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Abstract
• A

The paper deals with the estimation of a simultaneous equation system with time-varying
parameters. The system is formulated in state space form and it is shown that the Kalman
filter algorithm is applicable. The prior information required by this estimation method can
be obtained by maximization of the likelihood function via Fisher-Scoring. Applying and
extending an approach due to Engle, Watson (1981) leads to the recursive calculation of
the score and the information matrix for the model under consideration. Three simulation
experiments are run to show that the proposed algorithm performs well with respect to the
identification of time-varying parameters in a simultaneous equation model.



1.' Introduction

The paper deals with the problems of estimating a simultaneous equation system with
time-varying parameters. Compared to the estimation of single equations with time-varying
coefficients some specific complications arise in this context which can be solved within a
framework of recursive estimation.

The estimation problem has been considered by Chow (1984) who gives a state-space
representation of the simultaneous equation model with time-varying coefficients. Fur-
thermore, Chow outlines a Maximium Likelihood method for the problem of estimating
the unknown prior statistics of the model (i.e. the covariance matrices of the state space
model, the initial vector of coefficient and the corresponding covariance matrix). Informa-
tion about the prior statistics will be required if the Kalman filter algorithm is to be used
as a convenient tool for estimation of the time-path of the coefficient vector.

Our approach differs from that of Chow not only in the representation of the model but
also in the Maximum-Likelihood procedure which is developed to estimate the unknown
prior statistics. An instrumental variable approach is chosen to handle the problem of si-
multaneity within the context of the state space model. It can be shown that an extended
version of the recursive algorithm to calculate the score and the information matrix, which
was originally proposed by Engle, Watson (1981) and Watson, Engle (1983), can be applied
to the problem. Then, the Fisher-Scoring iteration method can be used to calculate Maxi-
mum Likelihood estimates of the prior statistics. In our view, this procedure has numerical
and computational advantages over the method proposed by Chow.

The paper is organized as follows: After the state-space representation of the simul-
taneous equation system with time-varying parameters in section 2, the corresponding
(extended) Kalman filter algorithm is derived in section 3 and problems of estimating the
time-path of the coefficient vector for given prior statistics are discussed in section 4. Sec-
tion 5 outlines an iterative Maximum-Likelihood-approach for the estimation of the variance
components of the si^ite space model, based on recursive calculation of the first and the
second derivatives of the likelihood function. Some possibilities for testing the hypothesis
of time-varying coefficients versus the hypothesis of constant coefficients are described in
section 6. In order to demonstrate the applicability of the proposed estimation method,
section 7 presents the results of some simulation experiments.

2. State-Space Representation of a Simultaneous Equation System

The simultaneous equation system under consideration is:

T( yt = Bt xt + ut , , .
(g xg)(gx 1) (g xfc)(fcxl) ( j x l ) { }

where Tt and Bt are matrices of coefficients associated with g endogenous variables yt
and k predetermined variables xt, respectively. Tt and Bt partly consist of time-varying
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parameters and partly consist of zeros and ones which reflect structural information. The
stochastic term ut is independently normally distributed with zero mean and covariance
matrix R which is assumed to be constant over time.

Let us define a matrix T* = Ig — Tt, where Ig denotes a unit matrix of dimension g.
Then, eq.(l) may be written as

yt = Btxt + T*yt + ut

+ ut. • (2)

Using the reduced form yt = Tt
 1Btxt + Tt

 1ut the vector of endogeneous variables may be
separated into an 'explained part' y* = TJX Btxt and a stochastic part TJxut. Of course
the vector y* is unknown and has to be replaced by suitably chosen instruments, a problem
which we discuss later. Since T*T^lut = T^ut — ut it follows immediately from eq.(2) that

(3)

Let

0t =
7t = vecT*,

A
where vec stands for an operator which vectorizes the following matrix by columns. Note
that Btxt = (x't ® Ik)pt and r?y? = (y*t

f ® Ig)jt.

Rx und Ry are two matrices of suitable size containing information about linear restric-
tions with respect to Bt und Tt so that

fit = Rxfit
It = RylU

where the components of the vectors fit and 74 are the unknown elements of the parameter
matrices.

The data matrices of the system can be combined with the information about linear
restrictions:



Xt = (Xt ® Ig)Rx

Yt* = (yf ® Ig)Ry

Substituting in eq.(3) gives:

or with the corresponding definition of Zt and 6t:

yt = Zt8t + T^ut. (4)

Eq.(4) is in the form of a measurement equation of a state space model. To close the model
a state equation is required which gives the 'law of motion' for the system parameters. In
the absence of further information it may be assumed that the coefficient vector S follows
a random walk:

6t = St-i + vt, (5)

where the stochastic disturbances vt are independently normally distributed with covariance
matrix Q. Note, that the model covers the possibility of constant parameters as a special
case (if Q is taken as a matrix of zeros).

In the next section it is shown that the state-space model defined by eq.(4) and eq.(5)
may be estimated recursively by using the Kalman filter algorithm (Kalman 1960), provided
that instruments for y* are available and the covariance matrices Q and R are given.

3. Derivation of the Kalman algorithm

The basic principle of the Kalman filter is to calculate the vector of coefficients of a state
space model with information up to time period t using estimates of this vector contain-
ing information up to period t — 1. So all estimates consist of a conditional expectation
component reflecting all past information and an 'innovation' component which takes into
account the new information of the data set in period t.

Let E^a^ = at2|tl be the expectation of a variable a for time period 22 based on in-
formation up to time period t\ with t\ <ti- The recursive approach postulates a linear
relationship between the conditional parameter vector St\t-i a n d the unconditional para-
meter vector St\t of the following form:



*>t\t = tt\t-i + KtVt, (6)

where the ( j x 1) innovation vector rjt is defined as:

Vt = Vt-yt\t-i- (?)

lit denotes a matrix of 'weight factors' by which the innovation process is transformed into
changes of the parameters. Following Chow (1984), Kt may be easily determined using
classical regression theory:

— 6 ) T) (ri 7? j 1 (8)

Since 2/t|t-i — Ztf>t\t-\i * n e innovation vector can be expressed as

Vt = Zt(St — St\t-i) + Tt Ut, (9)

so that the covariance matrix of the innovations Ht = var(r/t) is given as follows:

where

'&•• Pt\t-\ = var((5t - 6t\t-i).

Since E(r^_ 1u t ) = 0, the Kalman filter 'gain matrix' Kt is obtained as

Kt = Pt\t-\Z[ Ht . (11)

Taking account of eq.(6) it follows that the unconditional covariance matrix of the estimated
coefficient vector for time period / obeys the following recursive relationship:

Pt\t = Pt\t-i - KtHtK't = Pt\t-i - KtZtPt\t-i- (12)

The covariance matrix of the coefficient vector for time period t conditional to the infor-
mation set of t — 1 is given by



Pt\t-i = Pt-i\t-i + Q- (13)

Since the matrix Ht is positive definite, eq.(12) implies that the variance of the estimated
coefficient vector becomes smaller if new data are available from the information stream.

Provided that the y* are properly instrumented and suitable prior information is avail-
able, the given formulas define a complete filter algorithm. Calculating instruments in a
conventional way (for example by regressing the endogeneous variables of all predetermined
variables of the system), however, would be unsatisfactory, especially if the assumption of
constant parameters was imposed in this step. The logic of recursive estimation prevents
a better solution to this problem. The simple idea is to replace y* by its conditional ex-
pectation yt\t-\ — ̂ u-.\Bt\t-\Xt. Since the innovation vector has a zero expectation this
means that a consistent estimate for y* is used which contains all information of the system
up to period 2 — 1. Furthermore, this proceeding has an attractive economic interpretation
because the usage of the conditional expectation yt\t-\ f° r the endogeneous variables on
the right hand side of the equations is in accord with rational expectation theory.

4. Estimating the time-path of coefficients

Two questions arise in practical application: How to get the prior information and how
to properly estimate the time-path of those model coefficients for which the corresponding
diagonal elements of the Q-matrix are greater than zero. In this section the focus is laid
on the second question whereas the first will be discussed in the next.

If the econometrican is equiped with covariance information Q and R, he can choose
an arbitrary initial coefficient vector <5o (typically set equal to zero) and a corresponding
covariance matrix PQ with large diagonal elements to express the uncertainty of the initial
coefficient estimate. Then the Kalman filter algorithm gives a series of unbiased and efficient
estimates of 6t conditional on the information set which is available up to time period t.
Note that such a filter applied to the case of Q being a zero matrix gives estimates of
the coefficient vector which are by no means constant over time. Although the outcome
of the filter process (which is the analogon of recursive least squares .estimation) may be
of some diagnostic value, the econometrican is generally interested in estimates of the
coefficients which contain the whole sample information set. For this purpose, the Kalman
smoothing algorithm has to be used. In contrast to the filter algorithm, the Kalman
smoothing algorithm with Q being a zero matrix yields estimates for the coefficient vector
and the corresponding covariance matrix which do not vary over time exept for numerical
inaccuracies.

For calculating the Kalman smoother, the results of the (forward) filtering process, 5t\t
and Pt\t, have to be stored. The smoothing algorithm, then operates 'backward', i.e. from
time period (T — 1) to 1 where the smoothing formulas [see, for instance, Anderson, Moore
(1979)] are:



~ 6t+i\t)

Pt\T = Pt\t + Wt(Pt+1\T - Pt*+1)W; (15)

with

wt = ptlt-,Pt7i •

The starting values of the smoothing algorithm 6T\T and PT\T are given by the last estimates
of the forward filter, because the filter results for the last time period contain all the .
information of the sample and are therefore equivalent to the corresponding smoothing
results.

5. Maximum Likelihood Estimation of the Prior Statistics

An important question is what the 'sufficient statistics', in the sense of Rao (1973), are in
the model under consideration. As mentioned above, the filter algorithm requires knowledge
of the matrices Q and R as well as of the initial coefficient vector SQ and the corresponding
covariance matrix Po. As has been shown by Sarris (1973) for the single equation case an
estimate for SQ and Po can be obtained by GLS for given covariance information R and Q.
The results of Duncan, Horn (1972) and Sant (1977) imply that equivalent estimates are
obtained from a backward filter for the sequence of time periods (T,T — l,...,0) starting
with an arbitrary coefficient vector ST+I and a corresponding covariance matrix Px+i with
large diagonal elements. The problem of prior statistics thus reduces to the determination
of Q and R, so that these matrices can be interpreted as the 'sufficient statistics'.

In the econometric context, Q and R are unknown and have to be estimated. In the
following, a Maximum Likelihood method will be outlined.

In analogy to a^proof given by Kirchen (1988) for the case of single equation estimation,
it is shown in the appendix, that the likelihood function for a simultaneous equation system
with time-varying parameters is equivalent to the likelihood function of a state space model
[as already formulated by Schweppe (1965)]:

In i t = - | ln(27r) - i In \Ht\ - \ s p u r ^ " 1 W ) - (16)

The well-known formulation of the log likelihood function of a simultaneous equation system
with constant coefficients [see, for instance, Schmidt (1976)] is:

Tq T l ^ ,
i = --& ln(2?r) + — (ln|F| — In|JR| ) - - 2 j spur (# 1utu't) (17)

2 2 2 x

or



with

i t = - f 1H(2TT) + \ (In |r|2 - In \R\) - \ spur( JTW, ) - (18)

It can easily be shown that eq.(17) includes eq.(18) as a special case since Ht = T 1RT 1

and rjt = r - 1 t t 4 if the elements of T are constant over time. But, evidently, adding a time
index to T in eq.(17) will not lead to a correct formulation of the likelihood function of a
time-varying parameter model.

Since the direct maximization of the likelihood function eq.(16) is not possible, an ap-
propriate iteration procedure has to be used. For example, the Scoring method [see, for
instance, Rao (1973)] is applicable in principle but involves extremely large computations
in the case of simultaneous equation estimation. These computational problems can be
reduced to a manageable size if a filter based Scoring algorithm is used. As discussed
in Watson and Engle (1983) a corresponding i?M-algorithm [see Dempster, Laird, Rubin
(1977)] may be seen as an alternative. We tried both methods but finally preferred the
former not only because the speed of convergence of the EM-algorithm was found to be
very low but also because the Scoring method gives more information and allows for the
possibility that parts of the covariance matrices to be estimated become zero during the
iteration process.

In the following, it is shown that the approach of recursive calculation of the score and
the information matrix, developped by Engle, Watson (1981) is applicable to our problem.

Let us first define a vector 6 which contains the unknown elements of the covariance
matrices R and Q (paying regard to symmetry). Taking eq.(17) as a starting point the
derivatives of the likelihood function with respect to the «-th element of 9 can be calculated
in a straightforward manner. Since

(19)

and

(20)

the first derivative of the likelihood function for time period t is
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d In Lt _ 1 (Jf-ljf \ _ I JJ-l I rr-lrr n-1
OPj 2 " " 2 "

Therefore, the i—th element of the score s is

Defining J?* = HflH$tit and denoting the derivative of of a matrix or vector At with
respect to 9{ as Agt >t the second derivative of the likelihood function may be formulated

ddi 89j 2
1

+ ispur [H;Ht\ngj>tv't + VtVe,)]

« ' u — 1 ~ , /oo\
— TJg.ftlt V8j,t- v^"/

Taking the expectation of eq'.(23) we notice that

and

The (i,,;)-th element of the information matrix Q, therefore, is

(24)

In eq.(21) and eq.(24) the derivatives of the covariance matrix of the endogenous variables
and of the innovations are required. It can be shown that these matrix derivatives H$i,t
and r]0i )f may be calculated recursively.



Using the definitions

and
_ 8Pt\t-ir

the complete recursive formulas for the extended Kalman filter approach to calculate the
score and the information matrix are:

p;itt = p9i,t-i + Qgi (25)

H$Stt = ZtP;(ttZl + V9i,t (26)

V8i,t = T^Re^r1' + TV^ljVt + Vt'T^Tr1' (27)

K6i,t = {Pl,tZ't-KtHei,t)H;x (28)

Peitt = Pt,t ~ K6i,tZtP; - KtZtP;itt (29)

Vt(tt = -ZtSet,t (30)

S$i ,t = S9i , t-i + Kei ,tVt + KtVBi ,t- (31)
A

After the n-th iteration the update of vector 9 is calculated as:

9n+1 = 9n + \nSn-xsn, (32)

where Xn is a suitable chosen constant. During the maximization procedure, the positive
definiteness of the covariance matrices has to be taken into account as a restriction.

It should be mentioned that computation of the information matrix is computationally
expensive. Berndt et.al. (1974) have shown that a consistent estimate of the information
matrix can be obtained from the scores. If the row vector of first derivatives of the likelihood
function with respect to theta in time period t is denoted by st and a matrix 5 is formed
which contains st as its f-th row, then an estimate for the information matrix is given by
S'S.



6. Tests

Since the method to determine the prior statistics of our model is Maximum Likelihood
the standard Lagrange multiplier, Wald and likelihood ratio tests [see Engle (1984)] can be
applied in a natural way.

The Lagrange-multiplier expression

is a test whether the first derivative of the likelihood function is equal to zero and therefore
may be used as a stopping criterium in the iteration process.

An important problem is to test the hypothesis of time-varying coefficients against the
null of constant coefficients. For this purpose let us define 9° as the vector of estimated
elements of the covariance matrices with all elements of Q set equal to zero a priori and 9
as the vector of elements of Q and R which are the result of unconstrained maximization.
Then, the likelihood ratio test

-2[\nL(9°,y)-lnL(9,y)] (34)

has a limiting x2 distribution with m degrees of freedom where m is the number of unknown
elements of the Q matrix.

The Wald test which, following Engle (1984), can be interpreted as an asymptotic ap-
proximation of the familar t and F-test in econometrics, is easily calculated as

A

(9 - 9°y§(0)(9 - 9°). (35)

This test assumes that a central limit theorem applies to 9 and that the information matrix
is consistently estimated. The test statistic again has a limiting x2 distribution with m
degrees of freedom.

The Scoring method also gives an estimate of the variance and standard error of the
elements of 9, so

var(0) = [^(fl)]-1. (36)

Another important point is to test the assumptions underlying the state space model.
Schneider (1987), for example, stresses the fact that the series of innovations should be white
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noise. Several test statistics could be used to test the normality of the innovation process.
For example, it could be tested whether the sequence of autocovariances is significantly
different from zero or not. Non-parametric tests could be used which focus on the sign
changes of the innovations. Also the Bera-Jarque test on normality which is based on the
third and fourth moments of the empirical distribution is applicable. Finally, the hypothesis
of constant variance may be tested, for example, by using ARCH-type tests.

7. Some simulation experiments

It is an important practical question whether the theoretically outlined procedure for esti-
mating the prior statistics is applicable to data sets econometricians are typically concerned
with. To shed light on the small sample properties of the proposed algorithm, some simu-
lation experiments were carried through.

For the sake of simplicity a system of two simultaneous equations with six unknown
parameters and T = 70 observations was considered. The system is exactly identified. Real
economic time series (quarterly growth rate of wage income and the unemployment rate)
were used as exogeneous variables . The simulated model is:

y\t = ht + fatXu + htV2t + uit (37)
yit = fat + htx2t + fatyit + u2t, • (38)

where

xu : growth rate of wage income
x2t : log of the unemployment rate

A
Hence the coefficient matrices are:

fat 0 \ , „ . ( 0 fat
Bt = "" " " " and I? = . , n

fat 0 04tJ \fat 0

The vector of endogeneous variables at time period t is yt = (yit,y2t)' and the data matrix.
Zt of the state space model is

xu 0 0 y*t 0
0 1 x2t 0 y^t

The covariance matrices of the measurement and the state equation are assumed to have di-
agonal structure: var(tit) = R = diag(rn r22) and var(ut) = Q = diag(#n g22 ?33 944 ?55 ?66)-B

11



In the simulation experiments emphasis is laid on the following questions: (i) Does the
algorithm outlined above provide consistent estimates of the covariance structure of the
model? (ii) In how many cases a time-varying coefficient will be found while the true
coefficient is not time-varying (type I error) ? (iii) In how many cases will a time-varying
coefficient not be detected (type II error) ? (iv) Are the estimates of the standard error of
the variance parameters obtained from the information matrix reliable?

Experiment 1 : Simulation results for the constant parameter case

In a first experiment the case where the parameters of the true model do not vary over time
is considered. This allows us to examine the extent to which the null hypothesis 'constant
parameters over time' is rejected although it is true.

insert table 1 about here

The true parameters of the model and the simulation results are given at the top of table
1. As starting values for all elements of the diagonal matrices R and Q the arbitrary value
of 0.1 was chosen. The coefficient vector 6 for time period 0 was estimated via backward
filtering with the coefficient vector 6 for time period T + 1 set to zero and the corresponding
covariance matrix Px+i set to a diagonal matrix with large elements (106). x The number
of replications was limited to 100 for each simulation experiment.

The results of tjpe simulation experiment as shown in table 1 are rather satisfactory. A
type II error does not occur with respect to the variances of the measurement equation.
The bias of these estimates is negative for the element Ru and positive for R22 with an
order of magnitude between 3.5 and 4%. These results may be compared to the variance
estimates of 2-Stage-Least-Squares (2SLS) estimates applied to the same data. The results
of the 2SLS-method imply a considerable (positive) bias for the estimated variances for the
measurement equation, indicating that this method is less efficient.

The estimation results for the parameter vector S do not differ much between the two
estimation methods and come close to the true parameters. Also the standard deviations
of the empirical distribution of the parameter estimates are roughly comparable.

1 It should be mentioned that there is no guarantee that the algorithm will converge in a
given number of steps. In order to keep the simulation experiment tractable it was decided
to skip the cases where the algorithm failed to converge in 12 iteration steps. In some cases
the algorithm did not converge because of the accumulation of numerical inaccuracies.
These cases were also excluded from the considerations.

12
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The mean standard error as estimated from the information matrix is 0.034 for Rn and
0.091 for R.22- Taking the root mean square error of the estimated variance elements we
get a somewhat smaller estimate of the variation of R\\ (0.015) and a somewhat larger
estimate for i£22 (0.138). Hence, there is no indication that the square roots of the in-
verted information matrix do systematically deviate from the standard error of the model
variances.

Although the estimated elements of the covariance matrix of the state equation are
greater than zero in several cases, only in one case do these estimates exceed twice the root
of the diagonal element of the inverted information matrix. If the usual t-test at the 5%
level is used, two incorrect rejections of the null hypothesis are found in 100 replications.
Neglecting the fact, that the number of replications is not sufficient to give precise infor-
mation, these results indicate that applying a t-test might be too conservative a procedure
in small samples.

Experiment 2 : Identifying a single time-varying parameter

In a second simulation experiment we consider the same model as in experiment 1 but
with smaller variances in the measurement equation and with one element of the parameter
vector (65) varying over time [Q55 = 5.0 X 10~3].

As reported in table 2, no type II errors with respect to the elements of the Q-matrix
occur, i.e. in all 100 simulations the hypothesis Q55 = 0 is rejected. This implies that the
time-varying coefficient is detected in all cases2. Furthermore, a type I error is not found
either, i.e. in no case a coefficient is incorrectly considered as time-varying if a t-test at the
5% level is applied. (The last finding confirms our tentative conclusion from above that the
conventional t-test is too conservative).

insert table 2 about here

The simulation results as shown in table 2 indicate that the variance of the measure-
ment equations are slightly overestimated, whereas Q55 appears somewhat smaller in mean"
(4.224 x 10~3) than the true value (5.000 x 10~3). The estimates of the coefficient vector
6 in time period 0 are very close to the true values for equation 1, whereas there is a cer-
tain deviation (especially for the coefficient 6Q) in the second equation which has a larger
variance. As can be seen from table 2 the standard deviations of Q and R as calculated
from estimates of the information matrix are rather close to the standard deviations of the
empirical distribution.

2 This is not surprising, since the t-statistic for Q55 in mean exceeds the 1 percent level.
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The results of 2SLS estimates are the following: The variance of the first equation Ru (in
which the time-varying coefficient occurs) is strongly overestimated by 2SLS (with a large
standard deviation between different simulations). The estimated variance of equation
2 also has a positive bias. Although the estimates of the coefficient vector in mean do
not deviate systematically from the true values and are roughly comparable to those of
the Kalman method, the estimates of the parameter vector in equation 1 exhibit a large
variation between different simulations as compared to the results of the Kalman method.

Experiment 3 : Identifying multiple time-varying parameters

In the third experiment a model is simulated with one element of the 5-matrix (64) and
one element of the T-matrix (£5) varying over time. The variances of the measurement
equation are chosen as in experiment 2. Again each iteration procedure is started with
arbitrary values and no a priori information is imposed.

insert table 3 about here

As reported in table 3, in this experiment only one error of type I occurs, whereas type II
errors are more frequent: in four cases the variance Ru is not significant from zero when a
t-test at the 5% level is applied, in seven resp. three cases the same occurs with respect to

- Q44 and Q55, whereas the variance element R22 is always found to be significantly different
from zero.

The variance ele&ents of the measurement equations Ru and iZ22 are slightly underes-
timated in the first case and somewhat overstimated in the second. Likewise, there is no
systematic deviation for the elements of the Q-matrix. As should be expected, the variance
elements of the measurement equation are strongly overestimated by the 2SLS method.
Again, the estimates of the parameter vector in mean are rather close to the true values
for both methods, but the 2SLS results are much more volatile.

In this simulation experiment all estimates of the standard deviations of the elements oi
the Q and R matrices are underestimated when calculated from the information matrix.

8. Conclusion

It was shown that a simultaneous equation model with time-varying parameters can be
formulated in state space form. If the systematic part of the endogenous variables on the
right hand side of the equations is replaced by its conditional expectation, the extended
Kalman-filter algorithm may be used for recursive estimation. It can be demonstrated that

14



an (approximate) Maximum-Likelihood procedure to estimate the unknown prior statistics
based on the Fisher-scoring method is applicable to the state space model.

In some simulation experiments a sample size was chosen which can be considered as
realistic for econometric models with quarterly time-series data. The results indicate that
the proposed procedure is very sucessful in identifying time-varying parameters of a small
simultaneous model. If a conventional t-test is applied to the variance elements (using the
square roots of the inverted information matrix as estimates for the standard error) errors
of type I (rejecting the null hypothesis of constant coefficients although it is true) occur in
very few cases. Although the number of replications is too small to give precise information
there is some evidence that the t-test is too conservative.

Jf
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Appendix

Let f(Yt) be the joint density function f(Yt) = f(yi,---,yT) and L(YT) be the log likelihood
function. The system state in period 0 is taken as known 60 = fa, so that the corresponding
covariance matrix Po is a zero matrix. Then

gT 1 * , . .
L{y\,...,yT) = -~^~ ln(2?r) - - 2^(\n\Ht\ + VtHt Vt), (A-l)

where nt = yt - yt\t-\ and ift = ZtPt\t-\Z't + T - ^ ^ r ^ 1 ^ .

Proof:

From the definition of the conditional density follows for t > 2:

Hence a recursive formula for the log likelihood function is

The expression f(yt\Yt-i) = f(yt\t-i) is a normally distributed multivariate density with
mean vector yt-\ and covariance matrix

var yt\t-\ = Et\t-i[(yt - yt\t-i)(yt ~ yt\t-i)']

= ^<Pt|t-iA + 1 tii-i-ft-1
 i ) /_1- (A-2)

Thus with Ht = var(j/i|i_1) it follows for the density

t-i) = -912 ln(27r) - 0.51n|#4| - Q.h{yt - yt\t-x)HrX{yt - yt\t-i)'

= -g/2 ln(27r) - 0.5(ln |JTt| + r)tHfx n't).

Under our assumptions the dependent variable in period 0 yo is considered as non stochastic
and the log likelihood for period 1 is

= -972 ln(27r) - 0.5In \va.r(yi)\ - 0.5 (yx - yiio^a^yijo)"^^ - yi|o)- (A-3)

Since var(2/i|0) = H\, eq. A-l follows directly from eq. A-2 and A-3.
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TABLE 1

Simulation Results (Experiment 1)

parameter
Qu

parameter
s.d.

parameter
s.d.
Qu
s.d.(l)
s.d.(2)
err. I
err. II

Si

-1.000
0.0

-0.991
0.099

-0.991
0.107
0.095
0.465

-
0
—

equation

fa
0.500

0.0

0.497
0.069

0.501
0.114
0.229
1.546

-
1
—

coefficients
1

0.600
0.0

true
1.000

0.0

equation

fa
model

0.500
0.0

2

fa
0.400

0.0
simulation results (2SLS-method)
0.598
0.018

1.015
0.084

0.519
0.074

0.354
0.191

simulation results (Kalman-method)
0.596
0.029
0.022
0.116

-
0
—

1.011
0.114
0.301
1.172

-
0
—

0.516
0.073
0.000

—
-
0
—

0.359
0.179
0.007
0.041

-
0
—

variances''
eq.l.
Ru

0.200
-

0.613
0.076

0.194
0.015

-
-

0.034
-
0

/eq.2
R22

0.500
-

0.867
0.056

0.537
0.138

-
-

0.091
-
0

Notes:
- results are based on 100 replications;

o

- Qii gives the mean diagonal element of the covariance matrix of the state equation times 10 ;
- s.d. gives the standard deviation of the empirical distribution;
- s.d.l gives the standard deviation of the empirical distribution of the estimated variance element Qii;
- s.d.2 gives the mean square root of the corresponding diagonal element of the inverted information matrix;
- err. I: gives the number of cases where the estimated variance element Qij divided by the square root of

the diagonal element of the inverted information matrix exceeds the critical value of the t-distribution on
the 5% level although the true element Qtj is equal to zero;

- err. II: gives the'^^imber of cases where the estimated variance elements Ru or Qii divided by the root of
the diagonal element of the inverted information matrix do not exceed the critical value of the t-distribution
on the 5% level although the true element Qii is greater than zero;

- the mean square roots of the diagonal elements of the inverted information matrix are not reported for the
Qii because the Qii are estimated as zero in several cases.



TABLE 2

Simulation Results (Experiment 2)

parameter
Qu

parameter
s.d.

parameter
s.d.
Qu
s.d.(l)
s.d.(2)
err. I
err. II

Si

-1.000
0

-1.012
0.304

-1.011
0.060
0.029
0.119

-
0
—

equation

fa
0.500

0

0.525
0.231

0.497
0.052
0.010
0.027

-
0
—

coefficients
1

fa
0.600
5.000

<

fa
true I

1.000
0

equation 2

fa
model

0.500
0

fa
0.400

0
simulation results (2SLS-method)
0.625
0.161

1.003
0.045

simulation results
0.596
0.081
4.224
1.357
1.259

-
0

1.003
0.069
0.129
0.540

-
0
—

0.506
0.068

0.375
0.239

(Kalman-method)
0.523
0.026
0.005
0.016

-
0
—

0.335
0.065
0.092
0.360

-
0
—

variances
eq.l
R\\

0.020
-

1.202
1.371

0.024
0.009

—
-

0.007
—
1

eq.2
i?22

0.050
-

0.273
0.236

0.069
0.011

-
0.012

-
0

Notes see table 1



TABLE 3

Simulation Results (Experiment 3)

—

parameter
Qu

parameter
s.d.

parameter
s.d.
Qu
s.d.(l)
s.d.(2)
err. I
err. II

-1.000
0

-0.956
0.258

-1.024
0.072
0.073
0.282

-
0
—

equation

fa
0.500

0

0.482
0.198

0.513
0.052
0.021
0.076

-
0
—

coefficients
1

fa
0.600
2.500

true
1.000

0

equation

fa
model

0.500
2.500

2

fa
0.400

0
simulation results (2SLS-method)
0.602
0.117

1.020
0.271

0.501
0.247

0.401
0.516

simulation results (Kalman-method)
0.605
0.071
3.298
1.802
1.131

-
3

1.007
0.063
0.047
0.169

-
0
—

0.528
0.068
1.769
0.748
0.628

-
7

0.336
0.086
0.140
0.671

-
1
—

variances
eq.l
Ru

0.020
—

0.857
0.960

0.018
0.009

-
-

0.006
-
4

eq.2
R22

0.050
-

0.853
0.617

0.032
0.017

-
-

0.008
-
0

Notes see table 1
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