
Daun, Marian; Fockel, Markus; Holtmann, Jörg; Tenbergen, Bastian

Research Report
Goal-scenario-oriented requirements engineering for functional
decomposition with bidirectional transformation to controlled natural
language: Case study "body control module"

ICB-Research Report, No. 55

Provided in Cooperation with:
University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB)

Suggested Citation: Daun, Marian; Fockel, Markus; Holtmann, Jörg; Tenbergen, Bastian (2013) :
Goal-scenario-oriented requirements engineering for functional decomposition with bidirectional
transformation to controlled natural language: Case study "body control module", ICB-Research
Report, No. 55, Universität Duisburg-Essen, Institut für Informatik und Wirtschaftsinformatik (ICB),
Essen

This Version is available at:
https://hdl.handle.net/10419/75284

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/75284
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

�������������������

���
���������������������������
���������������������

Marian Daun, Markus Fockel,
Jörg Holtmann, Bastian Tenbergen

Case Study “Body Control Module”

ICB-Research Report No. 55

May 2013

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. F. Ahlemann
Information Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management,
IT Vendor Management, Project Portfolio Management,
IT Governance, Strategic IT Benchmarking

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

PD Dr. C. Klüver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

For more information visit us on the Web: http://www.icb.uni-due.de

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

55Goal-Scenario-Oriented Requirements Engineering for
Functional Decomposition with Bidirectional Transfor-
mation to Controlled Natural Language

Die Forschungsberichte des Insti tuts
für Informatik und
Wirtschaftsinformatik dienen der
Darstel lung vorläufiger Ergebnisse,
die i . d. R. noch für spätere
Veröffentl ichungen überarbeitet
werden. Die Autoren sind deshalb für
kri t ische Hinweise dankbar.

Al l r ights reserved. No part of this
report may be reproduced by any
means, or translated.

Contact :

Insti tut für Informatik und

Wirtschaftsinformatik (ICB)

Universi tät Duisburg-Essen

Universi tätsstr . 9

45141 Essen

Tel . : 0201-183-4041

Fax: 0201-183-4011

Email : icb@uni -duisburg-essen.de

Authors’ Addresses:

Marian Daun

Bastian Tenbergen

paluno – The Ruhr Insti tute for Software

Technology

Universi ty of Duisburg-Essen

Gerl ingstrasse 16

D-45127 Essen, Germany

Markus Fockel

Jörg Holtmann

Project Group Mechatronic Systems

Design

Fraunhofer Insti tute for Production

Technology IPT

Zukunftsmeile 1

33102 Paderborn, Germany

The ICB Research Reports comprise
prel iminary results which wil l usual ly
be revised for subsequent
publications. Cri tical comments
would be appreciated by the authors.

Al le Rechte vorbehalten. Insbesondere
die der Übersetzung, des
Nachdruckes, des Vortrags, der
Entnahme von Abbildungen und
Tabel len – auch bei nur
auszugsweiser Verwertung.

ISSN 1860-2770 (Print)

ISSN 1866-5101 (Online)

ICB Research Reports

Edited by:

Prof. Dr. Heimo Adelsberger

Prof . Dr. Frederik Ahlemann

Prof . Dr. Klaus Echtle

Prof . Dr. Stefan Eicker

Prof . Dr. Ulrich Frank

Prof . Dr. Michael Goedicke

Prof . Dr. Volker Gruhn

PD Dr. Christina Klüver

Prof . Dr. Tobias Kollmann

Prof . Dr. Klaus Pohl

Prof . Dr. Erwin P. Rathgeb

Prof . Dr. Rainer Unland

Prof . Dr. Stephan Zelewski

 i

Abstract

Requirements for embedded systems are mainly documented using natural language. This is

due to the fact that natural language does not require special nomenclature knowledge and

is accepted as the basis for contractual agreements. However, purely natural-language-based

requirements engineering (RE) is often error-prone, potentially ambiguous, and does not

foster traceability and hence requires tedious manual reviews and analyses. Model-based

requirements engineering is often considered a possible solution as models enhance

traceability, aid in stakeholder communication, and foster automatic model analysis and

model checking. However, model-based requirements engineering is only slowly adopted in

the industry, partly because no clear guidelines to their application exist, particularly in

legally binding documents. In order to combine the advantages of model-based

requirements engineering with the convenience of natural-language-based requirements

engineering, we developed a combined RE approach that relies on both a controlled natural

language (i.e., a natural language that is restricted in its expressiveness) as well as

requirements models and defines a structured interface between both specification

paradigms. The purpose of this document is to report on the application of the combined

approach in an industrial case study from the automotive industry: a body control module.

A body control module is an electronic control unit (ECU) that centralizes the control of body

and comfort functions provided by multiple other ECUs distributed in a vehicle. The case

study illustrates how controlled natural language as well as requirements models can be

used in order to specify solution-neutral goal and scenario models as well as functional

requirements of a body control module across multiple layers of abstraction.

ii

Table of Content

1 INTRODUCTION ... 1

2 RELATED WORK .. 4

2.1 AUTOMATIC GENERATION OF MODELS FROM NL-REQUIREMENTS .. 5

2.2 GENERATING NL-REQUIREMENTS SPECIFICATIONS FROM MODELS ... 6

2.3 CONCLUSIONS FROM THE RELATED WORK ... 7

3 A CONTROLLED-NATURAL-LANGUAGE-BASED REQUIREMENTS ENGINEERING

APPROACH ... 8

3.1 METHODOLOGY ... 9

3.2 TEXTUAL REQUIREMENT PATTERNS .. 10

4 A MODEL-BASED REQUIREMENTS ENGINEERING APPROACH ... 14

4.1 THE ABSTRACTION LAYER MODEL ... 14

4.2 THE ARTIFACT MODEL .. 16

5 COMBINING CONTROLLED-NATURAL-LANGUAGE-BASED AND MODEL-BASED

REQUIREMENTS ENGINEERING ... 20

5.1 METHODOLOGY ADAPTATION .. 20

5.2 COMBINED PROCESS MODEL ... 20

6 CASE STUDY: AUTOMOTIVE BODY CONTROL MODULE .. 25

6.1 COMPLETE SYSTEM LAYER ... 25

6.2 SUBSYSTEM LAYER ... 32

6.3 FUNCTION LAYER... 40

7 CONCLUSIONS AND FUTURE WORK .. 46

REFERENCES .. 47

 i i i

Table of figures

FIGURE 1: FUNCTION HIERARCHY DESCRIBED USING REQUIREMENT PATTERNS (BASED ON [HOLTMANN ET AL.

2011B]) .. 9

FIGURE 2: FROM REQUIREMENTS TO ANALYSIS MODEL (BASED ON [FOCKEL ET AL. 2012A]) 13

FIGURE 3: THE REQUIREMENTS VIEW ABSTRACTION LAYER HIERARCHY ... 15

FIGURE 4: THE ARTIFACT MODEL OF THE MB-RE APPROACH ... 17

FIGURE 5: PROCESS FOR THE INTEGRATED METHODOLOGY .. 21

FIGURE 6: ENVIRONMENT OF THE BODYCONTROLMODULE ON COMPLETE SYSTEM LAYER 25

FIGURE 7: GOALS ON COMPLETE SYSTEM LAYER .. 27

FIGURE 8: USE CASES ON COMPLETE SYSTEM LAYER ... 28

FIGURE 9: SCENARIO INDICATE LEFT ON COMPLETE SYSTEM LAYER .. 29

FIGURE 10: SCENARIO EMERGENCY BRAKE LIGHT CONTROLLING ON COMPLETE SYSTEM LAYER 30

FIGURE 11: SCENARIO HANDLE LEFT LAMP DEFECT ON THE COMPLETE SYSTEM LAYER 30

FIGURE 12: FUNCTION HIERARCHY ON THE COMPLETE SYSTEM LAYER .. 31

FIGURE 13: INITIAL FUNCTION HIERARCHY ON THE SUBSYSTEM LAYER ... 32

FIGURE 14: ENVIRONMENT OF THE SUBSYSTEM CONTROLTURNSIGNALS ON THE SUBSYSTEM LAYER 33

FIGURE 15: ENVIRONMENT OF THE SUBSYSTEM CONTROLBRAKELIGHT ON THE SUBSYSTEM LAYER 34

FIGURE 16: ENVIRONMENT OF THE SUBSYSTEM HANDLELAMPDEFECT ON THE SUBSYSTEM LAYER 35

FIGURE 17: SCENARIO EMERGENCY BRAKE LIGHT CONTROLLING ON THE SUBSYSTEM LAYER 36

FIGURE 18: FUNCTIONAL INTERACTION BETWEEN THE SUBSYSTEMS ON THE SUBSYSTEM LAYER 37

FIGURE 19: FINAL FUNCTIONAL HIERARCHY ON THE SUBSYSTEM LAYER ... 37

FIGURE 20: INITIAL FUNCTION HIERARCHY ON THE FUNCTION LAYER .. 39

FIGURE 21: ENVIRONMENT OF THE FUNCTION SWITCHHAZARDLIGHTS ON THE FUNCTION LAYER 40

FIGURE 22: ENVIRONMENT OF THE FUNCTION SIGNALIZEEMERGENCYBRAKE ON THE FUNCTION LAYER 41

FIGURE 23: SCENARIO EMERGENCY BRAKE LIGHT CONTROLLING ON FUNCTION LAYER 41

FIGURE 24: FINAL FUNCTION HIERARCHY ... 43

FIGURE 25: TIMING REQUIREMENT IN MODEL-BASED REPRESENTATION .. 44

iv

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 1

1

Literature shows that natural language is the most common documentation format for

requirements specifications (e.g., [Juristo et al. 2002, Pretschner et al. 2007]). Partly, this is

due to the fact that requirements often become the foundation for contractual agreements

[Sikora et al. 2011], for example, between original equipment manufacturers (OEMs) and

suppliers [Jersak et al. 2003]. Using natural language has advantages for the requirements

engineering of embedded systems: on the one hand, it does not require stakeholders and

developers to become familiar with special documentation formats (e.g., formal models) and

is therefore easy to understand [Balzert 2009]. On the other hand, it typically does not

mandate dedicated documentation tools. However, there are a number of disadvantages

using natural language in requirements specifications: since it is inherently ambiguous, it can

be interpreted in different ways by the stakeholders (e.g., [Balzert 2009, Pohl 2010]), and it

cannot be easily processed using automated tools [Yue et al. 2011]. In addition, it requires

manual traceability management [Gotel and Finkelstein 1994] and the sheer volume of

requirements in some development projects impairs requirements validation significantly

[Flynn and Warhurst 1994]. One approach to tackle the problem of the inherent ambiguity of

natural language is to restrict its expressiveness by only allowing certain formulations,

phrases, and a restricted vocabulary. Such a restricted language is called a controlled natural

language (CNL) [Huijsen 1998a, Huisen 1998b, Schwitter 2010].

Using requirements models has been suggested as alleviation for the inherent problems with

natural language-based requirements specification. Using models to document requirements

is beneficial for communication among stakeholders [Pohl 2010]. In addition, models can

help to manage the complexity of the system [Neill and Laplante 2003] and can be processed

automatically. However, model-based approaches are only hesitantly adopted by the

industry partly due to the fact that there is little guidance available on when and how to use

models during the engineering of embedded systems [Sikora et al. 2012]. While some

approaches such as the SPES Modeling Framework [Broy et al. 2012] have been developed in

order to address this problem, such approaches do not take into account that models are not

considered as a suitable foundation for contractual agreements [Sikora et al. 2011].

Furthermore, it is sensible for the development process to develop the system architecture

not only based on the requirements specification, but in step with it [Nuseibeh 2001], ideally

based on a functional hierarchy, which documents required system functions [Schäuffele and

Zurawka 2003, Gausemeier et al. 2009]. This way, the architecture can be based on the

functional hierarchy, which fosters the requirements to be accurately reflected in the

architecture [Fockel et al. 2012a]. While some approaches exist which tackle the integration of

requirements and architecture, these approaches either consider a coarse development

process (e.g., [Nuseibeh 2001]), are solely model-based (e.g., [Pohl and Sikora 2007], or solely

based on (controlled) natural language (e.g., [Holtmann 2010, Holtmann et al. 2011a,

Introduction

2

Holtmann et al. 2011b]). The integration of model-based and natural-language-based

requirements engineering for the purpose of fostering the co-development of requirements

and functionality has thus far not been tackled by existing literature.

The purpose of this document is to show the application of an integrated requirements

engineering approach in an industrial case study. This RE approach makes use of both

controlled natural language and requirements models in order to combine the advantages of

both documentation formats and in order to allow for the co-development of a function

hierarchy and system requirements. The integrated requirements engineering approach

combines the pattern-based, controlled natural language requirements engineering approach

(CNL-RE approach) presented in [Holtmann et al. 2011b] with a model-based requirements

engineering approach (MB-RE approach).

The CNL-RE approach provides the ability to specify requirements such that they can be

used as a contractual basis between suppliers and OEMs. In addition, by using a strict

grammar, it prevents ambiguities for the purpose of conducting automated analyses

[Holtmann 2010] and allows structuring functionalities hierarchically.

The MB-RE approach is a seamless model-based approach to document requirements,

beginning with the system environment and coarse, solution-neutral requirements to

solution-oriented functional requirements. It relies heavily on a goal- and scenario-oriented

process and provides a number of specialized requirements model types which allow for

traceability between one another.

By combining the approaches, requirements can be elicited, agreed upon, and documented

both based on models and textually. The requirements engineer can switch between both

representations as fits best. For instance, the textual representation can be used for

document-oriented reviews or a contractual agreement with the customer, and the model-

based representation can be used to derive the system architecture as the next step in a

model-based development process.

The industrial case study presents a Body Control Module (BCM) from the automotive

domain. A BCM is an embedded system that constitutes a new paradigm in managing the

increasing number and complexity of electronic control units (ECUs) in the passenger

compartment of modern vehicles. The purpose of the BCM is to dispatch control commands,

relay sensor information, and manage data exchange between many different control units,

for example, ECUs for the power door locks, the turn signals, etc. In essence, a BCM is a

control unit for control units. The advantage of such a paradigm is that the interconnectivity

between the various control units is decreased, as every control unit only requires a

connection to the BCM, thereby leading to a reduction in the size of the cable tree inside the

vehicle. For example, rather than having to connect all four turn signals with one another to

ensure synchronous hazard flashing, the turn signals only need to be connected to the BCM

which in turn synchronizes them. On the other hand, this means that the BCM must be able

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 3

to handle a large variety of different functions, which all have to be accounted for during

requirements engineering. That is, it must not only be able to control functions of the

individual attached systems, but it must also be able to control the attached systems in

conjunction with one another.

This paper is structured as follows: Section 2 illustrates the related work regarding the

integration of model-based and natural language-based requirements engineering

approaches. The following sections introduce the controlled-natural-language-based and the

model-based requirements engineering approaches, which were merged to an integrated

approach, respectively (Sections 3 and 4). Section 5 introduces the integrated approach

before Section 6 shows the application of the integrated approach on the automotive case

study BCM. Section 7 summarizes this document and provides an outlook on future work.

Related Work

4

2

The relevant literature on the integration of model-based and natural-language-based

requirements engineering covers two main research areas.

On the one hand, there exist approaches concerning the manual, semi-, or even fully

automated creation of models from natural language requirements. A systematic review of

such approaches has been conducted by Yue et al. [Yue et al. 2011]. The authors motivate the

importance of this type of approach by means of the lifecycle of the Model Driven

Architecture (MDA) [OMG 2003]. One basic principle of the MDA is to automatically create a

platform-specific model from a platform-independent model by means of model

transformations. In contrast to that, a transformation from requirements to an analysis model

is not covered by the MDA lifecycle. Yue et al. assume that this is caused by the typical

natural language representation of requirements that complicates automated techniques for

processing them. However, they argue that a (semi-)automated transformation approach

from requirements to analysis models would fill an important gap in the MDA software

development life cycle. Furthermore, Yue et al. state that such approaches could help to

(semi-)automate the establishment and maintenance of traceability between requirements

and analysis models as well as to the subsequent design models and the implementation.

On the other hand, other approaches focus on creating textual requirements specifications

from graphical models in a manual, semi-, or full-automatic manner. A systematic literature

review of such approaches has been presented in [Nicolás and Toval 2009]. As illustrated in

Section 1, requirements models and natural language requirements both have benefits and

disadvantages for the development process. According to [Goldsmith 2004], models are

appropriate for representing requirements, but natural language requirements foster proper

requirements validation. In addition, while models are in general more expressive and more

precise, natural language is used for the contract with the customer and eases the

requirements management [Sikora et al. 2011]. Hence, it has been argued that the

combination of model-based and natural-language-based requirements improves the

requirements engineering process as it may allow incorporating benefits from both

documentation forms [Davis 2005]. In particular, the main benefit of this combination is that

it reduces the effort for writing the requirements, improves the completeness of the

requirements specifications, and automatically establishes and maintains traceability

between textual requirements and requirements models [Nicolás and Toval 2009], as is

required by many standards (e.g., [IEEE 830], [ISO 26262]) and maturity models (e.g.,

Automotive SPICE [AutomotiveSIG 2010]).

Until now, there are no approaches that support the bidirectional and hence tight

interrelation of model-based and natural language-based requirements engineering in a

semi- or fully automatic way. This is also indicated by the above mentioned systematic

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 5

literature surveys, which only cover one direction (i.e., from natural language requirements

to models and vice versa). Moreover, we conducted a systematic literature review with

particular focus on such articles featuring semi- or fully automated approaches. In the

following, our findings are summarized with regard to the targeted use of natural language

as well as models for eliciting, documenting, reconciling, and validating requirements.

We present related approaches on (semi-)automatically generating models from natural-

language-based in the first subsection and approaches that transform model-based

requirements into natural language in the second subsection. We conclude in the last

subsection.

2.1 Automatic generation of models from NL-requirements

Illieva and Ormandjieva [Ilieva and Ormandjieva 2006] describe a method for automatically

eliciting UML models from natural language requirements. The authors present a formalism

which is used to create three models from textual requirements: the Use Case Path Model,

the Hybrid Activity Diagram, and the Domain Model. These models are abstractions from

the information in natural language requirements and serve as a basis for deriving various

UML models.

Ambriola and Gervasi introduce an environment for analyzing and transforming natural

language requirements [Ambiola and Gervasi 1997; Ambiola and Gervasi 2006]. This

environment can parse natural language requirements and transform them into various

models (e.g., ER diagrams, UML models, state diagrams) using an expert system. Natural

language requirements are first transformed into parse trees and then saved in a common

tuple space. This tuple space contains the basic-knowledge about the textual requirements.

Using various transformation operations, various models can be derived automatically from

the tuple space. The created models in turn can be checked, tested, and validated using

various criteria.

Deeptimahanti and Babar or Sanyal [Deeptimahanti and Barbar 2009; Deeptimahanti and

Sanyal 2011] describe the automatic generation of UML models from natural language

requirements as well, using a tool. The tool possesses three generators to generate Use Case

diagrams, conceptual models, and code, respectively.

Harmain and Gaizauskas [Harmain and Gaizauskas 2000; Harmain and Gaizauskas 2003]

introduce a CASE tool, which is supposed to facilitate the requirements engineering analysis

process. The tool generates an initial UML class diagram from natural language

requirements documents. This UML class diagram represents the object-classes and their

relationships as mentioned in the requirements documents, and can be translated directly

into a graphic representation for further editing.

Kiyavitskaya and Zannone describe in [Kiyavitskaya and Zannone 2008] a method for

facilitating the Secure Tropos methodology during the requirements elicitation phase. A tool,

Related Work

6

which is supporting the methodology, aims at translating natural language requirements in

semi-structured specifications based on the SI* modeling framework – an extension of the i*-

language for goal-modeling.

Leonid Kof describes a method for transforming natural language descriptions of interaction

sequences into automata or MSCs [Kof 2009]. This method is based on what Kof refers to as

Discourse Context Modeling for adding missing information to the natural language

specification. Furthermore, Kof describes in [Kof 2010] an interactive, adaptive CASE-tool for

facilitating processing natural language requirements. In this approach, a user marks a

sequence of words in the present text and selects a model element to which those properties

(e.g., the element’s name) are assigned that can be found in the text sequence. This creates

links between text sequences and model elements. These links serve as training sets, which

can be used to foster automatic extraction of model elements and relations.

In [Mich et al. 2002], the authors present a CASE-tool prototype for analyzing requirements,

based on processing natural language documents. The tool supports the automatic

identification of classes and the corresponding associations from textual requirements

documents and generates an abstract model. Similar to [Kof 2010], the model elements are

connected to their textual sources by introducing traceability links.

2.2 Generating NL-requirements specifications from models

In [Drusinsky 2008], a process is described that translates functional and behavioral models

such as UML activity diagrams and MSCs into natural language requirements. This

approach was developed to facilitate the increasing popularity of UML during development

and to be able to express those modeled requirements in natural language form. Similarly,

Meziane et al. introduce an approach in [Meziane et al. 2008] that derives natural language

requirements specifications from UML class diagrams. For this purpose, a system of rules is

used in conjunction with a linguistic ontology in order to express the diagram’s components.

The goal is to document the current state of the system under development in a format that is

understandable for all stakeholders.

Lu et al. [Lu et al. 2007; Lu et al. 2008b; Lu et al. 2008a] present a model-based, object-

oriented approach for eliciting and managing requirements. For this purpose, a requirements

management tool is introduced, which facilitates the integration of object-oriented concepts

and model-based requirements engineering. The principle of “modeling requirements

documents” is meant to improve completeness, consistency, and traceability as well as

integration with artifacts from other phases of the development. In addition, typical

problems of ambiguity and inconsistency in natural language documentation of

requirements can be reduced by presenting the knowledge of the pseudo-domain in an

explicit, well-defined requirements model.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 7

2.3 Conclusions from the Related Work

As can be seen from the literature regarding text-to-model transformation, most approaches

generate UML models like Use Case diagrams or class diagrams, either directly or via

several intermediate transformations. These various approaches are typically meant to

dissolve the inherent ambiguity in natural-language-based requirements. On the other hand,

the approaches focusing on model-to-text transformation primarily aim at facilitating the

communication with stakeholders who have no experience with models. The respective

authors of the approaches commonly agree that such methods offer good support for the

elicitation, documentation, reconciliation, and validation processes in requirements

engineering, and, moreover, they make possible to save much time and much costs. In

essence, each of the approaches presented above allow the developer to benefit from the

transition in certain development scenarios and in specific points during development.

Yet, it can be seen that no approach specifically regards the co-development of natural

language requirements and requirements models. While the approaches presented above

focus on the explicit transition either from models to text or from text to models, no approach

defines a development process that strategically incorporates the transition from models to

text and vice versa in order to make the benefits of both requirements models and natural

language requirements available throughout development.

A technical prerequisite for such a development or requirements engineering process is the

possibility of synchronization between natural language and models. It was argued in

[Nicolás and Toval 2009] that such a "synchronization could be useful in an iterative and

incremental software process”, thereby fostering validation, as validation can be “carried out

directly on the widely understandable generated textual requirements, which could be

changed to make the related models evolve automatically through traceability relationships"

[Nicolás and Toval 2009].

A Controlled-Natural-Language-based Requirements Engineering Approach

8

3 - - -

1

In previous work, we conceived a seamless, model-based design methodology for

automotive systems with focus on suppliers [Fockel et al. 2012a; Fockel et al. 2012b;

Holtmann et al. 2011a]. This automotive-specific design methodology is concerned with

requirements engineering and focuses on the formulation of requirements using natural

language, the validation of requirements and the transition to model-based design.

Our development methodology starts with so-called customer requirements [AutomotiveSIG

2010] that typically are specified informally and are made available to the supplier by an

original equipment manufacturer (OEM). These customer requirements specify the high-

level functionality of the system to be developed. Based on the customer requirements and

technical implementation knowledge, the supplier specifies more detailed system

requirements [AutomotiveSIG 2010], which propose a possible implementation of the

required system functionality.

Since requirements models are not necessarily understood by all stakeholders, their use is

not feasible in many development scenarios as contractual basis or to satisfy standards. This

is especially true for the automotive sector, which is characterized by the collaboration

between OEMs and many suppliers. Consequently, requirements specifications in the

embedded or automotive domain are typically formulated by means of natural language

[Sikora et al. 2012]. This complicates the automatic processing of the specifications. Thus,

requirements validation and the transition to model-based design have to be performed

manually, which is extensive and error-prone.

To overcome this problem, we use a Controlled Natural Language (CNL) approach for the

specification of system requirements in the automotive domain [Holtmann et al. 2011b]. The

CNL restricts the expressiveness of natural language and disambiguates it, enabling

automatic processing of the requirements while having natural language requirements

understandable for all stakeholders at the same time. We extended a CNL for the

specification of functional system requirements, which is already successfully used in the

automotive industry [Kapeller and Krause 2006].

1 This chapter bases on the previously published work ([Fockel et al. 2012a; Fockel et al. 2012b;
Holtmann 2010; Holtmann et al. 2011a; Holtmann et al. 2011b]).

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 9

3.1 Methodology

Requirement patterns are a means to describe the functionality of the system under

development (SUD), as sketched in Figure 1. The patterns allow refining the overall system

functionality across systems (i.e., a grouping of functionality) to atomic functions across

several abstraction layers. Besides the different functions, also the dependencies between

them are of interest. To identify the dependencies, the input and output data required and

provided by the different functions are analyzed and described by using the CNL in terms of

signals. The approach is similar to the Structured Analysis as presented in [Ross and

Schoman 1977; DeMarco 1979], for example. By using the requirement patterns, a function

hierarchy spanning a tree with functions as leaves is conceived. While refining the complete

system across subsystems into functions, the input and output interface of an element (i.e,

the complete system or a subsystem) of one abstraction layer is partitioned onto elements of

the next deeper abstraction layer (i.e., a subsystem or a function) in order to reduce the

overall complexity of the SUD. Concrete examples for this can be found in our case study in

Chapter 6. Furthermore, there are requirement patterns, which describe more detailed,

solution-oriented requirements as described in the next chapter and comprise quality

requirements, safety requirements, computation rules, internal states and their transitions,

and activations or deactivations of functions, for example.

Figure 1: Function hierarchy described using requirement patterns (based on [Holtmann et al.

2011b])

In the subsequent development process, a logical architecture is developed manually based

on the function hierarchy. Afterwards, the atomic leaf functions are allocated to logical

components in order to document which function is realized by which component. A

function can be allocated to one or more logical components. Alternatively, a logical

component can also realize the functionality of several functions such that a set of functions

is allocated to a single logical component (see [Fockel et al. 2012b]). The advantage of the

distinction of system functionality and architecture is that it is possible to allocate the same

functionality to different, concrete logical architectures. For example, the functionality of a

BCM for a car and for a truck is the same, but the architecture is different due to the fact that

in a truck more turn signal ECUs have to be controlled (see Chapter 6).

Function m.1.1

Subsystem 1.1

Complete

System

Input

Signals
Output

Signals

Input

Signals
Output

Signals

Input Signals Output Signals

Subsystem 1.n
Input

Signals

Output

Signals...

Subsystem m.1
Input

Signals
Output

Signals
Subsystem m.n

Input

Signals

Output

Signals
...

Function m.1.n
Input

Signals
Output

Signals
Function m.n.1

Input

Signals
Output

Signals
Function m.n.x

Input

Signals
Output

Signals... ...

A Controlled-Natural-Language-based Requirements Engineering Approach

10

3.2 Textual Requirement Patterns

The CNL consists of textual templates for requirements (requirement patterns) with static,

variable, alternative, and optional parts. The syntax is similar to that of regular expressions.

Five example requirement patterns that are relevant for this paper are listed below. Some

example requirements shaped by the requirement patterns 1–5 are listed in Table 1.

1. The system <system> consists of the following subsystem[s]: <subsystem list>.

2. The functionality of the system <system> consists of the following function[s]:

<function list>.

3. The (system <system> | function <function>) (processes | creates) the following

signal[s]: <signal list>.

4. When the event <event> occurs within the system <system> [and the condition

<condition> is fulfilled], then the function <function> is (activated | deactivated).

5. The (system <system> | function <function>) has to react within <time> <timeUnit> to

its stimuli.

In the above requirements patterns, the element <system> is a functional unit, that is, a

grouping of functionality. Thus, Complete System in Figure 1 represents the functionality of

the SUD, which is decomposed across the subsystems to atomic functions. These functions

have a behavior which can be described as a relation between the input and output signals.

The description of this behavior is not in scope of this paper and could be specified with free

natural language, with formal models, or also with a CNL.

The element signal describes the input and output data of a function. All signals are defined

in a central data lexicon (cf. the data dictionary from [DeMarco 1979]) and referenced by the

requirements shaped by the patterns. Signals specify logical values and can be used to

document the data flow between functions (e.g., velocity). Logical values are more abstract

than concrete values, which may be specified during the design of the logical and technical

architecture. For these architecture types, the interfaces are described in more detail and are

mapped to technical signals such as bus signals. Hence, the input and output signals can be

used to define interfaces in the logical and technical architecture.

ID Requirement text

R1 The system BodyControlModule consists of the following subsystems:

ControlTurnSignals, ControlBrakeLight.

R2 The functionality of the system ControlTurnSignals consists of the following

functions: Indicate, SwitchHazardLights.

R3 The functionality of the system ControlBrakeLight consists of the following functions:

LightBrakeLights, SignalizeEmergencyBrake.

R4 The function LightBrakeLights processes the following signal: brake.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 11

R5 The function LightBrakeLights creates the following signal: light.

R6 The function SignalizeEmergencyBrake processes the following signal:

emergencyBrake.

R7 The function SignalizeEmergencyBrake creates the following signal: lightIntense.

R8 The function SignalizeEmergencyBrake has to react within 25 ms to its stimuli.

Table 1: Example requirements specified with requirement patterns

Furthermore, requirement patterns specify events that trigger the activation or deactivation

of functions. The event specifications can be augmented by conditions that must hold in

order for the event to be triggered. These events and conditions are described with the fourth

requirement pattern. There are further templates that formalize the variables <event> and

<condition> from requirement pattern no. 4. These are listed in Table 2.

Event
<signal> (increases above | decreases below | reaches) <value>

<signal> is turned (on | off)

Condition

<signal> [is] [not] (greater than | lower than | equal to | unequal to | greater

than or equal to | lower than or equal to) <value> [is]

<signal> (< | > | == | <= | >= | <>) <value>

Table 2: Templates for events and conditions

By making use of the CNL outlined above, the expressiveness of natural language is

restricted and thereby syntactically disambiguated. This fosters automatic processing of the

requirements in several ways.

Firstly, we developed a prototypical requirements editing environment consisting of a

tabular editor for the data lexicon, as well as a text editor to document the requirements

using the requirement patterns explained above [Holtmann 2010]. The text editor employs

features like error marking (e.g., in the case of text that does not correspond to the

requirement patterns), syntax highlighting, auto completion, and the automatic generation of

an overview of the current function hierarchy. These features support the requirements

engineer in a constructive manner while formulating requirements.

Second, we developed an automatic requirements validation approach on top of the

requirements editing environment [Holtmann et al. 2011b]. The validation approach

automatically checks the overall requirements specification for wellformedness w.r.t. to

predefined rules and guidelines. For example, we outlined in the last subsection that the

inputs and outputs of the atomic functions should be propagated via the subsystems to the

overall system. That is, in the final requirements specification each system should have the

union of inputs and outputs of its subordinate elements (i.e., subsystems or functions).

Regarding the requirements R3 – R7 in Table 1, the subsystem ControlBrakeLight should

process the signals brake and emergencyBrake and create the signals light and lightIntense since

A Controlled-Natural-Language-based Requirements Engineering Approach

12

the subsystem’s subordinate functions LightBrakeLights, SignalizeEmergencyBrake do so. Thus,

there should be two requirements that specify that ControlBrakeLight processes and creates

these input and output signals, respectively. Typically there is a huge amount of

requirements, which are additionally distributed across several documents and document

chapters. Thus, such missing requirements or requirement inconsistencies can easily be

missed and therefore lead to problems in the subsequent development process. Such

requirements defects can be identified by the requirements validation approach.

Finally, we ease the transition to model-based development by generating an analysis model

[Fockel et al. 2012a; Fockel et al. 2012b; Holtmann et al. 2011a]. The analysis model reflects

the same information as the requirements and represents the function hierarchy in a SysML

Block Definition Diagram. For example, the analysis model in the bottom of Figure 2 reflects

exactly the same information as the excerpt of requirements in Table 1. We use the analysis

model as a basis to establish traceability to the logical architecture and for detecting missing

or invalid traceability automatically [Fockel et al. 2012a]. For example, we outlined in the last

subsection that all leaf functions of the analysis model have to be allocated to logical

components in the subsequent development process. This is done by means of SysML

allocation links between the elements of the analysis model and the logical components,

amongst other things. If such trace links do not exist, we identify the corresponding

functions or logical components by automatic checks. Furthermore, we also take the relations

between the input and output information of the analysis model and the logical architecture

into account. To execute the generation, we apply the bidirectional, synchronizing model

transformation technique Triple Graph Grammars (TGGs) [Schürr 1995]. Once the analysis

model has initially been generated based on the requirements documented using the

requirement patterns explained above, TGGs allow keeping requirements and analysis

model consistent automatically. This is done by repeatedly updating the parts of the analysis

model that are affected by updated requirements. The other way round, it is also possible to

change the analysis model and update the requirements that are affected by the changes in

the model. Since TGGs store the correspondences between the analysis model and the

documented requirements (cf. objects :co1, :co2, and :co3 in Figure 2), traceability between

them is established and maintained automatically [Fockel et al. 2012a].

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 13

Figure 2: From requirements to analysis model (based on [Fockel et al. 2012a])

bdd Analysis Model
Body

ControlModule

Control

TurnSignals

Switch

Hazard

Lights

Indicate
Light

BrakeLights

Signalize

Emergency

Brakebrake

light

emergency

Brake

light

Intense

The functionality of the system

ControlBrakeLight

consists of the following functions:

LightBrakeLights,

SignalizeEmergencyBrake.

:co1

:co2

:co3

Control

BrakeLight

A Model-based Requirements Engineering Approach

14

4 -

A seamless model-based requirements engineering approach (MB-RE approach) has been

developed with the aim to foster a systematic, model-based co-design between requirements

and architecture2. The approach is based on a goal-/scenario-oriented stepwise refinement of

requirements from coarse, solution-neutral requirements to detailed, solution-oriented

requirements.

Due to the stepwise, artifact-based refinement, the MB-RE approach allows for traceability

between requirements artifacts. To enable the stepwise refinement, the MB-RE approach is

based on two main concepts: A hierarchy of abstraction layers (see Section 4.1) and a

requirements artifact model (see Section 4.2). In the following, we will summarize the key

ideas of the MB-RE approach, its requirements artifacts and architectural artifacts.

4.1 The Abstraction Layer Model

One key feature of the MB-RE approach is a hierarchy of abstraction layers. Using different

levels of abstraction is a proven way to reduce the complexity of development projects

[Weber and Weisbrod 2003] and has also been successfully applied in a number of different

research approaches (see, e.g., [Braun et al. 2010] and [Bühne et al. 2004]). The continuous

model-based requirements engineering approach therefore offers hierarchical layers of

abstraction for all requirements artifacts, which fosters the decomposition of the SUD in a

systematic manner. At each abstraction layer, a number of different requirements models are

developed: environment models, goal models, scenario models, and solution-oriented

requirements, see Section 4.2. The commonality among the requirements models on one

abstraction layer is that they contain requirements artifacts pertaining to the same set of

concerns [Fine 2002]. Abstraction layers therefore differ from one another with regard to the

level of detail of their requirements, such that some abstraction layers contain more coarsely

specified requirements (in the following, called higher abstraction layers) and some layers

contain more detailed requirements (so called lower abstraction layers).

As prior research shows (e.g., [Sikora et al. 2011]), it is futile to specify a rigid hierarchy of

abstraction layers. This is due to the vastly different development projects in individual

application domains such as automotive technology, avionics, medical, energy, or

automation technology: Building a driver assistance system in the automotive industry is

vastly different from building an assembly line in the automation industry. Consequently,

2 The requirements viewpoint presented in [Daun et al. 2012] is based on the model-based

requirements engineering approach sketched in this chapter.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 15

using the same abstraction layer hierarchy in both endeavors might not be wise. Therefore,

the MB-RE approach supports defining abstraction layers freely with regard to the

development project and the application domain. In other words, a particular abstraction

hierarchy must be defined according to the peculiarities that the project in the given

application domain makes necessary. Therefore, the RE approach does not define a rigid

abstraction hierarchy, but recommends a generic abstraction layer types that can be tailored

towards project and application domain. In the following, the abstraction layer types and

their properties and relations to one another are explained. In Figure 3, the abstraction layer

hierarchy of the MB-RE approach is illustrated.

Figure 3: The Requirements View Abstraction Layer Hierarchy

4.1.1 Top System Layer

The Top System Layer is the most abstract layer. Usually, there is only one system specified at

the Top System Layer. In this abstraction layer, the interfaces of the SUD with its

environment and entities within the environment, such as users and other systems are

captured. In addition, at this abstraction layer, physical and technical processes in the context

of the system are captured. This abstraction layer presents the services and functions offered

by the system using the artifact types outlined in Section 4.2. The requirements artifacts at

this abstraction layer focus on the system's usage, while the architecture is mainly concerned

with the definition of sub-systems.

4.1.2 System and Sub-System Layers

These layers consist of a number of different (sub-)systems that have been identified on the

next higher abstraction layer during the development of the architecture artifacts. It hence

contains the logical building blocks obtained from the decomposition of the overall system.

There may be arbitrarily many of these layers, that is, a system specified on the System Layer

may contain further sub-systems. These sub-systems are specified on the next layer, the Sub-

System Layer. Sub-systems may themselves contain further sub-systems, which are in turn

specified on the next lower sub-system layer, and so forth. Each of these layers usually

contains more than one system. Hence, in contrast to the Top System Layer, the System and

Sub-System Layers contain multiple systems. Consequently, the requirements engineering

process has to be performed for each system and sub-system and must render artifacts that

A Model-based Requirements Engineering Approach

16

are both consistent to one another (i.e., to the artifacts of other systems within this layer) and

to the next higher layer.

4.1.3 Component Layer

The Component Layer is usually the lowest abstraction layer, disregarding from how many

sub-system layers have been defined. This layer is largely similar to the sub-system layer(s).

The main difference between System, Sub-System, and Component Layer is that the sub-

systems specified at the Component Layer are not decomposed any further. Sub-systems that

are not decomposed are considered atomic components. The Component Layer consists of

hardware and software components that realize the entire system's properties. At this layer,

the interrelation between software and hardware components is defined. Therefore, this

layer ordinarily contains the physical building blocks of the entire system.

4.1.4 Using Abstraction Layers

There is no restriction regarding how many or how few abstraction layers must be defined.

For example, if a very simple system is to be designed that is not further decomposed into

sub-systems or components, or if the complexity of the system does not significantly

decrease due to decomposition into sub-systems, the requirements engineer might choose to

use merely one abstraction layer. This would be equivalent with specifying the system under

development on the Top System Layer. On the other hand, it is also possible to use two or

more abstraction layers. Using two abstraction layers is equivalent to specifying the

requirements on the Top System Layer and Component Layer, respectively. In the case that

more than two abstraction layers are used, requirements are also specified on at least one

System Layer.

4.2 The Artifact Model

Research in model-based requirements engineering must provide RE approaches that do not

only give methodological guidance with regard to the use of abstraction, but also with

traceability and consistency of requirements artifacts that are specified during the RE process

[Sikora et al. 2011]. In other words, it must be possible to trace requirements artifacts

throughout the development process [Gotel and Finkelstein 1994]. By means of the stepwise

refinement of requirements artifacts on different layers of abstraction (see Section 4.1), the

MB-RE approach provides one way to achieve both traceability and consistency. One further

device to ensure traceability and consistency in this model-based requirements engineering

approach is the inherent artifact model. Artifacts types used in this approach are

environment models, solution-neutral requirements, that is, goal and scenario models,

solution-oriented requirements models in the perspectives behavior, function, and data, as

well as architecture models. In the following, we briefly explain the different artifact types of

the RE approach shown in Figure 4.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 17

Figure 4: The Artifact Model of the MB-RE approach

4.2.1 Environment Models

Environment models treat the system as a black box and focus on the systems desired

interaction with its environment and entities within its environment (context entities, see

[Weyer 2010]). Context entities are, for example, external actors, sensors, and other systems

in the context of the system. Environment models focus on the definition of the system's

external interfaces, that is, the interfaces the system has with its environment and the context

entities. The environment models defined at the System Layer are the basis for

communication with stakeholders such as customers, users, product managers, or sales

representatives. These models allow eliciting system goals and give a first impression about

the system's interaction with the environment, that is, the functions that can be perceived in

the environment that are performed by the system under development. A detailed

Environment Scenarios Solution-oriented
Requirements

Goals

L1 Top System Layer

System ScenariosSystem Goals Solution-oriented

System Requirements

R1

RN

System Environment

L3 Subsubsystems

Subsubsystem

Scenarios

Subsubsystem

Goals

Solution-oriented

Subsubsystem Requirements

R…

R…

Subsubsystem

Environment

Ln Components

Component

Scenarios

Component

Goals

Solution-oriented

Component Requirements

R…

R…

Component

Environment

L2 Subsystems

Subsystem

Scenarios

Subsystem

Goals

Solution-oriented

Subsystem Requirements

R1.1

R1.M

Subsystem

Environment

A Model-based Requirements Engineering Approach

18

description of context models can be found in [Weyer 2010]. Structural diagrams such as

SysML Internal Block Diagrams can be used to model this artifact type.

4.2.2 Solution-neutral requirements

Solution-neutral requirements are used to document rationales for solution-oriented

requirements. There are two types of solution-neutral requirements: goal models and

scenario models.

Goal models document the intentions that the stakeholders have when conceiving the system

and can sketch alternative realization options. In early requirements engineering, using goal

models helps to focus on identifying the problems and exploring the system solutions and

alternatives. Goals form a first manifestation of the vision about the system that the

stakeholders have in mind. Goals are solution-neutral descriptions of the functionalities,

qualities, and features the system under development must possess. Goals neglect concrete

aspects of the solution. In goal models, relationships between goals, functionalities, and

qualities can be identified. For example, goals might be in direct conflict with each other (i.e.,

fulfilling one goal will make it impossible to fulfill a conflicting goal) or the fulfillment of

goals may contribute—positively or negatively—to the fulfillment of another goal (i.e., make

it easier or harder to achieve the other goal). Goals can be elicited, in part, from the

environment model, but also by means of stakeholder collaboration. The MB-RE approach

differentiates between hardgoals, that is, goals whose fulfillment can be unambiguously

verified (e.g., by yes/no questions), and softgoals, which are goals whose fulfillment depends

on some degree of interpretation (e.g., goals pertaining to the quality aspect “usability”).

Goals and goal modeling is explained in detail in [Pohl 2010] as well as [van Lamsweerde

2009]. KAOS goal diagrams, i* models, or stereotyped SysML Requirements Diagrams can be

used to model this artifact type.

Scenario models are exemplary interactions of the system with its environment. Scenarios

allow eliciting requirements by modeling the system's interaction with context entities that

have been identified in the environment models. Thereby, the system's benefit and impact on

the environment can be assessed. Scenarios fulfill the goals that have been specified in the

goal models. For every goal, there must be at least one scenario that fulfills it and every

scenario must fulfill at least one goal. Furthermore, scenarios may specify some internal

states, albeit the state space of the system under development can usually not be fully

modeled using scenarios. This is due to the fact that scenarios merely model exemplary

interactions of the system with its environment, rarely all interactions. Scenario modeling is

described in detail in [Pohl 2010] as well as [Potts 1995]. Additionally, alternative and error

handling scenarios can be specified that describe exceptional interactions deviating from the

main scenarios. SysML Use Case and Sequence Diagrams as well as ITU Message Sequence

Charts can be used to model this artifact type, for example.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 19

4.2.3 Solution-oriented requirements

Solution-oriented requirements are solution-specific descriptions of behavior, functions, and

data (the three perspectives, see [Pohl 2010] and [Davis 1993]) and thus represent a first step

towards the implementation. Solution-oriented requirements consist of data models,

functional models, and state models which represent the data, function, and behavior

perspective, respectively. Solution-oriented requirements can in insofar be derived from

scenario descriptions as scenarios may specify states that the system adopts after a certain

interaction sequence has been executed. Furthermore, on the basis of scenarios and

environment models, the function perspective of solution-oriented requirements can be

derived in part. All three perspectives of solution-oriented requirements are co-developed, as

they present individual views onto the same system. A more detailed explanation of

solution-oriented requirements is given in [Pohl 2010]. SysML Block Definition Diagrams are

used for the data perspective, SysML Activity Diagrams are used for the function

perspective, and SysML State Machine Diagrams are used for the behavior perspective to

model solution-oriented requirements.

4.2.4 Combining solution-neutral and solution-oriented requirements across

Abstraction Layers

Goal- and scenario-oriented RE approaches appear to be considered a beneficial approach for

practitioners [van Lamsweerde 2009] as an essential component involved in the

requirements engineering process. Typically, in goal- and scenario-oriented approaches, the

context is analyzed, problems are identified, and high level strategic goals for developing a

system to solve the problems are elicited. Consequently, solution-oriented requirements are

specified to fulfill these goals. Thus, goals are guiding the requirements elicitation process

and are identified on the basis of environment artifacts. However, goals merely reflect an

idealized view of the desired context, that is, depict a desired state of the system after

development. Thus, requirements elicitation should not rely only on goals. It needs a

combination with another facilitating option which should give some information of current

reality. For this purpose, scenarios can be used which represent sequences of real events in

the context. Solution-oriented requirements are specified on the basis of goals and scenarios

and build the immediate input for architecture models. Developing these artifacts for some

system, sub-system, or component on some abstraction layer is in principle a sequential

process. However, during the requirements engineering process, particular attention must be

placed on maintaining consistency between the requirements artifacts. While the

relationships between these artifacts as explained above already allow for traceability and

consistency, consistency checks must be performed whenever an artifact is completed so that

the artifacts do not contradict one another. For example, behavior models as well as scenario

models must be checked for consistency across abstraction layers in order to ensure that the

scenarios specified on the lower abstraction layers are correct refinements of the scenarios on

the higher abstraction layer (cf. [Sikora et al. 2010]).

Combining Controlled-Natural-Language-based and Model-based Requirements Engineering

20

5 - - -

-

Informal requirements can be formulated and formalized by means of requirement patterns

using the controlled-natural-language-based RE (CNL-RE) approach illustrated in Chapter 3.

While natural language is the preferred documentation format for legally binding

requirements documents and for document-oriented reviews, there is a tendency and desire

among requirements engineers to use models during the RE process [Sikora et al. 2012]. For

this reason, we integrate the CNL-RE approach shown in Chapter 3 with the model-based RE

(MB-RE) approach explained in Chapter 4. This enables to switch the documentation format

at certain points in time. In the remainder of this section, we present the basic methodology

of the integrated approach. In Chapter 6, we evaluate the applicability of the approach by

means of the case study “Body Control Module”.

5.1 Methodology Adaptation

In order to integrate the CNL-RE and the MB-RE approach, we adapted the methodology of

the latter one. The key change is that all artifacts describe a functional view of the SUD as in

the CNL-RE approach. Furthermore, the use of scenarios of the MB-RE approach enables to

conceive the function hierarchy of the CNL-RE approach in a more systematic way. Based on

this functional view, the logical architecture of the SUD is developed as outlined in the

Chapter 3. This is explained in more detail in the following section.

5.2 Combined Process Model

Figure 5 shows the integrated methodology. The color scheme in Figure 5 is based on the

color scheme in Figure 4, yet has been extended to depict activities that produce artifacts

based on the controlled-natural-language-based component of the combined RE approach.

That is, the red activities 5 and 10 regarding the function hierarchy of the SUD. Furthermore,

some artifacts of the MB-RE approach can alternatively be represented by means of

requirement patterns, see activities 6 and 11.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 21

Figure 5: Process for the integrated methodology

As it can be seen from Figure 5, the integrated methodology is divided into two parts. First,

the functionality of the SUD is considered in its entirety on the so-called complete system layer

 act [Activ ity] NLRE-MBRE [Combined process]

2. Specify goals (KAOS)

1. Describe env ironment

(SysML bdd)

3. Determine use cases

(SysML ucd)

9. Refine scenarios

(SysML sd)

7. Limit env ironment

(SysML ibd)

Subsystem Layers

and Function Layer
Complete System Layer

4. Specify scenarios

(SysML sd)

5. Deriv e function

hierarchy (SysML bdd /

requirement patterns)

6. Specify

solution-oriented

requirements (SysML /

requirement patterns)

8. Refine goals (KAOS)

11. Add solution-oriented

requirements (SysML /

requirement patterns)

10. Decompose function

hierarchy (SysML bdd /

requirement patterns)

[Function hierarchy

refined because

subsystems were not

sufficiently trivial]

[else]

Combining Controlled-Natural-Language-based and Model-based Requirements Engineering

22

(cf. the complete system in Section 3.1 and the Top System Layer in Section 4.1). Similarly to

the methodology of the CNL-RE approach (cf. Section 3.1), the system layer is refined across

several subsystem layers to the deepest function layer afterwards. In the following, we

explain the particular steps of the methodology in more detail.

Please note that the steps 7 through 11 may be repeated for any subsequent abstraction layer.

Furthermore, Figure 5 as well as our case study could be interpreted in such a way, that only

a sequential requirements engineering process similar to the waterfall model for the whole

software development process [Royce 1970] is allowed. But, of course, iterations are

explicitly allowed in our RE process.

5.2.1 Step 1: Describe Environment

First of all, the environment of the SUD is described. From the viewpoint of a supplier, the

environment typically consists of other ECUs of the car. The environment has to be

determined based on the informal customer requirements of the OEM. The key difference to

the MB-RE approach is that the context of the SUD (i.e., its environment) is considered in a

purely functional manner. That is, we model no concrete ECUs but their functionalities,

which are required or requested by the SUD. The system environment is described by means

of a SysML Internal Block Diagram.

5.2.2 Step 2: Specify Goals

In the second step, the goals of the SUD are specified. These goals are not always known to a

supplier that has to develop a system for an OEM. In this case, the goals have to be

determined based on the customer requirements. In the ideal case, the OEM additionally

forwards the goals together with the customer requirements to the supplier. As in the MB-RE

approach, the goal artifacts are modeled using KAOS goal diagrams [van Lamsweerde 2009].

In order to achieve UML-/SysML-compliant artifacts, we apply stereotyped UML class

diagrams as concrete notation for the KAOS goal diagrams.

5.2.3 Step 3: Determine Use Cases

Third, the use cases of the SUD are determined based on the customer requirements. They

are documented by means of use case diagrams like in the model-based RE approach.

5.2.4 Step 4: Specify Scenarios

In the fourth step, the use cases are described in a more detailed way using scenarios. All

information needed for modeling the use cases and scenarios is determined based on the

customer requirements and the goals the scenarios have to fulfill. The interacting objects are

elements of the environment that has been specified in step 1. Each scenario is modeled by

means of a sequence diagram.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 23

5.2.5 Step 5: Derive Function Hierarchy

In this step, the functionality of the SUD is decomposed into subsystems (cf. Chapter 3).

These subsystems are decomposed in the following iterations until the function layer is

reached (cf. Step 11). This layer contains the atomic functions. Therefore, as explained in

Chapter 3, this decomposition results in a function hierarchy. This step specifies function

hierarchies based on the scenarios specified in Step 4 in a manner consistent with the CNL-

RE approach (cf. Section 3.1). As in the CNL-RE approach, the model-based representation of

the function hierarchy is specified by means of a SysML Block Definition Diagram.

5.2.6 Step 6: Specify Solution-oriented Requirements

Solution-oriented requirements for the complete system can be specified in this step using

the textual requirement patterns of the CNL-RE approach. As explained in Chapter 3, the

patterns encompass besides the description of the SUD functionality also quality and safety

requirements, computation rules, internal states and their transitions, and activations or

deactivations of functions, for example. Typically, these solution-oriented requirements are

formulated in deeper abstraction layers. In this integrated methodology, only the functional

perspective of solution-oriented requirements is being considered as it serves as the basic

input for the decomposition using requirement patterns. The behavioral and structural

perspective can also be specified in addition, but the focus of this combined approach is on

system functions.

5.2.7 Step 7: Limit Environment for each Subsystem on the next Abstraction Layer

In this step, the environment that was specified on the preceding (sub)system layer is cut

down on those elements that are relevant to the subsystems of the currently considered

layer. Each subsystem is considered individually. The other subsystems on the same layer,

which are interacting with the considered subsystem, are as well regarded as functionalities

of the environment. This is specified by means of a SysML Internal Block Diagram as in the

environment description of the complete system layer.

5.2.8 Step 8: Refine Goals for each Subsystem on the next Abstraction Layer

If necessary, the specified goals are refined for the subsystems, which have been newly

added to the function hierarchy. Furthermore, new goals can be added to the initial class

diagram derived from step 2.

5.2.9 Step 9: Refine Scenarios for each Subsystem on the next Abstraction Layer

The scenarios of the superordinate (sub)system layer are refined in this step. To do so, the

superordinate (sub)system(s) are replaced by the subsystems or functions, which have been

newly added at the currently considered layer. The message exchange is adapted

accordingly. As in step 4, sequence diagrams are applied for the specification of the

scenarios.

Combining Controlled-Natural-Language-based and Model-based Requirements Engineering

24

5.2.10 Step 10: Decompose Function Hierarchy

If the subsystems newly added at the previous layer of abstraction can be decomposed, this

is done in this step by further decomposing them in the SysML Block Definition Diagram

representing the function hierarchy. In this case, a new subsystem layer is conceived. A

subsystem is trivial, if all relevant stakeholders have a sufficient understanding about the

subsystem’s functionality without further decomposition. In this case, the subsystems

represent atomic functions, which do not need to be decomposed any further. Thus, the

currently considered layer is the function layer, and the requirements engineering process is

completed after step 11.

Since we conceived a correlation—formalized using bidirectional TGG model

transformations—between the function hierarchy (cf. the analysis model in Chapter 3) and

Natural-Language-based requirements formulated by means of requirement patterns, we

can automatically transfer the function hierarchy to textual requirements. This is especially

important in the case of reviews that typically impose a document-oriented structure.

Furthermore, if changes occur in the textual review version, these changes can automatically

be transferred to the function hierarchy again.

5.2.11 Step 11: Add Solution-oriented Requirements for each Subsystem on the next

Abstraction Layer

If further solution-oriented requirements are identified while refining the functionality of the

SUD, they are formulated by means of requirement patterns in this step.

If the function layer was reached in step 10 (i.e., the subsystems were not decomposed any

further), the process is completed.

5.2.12 End of Process

After the requirements engineering process has been completed, the resulting function

hierarchy as well as the solution-oriented requirements can be transferred to the final system

requirements specification document.

Based on the function hierarchy, a logical architecture is manually conceived at the end of

the requirements engineering process. The traceability between the atomic functions of the

function hierarchy and the logical components is documented by SysML allocation links

([Fockel et al. 2012a]; [Fockel et al. 2012b]).

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 25

6

In this chapter, we present the case study “Body Control Module” (BCM) from the

automotive domain, which comprises an excerpt of the functions of a BCM used in today’s

cars. The case study is structured on three layers of abstraction, the complete system layer,

which contains a functional view of the BCM as a whole (the topmost system in the function

hierarchy) (see Section 6.1), the subsystem layer, which comprises function groups that are

part of the BCM (see Section 6.2), and the function layer, which contains individual, atomic

functions that are not further decomposed (see Section 6.3). In the following, each section

describes the artifacts that are developed on the corresponding layer of abstraction and

structures them according to the subsystem that they belong to.

6.1 Complete System Layer

This section describes the topmost layer of abstraction, which considers the functions of the

BCM as a whole. The development starts with the elicitation and the subsequent

documentation of solution-neutral requirements artifacts (see Section 4) in order to structure

the problem space of the SUD. In the following, these artifacts are described in detail.

6.1.1 Environment of the BodyControlModule

In this first step, the environment of the SUD is specified. Figure 6 depicts an Internal Block

Diagram containing the system BodyControlModule and five environment functions

represented by actors, that is, DashboardControlling, BrakePedalLevelSensing, LeftIndication,

RightIndication and BrakeLightSwitching. The five environment functions and the SUD are

connected to each other by a total of interfaces.

Figure 6: Environment of the BodyControlModule on Complete System Layer

 ibd [SysML Internal Block] 1.1. Env ironment "BodyControlModule" [1.1.1. Env ironment "BodyControlModule"]

DashboardControlling

BrakePedalLev elSensing

BrakeLightSwitching

«flowPort» Driver

hand input

«flowPort»

Driver info

 : BodyControlModule

«flowPort» Driver

hand input

«flowPort»

Driver info

LeftIndication

RightIndication

«flow»

«flow»

«flow»
«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

Case Study: Automotive Body Control Module

26

As can be seen in Section 4, environment models describe the embedding of the SUD into its

environment. Relevant functions within the environment of the SUD are identified and their

inputs into the SUD and the outputs from the SUD that they receive are documented. Each

input or output constitutes an interface of the SUD with the context. In consequence, the

environment models serve as the foundation for further development activities, such as goal

elicitation (see Section 6.1.2). The key difference to the MB-RE approach is that the context of

the SUD is considered in a purely functional manner. For example, the model contains an

environment function DashboardControlling instead of a concrete ECU

HumanMachineInterface.

While the system BodyControlModule represents the overall functionality of the SUD (cf.

Chapter 3), the purpose of the environment functions is the following:

 The function DashboardControlling provides the BCM with the current position of the

turn signal lever, information about the status of the hazard lights button, and means

to light LEDs in the dashboard as feedback to the driver.

 The function BrakePedalLevelSensing provides the BCM with the current position of

the brake pedal.

 The functions LeftIndication and RightIndication control the left and right turn signals,

respectively.

 The function BrakeLightSwitching allows lighting the car’s brake lights.

The concrete signals of the functions are not yet considered in this step but in the Sections

6.1.3 and 6.1.4. In the next step, the goals that the environment functions expect the SUD to

fulfill can be derived based on information of this environment model.

6.1.2 Goals on Complete System Layer

In the second step, the goals for the SUD are specified within a goal diagram.

In Figure 7, a goal diagram describing the refinement of BCM goals in its subgoals is shown.

Legal regulations shall be fulfilled and rear-end collisions shall be avoided by means of the

turn signal and brake light control. Thus, the two root goals Fulfillment of legal regulations and

Avoidance of rear-end collision are refined by the goals Notify of change in direction, Notify of

slowdown and Notify of dangerous situation. In subsequent steps, the indication of a direction

change can be realized by a turn signal control, and the notification of a slowdown can be

realized by a brake light control. The goal Notify of dangerous situation is refined by the goals

Notify of emergency braking and Notify of danger by halting. Dangerous situations caused by a

vehicle standstill (e.g., a car broken down or at the tail end of a traffic jam) can be indicated

by using the hazard lights. An emergency brake shall be indicated by lighting the brake

lights intensely and additionally activating the hazard lights.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 27

Figure 7: Goals on Complete System Layer

As described in Section 4.2.2, goals can be divided in hardgoals and softgoals. In the

example, it is possible to verify that the legal regulations are fulfilled or that an emergency

brake is successfully indicated. But, of course it is not possible to verify that the BCM avoids

rear-end collisions for the whole lifecycle of all cars that have the BCM build in, since the car

driver as well as the environment is another important factor w.r.t. collisions, for example.

Thus, the goal Avoidance of rear-end collision is a softgoal.

Furthermore, the goal Notify of slowdown is a positive contribution for the goal Notify of

emergency braking (indicated by the ++), since an emergency brake is a form of a slowdown,

too. If the goal Notify of slowdown is already fulfilled, then the goal Notify of emergency braking

is easier to fulfill. Negatively contributing goals are not included in this case study.

6.1.3 Use Cases and Scenarios on Complete System Layer

In the third step, the use cases and scenarios of the SUD are determined on the basis of the

informal requirements, the environment model, and the goals specified in the last step.

In Figure 8, a use case diagram is given, which is used to structure the scenario models. In

this example, the use cases Indicate left, Indicate right, and Switch hazard lights are specified for

functionality w.r.t. the turn signals. The environment function DashboardControlling

participates in these use cases. The environment functions LeftIndication and RightIndication

participate on the use cases Switch hazard lights, Indicate left, and Indicate right.

 class 1.2.1. Goals "BodyControlModule"

<< hardgoal >>

Notify of change in direction ()

<< hardgoal >>

Notify of dangerous situation ()

<< hardgoal >>

Notify of danger by halting ()

<< hardgoal >>

Notify of slowdown ()

<< softgoal >>

Avoidance of rear-end collision ()

<< hardgoal >>

Fulfi lment of legal regulations ()

<< hardgoal >>

Notify of ermergency braking ()

«Refined By»

«Refined By»

«Refined By»

«Refined By»

«Refined By»

«Refinement Of»

++

«Contribution»

«Refined By» «Refined By»

«Refinement Of» «Refinement Of»

«Refined By»

Case Study: Automotive Body Control Module

28

Figure 8: Use Cases on Complete System Layer

Furthermore, there are the use cases Brake light switching and Emergency brake light controlling

w.r.t. the functionality of the brake light. The environment functions BrakePedalLevelSensing

and BrakeLightSwitching participate on both these use cases. As can be seen from the use case

diagram, the scenario Emergency brake light controlling includes the scenario Switch hazard

lights. This means that the scenario Emergency brake light controlling achieves its functionality

by additionally executing the other scenario. In other words, the hazard lights are activated

when the driver strongly pushes the brake pedal.

In the fourth step, the use cases mentioned above are detailed with scenario models using

sequence diagrams. In this case study, each use case corresponds to one scenario. In Figure 9

and Figure 10, two examples of scenarios are shown that show possible fulfillments of goals.

In Figure 9 a sequence diagram called Indicate left is given that depicts the exemplary

fulfillment of the goal Notify of change in direction. The scenario depicted in the sequence

diagram shows the SUD, BodyControlModule, as well as two environment functions, which

have been taken from the environment model in Figure 6. When the driver uses the turn

signal lever to indicate a left turn, the environment function DashboardControlling sends the

message indicateLeftReq to the BodyControlModule. Subsequently, the BodyControlModule sends

the message indicateAct to LeftIndication to activate the left turn signals and finally sends a

lightIndicateLeftLED message back to DashboardControlling to activate a corresponding LED

on the dashboard. This interaction is one possible way the goal Notify of change in direction

can be fulfilled – another example would be the corresponding scenario Indicate right for

right indication.

 uc [Use Case] 1.2. Goals / Requirements / Scenarios "BodyControlModule" [1.2.2. Use Cases "BodyControlModule"]

BodyControlModule

Indicate left

Brake light

switching

Emergency brake

light controlling

Switch hazard

lights

Indicate right

DashboardControlling

(from 1-Environment)

BrakeLightSwitching

(from 1-Environment)

BrakePedalLev elSensing

(from 1-Environment)

LeftIndication

(from 1-Environment)

RightIndication

(from 1-Environment)

«include»

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 29

Figure 9: Scenario Indicate left on Complete System Layer

Another example is given in Figure 10. In this figure, a sequence diagram called Emergency

brake light controlling is shown. It describes the interaction taking place, when the driver

strongly pushes the brake pedal because of an emergency. The diagram shows six lifelines:

the BodyControlModule as well as five environment functions, that is, BrakePedalLevelSensing,

BrakeLightSwitching, LeftIndication, RightIndication and DashboardControlling. The scenario

starts with the BodyControlModule receiving the message emergencyBrake from the

environment function BrakePedalLevelSensing. Upon receiving that message, the system sends

a lightIntense request to the environment function BrakeLightSwitching to make the brake

lights light up more intensely. Then, two parallel indicateAct messages are sent to the

environment functions LeftIndication and RightIndication to activate the hazard lights. Finally,

the BodyControlModule sends a lightHazardLightsLED to DashboardControlling to make the

activated hazard lights visible to the driver. The scenario shows the fulfillment of the goal

Notify of emergency braking as documented in Figure 7.

 sd [Sequence] 1.2. Goals / Requirements / Scenarios "BodyControlModule" [...

:DashboardControll ing

 : BodyControlModule

:LeftIndication

Linked goal: Notify of change in direction

indicateLeftReq()

indicateAct()

lightIndicateLeftLED()

Case Study: Automotive Body Control Module

30

Figure 10: Scenario Emergency brake light controlling on Complete System Layer

As mentioned in Section 4.2.2, alternative and error scenarios can be specified besides the

main scenarios. This type of scenarios can be used to describe a possible malfunction of the

SUD and a suitable reaction to this w.r.t. one or several use cases. Figure 11 presents the

error scenario Handle left lamp defect that occurs if the lamp of the left turn signal fails. When

the status signal about a lamp defect is sent by LeftIndication to BodyControlModule, a warning

lamp shall be activated in the dashboard to indicate this malfunction to the driver (message

lightIndicatorLampDefectLED).

Figure 11: Scenario Handle left lamp defect on the Complete System Layer

This concrete error scenario is involved in the use cases Indicate left and Switch hazard lights,

since the malfunction of the left turn signal lamp affects the correct execution of the main

scenarios of these use cases. That is, the intended result of the use cases (the post condition

that the corresponding lamp is lightened up) cannot be achieved due to the occurred

malfunction. Analogously to the error scenario Handle left lamp defect, there are error

 sd [Sequence] 1.2. Goals / Requirements / Scenarios "BodyControlModule" [1.2.5. Scenario "Emergency brake light controlling"]

:BrakeLightSwitching:BrakePedalLevelSensing :DashboardControll ing

 : BodyControlModule

:LeftIndication :RightIndication

Linked goal: Notify of emergency braking

par

emergencyBrake()

lightIntense()

indicateAct()

indicateAct()

lightHazardLightsLED()

 sd [Sequence] 1.2. Goals / Requirements / Scenarios "BodyControlModule" [1.2.7. Scenario...

:LeftIndication

 : BodyControlModule

:DashboardControlling

indicatorLampDefect()

lightIndicatorLampDefectLED()

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 31

scenarios for the malfunction of the right turn signal lamp and of the brake lights, which are

not shown in this document.

6.1.4 Function Hierarchy on Complete System Layer

After describing goals, use cases and scenarios on complete system layer, the functionality is

consolidated in a structural view, the function hierarchy. On complete system layer this

hierarchy consists of one element only. In our example that is the BodyControlModule. Figure

12 displays the complete system BodyControlModule including the entirety of its input and

output interfaces that were determined using the scenario models. For example, in the

scenario Indicate left (cf. Figure 9) it was determined that the BCM processes the input signal

indicateLeftReq and creates the output signals indicateAct and lightIndicateLeftLED.

Furthermore, in the scenario Emergency brake light controlling (Figure 10) it was specified that

the BCM processes the input signal emergencyBrake and creates the output signals lightIntense,

indicateAct and lightHazardLightsLED. Thus, these signals have to be part of the

corresponding interfaces of the complete system BodyControlModule as shown in Figure 12.

The rest of the ports stems from further scenarios that are not shown in this document. Note,

that this view is a concretization of the specified SUD in the environment model from Figure

6. Furthermore, this is the topmost layer of the function hierarchy that is further

decomposed in the following.

Figure 12: Function Hierarchy on the Complete System Layer

In order to further decompose the function hierarchy, groups of functionality in form of

subsystems that encapsulate part of the complete system’s functionality are conceived.

Figure 13 shows the decomposed function hierarchy. The functionality of the complete

system BodyControlModule is decomposed into the partial functionalities covering the turn

signals (subsystem ControlTurnSignals), brake lights (subsystem ControlBrakeLight), and the

indication of lamp defects (subsystem HandleLampDefect). This decomposed function

hierarchy serves as input for the subsystem layer, which is described in Section 6.2.

 bdd [SysML Block Definition] 2.1.3. Functions / States "ControlBrakeLight" [2.1.3.1. Funct...

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort»

indicateAct

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

l ightIndicateLeftLED

«flowPort» lightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«block»

BodyControlModule

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort»

indicateAct

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

l ightIndicateLeftLED

«flowPort» lightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

Case Study: Automotive Body Control Module

32

Figure 13: Initial Function Hierarchy on the Subsystem Layer

6.1.5 Solution-oriented Requirements on Complete System Layer

In this case study, solution-oriented requirements are only added on the lowest abstraction

layer.

6.1.6 Requirement Pattern Representation of Function Hierarchy on Complete System

Layer

Before the functionality of the complete system is decomposed for the next layer of

abstraction, a switch to the natural language-based requirement specification could be

performed in order to enable manual reviews in a document-oriented format. The resulting

requirement pattern instances are listed below:

 The system BodyControlModule processes the following signals: indicateLeftReq,

indicateRightReq, switchHazardLights, brake, emergencyBrake, indicatorLampDefect,

brakeLightDefect.

 The system BodyControlModule creates the following signals: indicateAct,

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED, light, lightIntense,

switchHazardLights, lightIndicatorLampDefectLED, lightBrakeLightDefectLED.

 The system BodyControlModule consists of the following subsystems:

ControlTurnSignals, ControlBrakeLight, HandleLampDefect.

6.2 Subsystem Layer

This chapter includes the next layer of abstraction, which specifies each subsystem of the

BCM in more detail.

 bdd [SysML Block Definition] 2.2.3. Functions / States "ControlTurnSignals" [2.2.3.1. Function "Co...

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort»

indicateAct

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

l ightIndicateLeftLED

«flowPort» lightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«block»

BodyControlModule

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort»

indicateAct

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

l ightIndicateLeftLED

«flowPort» lightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«block»

ControlTurnSignals

«block»

ControlBrakeLight

«block»

HandleLampDefect

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 33

6.2.1 Limited Environment on the Subsystem Layer

In the first step on this layer, the signal interface of the complete system BodyControlModule is

partitioned to its subsystems that were conceived on the previous layer (cf. Section 6.1.4)

w.r.t. the signals they have to process and create to fulfill their specific functionality.

Figure 14 describes the environment of the subsystem ControlIndicators. It is derived from the

functional decomposition on the previous layer (cf. Figure 13) and is the initial input for any

further elicitation of functionality in the following steps for this particular subsystem. The

communication for the indicator and hazard lights requests as well as for activating the LEDs

in the dashboard takes place with the environment function DashboardControlling. Because

the hazard lights shall be activated if an emergency brake occurs, an internal message

switchHazardLightsInternal can be received from the subsystem ControlBrakeLight. From the

viewpoint of the subsystem ControlTurnSignals, the other subsystem ControlBrakeLight is part

of its environment. Thus, it is specified as an environment function in this model. The

environment functions LeftIndication and RightIndication can receive the corresponding

activation requests indicateAct for indicating.

Figure 14: Environment of the subsystem ControlTurnSignals on the Subsystem Layer

As one can see on the example of the subsystem ControlTurnSignals, the interface of the

complete system BodyControlModule covering the messages w.r.t. turn signals is partitioned

onto this specific subsystem. Accordingly, further signals covered by the complete system

interface that are related to other subsystems are partitioned onto these subsystems in the

following. This method enables to focus on implementing one concrete atomic function at the

end of the requirements engineering process.

 ibd [SysML Internal Block] 2.2.1. Env ironment "ControlTurnSignals" [2.2.1.1. Env ironment "ControlTurnSignals"]

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort»

indicateAct

«flowPort»

l ightIndicateLeftLED

«flowPort»

l ightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

 : ControlTurnSignals

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort»

indicateAct

«flowPort»

l ightIndicateLeftLED

«flowPort»

l ightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

DashboardControlling

(from 1-Environment)

LeftIndication

(from 1-Environment)

RightIndication

(from 1-Environment)

ControlBrakeLight

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

Case Study: Automotive Body Control Module

34

Figure 15 shows the environment model of the subsystem ControlBrakeLight. Analogously to

the environment model for the subsystem ControlTurnSignals, only the signals w.r.t. the

brake lights are considered. Thus, ControlBrakeLight processes requests from the environment

function BrakePedalLevelSensing and creates signals for the environment function

BrakeLightSwitching. As specified in the environment model of ControlTurnSignals (cf. Figure

14), BrakeLightSwitching can communicate with this subsystem in order to request the

activation of the hazard lights.

Figure 15: Environment of the subsystem ControlBrakeLight on the Subsystem Layer

Finally, Figure 16 describes the environment of the subsystem HandleLampDefect. The

environment functions LeftIndication, RightIndication, and BrakeLightSwitching can

communicate possible lamp defects to this subsystem, which can indicate this to the driver

by communicating with the environment function DashboardControlling.

 ibd [SysML Internal Block] 2.1.1. Env ironment "ControlBrakeLight" [2.1.1.1. Env ironment "ControlBrakeLight"]

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

 : ControlBrakeLight
«flowPort» brake

«flowPort»

emergencyBrake

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

BrakePedalLev elSensing

(from 1-Environment)

BrakeLightSwitching

(from 1-Environment)

ControlTurnSignals

«flow»

«flow»

«flow»

«flow»

«flow»

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 35

Figure 16: Environment of the subsystem HandleLampDefect on the Subsystem Layer

6.2.2 Refined Goals on the Subsystem Layer

In this example, the goals from the complete system layer are not refined any further.

6.2.3 Refined Scenarios on the Subsystem Layer

After the complete system BodyControlModule has been decomposed into three subsystems

(cf. Section 6.1.4) and their interfaces and environment have been detailed (cf. Section 6.2.1),

the corresponding scenarios have to be refined, too.

Figure 17 presents the scenario Emergency brake light controlling, which is derived from the

scenario Emergency brake light controlling on the complete system layer (cf. Figure 10), the

functional decomposition of the complete system into subsystems as input for this subsystem

layer (cf. Section 6.2.4), and the environment description on this layer (cf. Section 6.2.1). It

visualizes the planned interaction of the system functions ControlBrakeLight and

ControlTurnSignals with their environment. It serves as a basis for the further decomposition

of the function hierarchy (cf. Section 6.2.4).

 ibd [SysML Internal Block] 2.3.1. Env ironment "HandleLampDefect" [2.3.1.1. Env ironment "HandleLampDefect"]

«flowPort»

brakeLightDefect

«flowPort»

indicatorLampDefect

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

l ightIndicatorLampDefectLED

 : HandleLampDefect

«flowPort»

brakeLightDefect

«flowPort»

indicatorLampDefect

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

l ightIndicatorLampDefectLED

LeftIndication

(from 1-Environment)

RightIndication

(from 1-Environment)

DashboardControlling

(from 1-Environment)

BrakeLightSwitching

(from 1-Environment)

«flow»

«flow»

«flow»

«flow»

«flow»

Case Study: Automotive Body Control Module

36

Figure 17: Scenario Emergency brake light controlling on the Subsystem Layer

The complete system BodyControlModule was decomposed into the subsystems

ControlBrakeLight and ControlTurnSignals, among other things. Thus, this has to be reflected

in all scenarios on the subsystem layer. Therefore, the lifeline :BodyControlModule from the

scenario Emergency brake light controlling on the complete system layer (cf. Figure 10) are

replaced by the lifelines :ControlBrakeLight and :ControlTurnSignals in the corresponding

scenario on the subsystem layer. The messages are specified according to the interface

specification as seen in the environment model (cf. Figure 14 and Figure 15). By partitioning

the complete system into subsystems, internal messages between these subsystems are

specified on this layer: The message switchHazardLightsInternal is exchanged between the two

subsystems ControlBrakeLight and ControlTurnSignals, before further messages are sent to the

environment functions. This interaction was not obvious in the corresponding scenario on

the complete system layer (cf. Figure 10).

6.2.4 Function Hierarchy on the Subsystem Layer

After the interfaces of the complete system have been partitioned onto the subsystems and

their feasibility has been validated by means of accordingly refined scenarios, these

interfaces can be transferred to the function hierarchy.

As a first step towards this, we specify a white box view on the interior of the complete

system BodyControlModule as depicted in Figure 18. The Internal Block Diagram jointly

depicts the subsystems ControlTurnSignals, ControlBrakeLight, and HandleLampDefect as

specified in the environment models of this layer (cf. Section 6.3.1). In this view, also the

internal connections between the systems can be seen, that is, the internal signal

switchHazardLightsInternal.

 sd [Sequence] 2.1.2. Goals / Requirements / Scenarios "ControlBrakeLight" [2.1.2.1. Scenario "Emergency brake light controlling"]

:BrakePedalLevelSensing

 : ControlBrakeLight

(from 2-Environment)

:BrakeLightSwitching

 : ControlTurnSignals

(from 2-Environment)

:DashboardControll ing:LeftIndication :RightIndication

par

emergencyBrake()

lightIntense()

switchHazardLightsInternal()

indicateAct()

indicateAct()

lightHazardLightsLED()

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 37

Figure 18: Functional Interaction between the subsystems on the Subsystem Layer

The resulting function hierarchy is depicted in Figure 19, where the subsystems

ControlTurnSignals, ControlBrakeLight and HandleLampDefect now have a signal interface

specified, which stems from the environment model and was validated by means of the

scenarios.

Figure 19: Final Functional Hierarchy on the Subsystem Layer

As next step, the function hierarchy is further decomposed as depicted in Figure 20. The

system ControlTurnSignals is decomposed into the partial functionalities for the conventional

turn signal control (Indicate) and the control of the hazard lights (SwitchHazardLights), the

 ibd [SysML Internal Block] 2.1.3. Functions / States "ControlBrakeLight" [2.1.3.2. Function "ControlBrakeLight"]

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

 : ControlBrakeLight

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort»

indicateAct

«flowPort»

l ightIndicateLeftLED

«flowPort»

l ightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

 : ControlTurnSignals

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort»

indicateAct

«flowPort»

l ightIndicateLeftLED

«flowPort»

l ightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

 : HandleLampDefect
«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

 bdd [SysML Block Definition] 2.2.3. Functions / States "ControlTurnSignals" [2.2.3.1. Function "ControlTurnSignals"]

«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort»

indicateAct

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

l ightIndicateLeftLED

«flowPort» lightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«block»

BodyControlModule

- switchHazardLightsInternal
«flowPort»

indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort» brake

«flowPort»

emergencyBrake

«flowPort»

indicateAct

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

l ightIndicateLeftLED

«flowPort» lightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«flowPort» indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort»

indicateAct

«flowPort» lightIndicateLeftLED

«flowPort» lightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort» «systemSignal»

switchHazardLightsInternal

«block»

ControlTurnSignals

«flowPort» indicateLeftReq

«flowPort»

indicateRightReq

«flowPort»

switchHazardLights

«flowPort»

indicateAct

«flowPort» lightIndicateLeftLED

«flowPort» lightIndicateRightLED

«flowPort»

l ightHazardLightsLED

«flowPort» «systemSignal»

switchHazardLightsInternal

«flowPort» brake

«flowPort» «systemSignal»

switchHazardLightsInternal

«flowPort»

emergencyBrake

«flowPort» light

«flowPort»

l ightIntense

«block»

ControlBrakeLight

«flowPort» brake

«flowPort» «systemSignal»

switchHazardLightsInternal

«flowPort»

emergencyBrake

«flowPort» light

«flowPort»

l ightIntense

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

«block»

HandleLampDefect

«flowPort»

indicatorLampDefect

«flowPort»

brakeLightDefect

«flowPort»

l ightIndicatorLampDefectLED

«flowPort»

l ightBrakeLightDefectLED

Case Study: Automotive Body Control Module

38

system ControlBrakeLights is decomposed into the control of the conventional brake lights as

well as the signalization of an emergency brake, and the system HandleLampDefect is

partitioned into the handling of turn signal (HandleIndicatorDefect) and brake light lamp

defects (HandleBrakeLightDefect). This state of the function hierarchy again serves as input for

the next abstraction layer.

Note, that these subsystems are atomic functions that are not further decomposed, but this

will be decided not until the corresponding decomposition step on the next abstraction layer

(cf. Section 6.3.4). Nevertheless, we will speak in the following of functions to avoid

confusion.

6.2.5 Solution-oriented Requirements

In this case study, solution-oriented requirements are only added on the function layer.

6.2.6 Requirement Pattern Representation of Function Hierarchy on Subsystem Layer

Before the functionality of the subsystem layer is decomposed in the next layer of

abstraction, a switch to the natural-language-based requirement specification could be

performed. The resulting requirement pattern instances are listed below (faded text stems

from the complete system layer, cf. Section 6.1.6).

 The system BodyControlModule processes the following signals: indicateLeftReq,

indicateRightReq, switchHazardLights, brake, emergencyBrake, indicatorLampDefect,

brakeLightDefect.

 The system BodyControlModule creates the following signals: indicateAct,

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED, light, lightIntense,

switchHazardLights, lightIndicatorLampDefectLED, lightBrakeLightDefectLED.

 The system BodyControlModule consists of the following subsystems:

ControlTurnSignals, ControlBrakeLight, HandleLampDefect.

 The system ControlTurnSignals processes the following signals: indicateLeftReq,

indicateRightReq, switchHazardLights.

 The system ControlTurnSignals creates the following signals: indicateAct,

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED.

 The system ControlBrakeLight processes the following signals: brake, emergencyBrake.

 The system ControlBrakeLight creates the following signals: light, lightIntense,

switchHazardLights.

 The system HandleLampDefect processes the following signals: indicatorLampDefect,

brakeLightDefect.

 The system HandleLampDefect creates the following signals:

lightIndicatorLampDefectLED, lightBrakeLightDefectLED.

 The functionality of the system ControlTurnSignals consists of the following functions:

Indicate, SwitchHazardLights.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 39

Figure 20: Initial Function Hierarchy on the Function Layer

 b
d

d
 [

S
y
s

M
L

 B
lo

c
k

 D
e

fi
n

it
io

n
]

3
.1

.3
.

F
u

n
c

ti
o

n
s

 /
 S

ta
te

s
 "

L
ig

h
tB

ra
k

e
L

ig
h

ts
"
 [

3
.1

.3
.1

.
F

u
n

c
ti

o
n

 "
L

ig
h

tB
ra

k
e

L
ig

h
ts

"
]

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
b

lo
c
k»

B
o

d
y
C

o
n

tr
o

lM
o

d
u

le

-
sw

it
c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
b

lo
c
k»

C
o

n
tr

o
lT

u
rn

S
ig

n
a

ls

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
b

lo
c
k»

C
o

n
tr

o
lB

ra
k

e
L

ig
h

t

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
b

lo
c
k»

In
d

ic
a

te

«
b

lo
c
k»

S
w

it
c

h
H

a
z
a

rd
L

ig
h

ts

«
b

lo
c
k»

L
ig

h
tB

ra
k

e
L

ig
h

ts

«
b

lo
c
k»

S
ig

n
a

li
z
e

E
m

e
rg

e
n

c
y
B

ra
k

e

«
fl

o
w

P
o

rt
»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
b

lo
c
k»

H
a

n
d

le
L

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
b

lo
c
k»

H
a

n
d

le
In

d
ic

a
to

rD
e

fe
c

t

«
b

lo
c
k»

H
a

n
d

le
B

ra
k

e
L

ig
h

tD
e

fe
c

t

Case Study: Automotive Body Control Module

40

 The functionality of the system ControlBrakeLight consists of the following functions:

LightBrakeLights, SignalizeEmergencyBrake.

 The functionality of the system HandleLampDefect consists of the following functions:

HandleIndicatorDefect, HandleBrakeLightDefect.

6.3 Function Layer

When all relevant stakeholders have a sufficient comprehension of the partial functionalities

of the SUD, then it is not necessary to further decompose the function hierarchy. In this case,

we call the subsystems on the lowest layer sufficiently trivial. Thus, these subsystems

describe atomic functions that serve as basis for the subsequent architecture design.

6.3.1 Limited Environment on the Function Layer

As in the superordinate layer, we further partition the signal interfaces of the subsystems

onto the contained functions in this step.

Figure 21 shows the environment of the function SwitchHazardLights. In contrast to the

environment of the superordinate subsystem ControlTurnSignals, the ingoing flow

switchHazardLightsInternal is now sent by the function SignalizeEmergencyBrake that is a

function of the system ControlBrakeLights. Furthermore, the size of the input and output

interface of SwitchHazardLights is reduced drastically in contrast to the superordinate system

ControlTurnSignals. This shows the benefit of refining the function hierarchy and partitioning

the overall signal interface of the complete system onto function interfaces that are easy to

handle due to their reduced size.

Figure 21: Environment of the Function SwitchHazardLights on the Function Layer

Figure 22 shows the environment model of the function SignalizeEmergencyBrake. According

to the environment model of SwitchHazardLights, the signal switchHazardLightsInternal is now

 ibd [SysML Internal Block] 3.4.1. Env ironment "SwitchHazardLights" [3.4.1.1. Env ironment "SwitchHazardLight...

«flowPort»

indicateAct«flowPort»

switchHazardLights

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

 : SwitchHazardLights

«flowPort»

indicateAct«flowPort»

switchHazardLights

«flowPort»

l ightHazardLightsLED

«flowPort»

switchHazardLightsInternal

DashboardControlling

(from 1-Environment)

SignalizeEmergencyBrake

LeftIndication

(from 1-Environment)

RightIndication

(from 1-Environment)

«flow»

«flow»

«flow»

«flow»

«flow»

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 41

sent to this function instead of its superordinate system. Apart from that, the interface size

was reduced for this function, as well.

Figure 22: Environment of the Function SignalizeEmergencyBrake on the Function Layer

The other environment models are specified accordingly.

6.3.2 Refined Goals on the Function Layer

In this example, the goals from the complete system layer are not refined any further.

6.3.3 Refined Scenarios on the Function Layer

Figure 23 depicts the scenario Emergency brake light controlling on function layer. It is the

refinement of the scenario on subsystem layer (cf. Section 6.2.3): The subsystem lifelines

ControlBrakeLight and ControlIndicators were decomposed into the atomic functions

SignalizeEmergencyBrake and SwitchHazardLights.

Figure 23: Scenario Emergency brake light controlling on Function Layer

 ibd [SysML Internal Block] 3.2.1. Env ironment "SignalizeEmergencyBrake" [3.2.1.1. Env ironment "SignalizeEmergen...

«flowPort»

emergencyBrake

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

 : SignalizeEmergencyBrake
«flowPort»

emergencyBrake

«flowPort»

l ightIntense

«flowPort»

switchHazardLightsInternal

BrakeLightSwitching

(from 1-Environment)

BrakePedalLev elSensing

(from 1-Environment)

SwitchHazardLights

«flow»

«flow»

«flow»

 sd [Sequence] 3.2.2. Goals / Requirements / Scenarios "SignalizeEmergencyBrake" [3.2.2.1. Scenario "Emergency brake light controlling"]

:BrakePedalLevelSensing

 : SignalizeEmergencyBrake

(from 2-Environment)

:BrakeLightSwitching

 : SwitchHazardLights

(from 2-Environment)

:DashboardControll ing:LeftIndication :RightIndication

par

emergencyBrake()

lightIntense()

switchHazardLightsInternal()

indicateAct()

indicateAct()

lightHazardLightsLED()

Case Study: Automotive Body Control Module

42

6.3.4 Function Hierarchy on the Function Layer

As a result from the initial function hierarchy for this layer (cf. Figure 20) and the partition of

the signal interfaces in the subsequent step of limiting the environment (cf. Section 6.3.1),

Figure 24 shows the final function hierarchy. Since the partial functionalities on this layer are

sufficiently trivial for all stakeholders and their interfaces are easy to handle, we decompose

them not any further and consider them as atomic functions. These functions have to be

fulfilled by components of the architecture to be designed in the subsequent development

process.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 43

Figure 24: Final function hierarchy

 b
d

d
 [

S
y
s

M
L

 B
lo

c
k

 D
e

fi
n

it
io

n
]

3
.1

.3
.

F
u

n
c

ti
o

n
s

 /
 S

ta
te

s
 "

L
ig

h
tB

ra
k

e
L

ig
h

ts
"
 [

3
.1

.3
.1

.
F

u
n

c
ti

o
n

 "
L

ig
h

tB
ra

k
e

L
ig

h
ts

"
]

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
b

lo
c
k»

B
o

d
y
C

o
n

tr
o

lM
o

d
u

le

-
sw

it
c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
b

lo
c
k»

C
o

n
tr

o
lT

u
rn

S
ig

n
a

ls

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
b

lo
c
k»

C
o

n
tr

o
lB

ra
k

e
L

ig
h

t

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
b

lo
c
k»

In
d

ic
a

te

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
L

e
ft

R
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
R

ig
h

tR
e

q

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
L

e
ft

L
E

D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

te
R

ig
h

tL
E

D

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
b

lo
c
k»

S
w

it
c

h
H

a
z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts

«
fl

o
w

P
o

rt
»

in
d

ic
a

te
A

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tH

a
z
a

rd
L

ig
h

ts
L

E
D

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
b

lo
c
k»

L
ig

h
tB

ra
k

e
L

ig
h

ts

«
fl

o
w

P
o

rt
»

 b
ra

ke

«
fl

o
w

P
o

rt
»

 l
ig

h
t

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l

«
b

lo
c
k»

S
ig

n
a

li
z
e

E
m

e
rg

e
n

c
y
B

ra
k

e

«
fl

o
w

P
o

rt
»

e
m

e
rg

e
n

c
y
B

ra
ke

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
te

n
se

«
fl

o
w

P
o

rt
»

 «
sy

st
e

m
S

ig
n

a
l»

sw
it

c
h

H
a

z
a

rd
L

ig
h

ts
In

te
rn

a
l«

fl
o

w
P

o
rt

»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
b

lo
c
k»

H
a

n
d

le
L

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
b

lo
c
k»

H
a

n
d

le
In

d
ic

a
to

rD
e

fe
c

t
«

fl
o

w
P

o
rt

»

in
d

ic
a

to
rL

a
m

p
D

e
fe

c
t

«
fl

o
w

P
o

rt
»

li
g

h
tI

n
d

ic
a

to
rL

a
m

p
D

e
fe

c
tL

E
D

«
fl

o
w

P
o

rt
»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

«
b

lo
c
k»

H
a

n
d

le
B

ra
k

e
L

ig
h

tD
e

fe
c

t
«

fl
o

w
P

o
rt

»

b
ra

ke
L

ig
h

tD
e

fe
c
t

«
fl

o
w

P
o

rt
»

li
g

h
tB

ra
ke

L
ig

h
tD

e
fe

c
tL

E
D

Case Study: Automotive Body Control Module

44

6.3.5 Solution-oriented Requirements on the Function Layer

One class of solution-oriented requirements consists of timing requirements. For example, it

is crucial for the function SignalizeEmergencyBrake that it requests an intense brake light from

the external environment function BrakeLightSwitching within at most 25ms after an

emergency braking has been detected.

We use the Timing Augmented Description Language (TADL, see [Johansson et al. 2009] and

[Stappert et al. 2010]) to add timing constraints to our function models. Figure 25 depicts the

above mentioned requirement in terms of a delay constraint on a so-called event chain

between any events that can occur at the ports emergencyBrake and lightIntense. Logical

components that implement the function SignalizeEmergencyBrake have to fulfill this timing

requirement.

Signalize

Emergency

Brake

emergencyBrake lightIntense

... ...

Event Event
Event Chain

Delay constraint: <25ms

Figure 25: Timing requirement in model-based representation

Besides the function hierarchy, we count such solution-oriented requirements also to an

artifact class that has to be exchanged with multiple stakeholders. Thus, we provide patterns

and model transformations for solution-oriented requirements, as well. The representation in

natural language according to requirement patterns (cf. requirement pattern no. 5 in Section

3.2) looks like this (cf. Table 1 in Section 3.2, requirement R8):

 The function SignalizeEmergencyBrake has to react within 25 ms to its stimuli.

6.3.6 Requirement Pattern Representation of Solution-oriented Requirement and

Function Hierarchy on Function Layer

A final switch to the natural-language based requirement specification would result in the

following requirement pattern instances (faded text stems from the last iteration, cf. Section

6.2.6):

 The system BodyControlModule processes the following signals: indicateLeftReq,

indicateRightReq, switchHazardLights, brake, emergencyBrake, indicatorLampDefect,

brakeLightDefect.

 The system BodyControlModule creates the following signals: indicateAct,

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED, light, lightIntense,

switchHazardLights, lightIndicatorLampDefectLED, lightBrakeLightDefectLED.

 The system BodyControlModule consists of the following subsystems:

ControlTurnSignals, ControlBrakeLight, HandleLampDefect.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 45

 The system ControlTurnSignals processes the following signals: indicateLeftReq,

indicateRightReq, switchHazardLights.

 The system ControlTurnSignals creates the following signals: indicateAct,

lightIndicateLeftLED, lightIndicateRightLED, lightHazardLightsLED.

 The system ControlBrakeLight processes the following signals: brake, emergencyBrake.

 The system ControlBrakeLight creates the following signals: light, lightIntense,

switchHazardLights.

 The system HandleLampDefect processes the following signals: indicatorLampDefect,

brakeLightDefect.

 The system HandleLampDefect creates the following signals:

lightIndicatorLampDefectLED, lightBrakeLightDefectLED.

 The functionality of the system ControlTurnSignals consists of the following functions:

Indicate, SwitchHazardLights.

 The functionality of the system ControlBrakeLight consists of the following functions:

LightBrakeLights, SignalizeEmergencyBrake.

 The functionality of the system HandleLampDefect consists of the following

functions: HandleIndicatorDefect, HandleBrakeLightDefect.

 The function SignalizeEmergencyBrake has to react within 25 ms to its stimuli.

 The function Indicate processes the following signals: indicateLeftReq, indicateRightReq.

 The function Indicate creates the following signals: indicateAct, lightIndicateLeftLED,

lightIndicateRightLED.

 The function SwitchHazardLights processes the following signals: switchHazardLights.

 The function SwitchHazardLights creates the following signals: indicateAct,

lightHazardLightsLED.

 The function LightBrakeLights processes the following signals: brake.

 The function LightBrakeLights creates the following signals: light.

 The function SignalizeEmergencyBrake processes the following signals: emergencyBrake.

 The function SignalizeEmergencyBrake creates the following signals: lightIntense,

switchHazardLights.

 The function HandleIndicatorDefect processes the following input signals:

indicatorLampDefect.

 The function HandleIndicatorDefect creates the following signals:

lightIndicatorLampDefectLED.

 The function HandleBrakeLightDefect processes the following signals: brakeLightDefect.

 The function HandleBrakeLightDefect creates the following signals:

lightBrakeLightDefectLED.

Conclusions and Future Work

46

7

Natural language is the most common documentation format for requirements in the

development of today’s embedded systems [Juristo et al. 2002, Pretschner et al. 2007].

However, because of the inherent ambiguity of natural language, the volume of textually

documented requirements in many systems, and the difficulty handling system complexity

and requirements traceability, the use of model-based requirements documentation has been

advocated [Sikora et al. 2012]. Yet, since requirements often build the basis for contractual

agreements between suppliers and OEMs and due to missing methodical guidelines on

when to apply models during system development, models are rarely applied in practice

[Sikora et al. 2011]. We have developed a combined requirements engineering approach

based on controlled natural language [Holtmann et al. 2011b] and the requirements

viewpoint of the SPES Modeling Framework [Daun et al. 2012] in order to combine the

advantages of model-based requirements documentation and natural language-based

requirements documentation. By making use of this combined approach, it is possible to

elicit and document requirements continuously and trace requirements from origin to their

model-based manifestation in a function hierarchy.

We have applied the combined approach to a real-world industrial case study from the

automotive industry, that is, a Body Control Module, which presents a new paradigm in

automotive control unit interaction. The case study showed that the combined approach can

be applied to automotive systems and supports the engineering of requirements consistently

across multiple abstraction layers. It can be seen from the case study how context models

and goal models can be used in early requirements engineering phases and be refined using

scenarios. The resulting function hierarchy can be used in following phases of a model-based

development process as a basis for the conception of the architecture of the SUD.

Furthermore, the textual requirement pattern representation can be used as basis for legal

documents exchanged with the customer or for document-oriented, intermediate reviews.

This work hence does not only provide a benefit for the integrated development using both

model-based and natural language-based requirements specifications, but also shows how

system requirements and a function hierarchy can be co-developed and hence shows how a

transition from the requirements viewpoint to the functional viewpoint of the SPES

Modeling Framework [Vogelsang et al. 2012] can be performed. However, given that this

transition is not complete (cf. [Daun et al. 2012, Vogelsang et al. 2012]), future work will

address how the transition between these viewpoints can be improved, and how with the aid

of model-based requirements and controlled natural language related development

activities, for example, safety engineering, artifact validation, or functional analysis, can be

integrated.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 47

[Ambiola and Gervasi 1997] V. Ambriola, V. Gervasi: Processing Natural Language

Requirements. In: Proceedings of the 12th IEEE

International Conference on Automated Software

Engineering, 1997.

[Ambiola and Gervasi 2006] V. Ambriola, V. Gervasi: On the Systematic Analysis of

Natural Language Requirements with CIRCE. In:

Proceedings of the International Conference on

Automated Software Engineering, 2006.

[AutomotiveSIG 2010] Automotive Special Interest Group (SIG): Automotive

SPICE. Process Reference Model.

http://www.automotivespice.com/automotiveSIG_PRM_

v45.pdf. Accessed on: June 7th, 2012.

[Balzert 2009] H. Balzert: Lehrbuch der Softwaretechnik: Basiskonzepte

und Requirements Engineering, 3rd Edition, Spektrum

Akademischer Verlag, Heidelberg, 2003.

[Braun et al. 2010] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller,

B. Penzenstadler, K. Pohl, T. Weyer: Guiding

requirements engineering for software-intensive

embedded systems in the automotive industry.

Computer Science Research and Development, Springer,

Heidelberg, 2010, DOI: 10.1007/s00450-010-0136-y

[Bühne et al. 2004] S. Bühne, G. Halmans, K. Pohl, M. Weber, H.

Kleinwechter, T. Wierczoch: Defining requirements at

different levels of abstraction. In: Proceedings of the 12th

IEEE International Requirements Engineering

Conference, 2004.

[Daun et al. 2012] M. Daun, B. Tenbergen, T. Weyer: Requirements

Viewpoint. In: K. Pohl, H. Hönninger, R. Achatz, M.

Broy: Model-Based Engineering of Embedded Systems –

The SPES 2020 Methodology. Springer, 2012.

[Davis 1993] A. M. Davis: Software Requirements – Objects,

Functions, States. 2nd Edition, Prentice Hall, Englewood

Cliffs, New Jersey, 1993.

[Davis 2005] A. Davis: Just Enough Requirements Engineering: Where

Software Development Meets Marketing. Dorset House

Publishing, New York, 2005.

Conclusions and Future Work

48

[Deeptimahanti and Barbar 2009] D. K. Deeptimahanti, M. A. Babar: An Automated Tool

for Generating UML Models from Natural Language

Requirements. In: Proceedings of the 24th IEEE/ACM

International Conference on Automated Software

Engineering, 2009.

[Deeptimahanti and Sanyal 2011] D. K. Deeptimahanti, R. Sanyal: Semi-Automatic

Generation of UML Models from Natural Language

Requirements. In: Proceedings of the 4th India Software

Engineering Conference, 2011.

[DeMarco 1979] T. DeMarco: Structured Analysis and System

Specification. Yourdon Press, Upper Saddle River, New

Jersey, 1979.

[Drusinsky 2008] D. Drusinsky: From UML Activity Diagrams to

Specification Requirements. In: IEEE International

Conference on System of Systems Engineering, 2008.

[Fine 2002] K. Fine: The Limits of Abstraction. Oxford University

Press, New York, 2002.

[Flynn and Warhurst 1994] D. J. Flynn, R. Warhurst: An empirical study of the

validation process within requirements determination.

Information Systems Journal 4, 1994, pp. 185-212.

[Fockel et al. 2012a] M. Fockel, J. Holtmann, J. Meyer: Semi-automatic

Establishment and Maintenance of Valid Traceability in

Automotive Development Processes. In: Proceedings of

the 2nd International Workshop on Software Engineering

for Embedded Systems, 2012.

[Fockel et al. 2012b] M. Fockel, P. Heidl, J. Höfflinger, H. Hönninger, J.

Holtmann, W. Horn, J. Meyer, M. Meyer, J. Schäuffele:

Application and Evaluation in the Automotive Domain.

In: K. Pohl, H. Hönninger, R. Achatz, M. Broy: Model-

Based Engineering of Embedded Systems – The SPES

2020 Methodology. Springer, 2012.

[Gausemeier et al. 2009] J. Gausemeier; U. Frank; J. Donoth; S. Kahl: Specification

technique for the description of self-optimizing

mechatronic systems. Research in Engineering Design 20,

2009, pp. 201–223.

[Goldsmith 2004] R. Goldsmith: Discovering Real Business Requirements

for Software Project Success. Artech House, Boston, 2004.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 49

[Gotel and Finkelstein 1994] O. C. Z. Gotel, C. W. Finkelstein: An analysis of the

requirements traceability problem. In: Proceedings of the

1st International Conference on Requirements

Engineering, 1994.

[Harmain and Gaizauskas 2000] H. M. Harmain, R. Gaizauskas: CM-Builder: An

Automated NL-based CASE Tool. Proceedings of the 15th

IEEE International Conference on Automated Software

Engineering, 2000.

[Harmain and Gaizauskas 2003] H. M. Harmain, R. Gaizauskas: CM-Builder: A Natural

Language-Based CASE Tool for Object-Oriented

Analysis. In: Automated Software Engineering 10(2),

2003, pp. 157–181

[Holtmann 2010] J. Holtmann. Mit Satzmustern von textuellen

Anforderungen zu Modellen. In: OBJEKTspektrum

RE/2010. (Online Themenspecial Requirements

Engineering) http://www.sigs-

datcom.de/fileadmin/user_upload/zeitschriften/os/2010/

RE/holtmann_OS_RE_2010.pdf. Accessed on: June 7th,

2012.

[Holtmann et al. 2011a] J. Holtmann, J. Meyer, M. Meyer: A Seamless Model-

Based Development Process for Automotive Systems. In:

Workshopband Software Engineering, Lecture Notes in

Informatics Volume 184, Bonner Köllen Verlag, Bonn,

2011.

[Holtmann et al. 2011b] J. Holtmann, J. Meyer, M. von Detten: Automatic

Validation and Correction of Formalized, Textual

Requirements. In: Proceedings of the 4th IEEE

International Conference on Software Testing,

Verification and Validation Workshops, 2011.

[Huijsen 1998a] W.-O. Huijsen: Controlled Language – An Introduction.

In: Proceedings of the 2nd International Workshop on

Controlled Language Applications, 1998..

[Huisen 1998b] W.-O. Huijsen: Completeness of Compositional Trans-

lation, Elinkwijk Drukkerij B.V., 1998.

[IEEE 830] Institute of Electrical and Electronics Engineers: IEEE

Std. 830-1998: IEEE Recommended Practice for Software

Requirements Specifications, 1998.

Conclusions and Future Work

50

[Ilieva and Ormandjieva 2006] M. G. Ilieva, O. Ormandjieva: Models Derived from

Automatically Analyzed Textual User Requirements. In:

Proceedings of the 4th International Conference on

Software Engineering Research, Management and

Applications, 2006.

[ISO 26262] International Organization for Standardization:

ISO26262: Road Vehicles – Functional Safety, 2011.

[Jersak et al. 2003] M. Jersak, K. Richter, R. Ernst, J. Braam, Z. Jiang, F. Wolf:

Formal methods for integration of automotive software.

In: Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition, 2003.

[Johansson et al. 2009] R. Johansson; P. Frey; J. Jonsson; J. Nordlander; R. M.

Pathan; N. Feiertag; M. Schlager; H. Espinoza; K.

Richtter; St. Kuntz; H. Lönn; R. T. Kolagari; H. Blom:

TADL: Timing Augmented Description Language

Version 2. 2009.

[Juristo et al. 2002] N. Juristo, A. Moreno, A. Silva: Is the European industry

moving toward solving RE problems? IEEE Software

19(6), 2002, pp. 70–77.

[Kapeller and Krause 2006] R. Kapeller, S. Krause: So natürlich wie Sprechen -

Embedded Systeme modellieren. In: Design & Elektronik

08, 2006, pp. 64–67.

[Kiyavitskaya and Zannone 2008] N. Kiyavitskaya, N. Zannone: Requirements Model

Generation to Support Requirements Elicitation: The

Secure Tropos Experience. Automated Software

Engineering 15(2), 2008, pp. 149–173.

[Kof 2009] L. Kof: Translation of Textual Specifications to Automata

by Means of Discourse Context Modeling. In: Lecture

Notes in Computure Science 5512, Springer, Heidelberg,

2009, pp. 197–211.

[Kof 2010] L. Kof: From Requirements Documents to System

Models: A Tool for Interactive Semi-Automatic

Translation. In: Proceedings of the 18th IEEE International

Requirements Engineering Conference, 2010.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 51

[Lu et al. 2007] C.-W. Lu, W. C. Chu, C.-H. Chang, C. H. Wang: A

Model-Based Object-Oriented Approach to Requirement

Engineering (MORE). In: Proceedings of the 1st

International Computer Software and Applications

Conference, 2007.

[Lu et al. 2008a] C.-W. Lu, W. C. Chu, C.-H. Chang: Model-Based Object-

Oriented Requirement Engineering and its Support to

Software Documents Integration. In: Proceedings of the

2008 International Conference on Software Engineering

Research and Practice, 2008.

[Lu et al. 2008b] C.-W. Lu, C.-H. Chang, W. C. Chu, Y.-W. Cheng, H.-C.

Chang: A Requirement Tool to Support Model-Based

Requirement Engineering. In: Proceedings of the 2nd

International Computer Software and Applications

Conference, 2008.

[Meziane et al. 2008] F. Meziane, N. Athanasakis, S. Ananiadou: Generating

Natural Language Specifications from UML Class

Diagrams. Requirements Engineering 13(1), 2008, pp. 1-

18.

[Mich et al. 2002] L. Mich, R. Garigliano, A. Zanasi, C. A. Brebbia, N. F. F.

E. Ebecken, P. Melli: NL-OOPS: A Requirements

Analysis Tool Based on Natural Language Processing.

Management Information Systems 6, 2002, pp. 321–330.

[Neill and Laplante 2003] C. Neill, P. Laplante: Requirements Engineering: the state

of Practice. IEEE Software 20(4), 2003, pp. 40-45.

[Nicolás and Toval 2009] J. Nicolás, A. Toval: On the Generation of Requirements

Specifications from Software Engineering Models: A

Systematic Literature Review. Information and Software

Technology 51(9), 2009, pp. 1291-1307..

[Nuseibeh 2001] B. Nuseibeh: Weaving together requirements and

architectures. In: IEEE Computer 34(3), 2001, pp. 115-119.

[OMG 2003] Object Management Group: MDA Guide, Version 1.0.1.

OMG Document Number: omg/2003-06-01, 2003.

[Pohl 2010] K. Pohl: Requirements Engineering: Foundations,

Principles, and Techniques. Springer, Heidelberg, 2010.

Conclusions and Future Work

52

[Pohl and Sikora 2007] K. Pohl, E. Sikora: The Co-Development of System

Requirements and Functional Architecture. In: J.

Krogstie, A. Lothe Opdahl, S. Brinkkemper: Conceptual

Modelling in Information Systems Engineering. Springer,

Heidelberg, 2007.

[Broy et al. 2012] M. Broy, W. Damm, S. Henkler, K. Pohl, A. Vogelsang, T

Weyer: Introduction to the SPES Modeling Framework.

In: K. Pohl, H. Hönninger, R. Achatz, M. Broy: Model-

Based Engineering of Embedded Systems – The SPES

2020 Methodology. Springer, 2012.

[Vogelsang et al. 2012] A. Vogelsang, S. Eder, M. Feilkas, D. Ratiu: Functional

Viewpoint. In: K. Pohl, H. Hönninger, R. Achatz, M.

Broy: Model-Based Engineering of Embedded Systems –

The SPES 2020 Methodology. Springer, 2012.

[Potts 1995] C. Potts: Using schematic scenarios to understand user

needs. In: Proceedings of the 1st Conference on Designing

Interactive Systems: Processes, Practices, Methods, &

Techniques, 1995.

[Pretschner et al. 2007] A. Pretschner, M. Broy, I. Krüger, Th. Stauner: Software

engineering for automotive systems: a roadmap. In:

Proceedings of Future of Software Engineering, 2007.

[Ross and Schoman 1977] D. T. Ross, K. E. Schoman: Structured Analysis for

Requirements Definition. IEEE Transactions on Software

Engineering SE-3(1), 1977, pp. 6 – 15.

[Royce 1970] W. W. Royce: Managing the Development of Large

Software Systems. In: Proceedings of IEEE WESCON,

1970, pp. 1-9.

[Schäuffele and Zurawka 2003] J. Schäuffele, Th. Zurawka: Automtive Software

Engineering – Grundlagen, Prozesse, Methoden und

Werkzeuge. Vieweg, Wiesbaden, 2003.

[Schürr 1995] A. Schürr: Specification of Graph Translators with Triple

Graph Grammars. In: Graph-Theoretic Concepts in

Computer Science. Springer, Heidelberg, 1995.

[Schwitter 2010] R. Schwitter: Controlled natural languages for

knowledge representation. In: Proceedings of the 23rd

International Conference on Computational Linguistics:

Posters, 2010.

[Sikora et al. 2010] E. Sikora, M. Daun, K. Pohl: Supporting the Consistent

Specification of Scenarios across Multiple Abstraction

Levels. In: Proceedings of Requirements Engineering:

Foundation for Software Quality, 2010.

Goal-Scenario-Oriented Requirements Engineering for Functional Decomposition

 53

[Sikora et al. 2011] E. Sikora, B. Tenbergen, K. Pohl: Requirements

engineering for embedded systems: An investigation of

industry needs. In: Proceedings of Requirements

Engineering: Foundation for Software Quality, 2011.

[Sikora et al. 2012] E. Sikora, B. Tenbergen, K. Pohl: Industry Needs and

Research Directions in Requirements Engineering for

Embedded Systems. Requirements Engineering 17(1),

2012, pp. 57-78.

[Stappert et al. 2010] F. Stappert; J. Jonsson; J. Mottok; R. Johansson: A Design

Framework for End-To-End Timing Constrained

Automotive Applications. In: Proceedings of the

European Congress on Embedded Real-Time Software

and Systems, 2010.

[van Lamsweerde 2009] A. van Lamsweerde: Requirements Engineering: From

System Goals to UML Models to Software Specifications.

Wiley, Sussex, 2009.

[Weber and Weisbrod 2003] M. Weber, J. Weisbrod: Requirements engineering in

automotive development: Experiences and challenges.

IEEE Software 20, 2003, pp. 16-24.

[Weyer 2010] T. Weyer: Kohärenzprüfung von Verhaltens-

spezifikationen gegen spezifische Eigenschaften des

operationellen Kontexts. Dissertation, University of

Duisburg-Essen, Faculty for Business Information

Systems, Essen, 2010.

[Yue et al. 2011] T. Yue, L. Briand, Y. Labiche: A Systematic Review of

Transformation Approaches between User Requirements

and Analysis Models. Requirements Engineering 16(2),

2011, pp. 75–99.

Previously published ICB - Research Reports

Previously published ICB - Research Reports

2013

No 54 (March)

 Fischotter, Melanie; Goedicke, Michael, Kurt-Karaoglu, Filiz; Schwinning, Nils; Striewe, Michael:

“Erster Jahresbericht zum Projekt “Bildungsgerechtigkeit im Fokus” (Teilprojekt 1.2 – “Blended

Learning”) an der Fakultät für Wirtschaftswissenschaften

2012

No 53 (December)

 Frank, Ulrich: “Thoughts on Classification / Instantiation and Generalisation / Specialisation”

No 52 (July 2012)

Berntsson Svennson, Richard; Berry, Daniel; Daneva, Maya; Dörr, Jörg; Frickler, Samuel A.;

Herrmann, Andrea; Herzwurm, Georg; Kauppinen, Marjo; Madhavji, Nazim H.; Mahaux, Martin;

Paech, Barbara; Penzenstadler, Birgit; Pietsch, Wolfram; Salinesi, Camile; Schneider, Kurt; Seyff,

Norbert; van de Weerd, Inge (Eds): “18th International Working Conference on Requirements

Engineering: Foundation for Software Quality. Proceedings of the Workshops Re4SuSy, REEW,

CreaRE, RePriCo, IWSPM and the Conference Related Empirical Study, Empirical Fair and Doctoral

Symposium“

No 51 (May)

 Frank, Ulrich: “Specialisation in Business Process Modelling: Motivation, Approaches and Limitations”

No 50 (March)

 Adelsberger, Heimo; Drechsler, Andreas; Herzig, Eric; Michaelis, Alexander; Schulz, Philipp; Schütz,

Stefan; Ulrich, Udo: “Qualitative und quantitative Analyse von SOA-Studien – Eine Metastudie zu

serviceorientierten Architekturen”

2011

No 49 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (2): Focus on Business Processes”

No 48 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (1): Focus on Organisational Structure”

No 47 (December 2011)

 Frank, Ulrich: “MEMO Organisation Modelling Language (OrgML): Requirements and Core Diagram

Types”

No 46 (December 2011)

 Frank, Ulrich: “Multi-Perspective Enterprise Modelling: Background and Terminological Foundation”

No 45 (November 2011)

 Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola: “Leitfaden zur

Erstellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2010)

Berenbach, Brian; Daneva, Maya; Dörr, Jörg; Frickler, Samuel; Gervasi, Vincenzo; Glinz, Martin;

Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H.; Paech, Barbara; Schockert, Sixten; Seyff,

Norbert (Eds): “17th International Working Conference on Requirements Engineering: Foundation for

Software Quality (REFSQ 2011). Proceedings of the REFSQ 2011 Workshops REEW, EPICAL and

RePriCo, the REFSQ 2011 Empirical Track (Empirical Live Experiment and Empirical Research Fair),

and the REFSQ 2011 Doctoral Symposium“

No 43 (February)

 Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Lnguage Architecture – 2nd

Edition”

2010

No 42 (December)

 Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Languages”

No 41 (December)

 Adelsberger,Heimo; Drechsler, Andreas (Eds): “Ausgewählte Aspekte des Cloud-Computing aus einer

IT-Management-Perspektive – Cloud Governance, Cloud Security und Einsatz von Cloud Computing

in jungen Unternehmen”

No 40 (October 2010)

Bürsner, Simone; Dörr, Jörg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;

Merten, Thorsten; Pietsch, Wolfram; Schmid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):

“16th International Working Conference on Requirements Engineering: Foundation for Software

Quality. Proceedings oft he Workshops CreaRE, PLREQ, RePriCo and RESC“

No 39 (May 2010)

Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption für den

Studiengang M.Sc. Wirtschaftsinformatik an der Fakultät für Wirtschaftswissenschaften der

Universität Duisburg-Essen“

No 38 (February 2010)

Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschätzungen von CIOs und

WI-Professoren“

No 37 (January 2010)

Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on

Variability Modelling of Software-intensive Systems”

2009

No 36 (December 2009)

Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verständnis der IT-Governance -

Anregungen zu einer kritischen Reflexion”

Previously published ICB - Research Reports

No 35 (August 2009)

Rüngeler, Irene; Tüxen, Michael; Rathgeb, Erwin P.:“Considerations on Handling Link Errors in

STCP“

No 34 (June 2009)

Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on

Service Monitoring, Adaption and Beyond”

No 33 (May 2009)

Adelsberger,Heimo; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia;

Pellinger, Jan; Rosenberger, Marcel; Trepper, Tobias: „Einsatz von Social Software in Unternehmen –

Studie über Umfang und Zweck der Nutzung“

No 32 (April 2009)

Barth, Manfred; Gadatsch, Andreas; Kütz, Martin; Rüding, Otto; Schauer, Hanno; Strecker, Stefan:

„Leitbild IT-Controller/-in – Beitrag der Fachgruppe IT-Controlling der Gesellschaft für Informatik

e. V.“

No 31 (April 2009)

Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise

Systems – Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)

Schauer, Hanno; Wolff, Frank: „Kriterien guter Wissensarbeit – Ein Vorschlag aus dem Blickwinkel der

Wissenschaftstheorie (Langfassung)“

No 29 (January 2009)

Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on

Variability Modelling of Software-intensive Systems”

2008

No 28 (December 2008)

Goedicke, Michael; Striewe, Michael; Balz, Moritz: „Computer Aided Assessments and Programming

Exercises with JACK“

No 27 (December 2008)

Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universitäten im

deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)

Milen, Tilev; Bruno Müller‐Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)

Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am

Beispiel der CRC Card-Methode”

No 24 (August 2008)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture – Revised

Version”

No 23 (January 2008)

Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing – Outline of an

Approach Supporting Production Planning”

No 22 (January 2008)

Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International

Workshop on Variability Modelling of Software-intensive Systems"

2007

No 21 (September 2007)

Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess-management-

Kreislauf"

No 20 (August 2007)

Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software"

No 19 (June 2007)

Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ‚Relevance

Debate’

No 18 (May 2007)

Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der

Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)

Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of

Model Curricula”

No 16 (May 2007)

Müller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe

Capacity Planning”

No 15 (April 2007)

Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-Professionals – Analyse

und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)

Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden für

Softwarearchitekturen”

No 13 (February 2007)

Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter

Architekturen”

No 12 (February 2007)

Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to

Markovian Process Algebras”

No 11 (February 2007)

Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des

IT-Managements – Grundlagen, Anforderungen und Metamodell”

Previously published ICB - Research Reports

No 10 (February 2007)

Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender Lehrbücher der

Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)

Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung des

wissenschaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)

Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag für ein

Forschungsprogramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)

Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems

Research”

No 6 (April 2006)

Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein Diskussionsbeitrag”

No 5 (April 2006)

Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part III – Results

Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part II – Results Information

Systems Discipline”

No 2 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part I – Research Objectives and

Method”

No 1 (August 2005)

Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und -methoden in

Wirtschaftsinformatik und Information Systems“

�������������������

���
���������������������������
���������������������

Marian Daun, Markus Fockel,
Jörg Holtmann, Bastian Tenbergen

Case Study “Body Control Module”

ICB-Research Report No. 55

May 2013

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. F. Ahlemann
Information Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management,
IT Vendor Management, Project Portfolio Management,
IT Governance, Strategic IT Benchmarking

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

PD Dr. C. Klüver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

For more information visit us on the Web: http://www.icb.uni-due.de

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

55Goal-Scenario-Oriented Requirements Engineering for Func-

tional Decomposition with Bidirectional Transformation to

Controlled Natural Language

