnut

Cold Shock > 1 s.d. Grow. Per. X 

Main Crop is Groundnut

Heat Shock > 2 s.d. Grow. Per. X 

Main Crop is Groundnut

Cold Shock Pctile15 Grow. Per. X 

Main Crop is Groundnut

Heat Shock Pctile90 Grow. Per. X 

Main Crop is Groundnut

Heat Shock Pctile85 Grow. Per. X 

Main Crop is Groundnut

Cold Shock > 2 s.d. Grow. Per. X 

Main Crop is Groundnut
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Table A.20.e—Effects of temperature shocks on violent conflict  

Heterogeneity of the effects for “Main Crop is Cassava” 

 
 

  

(1) (2) (3) (4) (5) (6) (7)

0.033*** 0.029*** 0.033*** 0.029*** 0.031*** 0.028** 0.029**

(0.012) (0.011) (0.011) (0.011) (0.012) (0.011) (0.011)

0.033**

(0.016)

0.081***

(0.024)

0.033*

(0.017)

0.024

(0.045)

0.082***

(0.025)

0.013

(0.05)

0.036*

(0.02)

-0.034

(0.026)

0.063**

(0.025)

-0.012

(0.046)

0.079**

(0.032)

-0.038

(0.069)

0.049

(0.097)

0.249

(0.39)

0.048

(0.098)

0.051

(0.063)

0.249

(0.39)

0.074

(0.12)

0.141**

(0.056)

0.147

(0.228)

0.281

(0.415)

Observations 30,212 30,212 30,212 30,212 30,212 30,212 30,212

Grid-cells 581 581 581 581 581 581 581

R-squared 0.006 0.007 0.006 0.007 0.006 0.007 0.008

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Heat Shock Pctile95 Grow. Per. X 

Main Crop is Cassava

Temp Shock > 1 s.d. Grow. Per. X 

Main Crop is Cassava

Temp Shock > 2 s.d. Grow. Per. X 

Main Crop is Cassava

Heat Shock > 1 s.d. Grow. Per. X 

Main Crop is Cassava

Cold Shock > 1 s.d. Grow. Per. X 

Main Crop is Cassava

Heat Shock > 2 s.d. Grow. Per. X 

Main Crop is Cassava

Cold Shock Pctile15 Grow. Per. X 

Main Crop is Cassava

Heat Shock Pctile90 Grow. Per. X 

Main Crop is Cassava

Heat Shock Pctile85 Grow. Per. X 

Main Crop is Cassava
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Table A.21.a—Effects of temperature shocks on violent conflict  
Heterogeneity of the effects for “Goat Density” 

 
 

 

(1) (2) (3) (4) (5) (6) (7) (8)

0.027*** 0.026*** 0.023*** 0.025*** 0.023*** 0.024*** 0.022*** 0.022***

(0.01) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

0.007

(0.011)

0.044

(0.028)

0.009

(0.012)

-0.006

(0.025)

0.045

(0.028)

-0.012

(0.037)

0.011

(0.014)

-0.008

(0.02)

0.036*

(0.019)

0.012

(0.029)

0.036

(0.025)

-0.039

(0.045)

0.0001

(0.0003)

0.001*

(0.001)

0.002*

(0.001)

0.001

(0.001)

0.001

(0.002)

0.002*

(0.001)

0.001*

(0.0003)

0.001

(0.001)

-0.001*

(0.001)

0.001

(0.001)

-0.001*

(0.001)

0.002*

(0.001)

0.0004

(0.001)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436

Grid-cells 893 893 893 893 893 893 893 893

R-squared 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.006

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.

Cold Shock Pctile5 Grow. Per. X 

Goat Density

Heat Shock > 1 s.d. Grow. Per. X 

Goat Density

Cold Shock > 1 s.d. Grow. Per. X 

Goat Density

Heat Shock > 2 s.d. Grow. Per. X 

Goat Density

Cold Shock Pctile15 Grow. Per. X 

Goat Density

Heat Shock Pctile90 Grow. Per. X 

Goat Density

Heat Shock Pctile85 Grow. Per. X 

Goat Density

Cold Shock Pctile10 Grow. Per. X 

Goat Density

Heat Shock Pctile95 Grow. Per. X 

Goat Density

Cold Shock > 2 s.d. Grow. Per. X 

Goat Density

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Temp Anom X                                        

Goat Density

Temp Shock > 1 s.d. Grow. Per. X 

Goat Density

Temp Shock > 2 s.d. Grow. Per. X 

Goat Density

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Heat Shock Pctile90 Grow. Per.
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Table A.21.b—Effects of temperature shocks on violent conflict  

Heterogeneity of the effects for “Pastoral and Agropastoral Groups” 

  

(1) (2) (3) (4) (5) (6) (7) (8)

0.019*** 0.026*** 0.023*** 0.025*** 0.023*** 0.024*** 0.022*** 0.023***

(0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

0.015

(0.012)

0.045*

(0.023)

0.015

(0.013)

0.023

(0.027)

0.045*

(0.023)

-0.003

(0.035)

0.016

(0.014)

-0.018

(0.017)

0.034*

(0.018)

0.006

(0.024)

0.037*

(0.02)

-0.002

(0.024)

0.062**

(0.03)

0.065*

(0.039)

0.157

(0.097)

0.072*

(0.041)

-0.189**

(0.091)

0.157

(0.097)

0.083*

(0.045)

-0.143

(0.1)

0.125*

(0.073)

-0.277**

(0.131)

0.204*

(0.116)

-0.97***

(0.031)

Observations 44,668 44,668 44,668 44,668 44,668 44,668 44,668 44,668

Grid-cells 859 859 859 859 859 859 859 859

R-squared 0.005 0.005 0.006 0.005 0.006 0.005 0.006 0.007

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Temp Anom X                                        

Pastoral & AgroPastoral Groups

Temp Shock > 1 s.d. Grow. Per. X 

Pastoral & AgroPastoral Groups

Temp Shock > 2 s.d. Grow. Per. X 

Pastoral & AgroPastoral Groups

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.

Cold Shock Pctile5 Grow. Per. X 

Pastoral & AgroPastoral Groups

Heat Shock > 1 s.d. Grow. Per. X 

Pastoral & AgroPastoral Groups

Cold Shock > 1 s.d. Grow. Per. X 

Pastoral & AgroPastoral Groups

Heat Shock > 2 s.d. Grow. Per. X 

Pastoral & AgroPastoral Groups

Cold Shock Pctile15 Grow. Per. X 

Pastoral & AgroPastoral Groups

Heat Shock Pctile90 Grow. Per. X 

Pastoral & AgroPastoral Groups

Heat Shock Pctile85 Grow. Per. X 

Pastoral & AgroPastoral Groups

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Cold Shock Pctile10 Grow. Per. X 

Pastoral & AgroPastoral Groups

Heat Shock Pctile95 Grow. Per. X 

Pastoral & AgroPastoral Groups

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.
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Table A.21.c—Effects of temperature shocks on violent conflict  

Heterogeneity of the effects for “Near to Major River” 

  

(1) (2) (3) (4) (5) (6) (7) (8)

0.141*** 0.092*** 0.081** 0.088** 0.081** 0.084** 0.071** 0.075**

(0.044) (0.034) (0.032) (0.034) (0.032) (0.033) (0.032) (0.033)

0.047***

(0.018)

0.126**

(0.054)

0.052***

(0.02)

-0.01

(0.025)

0.126**

(0.054)

0.161***

(0.055)

0.06**

(0.023)

-0.028

(0.026)

0.101***

(0.035)

-0.013

(0.05)

0.121**

(0.051)

-0.031

(0.062)

-0.129**

(0.05)

-0.065***

(0.019)

-0.107*

(0.063)

-0.071***

(0.02)

0.019

(0.034)

-0.105*

(0.063)

-0.238***

(0.074)

-0.079***

(0.023)

0.014

(0.021)

-0.101***

(0.033)

0.006

(0.046)

-0.083

(0.053)

-0.002

(0.059)

Observations 12,480 12,480 12,480 12,480 12,480 12,480 12,480 12,480

Grid-cells 240 240 240 240 240 240 240 240

R-squared 0.015 0.016 0.018 0.016 0.018 0.016 0.019 0.019

Temp Shock > 1 s.d. Grow. Per. X 

Near to Major River

Temp Shock > 2 s.d. Grow. Per. X 

Near to Major River

Cold Shock Pctile5 Grow. Per. X 

Near to Major River

Heat Shock > 1 s.d. Grow. Per. X 

Near to Major River

Cold Shock > 1 s.d. Grow. Per. X 

Near to Major River

Heat Shock > 2 s.d. Grow. Per. X 

Near to Major River

Cold Shock Pctile15 Grow. Per. X 

Near to Major River

Heat Shock Pctile90 Grow. Per. X 

Near to Major River

Heat Shock Pctile85 Grow. Per. X 

Near to Major River

Cold Shock Pctile10 Grow. Per. X 

Near to Major River

Heat Shock Pctile95 Grow. Per. X 

Near to Major River

Cold Shock > 2 s.d. Grow. Per. X 

Near to Major River

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Temp Anom X                                        

Near to Major River

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.
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Table A.21.d—Effects of temperature shocks on violent conflict  

Heterogeneity of the effects for “Share of Irrigated Land” 

  

(1) (2) (3) (4) (5) (6) (7) (8)

0.029*** 0.026*** 0.024*** 0.026*** 0.023*** 0.025*** 0.022*** 0.023***

(0.009) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

0.027**

(0.013)

0.086***

(0.031)

0.029**

(0.014)

0.01

(0.027)

0.087***

(0.031)

0.001

(0.037)

0.033**

(0.017)

-0.025

(0.017)

0.061***

(0.022)

-0.012

(0.027)

0.081**

(0.033)

-0.032

(0.049)

-0.001**

(0.0003)

-0.002***

(0.001)

-0.003**

(0.001)

-0.002***

(0.001)

-0.0002

(0.001)

-0.003**

(0.001)

0.001

(0.004)

-0.002***

(0.001)

0.001

(0.001)

-0.003***

(0.001)

0.001

(0.001)

-0.003***

(0.001)

0.001

(0.001)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436

Grid-cells 893 893 893 893 893 893 893 893

R-squared 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005

Temp Shock > 1 s.d. Grow. Per. X 

Share of Irrigated Land

Temp Shock > 2 s.d. Grow. Per. X 

Share of Irrigated Land

Cold Shock Pctile5 Grow. Per. X 

Share of Irrigated Land

Heat Shock > 1 s.d. Grow. Per. X 

Share of Irrigated Land

Cold Shock > 1 s.d. Grow. Per. X 

Share of Irrigated Land

Heat Shock > 2 s.d. Grow. Per. X 

Share of Irrigated Land

Cold Shock Pctile15 Grow. Per. X 

Share of Irrigated Land

Heat Shock Pctile90 Grow. Per. X 

Share of Irrigated Land

Heat Shock Pctile85 Grow. Per. X 

Share of Irrigated Land

Cold Shock Pctile10 Grow. Per. X 

Share of Irrigated Land

Heat Shock Pctile95 Grow. Per. X 

Share of Irrigated Land

Cold Shock > 2 s.d. Grow. Per. X 

Share of Irrigated Land

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Temp Anom X                                        

Share of Irrigated Land

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.
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Table A.21.e—Effects of temperature shocks on violent conflict  

Heterogeneity of the effects for “Market Accessibility” 

 

(1) (2) (3) (4) (5) (6) (7) (8)

0.029*** 0.026*** 0.024*** 0.026*** 0.023*** 0.025*** 0.022*** 0.023***

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

0.027**

(0.013)

0.086***

(0.03)

0.029**

(0.014)

0.011

(0.026)

0.087***

(0.031)

0.029

(0.022)

0.033**

(0.017)

-0.024

(0.017)

0.06***

(0.022)

-0.01

(0.027)

0.081**

(0.033)

-0.026

(0.048)

-0.057

(0.043)

-0.059***

(0.022)

-0.156***

(0.039)

-0.055***

(0.017)

-0.084

(0.09)

-0.133***

(0.035)

-0.393***

(0.018)

-0.057***

(0.019)

-0.0004

(0.054)

-0.067***

(0.021)

-0.046

(0.094)

-0.099***

(0.028)

-0.129

(0.157)

Observations 46,436 46,436 46,436 46,436 46,436 46,436 46,436 46,436

Grid-cells 893 893 893 893 893 893 893 893

R-squared 0.004 0.004 0.005 0.004 0.005 0.005 0.005 0.005

Number of Violent Events (ACLED)

Temp Anom

Temp Shock > 1 s.d. Grow. Per.

Temp Shock > 2 s.d. Grow. Per.

Temp Anom X                                        

Market Accessibility

Heat Shock > 1 s.d. Grow. Per.

Cold Shock > 1 s.d. Grow. Per.

Heat Shock > 2 s.d. Grow. Per.

Cold Shock > 2 s.d. Grow. Per.

Cold Shock Pctile10 Grow. Per.

Heat Shock Pctile95 Grow. Per.

Cold Shock Pctile5 Grow. Per.

Heat Shock Pctile90 Grow. Per.

Cold Shock Pctile15 Grow. Per.

Heat Shock Pctile85 Grow. Per.

Temp Shock > 1 s.d. Grow. Per. X 

Market Accessibility

Temp Shock > 2 s.d. Grow. Per. X 

Market Accessibility

Cold Shock Pctile5 Grow. Per. X 

Market Accessibility

Heat Shock > 1 s.d. Grow. Per. X 

Market Accessibility

Cold Shock > 1 s.d. Grow. Per. X 

Market Accessibility

Heat Shock > 2 s.d. Grow. Per. X 

Market Accessibility

Cold Shock Pctile15 Grow. Per. X 

Market Accessibility

Heat Shock Pctile90 Grow. Per. X 

Market Accessibility

Heat Shock Pctile85 Grow. Per. X 

Market Accessibility

Cold Shock Pctile10 Grow. Per. X 

Market Accessibility

Heat Shock Pctile95 Grow. Per. X 

Market Accessibility

Cold Shock > 2 s.d. Grow. Per. X 

Market Accessibility
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