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Abstract 

Requirements for embedded systems are mainly documented using natural language. This is 

due to the fact that natural language does not require special nomenclature knowledge and 

is accepted as the basis for contractual agreements. However, purely natural-language-based 

requirements engineering (RE) is often error-prone, potentially ambiguous, and does not 

foster traceability and hence requires tedious manual reviews and analyses. Model-based 

requirements engineering is often considered a possible solution as models enhance 

traceability, aid in stakeholder communication, and foster automatic model analysis and 

model checking. However, model-based requirements engineering is only slowly adopted in 

the industry, partly because no clear guidelines to their application exist, particularly in 

legally binding documents. In order to combine the advantages of model-based 

requirements engineering with the convenience of natural-language-based requirements 

engineering, we developed a combined RE approach that relies on both a controlled natural 

language (i.e., a natural language that is restricted in its expressiveness) as well as 

requirements models and defines a structured interface between both specification 

paradigms. The purpose of this document is to report on the application of the combined 

approach in an industrial case study from the automotive industry: a body control module. 

A body control module is an electronic control unit (ECU) that centralizes the control of body 

and comfort functions provided by multiple other ECUs distributed in a vehicle. The case 

study illustrates how controlled natural language as well as requirements models can be 

used in order to specify solution-neutral goal and scenario models as well as functional 

requirements of a body control module across multiple layers of abstraction. 
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1  

Literature shows that natural language is the most common documentation format for 

requirements specifications (e.g., [Juristo et al. 2002, Pretschner et al. 2007]). Partly, this is 

due to the fact that requirements often become the foundation for contractual agreements 

[Sikora et al. 2011], for example, between original equipment manufacturers (OEMs) and 

suppliers [Jersak et al. 2003]. Using natural language has advantages for the requirements 

engineering of embedded systems: on the one hand, it does not require stakeholders and 

developers to become familiar with special documentation formats (e.g., formal models) and 

is therefore easy to understand [Balzert 2009]. On the other hand, it typically does not 

mandate dedicated documentation tools. However, there are a number of disadvantages 

using natural language in requirements specifications: since it is inherently ambiguous, it can 

be interpreted in different ways by the stakeholders (e.g., [Balzert 2009, Pohl 2010]), and it 

cannot be easily processed using automated tools [Yue et al. 2011]. In addition, it requires 

manual traceability management [Gotel and Finkelstein 1994] and the sheer volume of 

requirements in some development projects impairs requirements validation significantly 

[Flynn and Warhurst 1994]. One approach to tackle the problem of the inherent ambiguity of 

natural language is to restrict its expressiveness by only allowing certain formulations, 

phrases, and a restricted vocabulary. Such a restricted language is called a controlled natural 

language (CNL) [Huijsen 1998a, Huisen 1998b, Schwitter 2010]. 

Using requirements models has been suggested as alleviation for the inherent problems with 

natural language-based requirements specification. Using models to document requirements 

is beneficial for communication among stakeholders [Pohl 2010]. In addition, models can 

help to manage the complexity of the system [Neill and Laplante 2003] and can be processed 

automatically. However, model-based approaches are only hesitantly adopted by the 

industry partly due to the fact that there is little guidance available on when and how to use 

models during the engineering of embedded systems [Sikora et al. 2012]. While some 

approaches such as the SPES Modeling Framework [Broy et al. 2012] have been developed in 

order to address this problem, such approaches do not take into account that models are not 

considered as a suitable foundation for contractual agreements [Sikora et al. 2011].  

Furthermore, it is sensible for the development process to develop the system architecture 

not only based on the requirements specification, but in step with it [Nuseibeh 2001], ideally 

based on a functional hierarchy, which documents required system functions [Schäuffele and 

Zurawka 2003, Gausemeier et al. 2009]. This way, the architecture can be based on the 

functional hierarchy, which fosters the requirements to be accurately reflected in the 

architecture [Fockel et al. 2012a]. While some approaches exist which tackle the integration of 

requirements and architecture, these approaches either consider a coarse development 

process (e.g., [Nuseibeh 2001]), are solely model-based (e.g., [Pohl and Sikora 2007], or solely 

based on (controlled) natural language (e.g., [Holtmann 2010, Holtmann et al. 2011a, 
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Holtmann et al. 2011b]). The integration of model-based and natural-language-based 

requirements engineering for the purpose of fostering the co-development of requirements 

and functionality has thus far not been tackled by existing literature.  

The purpose of this document is to show the application of an integrated requirements 

engineering approach in an industrial case study. This RE approach makes use of both 

controlled natural language and requirements models in order to combine the advantages of 

both documentation formats and in order to allow for the co-development of a function 

hierarchy and system requirements. The integrated requirements engineering approach 

combines the pattern-based, controlled natural language requirements engineering approach 

(CNL-RE approach) presented in [Holtmann et al. 2011b] with a model-based requirements 

engineering approach (MB-RE approach).  

The CNL-RE approach provides the ability to specify requirements such that they can be 

used as a contractual basis between suppliers and OEMs. In addition, by using a strict 

grammar, it prevents ambiguities for the purpose of conducting automated analyses 

[Holtmann 2010] and allows structuring functionalities hierarchically.  

The MB-RE approach is a seamless model-based approach to document requirements, 

beginning with the system environment and coarse, solution-neutral requirements to 

solution-oriented functional requirements. It relies heavily on a goal- and scenario-oriented 

process and provides a number of specialized requirements model types which allow for 

traceability between one another.  

By combining the approaches, requirements can be elicited, agreed upon, and documented 

both based on models and textually. The requirements engineer can switch between both 

representations as fits best. For instance, the textual representation can be used for   

document-oriented reviews or a contractual agreement with the customer, and the model-

based representation can be used to derive the system architecture as the next step in a 

model-based development process. 

The industrial case study presents a Body Control Module (BCM) from the automotive 

domain. A BCM is an embedded system that constitutes a new paradigm in managing the 

increasing number and complexity of electronic control units (ECUs) in the passenger 

compartment of modern vehicles. The purpose of the BCM is to dispatch control commands, 

relay sensor information, and manage data exchange between many different control units, 

for example, ECUs for the power door locks, the turn signals, etc. In essence, a BCM is a 

control unit for control units. The advantage of such a paradigm is that the interconnectivity 

between the various control units is decreased, as every control unit only requires a 

connection to the BCM, thereby leading to a reduction in the size of the cable tree inside the 

vehicle. For example, rather than having to connect all four turn signals with one another to 

ensure synchronous hazard flashing, the turn signals only need to be connected to the BCM 

which in turn synchronizes them. On the other hand, this means that the BCM must be able 
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to handle a large variety of different functions, which all have to be accounted for during 

requirements engineering. That is, it must not only be able to control functions of the 

individual attached systems, but it must also be able to control the attached systems in 

conjunction with one another. 

This paper is structured as follows: Section 2 illustrates the related work regarding the 

integration of model-based and natural language-based requirements engineering 

approaches. The following sections introduce the controlled-natural-language-based and the 

model-based requirements engineering approaches, which were merged to an integrated 

approach, respectively (Sections 3 and 4). Section 5 introduces the integrated approach 

before Section 6 shows the application of the integrated approach on the automotive case 

study BCM.  Section 7 summarizes this document and provides an outlook on future work. 
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2  

The relevant literature on the integration of model-based and natural-language-based 

requirements engineering covers two main research areas.  

On the one hand, there exist approaches concerning the manual, semi-, or even fully 

automated creation of models from natural language requirements. A systematic review of 

such approaches has been conducted by Yue et al. [Yue et al. 2011]. The authors motivate the 

importance of this type of approach by means of the lifecycle of the Model Driven 

Architecture (MDA) [OMG 2003]. One basic principle of the MDA is to automatically create a 

platform-specific model from a platform-independent model by means of model 

transformations. In contrast to that, a transformation from requirements to an analysis model 

is not covered by the MDA lifecycle. Yue et al. assume that this is caused by the typical 

natural language representation of requirements that complicates automated techniques for 

processing them. However, they argue that a (semi-)automated transformation approach 

from requirements to analysis models would fill an important gap in the MDA software 

development life cycle. Furthermore, Yue et al. state that such approaches could help to 

(semi-)automate the establishment and maintenance of traceability between requirements 

and analysis models as well as to the subsequent design models and the implementation. 

On the other hand, other approaches focus on creating textual requirements specifications 

from graphical models in a manual, semi-, or full-automatic manner. A systematic literature 

review of such approaches has been presented in [Nicolás and Toval 2009]. As illustrated in 

Section 1, requirements models and natural language requirements both have benefits and 

disadvantages for the development process. According to [Goldsmith 2004], models are 

appropriate for representing requirements, but natural language requirements foster proper 

requirements validation. In addition, while models are in general more expressive and more 

precise, natural language is used for the contract with the customer and eases the 

requirements management [Sikora et al. 2011]. Hence, it has been argued that the 

combination of model-based and natural-language-based requirements improves the 

requirements engineering process as it may allow incorporating benefits from both 

documentation forms [Davis 2005]. In particular, the main benefit of this combination is that 

it reduces the effort for writing the requirements, improves the completeness of the 

requirements specifications, and automatically establishes and maintains traceability 

between textual requirements and requirements models [Nicolás and Toval 2009], as is 

required by many standards (e.g., [IEEE 830], [ISO 26262]) and maturity models (e.g., 

Automotive SPICE [AutomotiveSIG 2010]). 

Until now, there are no approaches that support the bidirectional and hence tight 

interrelation of model-based and natural language-based requirements engineering in a 

semi- or fully automatic way. This is also indicated by the above mentioned systematic 
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literature surveys, which only cover one direction (i.e., from natural language requirements 

to models and vice versa). Moreover, we conducted a systematic literature review with 

particular focus on such articles featuring semi- or fully automated approaches. In the 

following, our findings are summarized with regard to the targeted use of natural language 

as well as models for eliciting, documenting, reconciling, and validating requirements. 

We present related approaches on (semi-)automatically generating models from natural-

language-based in the first subsection and approaches that transform model-based 

requirements into natural language in the second subsection. We conclude in the last 

subsection. 

2.1 Automatic generation of models from NL-requirements 

Illieva and Ormandjieva [Ilieva and Ormandjieva 2006] describe a method for automatically 

eliciting UML models from natural language requirements. The authors present a formalism 

which is used to create three models from textual requirements: the Use Case Path Model, 

the Hybrid Activity Diagram, and the Domain Model. These models are abstractions from 

the information in natural language requirements and serve as a basis for deriving various 

UML models.  

Ambriola and Gervasi introduce an environment for analyzing and transforming natural 

language requirements [Ambiola and Gervasi 1997; Ambiola and Gervasi 2006]. This 

environment can parse natural language requirements and transform them into various 

models (e.g., ER diagrams, UML models, state diagrams) using an expert system. Natural 

language requirements are first transformed into parse trees and then saved in a common 

tuple space. This tuple space contains the basic-knowledge about the textual requirements. 

Using various transformation operations, various models can be derived automatically from 

the tuple space. The created models in turn can be checked, tested, and validated using 

various criteria.  

Deeptimahanti and Babar or Sanyal [Deeptimahanti and Barbar 2009; Deeptimahanti and 

Sanyal 2011] describe the automatic generation of UML models from natural language 

requirements as well, using a tool. The tool possesses three generators to generate Use Case 

diagrams, conceptual models, and code, respectively.  

Harmain and Gaizauskas [Harmain and Gaizauskas 2000; Harmain and Gaizauskas 2003] 

introduce a CASE tool, which is supposed to facilitate the requirements engineering analysis 

process. The tool generates an initial UML class diagram from natural language 

requirements documents. This UML class diagram represents the object-classes and their 

relationships as mentioned in the requirements documents, and can be translated directly 

into a graphic representation for further editing.  

Kiyavitskaya and Zannone describe in [Kiyavitskaya and Zannone 2008] a method for 

facilitating the Secure Tropos methodology during the requirements elicitation phase. A tool, 
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which is supporting the methodology, aims at translating natural language requirements in 

semi-structured specifications based on the SI* modeling framework – an extension of the i*-

language for goal-modeling.  

Leonid Kof describes a method for transforming natural language descriptions of interaction 

sequences into automata or MSCs [Kof 2009]. This method is based on what Kof refers to as 

Discourse Context Modeling for adding missing information to the natural language 

specification. Furthermore, Kof describes in [Kof 2010] an interactive, adaptive CASE-tool for 

facilitating processing natural language requirements. In this approach, a user marks a 

sequence of words in the present text and selects a model element to which those properties 

(e.g., the element’s name) are assigned that can be found in the text sequence. This creates 

links between text sequences and model elements. These links serve as training sets, which 

can be used to foster automatic extraction of model elements and relations. 

In [Mich et al. 2002], the authors present a CASE-tool prototype for analyzing requirements, 

based on processing natural language documents. The tool supports the automatic 

identification of classes and the corresponding associations from textual requirements 

documents and generates an abstract model. Similar to [Kof 2010], the model elements are 

connected to their textual sources by introducing traceability links.  

2.2 Generating NL-requirements specifications from models 

In [Drusinsky 2008], a process is described that translates functional and behavioral models 

such as UML activity diagrams and MSCs into natural language requirements. This 

approach was developed to facilitate the increasing popularity of UML during development 

and to be able to express those modeled requirements in natural language form. Similarly, 

Meziane et al. introduce an approach in [Meziane et al. 2008] that derives natural language 

requirements specifications from UML class diagrams. For this purpose, a system of rules is 

used in conjunction with a linguistic ontology in order to express the diagram’s components. 

The goal is to document the current state of the system under development in a format that is 

understandable for all stakeholders.  

Lu et al. [Lu et al. 2007; Lu et al. 2008b; Lu et al. 2008a] present a model-based, object-

oriented approach for eliciting and managing requirements. For this purpose, a requirements 

management tool is introduced, which facilitates the integration of object-oriented concepts 

and model-based requirements engineering. The principle of “modeling requirements 

documents” is meant to improve completeness, consistency, and traceability as well as 

integration with artifacts from other phases of the development. In addition, typical 

problems of ambiguity and inconsistency in natural language documentation of 

requirements can be reduced by presenting the knowledge of the pseudo-domain in an 

explicit, well-defined requirements model.  
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2.3 Conclusions from the Related Work 

As can be seen from the literature regarding text-to-model transformation, most approaches 

generate UML models like Use Case diagrams or class diagrams, either directly or via 

several intermediate transformations. These various approaches are typically meant to 

dissolve the inherent ambiguity in natural-language-based requirements. On the other hand, 

the approaches focusing on model-to-text transformation primarily aim at facilitating the 

communication with stakeholders who have no experience with models. The respective 

authors of the approaches commonly agree that such methods offer good support for the 

elicitation, documentation, reconciliation, and validation processes in requirements 

engineering, and, moreover, they make possible to save much time and much costs. In 

essence, each of the approaches presented above allow the developer to benefit from the 

transition in certain development scenarios and in specific points during development.  

Yet, it can be seen that no approach specifically regards the co-development of natural 

language requirements and requirements models. While the approaches presented above 

focus on the explicit transition either from models to text or from text to models, no approach 

defines a development process that strategically incorporates the transition from models to 

text and vice versa in order to make the benefits of both requirements models and natural 

language requirements available throughout development.  

A technical prerequisite for such a development or requirements engineering process is the 

possibility of synchronization between natural language and models. It was argued in 

[Nicolás and Toval 2009] that such a "synchronization could be useful in an iterative and 

incremental software process”, thereby fostering validation, as validation can be “carried out 

directly on the widely understandable generated textual requirements, which could be 

changed to make the related models evolve automatically through traceability relationships" 

[Nicolás and Toval 2009]. 
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1 

In previous work, we conceived a seamless, model-based design methodology for 

automotive systems with focus on suppliers [Fockel et al. 2012a; Fockel et al. 2012b; 

Holtmann et al. 2011a]. This automotive-specific design methodology is concerned with 

requirements engineering and focuses on the formulation of requirements using natural 

language, the validation of requirements and the transition to model-based design. 

Our development methodology starts with so-called customer requirements [AutomotiveSIG 

2010] that typically are specified informally and are made available to the supplier by an 

original equipment manufacturer (OEM). These customer requirements specify the high-

level functionality of the system to be developed. Based on the customer requirements and 

technical implementation knowledge, the supplier specifies more detailed system 

requirements [AutomotiveSIG 2010], which propose a possible implementation of the 

required system functionality. 

Since requirements models are not necessarily understood by all stakeholders, their use is 

not feasible in many development scenarios as contractual basis or to satisfy standards. This 

is especially true for the automotive sector, which is characterized by the collaboration 

between OEMs and many suppliers. Consequently, requirements specifications in the 

embedded or automotive domain are typically formulated by means of natural language 

[Sikora et al. 2012]. This complicates the automatic processing of the specifications. Thus, 

requirements validation and the transition to model-based design have to be performed 

manually, which is extensive and error-prone. 

To overcome this problem, we use a Controlled Natural Language (CNL) approach for the 

specification of system requirements in the automotive domain [Holtmann et al. 2011b]. The 

CNL restricts the expressiveness of natural language and disambiguates it, enabling 

automatic processing of the requirements while having natural language requirements 

understandable for all stakeholders at the same time. We extended a CNL for the 

specification of functional system requirements, which is already successfully used in the 

automotive industry [Kapeller and Krause 2006]. 

                                                      

1 This chapter bases on the previously published work ([Fockel et al. 2012a; Fockel et al. 2012b; 
Holtmann 2010; Holtmann et al. 2011a; Holtmann et al. 2011b]). 
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3.1 Methodology 

Requirement patterns are a means to describe the functionality of the system under 

development (SUD), as sketched in Figure 1. The patterns allow refining the overall system 

functionality across systems (i.e., a grouping of functionality) to atomic functions across 

several abstraction layers. Besides the different functions, also the dependencies between 

them are of interest. To identify the dependencies, the input and output data required and 

provided by the different functions are analyzed and described by using the CNL in terms of 

signals. The approach is similar to the Structured Analysis as presented in [Ross and 

Schoman 1977; DeMarco 1979], for example. By using the requirement patterns, a function 

hierarchy spanning a tree with functions as leaves is conceived. While refining the complete 

system across subsystems into functions, the input and output interface of an element (i.e, 

the complete system or a subsystem) of one abstraction layer is partitioned onto elements of 

the next deeper abstraction layer (i.e., a subsystem or a function) in order to reduce the 

overall complexity of the SUD. Concrete examples for this can be found in our case study in 

Chapter 6. Furthermore, there are requirement patterns, which describe more detailed, 

solution-oriented requirements as described in the next chapter and comprise quality 

requirements, safety requirements, computation rules, internal states and their transitions, 

and activations or deactivations of functions, for example. 

 

Figure 1: Function hierarchy described using requirement patterns (based on [Holtmann et al. 

2011b]) 

In the subsequent development process, a logical architecture is developed manually based 

on the function hierarchy. Afterwards, the atomic leaf functions are allocated to logical 

components in order to document which function is realized by which component. A 

function can be allocated to one or more logical components. Alternatively, a logical 

component can also realize the functionality of several functions such that a set of functions 

is allocated to a single logical component (see [Fockel et al. 2012b]). The advantage of the 

distinction of system functionality and architecture is that it is possible to allocate the same 

functionality to different, concrete logical architectures. For example, the functionality of a 

BCM for a car and for a truck is the same, but the architecture is different due to the fact that 

in a truck more turn signal ECUs have to be controlled (see Chapter 6). 
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3.2 Textual Requirement Patterns 

The CNL consists of textual templates for requirements (requirement patterns) with static, 

variable, alternative, and optional parts. The syntax is similar to that of regular expressions. 

Five example requirement patterns that are relevant for this paper are listed below. Some 

example requirements shaped by the requirement patterns 1–5 are listed in Table 1. 

1. The system <system> consists of the following subsystem[s]: <subsystem list>. 

2. The functionality of the system <system> consists of the following function[s]: 

<function list>. 

3. The (system <system> | function <function>) (processes | creates) the following 

signal[s]: <signal list>. 

4. When the event <event> occurs within the system <system> [and the condition 

<condition> is fulfilled], then the function <function> is (activated | deactivated). 

5. The (system <system> | function <function>) has to react within <time> <timeUnit> to 

its stimuli. 

In the above requirements patterns, the element <system> is a functional unit, that is, a 

grouping of functionality. Thus, Complete System in Figure 1 represents the functionality of 

the SUD, which is decomposed across the subsystems to atomic functions. These functions 

have a behavior which can be described as a relation between the input and output signals. 

The description of this behavior is not in scope of this paper and could be specified with free 

natural language, with formal models, or also with a CNL. 

The element signal describes the input and output data of a function. All signals are defined 

in a central data lexicon (cf. the data dictionary from [DeMarco 1979]) and referenced by the 

requirements shaped by the patterns. Signals specify logical values and can be used to 

document the data flow between functions (e.g., velocity). Logical values are more abstract 

than concrete values, which may be specified during the design of the logical and technical 

architecture. For these architecture types, the interfaces are described in more detail and are 

mapped to technical signals such as bus signals. Hence, the input and output signals can be 

used to define interfaces in the logical and technical architecture. 

ID Requirement text 

R1 The system BodyControlModule consists of the following subsystems: 

ControlTurnSignals, ControlBrakeLight. 

R2 The functionality of the system ControlTurnSignals consists of the following 

functions: Indicate, SwitchHazardLights. 

R3 The functionality of the system ControlBrakeLight consists of the following functions: 

LightBrakeLights, SignalizeEmergencyBrake. 

R4 The function LightBrakeLights processes the following signal: brake. 
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R5 The function LightBrakeLights creates the following signal: light. 

R6 The function SignalizeEmergencyBrake processes the following signal: 

emergencyBrake. 

R7 The function SignalizeEmergencyBrake creates the following signal: lightIntense. 

R8 The function SignalizeEmergencyBrake has to react within 25 ms to its stimuli. 

Table 1: Example requirements specified with requirement patterns 

Furthermore, requirement patterns specify events that trigger the activation or deactivation 

of functions. The event specifications can be augmented by conditions that must hold in 

order for the event to be triggered. These events and conditions are described with the fourth 

requirement pattern. There are further templates that formalize the variables <event> and 

<condition> from requirement pattern no. 4. These are listed in Table 2. 

Event 
<signal> (increases above | decreases below | reaches) <value> 

<signal> is turned (on | off) 

Condition 

<signal> [is] [not] (greater than | lower than | equal to | unequal to | greater 

than or equal to | lower than or equal to) <value> [is] 

<signal> (< | > | == | <= | >= | <>) <value> 

Table 2: Templates for events and conditions 

By making use of the CNL outlined above, the expressiveness of natural language is 

restricted and thereby syntactically disambiguated. This fosters automatic processing of the 

requirements in several ways.  

Firstly, we developed a prototypical requirements editing environment consisting of a 

tabular editor for the data lexicon, as well as a text editor to document the requirements 

using the requirement patterns explained above [Holtmann 2010]. The text editor employs 

features like error marking (e.g., in the case of text that does not correspond to the 

requirement patterns), syntax highlighting, auto completion, and the automatic generation of 

an overview of the current function hierarchy. These features support the requirements 

engineer in a constructive manner while formulating requirements.  

Second, we developed an automatic requirements validation approach on top of the 

requirements editing environment [Holtmann et al. 2011b]. The validation approach 

automatically checks the overall requirements specification for wellformedness w.r.t. to 

predefined rules and guidelines. For example, we outlined in the last subsection that the 

inputs and outputs of the atomic functions should be propagated via the subsystems to the 

overall system. That is, in the final requirements specification each system should have the 

union of inputs and outputs of its subordinate elements (i.e., subsystems or functions). 

Regarding the requirements R3 – R7 in Table 1, the subsystem ControlBrakeLight should 

process the signals brake and emergencyBrake and create the signals light and lightIntense since 
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the subsystem’s subordinate functions LightBrakeLights, SignalizeEmergencyBrake do so. Thus, 

there should be two requirements that specify that ControlBrakeLight processes and creates 

these input and output signals, respectively. Typically there is a huge amount of 

requirements, which are additionally distributed across several documents and document 

chapters. Thus, such missing requirements or requirement inconsistencies can easily be 

missed and therefore lead to problems in the subsequent development process.  Such 

requirements defects can be identified by the requirements validation approach. 

Finally, we ease the transition to model-based development by generating an analysis model 

[Fockel et al. 2012a; Fockel et al. 2012b; Holtmann et al. 2011a]. The analysis model reflects 

the same information as the requirements and represents the function hierarchy in a SysML 

Block Definition Diagram. For example, the analysis model in the bottom of Figure 2 reflects 

exactly the same information as the excerpt of requirements in Table 1. We use the analysis 

model as a basis to establish traceability to the logical architecture and for detecting missing 

or invalid traceability automatically [Fockel et al. 2012a]. For example, we outlined in the last 

subsection that all leaf functions of the analysis model have to be allocated to logical 

components in the subsequent development process. This is done by means of SysML 

allocation links between the elements of the analysis model and the logical components, 

amongst other things. If such trace links do not exist, we identify the corresponding 

functions or logical components by automatic checks. Furthermore, we also take the relations 

between the input and output information of the analysis model and the logical architecture 

into account. To execute the generation, we apply the bidirectional, synchronizing model 

transformation technique Triple Graph Grammars (TGGs) [Schürr 1995]. Once the analysis 

model has initially been generated based on the requirements documented using the 

requirement patterns explained above, TGGs allow keeping requirements and analysis 

model consistent automatically. This is done by repeatedly updating the parts of the analysis 

model that are affected by updated requirements. The other way round, it is also possible to 

change the analysis model and update the requirements that are affected by the changes in 

the model. Since TGGs store the correspondences between the analysis model and the 

documented requirements (cf. objects :co1, :co2, and :co3 in Figure 2), traceability between 

them is established and maintained automatically [Fockel et al. 2012a].  
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Figure 2: From requirements to analysis model (based on [Fockel et al. 2012a]) 
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4 -  

A seamless model-based requirements engineering approach (MB-RE approach) has been 

developed with the aim to foster a systematic, model-based co-design between requirements 

and architecture2. The approach is based on a goal-/scenario-oriented stepwise refinement of 

requirements from coarse, solution-neutral requirements to detailed, solution-oriented 

requirements. 

Due to the stepwise, artifact-based refinement, the MB-RE approach allows for traceability 

between requirements artifacts. To enable the stepwise refinement, the MB-RE approach is 

based on two main concepts: A hierarchy of abstraction layers (see Section 4.1) and a 

requirements artifact model (see Section 4.2). In the following, we will summarize the key 

ideas of the MB-RE approach, its requirements artifacts and architectural artifacts. 

4.1 The Abstraction Layer Model 

One key feature of the MB-RE approach is a hierarchy of abstraction layers. Using different 

levels of abstraction is a proven way to reduce the complexity of development projects 

[Weber and Weisbrod 2003] and has also been successfully applied in a number of different 

research approaches (see, e.g., [Braun et al. 2010] and [Bühne et al. 2004]). The continuous 

model-based requirements engineering approach therefore offers hierarchical layers of 

abstraction for all requirements artifacts, which fosters the decomposition of the SUD in a 

systematic manner. At each abstraction layer, a number of different requirements models are 

developed: environment models, goal models, scenario models, and solution-oriented 

requirements, see Section 4.2. The commonality among the requirements models on one 

abstraction layer is that they contain requirements artifacts pertaining to the same set of 

concerns [Fine 2002]. Abstraction layers therefore differ from one another with regard to the 

level of detail of their requirements, such that some abstraction layers contain more coarsely 

specified requirements (in the following, called higher abstraction layers) and some layers 

contain more detailed requirements (so called lower abstraction layers). 

As prior research shows (e.g., [Sikora et al. 2011]), it is futile to specify a rigid hierarchy of 

abstraction layers. This is due to the vastly different development projects in individual 

application domains such as automotive technology, avionics, medical, energy, or 

automation technology: Building a driver assistance system in the automotive industry is 

vastly different from building an assembly line in the automation industry. Consequently, 

                                                      

2 The requirements viewpoint presented in [Daun et al. 2012] is based on the model-based 

requirements engineering approach sketched in this chapter.  
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using the same abstraction layer hierarchy in both endeavors might not be wise. Therefore, 

the MB-RE approach supports defining abstraction layers freely with regard to the 

development project and the application domain. In other words, a particular abstraction 

hierarchy must be defined according to the peculiarities that the project in the given 

application domain makes necessary. Therefore, the RE approach does not define a rigid 

abstraction hierarchy, but recommends a generic abstraction layer types that can be tailored 

towards project and application domain. In the following, the abstraction layer types and 

their properties and relations to one another are explained. In Figure 3, the abstraction layer 

hierarchy of the MB-RE approach is illustrated. 

 

Figure 3: The Requirements View Abstraction Layer Hierarchy 

4.1.1 Top System Layer 

The Top System Layer is the most abstract layer. Usually, there is only one system specified at 

the Top System Layer. In this abstraction layer, the interfaces of the SUD with its 

environment and entities within the environment, such as users and other systems are 

captured. In addition, at this abstraction layer, physical and technical processes in the context 

of the system are captured. This abstraction layer presents the services and functions offered 

by the system using the artifact types outlined in Section 4.2. The requirements artifacts at 

this abstraction layer focus on the system's usage, while the architecture is mainly concerned 

with the definition of sub-systems. 

4.1.2 System and Sub-System Layers 

These layers consist of a number of different (sub-)systems that have been identified on the 

next higher abstraction layer during the development of the architecture artifacts. It hence 

contains the logical building blocks obtained from the decomposition of the overall system. 

There may be arbitrarily many of these layers, that is, a system specified on the System Layer 

may contain further sub-systems. These sub-systems are specified on the next layer, the Sub-

System Layer. Sub-systems may themselves contain further sub-systems, which are in turn 

specified on the next lower sub-system layer, and so forth. Each of these layers usually 

contains more than one system. Hence, in contrast to the Top System Layer, the System and 

Sub-System Layers contain multiple systems. Consequently, the requirements engineering 

process has to be performed for each system and sub-system and must render artifacts that 
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are both consistent to one another (i.e., to the artifacts of other systems within this layer) and 

to the next higher layer. 

4.1.3 Component Layer 

The Component Layer is usually the lowest abstraction layer, disregarding from how many 

sub-system layers have been defined. This layer is largely similar to the sub-system layer(s). 

The main difference between System, Sub-System, and Component Layer is that the sub-

systems specified at the Component Layer are not decomposed any further. Sub-systems that 

are not decomposed are considered atomic components. The Component Layer consists of 

hardware and software components that realize the entire system's properties. At this layer, 

the interrelation between software and hardware components is defined. Therefore, this 

layer ordinarily contains the physical building blocks of the entire system.  

4.1.4 Using Abstraction Layers 

There is no restriction regarding how many or how few abstraction layers must be defined. 

For example, if a very simple system is to be designed that is not further decomposed into 

sub-systems or components, or if the complexity of the system does not significantly 

decrease due to decomposition into sub-systems, the requirements engineer might choose to 

use merely one abstraction layer. This would be equivalent with specifying the system under 

development on the Top System Layer. On the other hand, it is also possible to use two or 

more abstraction layers. Using two abstraction layers is equivalent to specifying the 

requirements on the Top System Layer and Component Layer, respectively. In the case that 

more than two abstraction layers are used, requirements are also specified on at least one 

System Layer. 

4.2 The Artifact Model 

Research in model-based requirements engineering must provide RE approaches that do not 

only give methodological guidance with regard to the use of abstraction, but also with 

traceability and consistency of requirements artifacts that are specified during the RE process 

[Sikora et al. 2011]. In other words, it must be possible to trace requirements artifacts 

throughout the development process [Gotel and Finkelstein 1994]. By means of the stepwise 

refinement of requirements artifacts on different layers of abstraction (see Section 4.1), the 

MB-RE approach provides one way to achieve both traceability and consistency. One further 

device to ensure traceability and consistency in this model-based requirements engineering 

approach is the inherent artifact model. Artifacts types used in this approach are 

environment models, solution-neutral requirements, that is, goal and scenario models, 

solution-oriented requirements models in the perspectives behavior, function, and data, as 

well as architecture models. In the following, we briefly explain the different artifact types of 

the RE approach shown in Figure 4. 
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Figure 4: The Artifact Model of the MB-RE approach 
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description of context models can be found in [Weyer 2010]. Structural diagrams such as 

SysML Internal Block Diagrams can be used to model this artifact type. 

4.2.2 Solution-neutral requirements 

Solution-neutral requirements are used to document rationales for solution-oriented 

requirements. There are two types of solution-neutral requirements: goal models and 

scenario models.  

Goal models document the intentions that the stakeholders have when conceiving the system 

and can sketch alternative realization options. In early requirements engineering, using goal 

models helps to focus on identifying the problems and exploring the system solutions and 

alternatives. Goals form a first manifestation of the vision about the system that the 

stakeholders have in mind. Goals are solution-neutral descriptions of the functionalities, 

qualities, and features the system under development must possess. Goals neglect concrete 

aspects of the solution. In goal models, relationships between goals, functionalities, and 

qualities can be identified. For example, goals might be in direct conflict with each other (i.e., 

fulfilling one goal will make it impossible to fulfill a conflicting goal) or the fulfillment of 

goals may contribute—positively or negatively—to the fulfillment of another goal (i.e., make 

it easier or harder to achieve the other goal). Goals can be elicited, in part, from the 

environment model, but also by means of stakeholder collaboration. The MB-RE approach 

differentiates between hardgoals, that is, goals whose fulfillment can be unambiguously 

verified (e.g., by yes/no questions), and softgoals, which are goals whose fulfillment depends 

on some degree of interpretation (e.g., goals pertaining to the quality aspect “usability”). 

Goals and goal modeling is explained in detail in [Pohl 2010] as well as [van Lamsweerde 

2009]. KAOS goal diagrams, i* models, or stereotyped SysML Requirements Diagrams can be 

used to model this artifact type.  

Scenario models are exemplary interactions of the system with its environment. Scenarios 

allow eliciting requirements by modeling the system's interaction with context entities that 

have been identified in the environment models. Thereby, the system's benefit and impact on 

the environment can be assessed. Scenarios fulfill the goals that have been specified in the 

goal models. For every goal, there must be at least one scenario that fulfills it and every 

scenario must fulfill at least one goal. Furthermore, scenarios may specify some internal 

states, albeit the state space of the system under development can usually not be fully 

modeled using scenarios. This is due to the fact that scenarios merely model exemplary 

interactions of the system with its environment, rarely all interactions. Scenario modeling is 

described in detail in [Pohl 2010] as well as [Potts 1995]. Additionally, alternative and error 

handling scenarios can be specified that describe exceptional interactions deviating from the 

main scenarios. SysML Use Case and Sequence Diagrams as well as ITU Message Sequence 

Charts can be used to model this artifact type, for example. 
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4.2.3 Solution-oriented requirements 

Solution-oriented requirements are solution-specific descriptions of behavior, functions, and 

data (the three perspectives, see [Pohl 2010] and [Davis 1993]) and thus represent a first step 

towards the implementation. Solution-oriented requirements consist of data models, 

functional models, and state models which represent the data, function, and behavior 

perspective, respectively. Solution-oriented requirements can in insofar be derived from 

scenario descriptions as scenarios may specify states that the system adopts after a certain 

interaction sequence has been executed. Furthermore, on the basis of scenarios and 

environment models, the function perspective of solution-oriented requirements can be 

derived in part. All three perspectives of solution-oriented requirements are co-developed, as 

they present individual views onto the same system. A more detailed explanation of 

solution-oriented requirements is given in [Pohl 2010]. SysML Block Definition Diagrams are 

used for the data perspective, SysML Activity Diagrams are used for the function 

perspective, and SysML State Machine Diagrams are used for the behavior perspective to 

model solution-oriented requirements.  

4.2.4 Combining solution-neutral and solution-oriented requirements across 

Abstraction Layers 

Goal- and scenario-oriented RE approaches appear to be considered a beneficial approach for 

practitioners [van Lamsweerde 2009] as an essential component involved in the 

requirements engineering process. Typically, in goal- and scenario-oriented approaches, the 

context is analyzed, problems are identified, and high level strategic goals for developing a 

system to solve the problems are elicited. Consequently, solution-oriented requirements are 

specified to fulfill these goals. Thus, goals are guiding the requirements elicitation process 

and are identified on the basis of environment artifacts. However, goals merely reflect an 

idealized view of the desired context, that is, depict a desired state of the system after 

development. Thus, requirements elicitation should not rely only on goals. It needs a 

combination with another facilitating option which should give some information of current 

reality. For this purpose, scenarios can be used which represent sequences of real events in 

the context. Solution-oriented requirements are specified on the basis of goals and scenarios 

and build the immediate input for architecture models. Developing these artifacts for some 

system, sub-system, or component on some abstraction layer is in principle a sequential 

process. However, during the requirements engineering process, particular attention must be 

placed on maintaining consistency between the requirements artifacts. While the 

relationships between these artifacts as explained above already allow for traceability and 

consistency, consistency checks must be performed whenever an artifact is completed so that 

the artifacts do not contradict one another. For example, behavior models as well as scenario 

models must be checked for consistency across abstraction layers in order to ensure that the 

scenarios specified on the lower abstraction layers are correct refinements of the scenarios on 

the higher abstraction layer (cf. [Sikora et al. 2010]). 
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Informal requirements can be formulated and formalized by means of requirement patterns 

using the controlled-natural-language-based RE (CNL-RE) approach illustrated in Chapter 3. 

While natural language is the preferred documentation format for legally binding 

requirements documents and for document-oriented reviews, there is a tendency and desire 

among requirements engineers to use models during the RE process [Sikora et al. 2012]. For 

this reason, we integrate the CNL-RE approach shown in Chapter 3 with the model-based RE 

(MB-RE) approach explained in Chapter 4. This enables to switch the documentation format 

at certain points in time. In the remainder of this section, we present the basic methodology 

of the integrated approach. In Chapter 6, we evaluate the applicability of the approach by 

means of the case study “Body Control Module”. 

5.1 Methodology Adaptation 

In order to integrate the CNL-RE and the MB-RE approach, we adapted the methodology of 

the latter one. The key change is that all artifacts describe a functional view of the SUD as in 

the CNL-RE approach. Furthermore, the use of scenarios of the MB-RE approach enables to 

conceive the function hierarchy of the CNL-RE approach in a more systematic way. Based on 

this functional view, the logical architecture of the SUD is developed as outlined in the 

Chapter 3. This is explained in more detail in the following section. 

5.2 Combined Process Model 

Figure 5 shows the integrated methodology. The color scheme in Figure 5 is based on the 

color scheme in Figure 4, yet has been extended to depict activities that produce artifacts 

based on the controlled-natural-language-based component of the combined RE approach. 

That is, the red activities 5 and 10 regarding the function hierarchy of the SUD. Furthermore, 

some artifacts of the MB-RE approach can alternatively be represented by means of 

requirement patterns, see activities 6 and 11. 
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Figure 5: Process for the integrated methodology 
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(cf. the complete system in Section 3.1 and the Top System Layer in Section 4.1). Similarly to 

the methodology of the CNL-RE approach (cf. Section 3.1), the system layer is refined across 

several subsystem layers to the deepest function layer afterwards. In the following, we 

explain the particular steps of the methodology in more detail.  

Please note that the steps 7 through 11 may be repeated for any subsequent abstraction layer. 

Furthermore, Figure 5 as well as our case study could be interpreted in such a way, that only 

a sequential requirements engineering process similar to the waterfall model for the whole 

software development process [Royce 1970] is allowed. But, of course, iterations are 

explicitly allowed in our RE process. 

5.2.1 Step 1: Describe Environment 

First of all, the environment of the SUD is described. From the viewpoint of a supplier, the 

environment typically consists of other ECUs of the car. The environment has to be 

determined based on the informal customer requirements of the OEM. The key difference to 

the MB-RE approach is that the context of the SUD (i.e., its environment) is considered in a 

purely functional manner. That is, we model no concrete ECUs but their functionalities, 

which are required or requested by the SUD. The system environment is described by means 

of a SysML Internal Block Diagram. 

5.2.2 Step 2: Specify Goals 

In the second step, the goals of the SUD are specified. These goals are not always known to a 

supplier that has to develop a system for an OEM. In this case, the goals have to be 

determined based on the customer requirements. In the ideal case, the OEM additionally 

forwards the goals together with the customer requirements to the supplier. As in the MB-RE 

approach, the goal artifacts are modeled using KAOS goal diagrams [van Lamsweerde 2009]. 

In order to achieve UML-/SysML-compliant artifacts, we apply stereotyped UML class 

diagrams as concrete notation for the KAOS goal diagrams. 

5.2.3 Step 3: Determine Use Cases 

Third, the use cases of the SUD are determined based on the customer requirements. They 

are documented by means of use case diagrams like in the model-based RE approach. 

5.2.4 Step 4: Specify Scenarios 

In the fourth step, the use cases are described in a more detailed way using scenarios. All 

information needed for modeling the use cases and scenarios is determined based on the 

customer requirements and the goals the scenarios have to fulfill. The interacting objects are 

elements of the environment that has been specified in step 1. Each scenario is modeled by 

means of a sequence diagram. 
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5.2.5 Step 5: Derive Function Hierarchy 

In this step, the functionality of the SUD is decomposed into subsystems (cf. Chapter 3). 

These subsystems are decomposed in the following iterations until the function layer is 

reached (cf. Step 11). This layer contains the atomic functions. Therefore, as explained in 

Chapter 3, this decomposition results in a function hierarchy. This step specifies function 

hierarchies based on the scenarios specified in Step 4 in a manner consistent with the CNL-

RE approach (cf. Section 3.1). As in the CNL-RE approach, the model-based representation of 

the function hierarchy is specified by means of a SysML Block Definition Diagram. 

5.2.6 Step 6: Specify Solution-oriented Requirements 

Solution-oriented requirements for the complete system can be specified in this step using 

the textual requirement patterns of the CNL-RE approach. As explained in Chapter 3, the 

patterns encompass besides the description of the SUD functionality also quality and safety 

requirements, computation rules, internal states and their transitions, and activations or 

deactivations of functions, for example. Typically, these solution-oriented requirements are 

formulated in deeper abstraction layers. In this integrated methodology, only the functional 

perspective of solution-oriented requirements is being considered as it serves as the basic 

input for the decomposition using requirement patterns. The behavioral and structural 

perspective can also be specified in addition, but the focus of this combined approach is on 

system functions. 

5.2.7 Step 7: Limit Environment for each Subsystem on the next Abstraction Layer 

In this step, the environment that was specified on the preceding (sub)system layer is cut 

down on those elements that are relevant to the subsystems of the currently considered 

layer. Each subsystem is considered individually. The other subsystems on the same layer, 

which are interacting with the considered subsystem, are as well regarded as functionalities 

of the environment. This is specified by means of a SysML Internal Block Diagram as in the 

environment description of the complete system layer. 

5.2.8 Step 8: Refine Goals for each Subsystem on the next Abstraction Layer 

If necessary, the specified goals are refined for the subsystems, which have been newly 

added to the function hierarchy. Furthermore, new goals can be added to the initial class 

diagram derived from step 2. 

5.2.9 Step 9: Refine Scenarios for each Subsystem on the next Abstraction Layer 

The scenarios of the superordinate (sub)system layer are refined in this step. To do so, the 

superordinate (sub)system(s) are replaced by the subsystems or functions, which have been 

newly added at the currently considered layer. The message exchange is adapted 

accordingly. As in step 4, sequence diagrams are applied for the specification of the 

scenarios. 
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5.2.10 Step 10: Decompose Function Hierarchy 

If the subsystems newly added at the previous layer of abstraction can be decomposed, this 

is done in this step by further decomposing them in the SysML Block Definition Diagram 

representing the function hierarchy. In this case, a new subsystem layer is conceived. A 

subsystem is trivial, if all relevant stakeholders have a sufficient understanding about the 

subsystem’s functionality without further decomposition. In this case, the subsystems 

represent atomic functions, which do not need to be decomposed any further. Thus, the 

currently considered layer is the function layer, and the requirements engineering process is 

completed after step 11. 

Since we conceived a correlation—formalized using bidirectional TGG model 

transformations—between the function hierarchy (cf. the analysis model in Chapter 3) and 

Natural-Language-based requirements formulated by means of requirement patterns, we 

can automatically transfer the function hierarchy to textual requirements. This is especially 

important in the case of reviews that typically impose a document-oriented structure. 

Furthermore, if changes occur in the textual review version, these changes can automatically 

be transferred to the function hierarchy again. 

5.2.11 Step 11: Add Solution-oriented Requirements for each Subsystem on the next 

Abstraction Layer 

If further solution-oriented requirements are identified while refining the functionality of the 

SUD, they are formulated by means of requirement patterns in this step. 

If the function layer was reached in step 10 (i.e., the subsystems were not decomposed any 

further), the process is completed. 

5.2.12 End of Process 

After the requirements engineering process has been completed, the resulting function 

hierarchy as well as the solution-oriented requirements can be transferred to the final system 

requirements specification document. 

Based on the function hierarchy, a logical architecture is manually conceived at the end of 

the requirements engineering process. The traceability between the atomic functions of the 

function hierarchy and the logical components is documented by SysML allocation links 

([Fockel et al. 2012a]; [Fockel et al. 2012b]). 
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6  

In this chapter, we present the case study “Body Control Module” (BCM) from the 

automotive domain, which comprises an excerpt of the functions of a BCM used in today’s 

cars. The case study is structured on three layers of abstraction, the complete system layer, 

which contains a functional view of the BCM as a whole (the topmost system in the function 

hierarchy) (see Section 6.1), the subsystem layer, which comprises function groups that are 

part of the BCM (see Section 6.2), and the function layer, which contains individual, atomic 

functions that are not further decomposed (see Section 6.3). In the following, each section 

describes the artifacts that are developed on the corresponding layer of abstraction and 

structures them according to the subsystem that they belong to. 

6.1 Complete System Layer 

This section describes the topmost layer of abstraction, which considers the functions of the 

BCM as a whole. The development starts with the elicitation and the subsequent 

documentation of solution-neutral requirements artifacts (see Section 4) in order to structure 

the problem space of the SUD. In the following, these artifacts are described in detail.  

6.1.1 Environment of the BodyControlModule 

In this first step, the environment of the SUD is specified. Figure 6 depicts an Internal Block 

Diagram containing the system BodyControlModule and five environment functions 

represented by actors, that is, DashboardControlling, BrakePedalLevelSensing, LeftIndication, 

RightIndication and BrakeLightSwitching. The five environment functions and the SUD are 

connected to each other by a total of interfaces.  

  

Figure 6: Environment of the BodyControlModule on Complete System Layer 
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As can be seen in Section 4, environment models describe the embedding of the SUD into its 

environment. Relevant functions within the environment of the SUD are identified and their 

inputs into the SUD and the outputs from the SUD that they receive are documented. Each 

input or output constitutes an interface of the SUD with the context. In consequence, the 

environment models serve as the foundation for further development activities, such as goal 

elicitation (see Section 6.1.2). The key difference to the MB-RE approach is that the context of 

the SUD is considered in a purely functional manner. For example, the model contains an 

environment function DashboardControlling instead of a concrete ECU 

HumanMachineInterface. 

While the system BodyControlModule represents the overall functionality of the SUD (cf. 

Chapter 3), the purpose of the environment functions is the following: 

 The function DashboardControlling provides the BCM with the current position of the 

turn signal lever, information about the status of the hazard lights button, and means 

to light LEDs in the dashboard as feedback to the driver. 

 The function BrakePedalLevelSensing provides the BCM with the current position of 

the brake pedal. 

 The functions LeftIndication and RightIndication control the left and right turn signals, 

respectively. 

 The function BrakeLightSwitching allows lighting the car’s brake lights. 

The concrete signals of the functions are not yet considered in this step but in the Sections 

6.1.3 and 6.1.4. In the next step, the goals that the environment functions expect the SUD to 

fulfill can be derived based on information of this environment model.  

6.1.2 Goals on Complete System Layer 

In the second step, the goals for the SUD are specified within a goal diagram.  

In Figure 7, a goal diagram describing the refinement of BCM goals in its subgoals is shown.   

Legal regulations shall be fulfilled and rear-end collisions shall be avoided by means of the 

turn signal and brake light control. Thus, the two root goals Fulfillment of legal regulations and 

Avoidance of rear-end collision are refined by the goals Notify of change in direction, Notify of 

slowdown and Notify of dangerous situation. In subsequent steps, the indication of a direction 

change can be realized by a turn signal control, and the notification of a slowdown can be 

realized by a brake light control. The goal Notify of dangerous situation is refined by the goals 

Notify of emergency braking and Notify of danger by halting. Dangerous situations caused by a 

vehicle standstill (e.g., a car broken down or at the tail end of a traffic jam) can be indicated 

by using the hazard lights. An emergency brake shall be indicated by lighting the brake 

lights intensely and additionally activating the hazard lights. 
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Figure 7: Goals on Complete System Layer 

As described in Section 4.2.2, goals can be divided in hardgoals and softgoals. In the 

example, it is possible to verify that the legal regulations are fulfilled or that an emergency 

brake is successfully indicated. But, of course it is not possible to verify that the BCM avoids 

rear-end collisions for the whole lifecycle of all cars that have the BCM build in, since the car 

driver as well as the environment is another important factor w.r.t. collisions, for example. 

Thus, the goal Avoidance of rear-end collision is a softgoal. 

Furthermore, the goal Notify of slowdown is a positive contribution for the goal Notify of 

emergency braking (indicated by the ++), since an emergency brake is a form of a slowdown, 

too. If the goal Notify of slowdown is already fulfilled, then the goal Notify of emergency braking 

is easier to fulfill. Negatively contributing goals are not included in this case study. 

6.1.3 Use Cases and Scenarios on Complete System Layer 

In the third step, the use cases and scenarios of the SUD are determined on the basis of the 

informal requirements, the environment model, and the goals specified in the last step. 

In Figure 8, a use case diagram is given, which is used to structure the scenario models. In 

this example, the use cases Indicate left, Indicate right, and Switch hazard lights are specified for 

functionality w.r.t. the turn signals. The environment function DashboardControlling 

participates in these use cases. The environment functions LeftIndication and RightIndication 

participate on the use cases Switch hazard lights, Indicate left, and Indicate right. 

 class 1.2.1. Goals "BodyControlModule"
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Figure 8: Use Cases on Complete System Layer 

Furthermore, there are the use cases Brake light switching and Emergency brake light controlling 

w.r.t. the functionality of the brake light.  The environment functions BrakePedalLevelSensing 

and BrakeLightSwitching participate on both these use cases. As can be seen from the use case 

diagram, the scenario Emergency brake light controlling includes the scenario Switch hazard 

lights. This means that the scenario Emergency brake light controlling achieves its functionality 

by additionally executing the other scenario. In other words, the hazard lights are activated 

when the driver strongly pushes the brake pedal. 

In the fourth step, the use cases mentioned above are detailed with scenario models using 

sequence diagrams. In this case study, each use case corresponds to one scenario. In Figure 9 

and Figure 10, two examples of scenarios are shown that show possible fulfillments of goals.  

In Figure 9 a sequence diagram called Indicate left is given that depicts the exemplary 

fulfillment of the goal Notify of change in direction. The scenario depicted in the sequence 

diagram shows the SUD, BodyControlModule, as well as two environment functions, which 

have been taken from the environment model in Figure 6. When the driver uses the turn 

signal lever to indicate a left turn, the environment function DashboardControlling sends the 

message indicateLeftReq to the BodyControlModule. Subsequently, the BodyControlModule sends 

the message indicateAct to LeftIndication to activate the left turn signals and finally sends a 

lightIndicateLeftLED message back to DashboardControlling to activate a corresponding LED 

on the dashboard. This interaction is one possible way the goal Notify of change in direction 

can be fulfilled – another example would be the corresponding scenario Indicate right for 

right indication. 

 uc [Use Case] 1.2. Goals / Requirements / Scenarios "BodyControlModule" [1.2.2. Use Cases "BodyControlModule"]     
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Figure 9: Scenario Indicate left on Complete System Layer 

Another example is given in Figure 10. In this figure, a sequence diagram called Emergency 

brake light controlling is shown. It describes the interaction taking place, when the driver 

strongly pushes the brake pedal because of an emergency. The diagram shows six lifelines: 

the BodyControlModule as well as five environment functions, that is, BrakePedalLevelSensing, 

BrakeLightSwitching, LeftIndication, RightIndication and DashboardControlling. The scenario 

starts with the BodyControlModule receiving the message emergencyBrake from the 

environment function BrakePedalLevelSensing. Upon receiving that message, the system sends 

a lightIntense request to the environment function BrakeLightSwitching to make the brake 

lights light up more intensely. Then, two parallel indicateAct messages are sent to the 

environment functions LeftIndication and RightIndication to activate the hazard lights. Finally, 

the BodyControlModule sends a lightHazardLightsLED to DashboardControlling to make the 

activated hazard lights visible to the driver. The scenario shows the fulfillment of the goal 

Notify of emergency braking as documented in Figure 7. 

 sd [Sequence] 1.2. Goals / Requirements / Scenarios "BodyControlModule" [...

:DashboardControll ing

 : BodyControlModule

:LeftIndication

Linked goal: Notify of change in direction

indicateLeftReq()

indicateAct()

lightIndicateLeftLED()
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Figure 10: Scenario Emergency brake light controlling on Complete System Layer 

As mentioned in Section  4.2.2, alternative and error scenarios can be specified besides the 

main scenarios. This type of scenarios can be used to describe a possible malfunction of the 

SUD and a suitable reaction to this w.r.t. one or several use cases. Figure 11 presents the 

error scenario Handle left lamp defect that occurs if the lamp of the left turn signal fails. When 

the status signal about a lamp defect is sent by LeftIndication to BodyControlModule, a warning 

lamp shall be activated in the dashboard to indicate this malfunction to the driver (message 

lightIndicatorLampDefectLED). 

 

Figure 11: Scenario Handle left lamp defect on the Complete System Layer 

This concrete error scenario is involved in the use cases Indicate left and Switch hazard lights, 

since the malfunction of the left turn signal lamp affects the correct execution of the main 

scenarios of these use cases. That is, the intended result of the use cases (the post condition 

that the corresponding lamp is lightened up) cannot be achieved due to the occurred 

malfunction. Analogously to the error scenario Handle left lamp defect, there are error 

 sd [Sequence] 1.2. Goals / Requirements / Scenarios "BodyControlModule" [1.2.5. Scenario "Emergency brake light controlling"]     

:BrakeLightSwitching:BrakePedalLevelSensing :DashboardControll ing

 : BodyControlModule

:LeftIndication :RightIndication

Linked goal: Notify of emergency braking

par 
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indicateAct()
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 sd [Sequence] 1.2. Goals / Requirements / Scenarios "BodyControlModule" [1.2.7. Scenario...

:LeftIndication

 : BodyControlModule

:DashboardControlling

indicatorLampDefect()

lightIndicatorLampDefectLED()
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scenarios for the malfunction of the right turn signal lamp and of the brake lights, which are 

not shown in this document. 

6.1.4 Function Hierarchy on Complete System Layer 

After describing goals, use cases and scenarios on complete system layer, the functionality is 

consolidated in a structural view, the function hierarchy. On complete system layer this 

hierarchy consists of one element only. In our example that is the BodyControlModule. Figure 

12 displays the complete system BodyControlModule including the entirety of its input and 

output interfaces that were determined using the scenario models. For example, in the 

scenario Indicate left (cf. Figure 9) it was determined that the BCM processes the input signal 

indicateLeftReq and creates the output signals indicateAct and lightIndicateLeftLED. 

Furthermore, in the scenario Emergency brake light controlling (Figure 10) it was specified that 

the BCM processes the input signal emergencyBrake and creates the output signals lightIntense, 

indicateAct and lightHazardLightsLED. Thus, these signals have to be part of the 

corresponding interfaces of the complete system BodyControlModule as shown in Figure 12. 

The rest of the ports stems from further scenarios that are not shown in this document. Note, 

that this view is a concretization of the specified SUD in the environment model from Figure 

6.  Furthermore, this is the topmost layer of the function hierarchy that is further 

decomposed in the following. 

  

Figure 12: Function Hierarchy on the Complete System Layer 

In order to further decompose the function hierarchy, groups of functionality in form of 

subsystems that encapsulate part of the complete system’s functionality are conceived. 

Figure 13 shows the decomposed function hierarchy. The functionality of the complete 

system BodyControlModule is decomposed into the partial functionalities covering the turn 

signals (subsystem ControlTurnSignals), brake lights (subsystem ControlBrakeLight), and the 

indication of lamp defects (subsystem HandleLampDefect). This decomposed function 

hierarchy serves as input for the subsystem layer, which is described in Section 6.2.  
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Figure 13: Initial Function Hierarchy on the Subsystem Layer 

6.1.5 Solution-oriented Requirements on Complete System Layer 

In this case study, solution-oriented requirements are only added on the lowest abstraction 

layer. 

6.1.6 Requirement Pattern Representation of Function Hierarchy on Complete System 

Layer 

Before the functionality of the complete system is decomposed for the next layer of 

abstraction, a switch to the natural language-based requirement specification could be 

performed in order to enable manual reviews in a document-oriented format. The resulting 

requirement pattern instances are listed below: 

 The system BodyControlModule processes the following signals: indicateLeftReq, 

indicateRightReq, switchHazardLights, brake, emergencyBrake, indicatorLampDefect, 

brakeLightDefect. 

 The system BodyControlModule creates the following signals: indicateAct, 

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED, light, lightIntense, 

switchHazardLights, lightIndicatorLampDefectLED, lightBrakeLightDefectLED. 

 The system BodyControlModule consists of the following subsystems: 

ControlTurnSignals, ControlBrakeLight, HandleLampDefect. 

6.2 Subsystem Layer 

This chapter includes the next layer of abstraction, which specifies each subsystem of the 

BCM in more detail.  
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6.2.1 Limited Environment on the Subsystem Layer 

In the first step on this layer, the signal interface of the complete system BodyControlModule is 

partitioned to its subsystems that were conceived on the previous layer (cf. Section 6.1.4) 

w.r.t. the signals they have to process and create to fulfill their specific functionality. 

Figure 14 describes the environment of the subsystem ControlIndicators. It is derived from the 

functional decomposition on the previous layer (cf. Figure 13) and is the initial input for any 

further elicitation of functionality in the following steps for this particular subsystem. The 

communication for the indicator and hazard lights requests as well as for activating the LEDs 

in the dashboard takes place with the environment function DashboardControlling. Because 

the hazard lights shall be activated if an emergency brake occurs, an internal message 

switchHazardLightsInternal can be received from the subsystem ControlBrakeLight. From the 

viewpoint of the subsystem ControlTurnSignals, the other subsystem ControlBrakeLight is part 

of its environment. Thus, it is specified as an environment function in this model. The 

environment functions LeftIndication and RightIndication can receive the corresponding 

activation requests indicateAct for indicating.  

 

Figure 14: Environment of the subsystem ControlTurnSignals on the Subsystem Layer 

As one can see on the example of the subsystem ControlTurnSignals, the interface of the 

complete system BodyControlModule covering the messages w.r.t. turn signals is partitioned 

onto this specific subsystem. Accordingly, further signals covered by the complete system 

interface that are related to other subsystems are partitioned onto these subsystems in the 

following. This method enables to focus on implementing one concrete atomic function at the 

end of the requirements engineering process. 
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Figure 15 shows the environment model of the subsystem ControlBrakeLight. Analogously to 

the environment model for the subsystem ControlTurnSignals, only the signals w.r.t. the 

brake lights are considered. Thus, ControlBrakeLight processes requests from the environment 

function BrakePedalLevelSensing and creates signals for the environment function 

BrakeLightSwitching. As specified in the environment model of ControlTurnSignals (cf. Figure 

14), BrakeLightSwitching can communicate with this subsystem in order to request the 

activation of the hazard lights.  

  

Figure 15: Environment of the subsystem ControlBrakeLight on the Subsystem Layer 

Finally, Figure 16 describes the environment of the subsystem HandleLampDefect. The 

environment functions LeftIndication, RightIndication, and BrakeLightSwitching can 

communicate possible lamp defects to this subsystem, which can indicate this to the driver 

by communicating with the environment function DashboardControlling. 
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Figure 16: Environment of the subsystem HandleLampDefect on the Subsystem Layer 

6.2.2 Refined Goals on the Subsystem Layer 

In this example, the goals from the complete system layer are not refined any further.  

6.2.3 Refined Scenarios on the Subsystem Layer 

After the complete system BodyControlModule has been decomposed into three subsystems 

(cf. Section 6.1.4) and their interfaces and environment have been detailed (cf. Section 6.2.1), 

the corresponding scenarios have to be refined, too. 

Figure 17 presents the scenario Emergency brake light controlling, which is derived from the 

scenario Emergency brake light controlling on the complete system layer (cf. Figure 10), the 

functional decomposition of the complete system into subsystems as input for this subsystem 

layer (cf. Section 6.2.4), and the environment description on this layer (cf. Section 6.2.1). It 

visualizes the planned interaction of the system functions ControlBrakeLight and 

ControlTurnSignals with their environment. It serves as a basis for the further decomposition 

of the function hierarchy (cf. Section 6.2.4). 

 ibd [SysML Internal Block] 2.3.1. Env ironment "HandleLampDefect" [2.3.1.1. Env ironment "HandleLampDefect"]     

«flowPort»

brakeLightDefect

«flowPort»

indicatorLampDefect

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

l ightIndicatorLampDefectLED

 : HandleLampDefect

«flowPort»

brakeLightDefect

«flowPort»

indicatorLampDefect

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

l ightIndicatorLampDefectLED

LeftIndication

(from 1-Environment)

RightIndication

(from 1-Environment)

DashboardControlling

(from 1-Environment)

BrakeLightSwitching

(from 1-Environment)

«flow»

«flow»

«flow»

«flow»

«flow»
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Figure 17: Scenario Emergency brake light controlling on the Subsystem Layer 

The complete system BodyControlModule was decomposed into the subsystems 

ControlBrakeLight and ControlTurnSignals, among other things. Thus, this has to be reflected 

in all scenarios on the subsystem layer. Therefore, the lifeline :BodyControlModule from the 

scenario Emergency brake light controlling on the complete system layer (cf. Figure 10) are 

replaced by the lifelines  :ControlBrakeLight and :ControlTurnSignals in the corresponding 

scenario on the subsystem layer. The messages are specified according to the interface 

specification as seen in the environment model (cf. Figure 14 and Figure 15). By partitioning 

the complete system into subsystems, internal messages between these subsystems are 

specified on this layer: The message switchHazardLightsInternal is exchanged between the two 

subsystems ControlBrakeLight and ControlTurnSignals, before further messages are sent to the 

environment functions. This interaction was not obvious in the corresponding scenario on 

the complete system layer (cf. Figure 10). 

6.2.4 Function Hierarchy on the Subsystem Layer 

After the interfaces of the complete system have been partitioned onto the subsystems and 

their feasibility has been validated by means of accordingly refined scenarios, these 

interfaces can be transferred to the function hierarchy.  

As a first step towards this, we specify a white box view on the interior of the complete 

system BodyControlModule as depicted in Figure 18. The Internal Block Diagram jointly 

depicts the subsystems ControlTurnSignals, ControlBrakeLight, and HandleLampDefect as 

specified in the environment models of this layer (cf. Section 6.3.1). In this view, also the 

internal connections between the systems can be seen, that is, the internal signal 

switchHazardLightsInternal. 

 sd [Sequence] 2.1.2. Goals / Requirements / Scenarios "ControlBrakeLight" [2.1.2.1. Scenario "Emergency brake light controlling"]     

:BrakePedalLevelSensing

 : ControlBrakeLight

(from 2-Environment)

:BrakeLightSwitching

 : ControlTurnSignals

(from 2-Environment)

:DashboardControll ing:LeftIndication :RightIndication

par 

emergencyBrake()

lightIntense()

switchHazardLightsInternal()

indicateAct()

indicateAct()

lightHazardLightsLED()
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Figure 18: Functional Interaction between the subsystems on the Subsystem Layer 

The resulting function hierarchy is depicted in Figure 19, where the subsystems 

ControlTurnSignals, ControlBrakeLight and HandleLampDefect now have a signal interface 

specified, which stems from the environment model and was validated by means of the 

scenarios. 

 

Figure 19: Final Functional Hierarchy on the Subsystem Layer 

As next step, the function hierarchy is further decomposed as depicted in Figure 20. The 

system ControlTurnSignals is decomposed into the partial functionalities for the conventional 

turn signal control (Indicate) and the control of the hazard lights (SwitchHazardLights), the 

 ibd [SysML Internal Block] 2.1.3. Functions / States "ControlBrakeLight" [2.1.3.2. Function "ControlBrakeLight"]     

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

 : ControlBrakeLight

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort»

indicateAct

«flowPort»

l ightIndicateLeftLED

«flowPort»

l ightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

 : ControlTurnSignals

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort»

indicateAct

«flowPort»

l ightIndicateLeftLED

«flowPort»

l ightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

 : HandleLampDefect
«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

 bdd [SysML Block Definition] 2.2.3. Functions / States "ControlTurnSignals" [2.2.3.1. Function "ControlTurnSignals"]     

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort»
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«flowPort» lightIndicateRightLED
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«flowPort»

l ightBrakeLightDefectLED

«flowPort»
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«flowPort»

brakeLightDefect
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BodyControlModule

- switchHazardLightsInternal
«flowPort»
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«flowPort»
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«flowPort»
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«flowPort»
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«flowPort»
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«flowPort»
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«flowPort»
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«flowPort»

brakeLightDefect
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«flowPort»
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«flowPort»
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system ControlBrakeLights is decomposed into the control of the conventional brake lights as 

well as the signalization of an emergency brake, and the system HandleLampDefect is 

partitioned into the handling of turn signal (HandleIndicatorDefect) and brake light lamp 

defects (HandleBrakeLightDefect). This state of the function hierarchy again serves as input for 

the next abstraction layer. 

Note, that these subsystems are atomic functions that are not further decomposed, but this 

will be decided not until the corresponding decomposition step on the next abstraction layer 

(cf. Section 6.3.4). Nevertheless, we will speak in the following of functions to avoid 

confusion.  

6.2.5 Solution-oriented Requirements  

In this case study, solution-oriented requirements are only added on the function layer. 

6.2.6 Requirement Pattern Representation of Function Hierarchy on Subsystem Layer 

Before the functionality of the subsystem layer is decomposed in the next layer of 

abstraction, a switch to the natural-language-based requirement specification could be 

performed. The resulting requirement pattern instances are listed below (faded text stems 

from the complete system layer, cf. Section 6.1.6). 

 The system BodyControlModule processes the following signals: indicateLeftReq, 

indicateRightReq, switchHazardLights, brake, emergencyBrake, indicatorLampDefect, 

brakeLightDefect. 

 The system BodyControlModule creates the following signals: indicateAct, 

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED, light, lightIntense, 

switchHazardLights, lightIndicatorLampDefectLED, lightBrakeLightDefectLED. 

 The system BodyControlModule consists of the following subsystems: 

ControlTurnSignals, ControlBrakeLight, HandleLampDefect. 

 The system ControlTurnSignals processes the following signals: indicateLeftReq, 

indicateRightReq, switchHazardLights. 

 The system ControlTurnSignals creates the following signals: indicateAct, 

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED. 

 The system ControlBrakeLight processes the following signals: brake, emergencyBrake. 

 The system ControlBrakeLight creates the following signals: light, lightIntense, 

switchHazardLights. 

 The system HandleLampDefect processes the following signals: indicatorLampDefect, 

brakeLightDefect. 

 The system HandleLampDefect creates the following signals: 

lightIndicatorLampDefectLED, lightBrakeLightDefectLED. 

 The functionality of the system ControlTurnSignals consists of the following functions: 

Indicate, SwitchHazardLights. 
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Figure 20: Initial Function Hierarchy on the Function Layer 
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 The functionality of the system ControlBrakeLight consists of the following functions: 

LightBrakeLights, SignalizeEmergencyBrake. 

 The functionality of the system HandleLampDefect consists of the following functions: 

HandleIndicatorDefect, HandleBrakeLightDefect. 

6.3 Function Layer 

When all relevant stakeholders have a sufficient comprehension of the partial functionalities 

of the SUD, then it is not necessary to further decompose the function hierarchy. In this case, 

we call the subsystems on the lowest layer sufficiently trivial. Thus, these subsystems 

describe atomic functions that serve as basis for the subsequent architecture design.  

6.3.1 Limited Environment on the Function Layer 

As in the superordinate layer, we further partition the signal interfaces of the subsystems 

onto the contained functions in this step. 

Figure 21 shows the environment of the function SwitchHazardLights. In contrast to the 

environment of the superordinate subsystem ControlTurnSignals, the ingoing flow 

switchHazardLightsInternal is now sent by the function SignalizeEmergencyBrake that is a 

function of the system ControlBrakeLights. Furthermore, the size of the input and output 

interface of SwitchHazardLights is reduced drastically in contrast to the superordinate system 

ControlTurnSignals. This shows the benefit of refining the function hierarchy and partitioning 

the overall signal interface of the complete system onto function interfaces that are easy to 

handle due to their reduced size. 

  

Figure 21: Environment of the Function SwitchHazardLights on the Function Layer 

Figure 22 shows the environment model of the function SignalizeEmergencyBrake. According 

to the environment model of SwitchHazardLights, the signal switchHazardLightsInternal is now 

 ibd [SysML Internal Block] 3.4.1. Env ironment "SwitchHazardLights" [3.4.1.1. Env ironment "SwitchHazardLight...

«flowPort»

indicateAct«flowPort»

switchHazardLights

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

 : SwitchHazardLights

«flowPort»

indicateAct«flowPort»

switchHazardLights

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

DashboardControlling

(from 1-Environment)

SignalizeEmergencyBrake

LeftIndication

(from 1-Environment)

RightIndication

(from 1-Environment)

«flow»

«flow»

«flow»

«flow»

«flow»
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sent to this function instead of its superordinate system. Apart from that, the interface size 

was reduced for this function, as well. 

  

Figure 22: Environment of the Function SignalizeEmergencyBrake on the Function Layer 

The other environment models are specified accordingly. 

6.3.2 Refined Goals on the Function Layer 

In this example, the goals from the complete system layer are not refined any further. 

6.3.3 Refined Scenarios on the Function Layer 

Figure 23 depicts the scenario Emergency brake light controlling on function layer. It is the 

refinement of the scenario on subsystem layer (cf. Section 6.2.3): The subsystem lifelines 

ControlBrakeLight and ControlIndicators were decomposed into the atomic functions 

SignalizeEmergencyBrake and SwitchHazardLights. 

 

Figure 23: Scenario Emergency brake light controlling on Function Layer 

 ibd [SysML Internal Block] 3.2.1. Env ironment "SignalizeEmergencyBrake" [3.2.1.1. Env ironment "SignalizeEmergen...

«flowPort»

emergencyBrake

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

 : SignalizeEmergencyBrake
«flowPort»

emergencyBrake

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

BrakeLightSwitching

(from 1-Environment)

BrakePedalLev elSensing

(from 1-Environment)

SwitchHazardLights

«flow»

«flow»

«flow»

 sd [Sequence] 3.2.2. Goals / Requirements / Scenarios "SignalizeEmergencyBrake" [3.2.2.1. Scenario "Emergency brake light controlling"]     

:BrakePedalLevelSensing

 : SignalizeEmergencyBrake

(from 2-Environment)

:BrakeLightSwitching

 : SwitchHazardLights

(from 2-Environment)

:DashboardControll ing:LeftIndication :RightIndication

par 

emergencyBrake()

lightIntense()

switchHazardLightsInternal()

indicateAct()

indicateAct()

lightHazardLightsLED()
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6.3.4 Function Hierarchy on the Function Layer 

As a result from the initial function hierarchy for this layer (cf. Figure 20) and the partition of 

the signal interfaces in the subsequent step of limiting the environment (cf. Section 6.3.1), 

Figure 24 shows the final function hierarchy. Since the partial functionalities on this layer are 

sufficiently trivial for all stakeholders and their interfaces are easy to handle, we decompose 

them not any further and consider them as atomic functions. These functions have to be 

fulfilled by components of the architecture to be designed in the subsequent development 

process.  
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Figure 24: Final function hierarchy 
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6.3.5 Solution-oriented Requirements on the Function Layer 

One class of solution-oriented requirements consists of timing requirements. For example, it 

is crucial for the function SignalizeEmergencyBrake that it requests an intense brake light from 

the external environment function BrakeLightSwitching within at most 25ms after an 

emergency braking has been detected. 

We use the Timing Augmented Description Language (TADL, see [Johansson et al. 2009] and 

[Stappert et al. 2010]) to add timing constraints to our function models. Figure 25 depicts the 

above mentioned requirement in terms of a delay constraint on a so-called event chain 

between any events that can occur at the ports emergencyBrake and lightIntense. Logical 

components that implement the function SignalizeEmergencyBrake have to fulfill this timing 

requirement. 

Signalize

Emergency

Brake

emergencyBrake lightIntense

... ...

Event Event
Event Chain

Delay constraint: <25ms

 

Figure 25: Timing requirement in model-based representation 

Besides the function hierarchy, we count such solution-oriented requirements also to an 

artifact class that has to be exchanged with multiple stakeholders. Thus, we provide patterns 

and model transformations for solution-oriented requirements, as well. The representation in 

natural language according to requirement patterns (cf. requirement pattern no. 5 in Section 

3.2) looks like this (cf. Table 1 in Section 3.2, requirement R8): 

 The function SignalizeEmergencyBrake has to react within 25 ms to its stimuli.  

6.3.6 Requirement Pattern Representation of Solution-oriented Requirement and 

Function Hierarchy on Function Layer 

A final switch to the natural-language based requirement specification would result in the 

following requirement pattern instances (faded text stems from the last iteration, cf. Section 

6.2.6): 

 The system BodyControlModule processes the following signals: indicateLeftReq, 

indicateRightReq, switchHazardLights, brake, emergencyBrake, indicatorLampDefect, 

brakeLightDefect. 

 The system BodyControlModule creates the following signals: indicateAct, 

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED, light, lightIntense, 

switchHazardLights, lightIndicatorLampDefectLED, lightBrakeLightDefectLED. 

 The system BodyControlModule consists of the following subsystems: 

ControlTurnSignals, ControlBrakeLight, HandleLampDefect. 



Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition 

  45  

 The system ControlTurnSignals processes the following signals: indicateLeftReq, 

indicateRightReq, switchHazardLights. 

 The system ControlTurnSignals creates the following signals: indicateAct, 

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED. 

 The system ControlBrakeLight processes the following signals: brake, emergencyBrake. 

 The system ControlBrakeLight creates the following signals: light, lightIntense, 

switchHazardLights. 

 The system HandleLampDefect processes the following signals: indicatorLampDefect, 

brakeLightDefect. 

 The system HandleLampDefect creates the following signals: 

lightIndicatorLampDefectLED, lightBrakeLightDefectLED. 

 The functionality of the system ControlTurnSignals consists of the following functions: 

Indicate, SwitchHazardLights. 

 The functionality of the system ControlBrakeLight consists of the following functions: 

LightBrakeLights, SignalizeEmergencyBrake. 

 The functionality of the system HandleLampDefect consists of the following 

functions: HandleIndicatorDefect, HandleBrakeLightDefect. 

 The function SignalizeEmergencyBrake has to react within 25 ms to its stimuli. 

 The function Indicate processes the following signals: indicateLeftReq, indicateRightReq. 

 The function Indicate creates the following signals: indicateAct, lightIndicateLeftLED, 

lightIndicateRightLED. 

 The function SwitchHazardLights processes the following signals: switchHazardLights. 

 The function SwitchHazardLights creates the following signals: indicateAct, 

lightHazardLightsLED. 

 The function LightBrakeLights processes the following signals: brake. 

 The function LightBrakeLights creates the following signals: light. 

 The function SignalizeEmergencyBrake processes the following signals: emergencyBrake. 

 The function SignalizeEmergencyBrake creates the following signals: lightIntense, 

switchHazardLights. 

 The function HandleIndicatorDefect processes the following input signals: 

indicatorLampDefect. 

 The function HandleIndicatorDefect creates the following signals: 

lightIndicatorLampDefectLED. 

 The function HandleBrakeLightDefect processes the following signals: brakeLightDefect. 

 The function HandleBrakeLightDefect creates the following signals: 

lightBrakeLightDefectLED. 
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Natural language is the most common documentation format for requirements in the 

development of today’s embedded systems [Juristo et al. 2002, Pretschner et al. 2007]. 

However, because of the inherent ambiguity of natural language, the volume of textually 

documented requirements in many systems, and the difficulty handling system complexity 

and requirements traceability, the use of model-based requirements documentation has been 

advocated [Sikora et al. 2012]. Yet, since requirements often build the basis for contractual 

agreements between suppliers and OEMs and due to missing methodical guidelines on 

when to apply models during system development, models are rarely applied in practice 

[Sikora et al. 2011]. We have developed a combined requirements engineering approach 

based on controlled natural language [Holtmann et al. 2011b] and the requirements 

viewpoint of the SPES Modeling Framework [Daun et al. 2012] in order to combine the 

advantages of model-based requirements documentation and natural language-based 

requirements documentation. By making use of this combined approach, it is possible to 

elicit and document requirements continuously and trace requirements from origin to their 

model-based manifestation in a function hierarchy. 

We have applied the combined approach to a real-world industrial case study from the 

automotive industry, that is, a Body Control Module, which presents a new paradigm in 

automotive control unit interaction. The case study showed that the combined approach can 

be applied to automotive systems and supports the engineering of requirements consistently 

across multiple abstraction layers. It can be seen from the case study how context models 

and goal models can be used in early requirements engineering phases and be refined using 

scenarios. The resulting function hierarchy can be used in following phases of a model-based 

development process as a basis for the conception of the architecture of the SUD. 

Furthermore, the textual requirement pattern representation can be used as basis for legal 

documents exchanged with the customer or for document-oriented, intermediate reviews. 

This work hence does not only provide a benefit for the integrated development using both 

model-based and natural language-based requirements specifications, but also shows how 

system requirements and a function hierarchy can be co-developed and hence shows how a 

transition from the requirements viewpoint to the functional viewpoint of the SPES 

Modeling Framework [Vogelsang et al. 2012] can be performed. However, given that this 

transition is not complete (cf. [Daun et al. 2012, Vogelsang et al. 2012]), future work will 

address how the transition between these viewpoints can be improved, and how with the aid 

of model-based requirements and controlled natural language related development 

activities, for example, safety engineering, artifact validation, or functional analysis, can be 

integrated. 
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