
Amin, Alerk; Barkow, Ingo; Kramer, Stefan; Schiller, David; Williams, Jeremy

Working Paper

Representing and Utilizing DDI in Relational Databases

RatSWD Working Paper, No. 191

Provided in Cooperation with:
German Data Forum (RatSWD)

Suggested Citation: Amin, Alerk; Barkow, Ingo; Kramer, Stefan; Schiller, David; Williams, Jeremy
(2012) : Representing and Utilizing DDI in Relational Databases, RatSWD Working Paper, No. 191,
Rat für Sozial- und Wirtschaftsdaten (RatSWD), Berlin

This Version is available at:
https://hdl.handle.net/10419/75318

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/75318
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

191

January 2012

Representing and Utilizing DDI
in Relational Databases

Alerk Amin, Ingo Barkow, Stefan Kramer,
David Schiller, Jeremy Williams

RatSWD
Working
Paper
Series

w
w
w
.ratsw

d.de

RatSWD
German Data Forum

Working Paper Series of the German Data Forum (RatSWD)

The RatSWD Working Papers series was launched at the end of 2007. Since 2009, the series

has been publishing exclusively conceptual and historical works dealing with the organization

of the German statistical infrastructure and research infrastructure in the social, behavioral,

and economic sciences. Papers that have appeared in the series deal primarily with the

organization of Germany’s official statistical system, government agency research, and

academic research infrastructure, as well as directly with the work of the RatSWD. Papers

addressing the aforementioned topics in other countries as well as supranational aspects are

particularly welcome.

RatSWD Working Papers are non-exclusive, which means that there is nothing to prevent you

from publishing your work in another venue as well: all papers can and should also appear in

professionally, institutionally, and locally specialized journals. The RatSWD Working Papers

are not available in bookstores but can be ordered online through the RatSWD.

In order to make the series more accessible to readers not fluent in German, the English section of

the RatSWD Working Papers website presents only those papers published in English, while the

the German section lists the complete contents of all issues in the series in chronological order.

Starting in 2009, some of the empirical research papers that originally appeared in the

RatSWD Working Papers series will be published in the series RatSWD Research Notes.

The views expressed in the RatSWD Working Papers are exclusively the opinions of their

authors and not those of the RatSWD.

The RatSWD Working Paper Series is edited by:

Chair of the RatSWD (2007/2008 Heike Solga; since 2009 Gert G. Wagner)

Managing Director of the RatSWD (Denis Huschka)

Contact: German Data Forum (RatSWD) | Mohrenstraße 58 | 10117 Berlin | office@ratswd.de

Representing and Utilizing DDI in

Relational Databases*

Alerk Amin
1
, Ingo Barkow

2
, Stefan Kramer

3
, David Schiller

4
,

Jeremy Williams
5

* Previously published at http://dx.doi.org/10.3886/DDIOtherTopics02.

Acknowledgments

The Leibniz Institute for Educational Research and Educational Information (DIPF)

hosted a workshop including the topic of DDI in relational databases in Frankfurt,

Germany, on April 7-8, 2011, during which the development of this document was

begun. Thanks to the following colleagues for providing input on a late-Oct. 2011

draft: Sanda Ionescu, University of Michigan (USA); Jeremy Iverson, Algenta

Technologies (USA); Johanna Vompras, University of Bielefeld (Germany); and to

Mary Vardigan, University of Michigan (USA), who edited the final version of this

paper previously published at http://dx.doi.org/10.3886/DDIOtherTopics02.

Abstract

This document is primarily intended for implementers of DDI-based metadata stores

who are considering different technical options for housing and managing their

metadata.

The Data Documentation Initiative (DDI) metadata specification
6
 is expressed in the

form of XML schema. With version 3, the DDI specification has become quite com-

plex, including 21 namespaces and 846 elements
7
. Organizations employing DDI, or

considering doing so, may want to

1. store and manage the metadata elements in relational databases, for reasons

of integration with existing systems, familiarity with the concepts of rela-

tional databases (such as Structured Query Language), systems perfor-

mance, and/or other reasons;

2. select only the subset of the available DDI metadata elements that is of

utility to their work, and have the flexibility of capturing metadata they need

that would not fit into the DDI model.

This paper discusses advantages and disadvantages of the relational database ap-

proach to managing DDI. It also describes methods for modeling DDI in relational

databases and for formally defining subsets of DDI to employ in this environment.

1 CentERdata [a.amin@uvt.nl]
2 DIPF – Leibniz Institute for Educational Research and Educational Information [barkow@dipf.de]

3 Cornell Institute for Social and Economic Research [stefan.kramer@cornell.edu]

4 Research Data Center (FDZ) of the German Federal Employment Agency (BA) at the Institute for Employment
Research (IAB) [david.schiller@iab.de]

5 Cornell Institute for Social and Economic Research [jw568@cornell.edu]

6 http://www.ddialliance.org/Specification
7 Numbers gleaned from DDI 3.1 field-level XML Schema Documentation: http://tinyurl.com/6sm2koq

http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w
http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w
http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w
http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w
http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w
http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w
http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w
http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w
http://www.google.com/url?q=http%3A%2F%2Fwww.ddialliance.org%2FSpecification&sa=D&sntz=1&usg=AFQjCNGYKHTOeRzC1H6BtiPmrcGDQkii7w

Representing and Utilizing DDI in Relational Databases 2 | 18

Introduction

Data constitute a valuable, perhaps the most valuable, commodity in scientific

research. Therefore, the potential for reusing generated data for future projects

is an important consideration in the conduct of research. But data can only be

reused if they can be sufficiently interpreted and understood, and that requires

that they be well documented. The documentation challenge becomes even

greater in comparative research when international standardization of docu-

mentation is required. A further challenge is the growing demand for merged

datasets from different data sources. As a result, and to enable sound scientific

research in the future, a documentation standard for research data that can

address all these challenges is vital. The DDI metadata specification offers a

solution, and many important data providers are already using DDI, or are

about to use it. The DDI development is supported by an active community that

steadily works on improvements.

DDI provides a means to represent metadata about data collected in the

social sciences, and potentially other disciplines8, in a meaningful and struc-

tured manner. The DDI Alliance9, which develops the DDI specification and

promotes its worldwide adoption and implementation, currently uses XML-

based structures to describe the content of the model. For DDI version 210, a

Document Type Definition (DTD) was used; this was changed to an XML

Schema (XSD) for DDI version 311. These schemas are employed to structure

metadata content in the form of DDI instances. Essentially DDI can represent

metadata in the form of XML files based on the DDI XML Schema stored on a

common file share, or can be put into an XML database (like BaseX12 or

eXist13) to enable collaborative work with multiple users. Another possibility is

to represent DDI in relational databases (RDBs).

It is obvious that DDI can only serve the scientific community if it is

actively used by a sufficient number of stakeholders. In order to achieve this

goal, the DDI-based documentation has to be easy to understand and easy to

integrate into the existing data structure of the data providers. It also has to be

compatible with future developments in the area of data storage. Relational

databases are a widely used and flexible solution for data storage. Bringing

DDI together with the capability of relational database systems will promote

both data storage for the purpose of scientific research and the DDI standard

itself.

8 See, for example: Documenting a Wider Variety of Data Using the Data Documentation Initiative 3.1:

http://dx.doi.org/10.3886/DDILongitudinal01

9 http://www.ddialliance.org/alliance
10 http://www.ddialliance.org/Specification/DDI-Codebook/

11 http://www.ddialliance.org/Specification/DDI-Lifecycle/

12 http://basex.org/
13 http://exist.sourceforge.net/

http://www.ddialliance.org/alliance
http://www.ddialliance.org/alliance
http://www.ddialliance.org/alliance
http://www.ddialliance.org/alliance
http://www.ddialliance.org/alliance
http://www.ddialliance.org/alliance
http://www.ddialliance.org/alliance
http://www.ddialliance.org/alliance
http://www.ddialliance.org/alliance
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Codebook
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://basex.org/
http://basex.org/
http://basex.org/
http://basex.org/
http://basex.org/
http://basex.org/
http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://exist.sourceforge.net/

3 | 18 Alerk Amin, Ingo Barkow, Stefan Kramer, David Schiller, Jeremy Williams

This paper outlines the advantages and disadvantages of representing DDI

in relational databases as an alternative to an XML structure. In addition, it

discusses the benefits and drawbacks of using relational databases for the DDI

model, gives some hints about future solutions, provides a short introduction

on the topic of how to model DDI, discusses application compatibility, and

points out some challenges in “advanced cases.”

DDI in Relational Databases vs. XML: Pros and Cons,

and Other Approaches

The idea of storing DDI instances in a relational database, as opposed to a

XML database, is often a hot topic among developers. From the perspective of

DDI solely as a “storage” standard, an XML database has certain advantages.

But when thinking of DDI as a transport format between applications, the

actual storage format for each application should be the one that best meets that

application’s needs. In many cases, a relational database is the better option.

The following section of the paper demonstrates the advantages of using a

relational database.

Representing the DDI model within a relational database

The first reason to consider a relational database model for DDI arises from an

organizational point of view. Many agencies have been storing primary data

and associated metadata for timespans measured in decades, and a very

common storage method is the relational database, as its tabular structure is

ideal for storing rectangular data resulting from data collection activities.

Therefore, those agencies have a high level of expertise in using the relational

database model. Changing their present table-based metadata standard (what-

ever that may be) to a DDI representation which is also table-based should thus

be intuitive to them. Using XML for storage, on the other hand, might be

problematic as these agencies do not have the experience or resources to

convert the metadata and change the surrounding tools to the new structure.

XML may be known to them, but mostly as an import or export format. They

might therefore be reluctant to utilize DDI in XML format for reasons of

transformation costs or leaving their area of expertise.

In addition to organizational considerations, there are also structural ad-

vantages to using a relational database. Therefore, agencies often represent

their microdata internally in the form of a relational database as a central

storing mechanism because it is ideal for processing rectangular data (e.g.,

SPSS data files, ASCII data files) in tables and can manage the file structures

of multiple studies by input and output processes. If the metadata are stored in

Representing and Utilizing DDI in Relational Databases 4 | 18

the same database as the microdata, the movement from metadata to data

output works seamlessly as native database methods such as connecting tables

by referential integrity can be used. The metadata can be linked to the asso-

ciated research data. A user can therefore first search the metadata and then

move easily to the connected data. This model can even be extended to create

custom data extracts (like a variable shopping basket), where an extract of the

dataset, including the related metadata as a kind of codebook, can be selected

and downloaded, e.g., via a Web interface. In an XML-based DDI environment

this can also be done, but with much more effort, as two different structural

models have to be merged. In a worst case scenario, an external service has to

link between an XML metadata structure based on DDI and an ASCII file

containing the microdata.

Relational databases have existed on the market for decades, and have led

to the development of many tools for working with them. If one extends the

idea of combining metadata and microdata into a relational database model,

then the next step can be changing the database model into an analytical one.

Relational databases can be enhanced to become analytical or multidimen-

sional databases (e.g., online analytical processing [OLAP] cubes14). With this

model, enhanced analytical or statistical methods from the area of Business

Intelligence (e.g., data mining, process mining) can be applied to the data.

These methods might lead to completely new research questions and new

knowledge. This change of model would be difficult to realize in a complete

XML-based environment.

A less complex example is storing more than one survey in a structure. In

a relational database, the tabular structure can be designed to support multiple

surveys in one structure by adding additional administrative tables. In a DDI

structure based on XML files, this is difficult to represent; and it is difficult in

an XML database, as the structure is largely based on the original DDI XML

schema, which normally (as it is file-based) demands a separate XML file for

each survey. In an XML database structure each survey on its own has to be

represented as a separate XML database or at least as a separate instance of an

XML database (if the XML database supports instances). The problem can be

solved by adding additional programming routines surrounding the XML

structure to emulate referential integrity by XML database linkage. Never-

theless, the relational database offers these possibilities natively or with much

less effort.

Performance is not addressed in this paper, as the authors currently cannot

prove that working with DDI in a relational database is always faster than in an

XML database or XML file structure. The performance of DDI within different

systems depends heavily on the structure used, and therefore benchmarking

would not make much sense, as the results would not be representative of

different instances or different database products. The authors believe the

14 http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/

http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/
http://www.mendeley.com/research/providing-olap-online-analytical-processing-to-useranalysts-an-it-mandate/

5 | 18 Alerk Amin, Ingo Barkow, Stefan Kramer, David Schiller, Jeremy Williams

relational database might have some advantages because of its long existence

and heavy performance optimizations (e.g., indexes, stored procedures, user-

defined functions, managed code, file groups, raw device mapping), which for

the most part do not exist in XML databases, but this impression cannot be

verified and is therefore not further discussed here.

A representation of metadata within a relational database can also be

independent of the DDI version or instance. Some agencies use an internal

structure for their metadata that is not based on DDI but contains all the

necessary information needed to exchange data with other agencies. For them,

DDI in its XML form can be used as an import and export format, where the

necessary files are read or created by extract, transform or load processes (so

called ETL-processes). For example, ICPSR offers an “Export Study-level

metadata” (of DDI 2.1 or 3.1, as of Oct. 2011) function for studies in its data

archive15 in this manner. A possible advantage of this method would be that the

surrounding processes can always be adapted to the desired or required DDI

version(s), which is far less challenging than updating native DDI XML in-

stances to the appropriate version. Nevertheless, a major drawback of relational

databases importing XML file structures is the possibility for information loss.

If for some nodes within the XML instance there is no representation within

the database structure, this content will simply be lost during the import

process, or the import will not work at all if there is a structural check disallow-

ing these kinds of partial imports.

In a DDI-RDB model all import and export processes have to be handled

by ETL (Extract-Transform-Load) processes. This means DDI XML structures

have to be parsed and transformed. If an unknown element comes up there are

essentially two strategies to handle this – discard or store. Discard means the

loss of information which can be considered bad tooling. Storing also causes a

problem as this involves a high degree of program logic. A strategy could be

that the original DDI XML structure is kept as backup and can be attached to a

later export. However, here the danger of creating errors in the new DDI-XML

structure is even higher as there might be also problems with DDI versioning

when re-assembling the metadata.

Representing the DDI model in XML instances

Although the relational database contains a lot of additional features, the

“native” way to represent the DDI content is to store DDI as an instance

specified by the XML schema. This leads to the logical advantage of a direct

representation of the content in the correct schema. A DDI instance using the

full set of DDI elements will be far superior to a construct within a relational

database, as not all functionalities of DDI can be represented easily in the

latter. Problems arise with a relational database, as will be shown further

15 http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp

http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp

Representing and Utilizing DDI in Relational Databases 6 | 18

below, in representing versioning in DDI16, or pointing to another agency by

using referential URNs. In native XML the solution can be quite easily

expressed, but in relational databases this is possible only with heavy addition-

al programming (e.g., incrementing versioning by surrounding Web services or

using analytical databases with slowly changing dimensions to represent the

time or version). However, most agencies do not use DDI in its full specifi-

cation, but only a small subset of elements; here, the advantages of the XML

approach may not weigh heavily. Essentially, if an agency uses the full DDI

specification, the XML implementation is superior as this is the best possibility

to express DDI as designed by the DDI Alliance.

Issues with DDI specification changes in relational databases and in

XML

A problem all implementations of DDI share is handling new versions of the

specification (e.g., DDI 3.1 to DDI 3.2). If a new version of DDI is extended

with new structures, or there are changes in the structure itself, this causes

significant problems in implementation. In the case of the DDI-RDB, this

means constructing a new import and export mechanism for the new version.

Furthermore it might lead to a change in the overall database model to support

both versions. In a worst case scenario, the structures are not compatible

anymore, leaving the organization with two different databases or at least

database partitions for storing the information, which is a considerable problem

in data management.

But the DDI-XML method faces challenges with specification changes as

well. Either the DDI-XML structure has to be transformed, or there have to be

multiple versions of DDI-XML in the XML database. This leads also to

changes in the application logic of the associated tool. If one chooses the

simple solution from above and only changes the nodes which are known to the

agency, again this leads to the inconsistency problems mentioned before.

A sizable advantage for the DDI-XML representation here is its hierar-

chical structure. DDI-XML is capable of expressing complex structures in an

organized manner and can use built-in XML features like inheritance or

validation against the schema. A DDI-RDB has to use additional program logic

to emulate this behavior. In some cases, inheritance can only be expressed by

using complex join operations between tables or self-joins within a table,

leading to a decrease in speed while accessing the information. These perform-

ance issues can be decreased by using advanced database optimization tech-

niques like partitioned view, partitioned tables or managed code, but in the end

there is still a structural disadvantage.

16 see also: DDI Best Practice on Versioning and Publication – http://dx.doi.org/10.3886/DDIBestPractices08

7 | 18 Alerk Amin, Ingo Barkow, Stefan Kramer, David Schiller, Jeremy Williams

Considering a hybrid RDB-XML database approach for DDI

As described before, the import process into a relational database from an

XML structure might lead to problems, or fail altogether, if there is not

sufficient mapping between certain nodes and the tabular structure. The

question is what will happen to the parts which cannot be imported? Do they

get discarded or are they stored externally (e.g., in a table containing strings

which were not imported or keeping the original file as backup)? The disad-

vantage of handling this information externally would be very complex import

and export handling. Furthermore, searching long strings within one table cell

leads to a major loss in performance as relational tables are optimized for short

cell lengths.

Another way to keep the imported XML structure intact without losing

performance or logical losses would be to use the XML features of commercial

databases. Some database systems, such as Microsoft SQL Server 2008 R217 or

Oracle 11g18, have added support for managing XML natively within the cell

structure of their tables. This includes advanced features like XML indexes,

XML data type (thus XML will not be handled as string, but recognized as

XML) and XPath search expressions within table cells.

Using the hybrid approach, the advantages of relational databases (e.g.,

multiple studies, high performance) can be combined with the flexibility of

XML databases and enable easier handling of DDI between different systems.

A thorough evaluation of this approach, however, is outside of the scope of this

paper.

Modeling DDI in Relational Databases

There are many strategies for representing DDI, based on its XML expression,

in a relational database. This section provides some information about how to

model various DDI elements and relationships. These ideas can be incorpo-

rated into the strategy chosen for a particular application. However, there are

many other factors that should also be considered. These include requirements

for performance and scalability and which DDI versions to support, as well as

support within the chosen database, programming language, and application

framework. All of these must be considered when designing a database schema

for use within a particular application. The following examples are based on

DDI version 319, but the techniques used should apply to future versions of

DDI.

17 http://msdn.microsoft.com/en-us/library/ms189887.aspx

18 http://www.oracle.com/technetwork/database/features/xmldb/index.html
19 http://www.ddialliance.org/Specification/DDI-Lifecycle/

http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://msdn.microsoft.com/en-us/library/ms189887.aspx
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.oracle.com/technetwork/database/features/xmldb/index.html
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/
http://www.ddialliance.org/Specification/DDI-Lifecycle/

Representing and Utilizing DDI in Relational Databases 8 | 18

DDI elements

Most DDI elements consist of a number of attributes and sub-elements. For

instance, the Variable element has several attributes of different types, in-

cluding id (string), isGeographic (boolean), urn (URI), and more. Additionally,

the Variable element contains many sub-elements. These include the Var-

iableName, Label, Description, ConceptReference, Representation, and more.

The natural representation for these types of elements in a relational data-

base is a table. In a Variables table, each row would represent a single DDI

Variable. The columns in the Variables table would be used to store the various

attributes and sub-elements of the DDI Variable element. For most simple

types (such as strings, numbers, booleans, dates/times), this can easily be

represented via the corresponding database field types (varchars/texts, ints,

booleans, datetime). This works well for fields that can only be used once

(required or optional) in a table. For example, the id and isGeographic attrib-

utes are only used once in the Variable element. For sub-elements such as

Label, DDI allows 0 to unlimited Labels for each Variable. Modeling this in a

relational database will require a more complex structure than a simple string

field. The following sections describe how to model these complex relation-

ships.

XML hierarchy

The most basic relationship between DDI elements comes from the XML

structure. In the simplest case, there are many Schemes in DDI (such as

VariableScheme or ControlConstructScheme) which are lists. Each Variable-

Scheme can have any number of Variables, but each Variable belongs to only

one VariableScheme. To model these types of relationships, the best option is

usually a one-to-many relationship, where the foreign key relates the two

tables. For example, to model VariableScheme and Variable, the Variables

table would have a variable_scheme_id field that references the appropriate

record in the VariableSchemes table. This strategy works not only for DDI

Schemes, but for most elements in the DDI hierarchy. For example, a

StudyUnit has many DataCollections, and a DataCollection has many Col-

lectionEvents. These can also be modeled with one-to-many relationships.

References

A major feature of DDI is the ability to reuse elements, usually via References.

For example, a Variable can reference the QuestionItem (or QuestionItems) it

is based upon. Additionally, a QuestionItem can be referenced by many

Variables. A many-to-many relationship is required to properly model DDI

References. This is accomplished in a RDB using a join table. For each pos-

9 | 18 Alerk Amin, Ingo Barkow, Stefan Kramer, David Schiller, Jeremy Williams

sible DDI reference, a separate join table is needed to store the reference.

While a join table works fine for specific references, it does not work well for

“late-bound” references, which are supported in DDI. These are discussed in

the Advanced Cases section of this paper.

Recursive structures

There are some DDI elements which can have sub-elements of the same type.

Some examples of this are Groups and ControlConstructs. These types of

elements have a one-to-many relationship with themselves. While this can be

modeled like any other one-to-many element, there are several other possibili-

ties that may improve performance. Some common strategies for implementing

trees in relational databases are Path Enumeration, Nested Sets, Nested

Intervals, or solutions using Common Table Expressions. The best option

depends on many factors, including the nature of the application, programming

language/library support, and database support.

Substitution groups

There are many DDI elements that serve as placeholders for which several

options are possible. One example is ResponseDomain. A ResponseDomain

may not be directly used in a DDI Instance. Instead, it may be substituted with

the appropriate element, such as a CategoryDomain, CodeDomain, DateTime-

Domain, GeographicDomain, NumericDomain, or TextDomain. Other exam-

ples of substitution groups include ControlConstruct and ValueRepresentation.

DDI substitution groups can be implemented in a RDB using inheritance.

The placeholder element (such as ResponseDomain) becomes the parent class

in the RDB, and the other substitution elements (such as CategoryDomain, etc.)

become the child classes. There are several options for implementing inherit-

ance, involving either a single table to hold all classes, or multiple tables.

In the single-table solution, one should create a single table to hold the

entire class hierarchy. There should be columns for all properties of all of the

possible child classes. Many of these columns will be NULL because they do

not apply to a particular record. For example, a row that is a CategoryDomain

will have NULL fields for all of the columns that apply to CodeDomains,

TextDomains, etc. This type of solution is inefficient with respect to space, but

it eliminates joins and unions as all properties for a record are in a single row in

the table.

In a multiple-table solution, a table can be created for each child class,

with the appropriate columns to store the fields for that class. Additionally,

each child table will have a foreign key pointing to a record in a parent-class

table. For example, the ResponseDomain table will be pointed to by each of the

Representing and Utilizing DDI in Relational Databases 10 | 18

child tables. This solution is more space efficient, but may require several joins

to retrieve records.

The best solution depends on many factors, including the needs of the

application, as well as the programming language and database support.

Controlled vocabularies

There are several DDI fields whose values should come from a Controlled

Vocabulary, which is managed by the DDI Alliance’s Controlled Vocabularies

Working Group20. As the vocabulary is a list of items, each Controlled Vocab-

ulary should be represented in its own table. The various elements which need

to refer to a row in this table will use a foreign key field, using a standard one-

to-many relationship.

Database IDs

Each record in a table needs an ID. This can be an internal database ID (often

created with auto increment), or it can be a DDI ID. For performance reasons,

it is often better to use an internal database ID, using the fastest type for joins.

This allows for auto increment to create unique IDs when creating new records,

and leads to extremely fast joins when the ID columns are indexed. The

internal database ID can be an int (or unsigned int), though many databases

support UUIDs. Using UUIDs has certain advantages, as these can be used to

generate completely unique DDI IDs.

The DDI ID can be stored in an additional column. As DDI IDs can

contain both letters and numbers, they would have to be stored as varchar or

text. This makes them less fast for joins, but still useful for searching for

elements, based on DDI ID.

Advanced Cases

The following discussion provides more depth on some aspects of DDI

management that were addressed earlier.

Versioning (including late-bound references)

When there are multiple versions of an element (such as a QuestionItem),

another element (such as a Variable) can reference a specific version of the

20 http://www.ddialliance.org/alliance/working-groups#cvwg

http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg
http://www.ddialliance.org/alliance/working-groups#cvwg

11 | 18 Alerk Amin, Ingo Barkow, Stefan Kramer, David Schiller, Jeremy Williams

QuestionItem, or it can use a “late-bound” reference. In DDI, this is done by

using the letter “L” in the version (e.g., “1.L” or “3.0.0.L”), to reference the

latest version of an element. DDI supports both version numbering, and also

version timestamps. The timestamp aspect can be automatically managed by

some databases, such as SQL Server 2008 R2 or Oracle 11i. Nevertheless there

is currently no similar mechanism for representing the version numbering.

Furthermore, changing the version number of an element in DDI very often

leads to a cascading effect where the version number of other elements has to

be increased as well.

The version numbers will therefore have to be handled programmatically.

Basically there are three options to solve this:

1. A mechanism native to databases would be to create an array of

different triggers on the tables to increment the version numbers of

elements as well as maintain copies of the old elements in history tables

(as there might be references to older versions of the elements). This

leads to a lot of performance issues in running SQL INSERT or UP-

DATE statements. Furthermore, as triggers can be considered unman-

aged code (very often they are only present in the database and not in

the source code control system of the outer programming framework),

they are hard to document and regularly cause problems in larger pro-

gramming teams.

2. A way to solve this issue would be the option of using managed code

(e.g., an external Web service programmed in C# accessing a SQL

Server via the .NET Framework or similar solutions in JAVA or PHP

frameworks). This does not eliminate the problem of performance

issues, but at least makes the code more manageable and allows the

usage of repositories.

3. The last option would be using a feature of Data Warehousing to

represent the version and validity by slowly changing dimensions (see,

e.g., Kimball 2002)21. This means the tabular structure gets additional

fields which specify the start and end point of the validity of an object

as well as the version number. Although this can also be done in

relational databases, this technique is originally designed for the

dimension tables within analytical databases and therefore might cause

huge SQL statements to be represented in a fully relational structure. A

solution could be to use an analytical database for the history data or

ETL processes to DDI and a relational database for the current version.

Another problem of versioning is that DDI allows for unlimited length version

numbers (e.g., a.b.c.d.e.f...), which would normally be implemented as a text

field. String processing within table cells (even using indexing) is generally

21 Ralph Kimball, Mary Ross: The Data Warehouse Toolkit. The Complete Guide to Dimensional Modeling. 2nd

Edition. John Wiley & Sons, New York: 2002.

Representing and Utilizing DDI in Relational Databases 12 | 18

slow within databases and should therefore be avoided. A way to limit the

search burden would be to limit the depth of the version numbers so integer

fields can be used. This will also allow late binding to be done via SQL

WHERE statements, rather than via string processing.

As versioning is one of the key problems in using DDI in a relational

database infrastructure, many of these problems have to be discussed among

application developer, database designer and database administrator to find the

fitting solution between functionality and performance in the software

environment in question. As different databases have different features to

increase performance (e.g., partitioned tables for history processing in SQL

Server), the choice of the best of these three options has to be clarified.

Modeling schemes which include other schemes

There are many schemes in DDI which can include other schemes by ref-

erence. This feature can be used when creating a new version of a scheme, or

even when including elements from a completely unrelated scheme.

There are two main methods for implementing this in a relational database.

The first is to implement a structure very similar to the DDI XML structure.

The second is to “resolve” all of the included schemes, and just store the

“complete” version. The descriptions below will use VariableSchemes as an

example, but the methods can be extended to other schemes.

Implementing the first method involves several tables. A VariableScheme-

References table is used to store the references. Each VariableSchemeRef-

erence should include both the “target” VariableScheme that is being refer-

enced, as well as the “source” VariableScheme that will include the target. This

makes the VariableSchemeReferences table in effect a many-to-many join

table for the VariableSchemes table to itself.

Each VariableSchemeReference can contain several Exclude elements,

which should be stored in a VariableExcludes table. Each VariableExclude

belongs to a VariableSchemeReference, and has a many-to-many relationship

with the Variables table, which should be modeled with a join table. The Var-

iableSchemeReference should also include an ItemMap, which points to the

changed elements. This is modeled by a VariableItemMaps table, where each

row contains the ID of a VariableSchemeReference, a source variable in the

Variables table, a target variable in the Variables table, and a Correspondence.

The correspondence can either be modeled with one or more text fields, or its

own table.

While the above method of modeling the Reference closely follows DDI, it

comes at a cost. There are a number of tables to manage, which increases

application complexity. Additionally, trying to figure out the elements in a

VariableScheme becomes a very complex and resource-intensive process, with

13 | 18 Alerk Amin, Ingo Barkow, Stefan Kramer, David Schiller, Jeremy Williams

many queries required to combine all of the elements to get one list of

variables.

An alternative method is to store only the “resolved” schemes and instead

of a one-to-many relationship between VariableSchemes and Variables, use a

many-to-many relationship. In this manner, each Variable will belong to all of

the schemes that reference it. Using just the join table, it is very easy to list all

of the Variables that belong to the VariableScheme. All important descriptive

fields such as the ItemMap, Correspondence, etc., can be stored in the join

table, documenting how a Variable is included in the VariableScheme. While

this second method deviates more from DDI, it has many advantages for

application development and performance. Most read/write operations on

Variables and VariableSchemes become much faster, and the model is much

simpler to understand and maintain.

Multiple language support

Most text fields in DDI have support for multiple languages. This is usually

implemented by repeating the element, with a different locale for each element.

Support for multiple languages is extremely important in applications, and

therefore almost every database and application framework has some support

for holding localized version of strings. Because of the prevalence of support

for this, the best option is usually to use the mechanism supported by the

application framework. These text strings can be processed by the tools offered

within the framework and stored in additional tables attached to the RDB

structure. Many-to-many relationships can furthermore provide the means to

store multiple translations in multiple languages for the individual item.

In DDI, one should first identify the text strings that will be translatable in

the application – this will usually be Labels, Descriptions, QuestionText, and

other fields – and then implement these fields as the application framework

recommends to enable multiple language support. An alternative method would

be using an external standard for translation like the XML Localization

Interchange File Format (XLIFF). This XML schema is used by several

translation software suites (e.g., Trados or OLT – Open Language Translator).

A process between the relational database and the XLIFF format could work in

a manner similar to exporting a DDI structure out of the database. The export

creates an XLIFF file with the strings to be translated, and an external tool like

Trados can be used to translate the content. Afterward the strings can be re-

imported to the appropriate places in the corresponding translation tables.

Representing and Utilizing DDI in Relational Databases 14 | 18

Handling unknown or external elements in DDI

From the perspective of a relational database user, the biggest advantage of

using the DDI-XML model is easier exchange of metadata with another agency

by importing and exporting that metadata into/from the database. Nevertheless,

there are also some limitations of this process.

As long as the XML schema of DDI is not violated, a DDI-XML based

implementation can simply import all the code from other agencies, although

the elements of the DDI schema might be unknown as the agency chose not to

implement the full set of DDI. These unknown DDI elements in the XML file

structure will not be processed by the tools of the importing agency, but simply

ignored. However, they can still reside untouched in the XML file or XML

database, ready to be added when an export takes place. When the metadata

content is modified and later exported, all the information from the original

import will still be available in the structure ready to be processed by the next

agency which might support these elements. The XML code can therefore

more or less “pass through” agencies as long as it is not modified or refer-

enced.

Nevertheless, there is a danger of inconsistency. The previous agency

might have changed elements which could have in the full set of DDI an

impact on other elements. As the tools of the importing agency are only aware

of the elements they know and do not modify the unknown elements, but only

export them as they were imported originally, the result is an internal incon-

sistency between those elements, which does not cause a problem for the

exporting agency, but might have huge impacts on the importing agency.

In a relational database this kind of behavior is much trickier to emulate. If

the DDI XML structure from another agency is imported, the content has to be

processed and divided as it has to be converted from a tree structure to a

tabular structure. For the conversion there cannot be unknown elements as

every single one of them has to be parsed.

Essentially there are three ways to handle the process.

1. The relational database contains the full DDI set of a specific version

(e.g., DDI Lifecycle 3.1) which means at least within this setting there

cannot be unknown elements.

2. The relational database discards all unknown elements in the import

process; therefore they cannot be forwarded anymore, resulting in a loss

of original metadata.

3. The relational database stores the unknown elements as text strings or

in the case of enterprise databases as internal XML structures to

provide them later for exporting. Nevertheless, the mechanism to per-

form this export is much more difficult to develop in a RDB environ-

ment and has the same risk of inconsistency described in the XML

world.

15 | 18 Alerk Amin, Ingo Barkow, Stefan Kramer, David Schiller, Jeremy Williams

A special case of unknown elements is when external resources embedded into

the DDI structure have to be imported (e.g., multimedia resources used in

educational sciences) as the import process in both cases (relational or XML)

cannot really handle them because the storage structure is normally not

prepared for external elements. Here the importing application has to be

adapted individually to fulfill those needs.

Ensuring Application Compatibility in Transferring DDI Between

Databases

Using a relational data model for storage (or a hybrid RDB-XML approach)

has the disadvantage of not being able to easily store the entire DDI schema,

which often warrants the dynamic generation of DDI for transmission and

consumption by applications. Thus, it is important to establish the set of

elements being used in a given instance. DDI application compatibility can be

defined as the ability for software applications driven by DDI XML to pre-

dictably understand expected inputs and yield predictable outputs for

potentially disparate instances of DDI. Due to the flexible nature of the DDI

schema, a machine-actionable means of defining used and unused elements in a

given instance is necessary in order to validate whether different instances of

DDI are compatible. The DDI Profile module has been developed to facilitate

the automation of this requirement using XPath statements22. Use of this

module is not mandated by the DDI specification, but best practices have been

established about the creation of DDI Profiles23. There is also a best practice

document about high-level architecture for DDI application developers, which

suggests the use of DDI Profiles in the context of application interoperability24.

This paper does not aim to reiterate best practice, but to further elucidate how

one might use DDI Profiles in the context of building software applications

capable of communicating compatibility across organizations as well as within

organizations’ instances of DDI metadata.

The DDI Profile is defined in the DDI documentation as a simple col-

lection of XPaths that describe the objects within DDI that are either used or

not used for particular purposes. The DDI Profile facilitates sharing by clearly

stating what is expected in the DDI metadata received or sent by an organi-

zation and defines which parts of DDI an organization or system can handle25.

The use of a Profile is not mandatory, but when one is being used, it should be

referenced in all of the DDI instances that conform to it. This is done using the

22 http://www.w3.org/TR/xpath/

23 Best Practice on Creating a DDI Profile (2009-02-15): http://dx.doi.org/10.3886/DDIBestPractices06
24 Best Practice on High-Level Architectural Model for DDI Applications (2009-02-22):

http://dx.doi.org/10.3886/DDIBestPractices12

25 DDI Profile module schema: http://www.ddialliance.org/Specification/DDI-
Lifecycle/3.1/XMLSchema/ddiprofile.xsd

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/ddiprofile.xsd

Representing and Utilizing DDI in Relational Databases 16 | 18

URN of the profile in the DDIProfileReference element declared at the end of

the StudyUnit module as follows26:

<?xml version="1.0" encoding="UTF-8"?>

<DDIInstance xmlns="ddi:instance:3_1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="ddi:instance:3_1 http://sampleDDI/instance.xsd"

isMaintainable="true" id="">

 <StudyUnit xmlns="ddi:studyunit:3_1" id="">

 <Citation xmlns="ddi:reusable:3_1">

 <Title></Title>

 </Citation>

 <Abstract id="">

 <Content xmlns="ddi:reusable:3_1"></Content>

 </Abstract>

 <UniverseReference xmlns="ddi:reusable:3_1"></UniverseReference>

 <Purpose id="">

 <Content xmlns="ddi:reusable:3_1"></Content>

 </Purpose>

 <DDIProfileReference><ID

xmlns="ddi:reusable:3_1">URN_of_profile</ID></DDIProfileReference>

 </StudyUnit>

</DDIInstance>

Adding this reference is foundational to application compatibility as it provides

access to the output logic contained in the profile, informing developers inter-

acting with the instance of which elements from the greater DDI Schema to

expect as input. (The proper use of identifiers and URNs is outside the scope of

this discussion, but can be found described in the DDI Identifier27 and DDI

URN Resolution28 best practice documents.)

Whether generating DDI dynamically from a relational data model, or

transmitting it from an XML database, there are several types of validation

required for interoperability. Beyond XML validation and DDI Schema

validation, an application serving DDI should provide facilities by which other

applications can validate compatibility between systems. For example, an

application developer from organization ABC interacting with a DDI store

from organization XYZ via a Web service to create a cross-organization meta-

data search would most likely be delighted to find functionality that would

analyze the profiles from their organization and communicate incompatibilities

between the instances that needed to be addressed before implementation. This

functionality would expedite the development process and could be built

relatively easily by looping through the XPath statements contained in ABC’s

profile and returning the results when performed on XYZ’s instance of DDI.

26 Correspondences with Sanda Ionescu, May 25, 2011 - Aug. 22, 2011

27 Management of DDI 3.0 Unique Identifiers (2009-02-15): http://dx.doi.org/10.3886/DDIBestPractices10
28 DDI 3.0 URNs and Entity Resolution (2009-03-21): http://dx.doi.org/10.3886/DDIBestPractices11

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

17 | 18 Alerk Amin, Ingo Barkow, Stefan Kramer, David Schiller, Jeremy Williams

Applications between organizations are not the only architecture where

DDI profiles would be very useful. Another case to consider is one in which a

large organization is made up of many smaller autonomous, DDI-generating

units. This organization would like to find a way to merge datasets into a

model derived from common fields from each unit. This task would be ex-

tremely expensive and tedious without a way to communicate used and unused

fields in a standardized way. DDI Profiles provide that method in the same way

that was described in the previous example. Even greater efficiency can be

found when each unit establishes common profiles with the other units before

generating DDI, so that subsequent generation of metadata in one unit will be

interoperable as long as it adheres to the agreed upon field set.

Use of DDI Profiles to communicate elements used and not used in an

organization has many benefits besides interoperability between autonomous

units’ instances of DDI. It would also be pivotal in facilitating metadata tool

development throughout the DDI Lifecycle29. In the case of many survey

agencies, the creation of metadata involves a chain of tools, the output of one

feeding into the next. For example, the output of a questionnaire designer

would feed into a questionnaire engine, sending its output through a data

cleaner, the output of which is finally ingested by tools related to dissemina-

tion.

A Look into the Future: A More Abstract

Representation of DDI

While the previous sections discussed issues of handling DDI-based metadata

in a relational database, XML structure, or hybrid systems, the future may hold

another possibility. DDI as a standard underwent significant changes in its

history, e.g., DDI Codebook (prior to 2.5) is expressed as a DTD while DDI

Lifecycle (all versions of DDI 3.x) is represented as an XML schema. Some

agencies, as already mentioned, use the XML format only for import and

export purposes, while they internally map the metadata to their own

proprietary relational database standard. The underlying principle this reveals

is that DDI does not need to rely upon a particular technical representation, but

is valuable as an abstract model, the manifestation of which can be in different

representations, such as UML, RDF, etc. This means an abstraction layer could

exist between the relations and nodes of a possible “DDI 4” and the technical

representations used in a given system. The advantage is that a technical

representation can be generated out of the abstract model. At the time of the

writing of this paper, discussions within the DDI Alliance were occurring to

29 see graphic depiction at: http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg

http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg
http://www.ddialliance.org/sites/default/files/what-is-ddi-diagram.jpg

Representing and Utilizing DDI in Relational Databases 18 | 18

take exactly this step, towards conceptualizing the specification as an abstract

model.

Conclusion

This paper discussed various aspects, pros, and cons of managing DDI meta-

data in relational databases vs. XML structures, and issues of application

compatibility when transferring DDI metadata between different stores and

agencies. The authors invite discussion of this paper on the DDI users’ email

discussion list30, and at future meetings of the DDI and broader social science

data communities.

30 http://www.ddialliance.org/community/listserv

http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv
http://www.ddialliance.org/community/listserv

