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Abstract

In a dynamic optimisation model the profit maximising behaviour

of a monopolist facing lagged adjustments of demand is investigated. It is

shown that the long run equilibrium price differs from the static Cournot

price. The monopolist sacrifices some of the long run profits in order to

exploit the short run inelasticity of demand. If applied to OPEC and the

world petroleum market, the model is able to explain the ups and downs of the

oil price during the seventies and eighties.

1. Introduction

In the framework of the conventional Cournot model of monopol-

istic competition demand is usually assumed to be static. This assumption

does not seem to be very realistic in most cases. Several reasons for a

dynamic specification of demand functions are conceivable. First, there is

the possibility of changing preferences. If the changes are exogenous, the

analysis can be carried out within the framework of the static model, and the

dynamic model is nothing else but a sequence of several static models. If,

however, preferences depend on past experience with the good, the monopolist

has to solve an intertemporal optimisation problem. A similar situation

arises, if adjustment processes on the demand side have finite speed. Then,

current demand does not only depend on the current price but also on past

demand which contains information on the history of prices. This approach to

modeling dynamic demand behaviour has widely been used in econometric demand

models, especially for the energy sector. For a good survey see Berndt,

Morrison and Watkins (1981). The underlying assumption is a putty-clay

vintage structure of energy using capital. Since it is impossible to change

the energy intensity of the whole capital stock at once, but only of new



investments, demand reactions are lagged. The object of this paper is to

analyse the behaviour of a monopolist facing lagged demand reactions on his

or her pricing policy.

The intertemporal behaviour of a monopolist has been analysed by

Jaquemin (1972) and Jaquemin and Thisse (1973). The generality of their

models allows for applying them to a wide range of economic questions, e.g.

both the interdependent preferences and the lagged demand models. Their basic

assumption is that there exists a vector of state variables, changing

endogeneously and affecting the level of profits. The main results are:

First, under certain conditions, there is an equilibrium which is a saddle

point and, second, the monopolist should exert more of his or her power in

the initial period and reduce the effort in the long run, near the equil-

ibrium. In order to derive the properties of the equilibrium, however,

Jaquemin and Thisse used particular types of profit and adjustment functions.

They assumed a concave profit function and a linear adjustment process on the

demand side. As will be seen later, the assumption of concavity does not hold

for the lagged demand model. In addition, the analysis will be extended to a

more general class of adjustment functions.

Another model with a similar structure has been investigated by

Evans (1924). The main difference is, that in the present model, we specify a

process by which realised demand adjusts to desired demand while in Evans'

model demand is a function of the price and its change:

qt = a pt + bt + h dpt/dt ,

where q̂. is demand, p̂ . the price and a, b, and h are constant parameters. By

rearranging this equation, it can be seen that it describes an adjustment

process during which a difference between current demand q^ and desired

demand ap^ + bj. causes price changes with adjustment speed h~ . His results

are that the Cournot monopoly price is a particular solution of the

maximisation problem and that, for an infinite time horizon, the only

solutions which remain finite are those which approach the Cournot monopoly

price asymptotically. The second result will also be derived in the present

paper if we let the discount rate go to zero.



The article is organised as follows: In the next two sections the

basic model will be presented, and the conditions for profit maximisation

will be derived. In the fourth part of the paper, the long run equilibrium

will be analysed. The following section contains an application of the model

to OPEC behaviour and the development of the oil price. It will be shown that

the model can be used to explain some aspects of the rise and fall of oil

prices during the seventies and eighties. Some final remarks conclude the

paper.

2. The Model

We consider a monopolist who intends to maximise the present

value of future profits which he or she makes by producing and selling a

homogenous good, d is a positive rate of discount, q̂ . the quantity of the

good (its positive initial value q^ given exogenously), pt its price, and

c(q̂ .) the cost of producing q̂. (the cost function c(q̂ .) being positive and

strictly monotonously increasing). The problem the monopolist has to solve is

1

(1) max I e 8 t (P+% ~ C(<I+)) d t •
Pt Jo

Usually it is assumed that demand reactions to price changes are

completed instantaneously. Then q̂. is a function of p̂ . only. In some cases,

however, this assumption is not very realistic, e.g. if the demand for a

factor, being used in a downstream production process, depends on the techn-

ology which is embodied in the current capital stock. Changing the factor

intensity of production requires investments which are costly and take time.

Therefore, the adjustment of demand from the current to the desired level

takes time either. The adjustment process can be described as a function of

price and quantity.

Note that the profit function is not concave, if qj. is not a function of

Pf., since the determinant of the matrix of second derivatives is negative.



(2) qt = P G(pt,qt) 2

It as assumed that the higher the price at a given level of demand or the

higher demand at a given price level the stronger is the effort to reduce

demand. This means that the adjustment function is strictly monotonously

decreasing in both variables, p is a positive shift parameter for the adjust-

ment speed which will be used for comparative dynamics in later sections.

There exist combinations of prices and quantities for which demand is

constant. This locus of equilibria can be described by a function

q̂. - D(p^). D(«) be non-negative, continuous, and monotonously decreasing,

q^ can be interpreted as the desired demand to which realised demand

adjusts. We allow for a finite choke price above which desired demand is

zero. In equilibrium the partial derivatives of G(*) satisfy the following

condition:

(3) Gp(pt,D(pt)) = - D'(pt) Gq(pt,D(pt)) .

The current value Hamiltonian for the above problem is:

(4) Ht = ptqt - c(qt) + $t P G(pt,qt).
 3

$t is the shadow price of demand. It is the present value of future profits

which can be made, if the current demand is increased by a marginal unit.

Since today's demand is positively correlated to future demand, the shadow

n

Let a dot above a variable denote its derivative with respect to time and

let a subscript (except t) denote the partial derivative of a function with

respect to a variable.

3 For Pontryagin's maximum principle, see Takayama (1974). Non-negativity

constraints have been neglected here. Because of the shape of the

adjustment function negative quantities cannot occur. Negative prices are

not excluded, since the monopolist might find it optimal to "sell" the

product at a negative price in order to make consumers addictive to it.



price should be positive. Omitting the time subscript, on an optimal path $

should change according to

(5) $ = (8 - pGq) * - (p - c') .

In the optimum, H- = 0 :

(6) - p $ Gp = q .

The effect of a marginal price change on current profits should equal the

present value of the decline in future profits, caused by the same price

variation. By the shape of the demand and adjustment functions, this implies

that the shadow price of demand is positive. It equals the ratio of actual

demand to the (negative) change in demand caused by a marginal price

variation. The larger p the speedier the adjustment process and the lower the

shadow price. The shadow price, therefore, indicates the value of the

monopolist's ability to exploit the demand rigidity.

Finally, a transversality condition for t-*» is required.

According to Michel (1982), the discounted Hamiltonian has to go to zero. It

is shown in the Appendix that this implies

(7) p q > c for t -» <».

In the long run, gross revenue should exceed costs along an optimal path. For

t-w>, boundary solutions or negative prices are not admissible. Negative

future profits cannot be optimal, although it might be optimal to sacrifice

some future profits, if the rate of time preference is high.

3. Conditions for Profit Maximisation

The second order conditions of optimality are fulfilled, if the

Hamiltonian is strictly quasiconcave in p and q. Therefore the Hessian matrix

of second derivatives should have negative diagonal elements and a positive

determinant.



Hp p= P * G p p

H q q = - c" + P $ G q q

Using (6) the second derivatives along the optimal path can be obtained:

(8) -Hp p=

p

(9) -H = c" +

(10) Hpq = Hqp

If Hp_ is sufficiently small, the determinant of the Hessian is positive. In

the following, it is assumed that the second order conditions for a maximum

hold.

Establishing growth rates in (6) yields

•s. /\

$ + Gp = q .

By inserting (5) and rearranging terms, we get an equation which determines

the price along an optimal path:

(ID HEP. p = - i + G ^ - ^ - ^ ( p - c . )
PGp P q q Gp q —

From the second order condition (8), we know that Gpp/Gp is positive, and the

direction of the price changes along the optimal path is given by the RHS of

(11). Since the terms on the RHS are related to each other in a complex

manner, the direction of the price change cannot be determined. If demand is

in equilibrium, implying G=0, (11) can be rewritten:

(lla) ^ER p = - i + G q - ^ P - (p-c«) if q = 0
pup \i q



While the first two terms on the RHS are negative anyway, the sign of the

last term depends on the price level. If the price is small compared to

marginal cost, the price change is negative. This result will be needed in

the following section.

4. The Long Run Equilibrium

The usual procedure would now be to set p=0 and analyse the

shapes of the loci of constant prices and quantities in the p-q-plane. Since

the derivatives of p with respect to p and q contain several terms whose

signs are not known, the analysis will be restricted to the neighbourhood of

an equilibrium. We therefore assume that there exists a single equilibrium

point where changes in prices and quantities do not take place. This implies

G=0, q=D(p), and Gq = -Gp/D'. The equilibrium is then given by

* , D 5D
P = c - n. " ~D pGp

or

8D
c' -

(12) p-* _ PS
1

e

where e = pD'/D is the elasticity of desired demand (6<0). This result

resembles the conventional static result of monopolistic competition. There

is an additional effect which is caused by the rigidity of demand. For high

values of p or a discount rate close to zero, p* approaches the static

monopoly price:

lim p* = lim p
c'

P-XD 8-»0 1 + -
e

Since the equilibrium as given by (12) differs from the Cournot solution, if

the adjustment speed and the discount rate are positive and finite, profits

are lower than in the static case.
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In order derive conditions for the stability of the equilibrium,

it is necessary to analyse the partial derivatives of p and q with respect to

p and q. Obviously, the locus of constant quantities is given by q* = D(p).

Partial derivation of p and noting that in equilibrium G = 0, D(p) = q and

Gq = -Gp/D' yields

(13)
dp

dp

p=0,q=0

p Gp/D' + 6

(14)
G dp
-PP- —
PGp dq

p=0,q=0

G +
qq

<0

G 6
(2 -*+ — ) ( 1

qD Pq

qG

>0

From (13), it can be seen that, along the optimal path, the price change is

an increasing function of the price. The signs, as indicated below the RHS of

(14), follow from the shapes of the adjustment and demand function and from

the second order condition (9). The last term in brackets is the cross part-

ial derivative of the Hamiltonian as specified in equation (10). Since it has

been assumed to be close to zero, the normal case is that dp/dq is negative.

Then, the p=0-curve is increasing close to the equilibrium in the p-q-plane,

and there exists a saddle path leading to the equilibrium as shown in Figure

1. The saddle path is the optimal path. Other paths cannot be optimal, since

they either imply negative prices or demand going to zero in the long run. In

both cases the transversality condition (7) would be violated. If the p=0-

line were decreasing and flatter than the equilibrium demand curve, exploding

cycles would occur. This, however, would imply a increasing price left of the

equilibrium. But, using equation (lla), it has been shown that p is negative



P = 0

q = 0

Figure 1
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in this area of the p-q-plane. Such paths can occur only if there are more

than one equilibrium points.

THEOREM 1

If the Hamiltonian (4) is strictly quasiconcave in p and q and there exists a

single equilibrium in p and q, the equilibrium is a saddle point and the

saddle path is the optimal solution of the monopolist's optimisation problem.

The transversality condition implies a second theorem:

THEOREM 2

An optimal solution to the above optimisation problem exists, iff there

exists an equilibrium

6D
c -

PGr

1
1 + -

e

in which the price exceeds average cost.

Behaviour near the equilibrium can also be studied by computing

the eigenvalues of the Jacobian matrix of partial derivatives. These are z^

and z2:

(15)

and

= 8 ± -| 4 » G
dp dp

+P < DM? + dj

(16) > 0 , z2 < 0 if ±+D>± >0
dp dq

The occurance of multiple equilibria cannot be excluded but this case shall

not be dealt with here.
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Otherwise, both eigenvalues would be positive or complex with a positive real

parts, and the equilibrium would be unstable, which is not possible if there

exists a single equilibrium. So the normal case is the saddle path towards a

long run equilibrium. If the initial demand qg exceeds the equilibrium

demand, its rigidity leads to overshooting of the price. There is a price

shock and the new price is located on the saddle path in the p-q-plane. As

demand adjusts, the monopolist reduces the price until the long run

equilibrium is reached. This equilibrium differs from the static Cournot

solution, if the monopolist has a positive discount rate. Such a scenario can

be caused by cartelisation. If, on the other hand, initial demand is lower

than the equilibrium demand the monopolist cuts the price in order to make

his or her customers sort of addictive to the product. In the;extreme, this

might imply a negative price in an initial period, i.e. the customers do not

only get the product as a free lunch but also are given additional incentives

to use the product.

How the long run equilibrium is affected by variations of the

adjustment speed and the discount rate, can be seen by differentiating (11)

with respect to these parameters. Leaving the price and quantity constant,

this operation yields

8 + G /G p 1
(17) dp = ^—-— dp d8 .

P Gpp/Gp ^PP^P

p is decreasing in 8 and, for p not being too negative, increasing in p. A

higher discount rate means that, for combinations of p and q lying on the

former p=0-line, p now becomes negative. Therefore, the new p=O-line must lie

in the area where before p was positive. A similar argument can be used for a

variation in p. The result is shown in Figure 2. It can be seen, that a

higher rate of discount and slower reactions on the demand side lead to a

higher equilibrium price. Furthermore, the higher the speed of adjustment,

the steeper is the saddle path: The price changes due to profit maximizing

behaviour of the monopolist are relatively small compared to those due to the

adjustments of demand.
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Figure 2
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5. An Example: OPEC Behaviour and the Price of Oil

If we apply the above model to the world petroleum market, we

claim that OPEC is the dominant firm in the market. Demand adjustments are

lagged, since the development and installation of substitution technologies

as well as the mobilisation of petroleum reserves in non-OPEC countries takes

time. A model, similar to the one which has been examined above, has been

used by Pindyck (1978) in order to analyse the effects of cartelisation.

Pindyck's model, however, is not explicitly solved. Optimal paths have been

computed by means of numerical simulation. His findings are that there is a

price shock, followed by a period of declining prices and then increasing

prices. The period of falling prices is caused by monopolistic behaviour,

i.e. the appropriation of short run rents accruing from the rigidity of

demand. The long run price increase is the scarcity effect or Hotelling rent.

So, Pindyck's model explains an oil price shock and what OPEC should do in

order to maximise its welfare. But it fails to explain some of the real world

events, for instance that there where three price shocks instead of one: in

1973/74, 1979/80, and finally 1986 in the opposite direction.

Optimisation models usually claim that the planner has perfect

information about the relevant parameters. Since this assumption seldom holds

in reality, it is a fruitful task to analyse what happens, if plans are made

on the basis of false assumptions about the state of the world. First, recall

the historical events on the petroleum market. Since there was almost no

price variation prior to the first oil crisis, OPEC could not have much

information on how demand would react on a massive price increase. After the

first oil price shock it turned out that demand was surprisingly inelastic

and the adjustment process went very slow. Consumption of petroleum products

reached a new peak in 1979. OPEC had not used its whole potential of increas-

ing the price of petroleum. An interpretation of what has happened then is

given in Figure 3.

Point I denotes the situation before the second oil crisis. OPEC had not used

its whole potential to raise prices. Having experienced the slow reaction of

demand after the first oil crises, it was widely believed that the speed of

adjustment was low. It seemed to be optimal to increase the price to II in
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p * 0 (true)

p = 0 (exp)

Figure 3
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order to reach the expected long run equilibrium E e x p. The true equilibrium

E, however, would have demanded a much lower initial price. The decrease in

demand turned out to be much stronger than it had been expected. In Figure 3,

this implies that the realised path is much steeper than the path which has

been expected to be optimal. Somewhen (point III) it has become clear that

the oil price was still too high while demand for OPEC oil had sunk far below

the desired level. This was the reason for cutting the price substatially in

early 1986.

Of course, the above interpretation does not tell the whole

story. First, the exhaustibility of petroleum is not taken into account.

Second, the dependence of demand on GDP growth has been neglected. Third,

there have been false expectations not only with respect to the adjustment

process, but also with respect to the demand function itself, e.g. the price

at which synthetic substitutes become competitive. Finally, by applying the

leading firm model to the world petroleum market and assuming that OPEC is a

rational profit maximizing monolithic block, political motives for setting

prices and.questions of cartel stability have been neglected. Despite these

apparent shortcomings, however, it is suggestive how a model of monopolistic

behaviour in a world of lagged demand reactions can explain some important

economic aspects of OPEC pricing policy.

6. Summary and Conclusions

The intertemporal behaviour of a monopolist facing lagged demand,

reactions has been examined. It was shown that, if there exists an

equilibrium in which both sides of the market do not intend to adjust prices

or quanities, this equilibrium is a long run solution to the monopolist's

optimisation problem. It differs from the static Cournot solution, if the

adjustment speed of demand is finite and the monopolist discounts future

profits. Finally, the case of a monopolist who has false expectations on the

behaviour of demand was investigated. He or she choses a suboptimal path

which has to be corrected when the real behaviour of demand becomes obvious.

It was shown that this model of monopolistic behaviour under imperfect



16

information can be used to explain some of the economic aspects of recent

OPEC pricing policy.

The model could be extended by the introduction of adjustment

costs for capacity variations. For the application to the world petroleum

market, the exhaustibility of the resource and the behaviour of the fringe of

the cartel should be modeled. While the former extension would only alter the

cost function by introducing the user cost of the resource, the latter might

yield new insights going beyond the frame of the model presented here.
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Appendix

Proof of (7):

e-8tjj _, Q for ^ -> a>. This implies that the growth rate of the discounted

Hamiltonian must be negative. Therefore,

H < 8 H

HpP + H^6 + Hq4 < 8 H

Along an optimal path, IL, = 0 , q = H$ , and $ = 8$ - Hq . Therefore,

(8$ - Hq) q + Hq4 < 8 H

8 $ q < 8 (pq - c + $q)

c < pq -


