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From innovation to exporting or vice versa? Causal

link between innovation activity and exporting in

Slovenian microdata

Joµze P. Damijan� µCrt Kostevcy Sa�o Polanecz

Abstract

Firm productivity and export decision are closely related to its innovation ac-

tivity. Product innovation may play a more important role in the decision to start

exporting, while the decision for process innovation may be triggered by success-

ful exporting. This suggests that the causality between innovation and exporting

may run from product innovation to exporting and conesequently from exporting

to process innovation and reverse productivity improvements. Using detailed mi-

crodata, including innovation survey, industrial production survey and information

on trade, for Slovenian �rms in 1996-2002 we investigate this dual causal relation-

ship between �rms�innovation and exporting activity. We �nd no evidence for the

hypothesis that either product or process innovations increase the probability of

becoming a �rst time exporter, but �nd consistent support both in the innovation

survey as well as in the industrial production survey that exporting does lead to pro-

ductivity improvements. These, however, are likely to be related to process rather

than product innovations and are limited to a sample of medium and large sized

�rst time exporters only.
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1 Introduction

Recent empirical research on exporting behavior of �rms has established several empirical

regularities. Exporting �rms are known to be superior in comparison to non-exporters

in terms of productivity, capital intensity, wages and size. Productivity premium of

exporting �rms received particular attention, with emphasis on testing validity of two

pre-eminent hypotheses. The evidence in favor of self-selection of more productive �rms

into exporting is abundant, while the evidence on reverse causality, namely learning-by-

exporting, is rather scarce (see survey of empirical studies by Greenaway and Kneller

(2006)).

Large productivity premiums of new exporters (vs. non-exporters) imply that the de-

cision to start exporting is determined by factors that a¤ect productivity of �rms before

they start exporting. Empirical studies document substantial heterogeneity of produc-

tivity of �rms within and between industries (Bartelsman and Doms (2000)). However,

theoretical models on �rm dynamics do not provide a convincing explanation of what

generates this �rm heterogeneity and divergent evolution of �rms, but instead typically

assumes productivity that is exogenous to the �rm. Models of �rm dynamics (Jovanovic

(1982), Hopenhayn (1992)) and their extension to international trade (Melitz (2003)) as-

sume that productivity is assigned to a �rm by luck of draw from a distribution. After

making a draw, there is therefore no way for a �rm to change its life path - its survival

or death is exogenous to it.

In contrast endogenous growth theory associates productivity of �rms to decisions,

such as investment into research and development (R&D) and innovation. Romer (1990)

argues that technological improvements stem from intentional investment of resources by

pro�t-maximizing �rm and that �rm�s innovative activity is central to its technological

progress and productivity growth. Drawing on Vernon�s (1966) advances in product life-

cycle theory Klepper (1996) demonstrates that product innovation dominates the early

stage of the product lifecycle, while process innovation gains relevance in the later stages,

after production volumes have increased and e¢ ciency of production becomes increasingly

important. Recently, Constantini and Melitz (2007) drew on this by constructing a model

which shows that in the anticipation of trade liberalization, a �rm may bring forward the

decision to innovate in order to �dress up�for the future export market participation.

This reasoning suggests, on one hand, that �rm decision to start exporting may be

driven by its prior decision to innovate a product and consequently improve its produc-

tivity, while on the other hand, �rm�s exporting activity - due to increased scale of sales -

feeds back to its productivity by increased process innovations. Based on this, two causal

links can be identi�ed in the relationship between productivity and exporting, both of

which are related to �rm innovation activity. First, the product innovation - productivity

- decision to export link may explain how �rm decision to invest into R&D and make
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product innovations drives its productivity and triggers the decision to start exporting.

And, second, the exporting - process innovation - productivity growth link may provide a

missing link in understanding how exporting activity may push a �rm to undergo process

innovation, which in turn a¤ects its productivity growth.

Over the last decade, many empirical studies, starting with Wagner (1996), have found

a positive impact of innovation on exporting. Recently, some studies also �nd positive

impact of process rather than product innovation on productivity growth (for instance

Gri¢ th et al (2006; etc.)). Only few studies, however, have attempted to study the whole

productivity - exporting link as a causal relationship by controlling for �rm innovation

activity. While Cassiman and Golovko (2007) and Cassiman and Martinez-Ros (2007)

�nd support for the product innovation - productivity - export causal link in the Spanish

data, the second, exporting - process innovation - productivity growth, causality has been

less succesfully tackled.

In this paper we study both directions of the causal relationship between innovation

activity and decision to export. We use Slovenian microdata, which combines accounting,

innovation and industrial survey data as well as data on foreign trade �ows, for the period

1996-2002. This unique dataset allows us to test the prediction that �rm�s inclination

to innovate increases its probability of becoming an exporter as well as the hypothesis

that positive learning e¤ects of exporting will result in additional innovations and boost

productivity. Starting with joint estimation of simultaneous equations for decisions to

export and innovate, we �rst establish the cross correlation between innovation activity

and exporting. Then we apply propensity-score matching techniques, where we match

innovating and non-innovating �rms (based on the propensity to innovate) in order to

compare their likelihood to start exporting (export equation). In addition, we also match

exporters with non-exporters based on their propensity to export and investigate whether

the two cohorts di¤er in terms of their innovative e¤ort (innovation equation). The

advantage of our approach, however, is that we explore not only the correlation between

innovation and exporting status but also try to identify the direction of causality between

the two. We do that by estimating the export and innovation equations to reveal whether

the lagged innovation output has an impact on �rm decision to start exporting, and

whether lagged exporting status has an e¤ect on �rms decision to become innovative. We

�nd no empirical support for the hypothesis that either product or process innovations

increase the likelihood of becoming an exporter. However, we �nd support that exporting

increases the probability of becoming a process rather than product innovator and that

exporting leads to productivity improvements. Both e¤ects, however, are limited to a

sample of medium and large �rst time exporters. These �ndings therefore suggest that

participation in trade may positively a¤ect �rm e¢ ciency through process innovations.

The paper is organized as follows. After overview of related research in the next

Section, in Section 3 we describe the datasets we use and basic descriptive statistics on
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exporting and innovation activity of Slovenian �rms. Section 4 presents results of the

basic bivariate probit and matching regressions of our exporting and innovation equa-

tions. Section 5 present results on the tests of causality direction between innovation and

exporting and some robustness checks. In the last Section we draw main conclusions.

2 Related research

Firm dynamics has become an increasingly popular research �eld over the last three

decades. Extensive empirical work (see survey by Caves, 1998) has documented signi�cant

�rm turnover and pioneering theoretical work by Jovanovic (1982) and Hopenhayn (1992)

related size of �rms in terms of employment and sales to and likelihood of survival to

productivity. More recently, Bernard and Jensen (1995, 1999) documented substantial

di¤erences between exporting and non-exporting �rms, which resulted in a new generation

of trade models that in addition to �rm heterogeneity in terms of productivity feature

also share the key features of �rm dynamics. Melitz (2003), Bernard et al (2003) and

Melitz and Ottaviano (2005) built models that relate observed heterogeneity in foreign

markets participation to heterogeneity in �rm productivity and yield prediction that only

�rms with su¢ ciently high productivity level start supplying goods to foreign markets.

Consistent cross-country evidence on self-selection into exporting and high persistence

of exporting status (Roberts and Tybout (1997), Bernard and Jensen (1999), Greenaway

and Kneller (2006), Wagner et al (2007)), however, still leaves us short of a convincing

explanation, why some �rms are initially �better� and how foreign trade participation

feeds back to �rms�productivity. There has to be a causal link between �rm�s innovation

e¤ort and its overall productivity which triggers the decision to start exporting, while on

the other hand there also has to be a causal link from �rm�s exporting performance to its

further productivity improvements. The problem is that there is still no convincing theory

explaining the �rst part of the causality link (�rm innovation - productivity - export),

while so far no conclusive evidence has been found for the second part of the causal link

(learning-by-exporting).

Regarding the innovation e¤ort - productivity - export link, existing theoretical papers

explaining �rm dynamics (Jovanovic (1982), Hopenhayn (1992)) and its application to

international trade (Melitz (2003)) lack a convincing explanation of what �produces�

�rm�s pre-trade productivity. They relegate �rm�s productivity to a draw from a common

distribution and neglect the endogeonous relation between �rm�s innate ability to create

a product and its ex-post productivity, which enables it to enter a market. A novelty

in this respect has been the recent contribution of Bernard et al. (2004) who relate �rm

performance to its ability to create products. In a related paper Bernard et al. (2006) go a

step further by assuming �rm productivity in a given product to be a combination of �rm-

level �ability�and �rm-product-level �expertise�. While they still rely on the assumption
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that both the �rm-level �ability�and �rm-product-level �expertise�are exogenous, their

contribution lies in emphasising the importance of �rm�s ability to innovate new products.

Constantini and Melitz (2007) is the �rst example of a model of industry dynamics with

endogenous innovation and exporting decisions. They show that anticipation of trade

liberalization may bring forward the decision to innovate in order to be ready for the

future export market participation.

Investment in product innovation may therefore be the key in explaining �rm pro-

ductivity and its decision to enter a market. While a number of empirical studies �nd a

positive impact of innovation on exporting (Wagner (1996), Wakelin (1997, 1998), Ebling

and Janz (1999), Aw et al. (2005), Girma et al. (2007)), the exact link from innovation

via higher productivity to the exporting decision has not been uncovered yet. An early

paper by Vernon (1966) developes a product life cycle theory where product innovation

should have an impact on �rm productivity and therefore should be indirectely linked

to the decision of a �rm to start exporting. Klepper (1996) demonstrates that product

innovation dominates the early stage of the product lifecycle, while process innovation

becomes important in the later stages after production volumes have increased and e¢ -

ciency of production becomes increasingly important. Recently, a study by Foster et al.

(2006) provides some evidence in favor of this by showing that it is �rm speci�c demand

variations rather than technical e¢ ciency which essentially determines �rm survival and

impacts positively �rm productivity. This �nding implies that �rm�s product innovation

related to positive demand shocks may explain a large portion of �rm�s superior pre-trade

productivity level and its consequent decision to start exporting. A recent study by Cas-

siman and Golovko (2007) �nds that for small Spanish �rms when product innovation is

controlled for the di¤erences in productivity among exporting and non-exporting �rms

disappear. In a related paper, Cassiman and Martinez-Ros (2007) using a similar sample

of Spanish �rms �nd that engaging in product innovation signi�cantly increases the prob-

ability of starting to export. Similarly, Becker and Egger (2007) �nd that, controlling for

the endogeneity of innovation, product innovation plays an important role in increasing

the propensity to export of German �rms, while no such evidence is found for process

innovation. These �ndings, hence, suggest that the productivity - export causal link may

well be explained by a �rm�s (product) innovation activity.

Regarding the other part of the causal link (exporting - reverse productivity improve-

ments), most of the studies so far failed to �nd conclusive evidence in support of the

positive impact of exporting on productivity growth. Aw et al. (2005) argue that nu-

merous studies that failed to �nd evidence of learning-by-exporting may have omitted

a potentially important element of the process of productivity change: the investments

made by �rms to absorb and assimilate knowledge and expertise that may be gained from

foreign contacts. In other words, exporting activity may have helped �rms to become

more innovative in the process which may impact productivity growth in the long run.
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Recently, few studies �nd supporting evidence that innovation contributes signi�cantly

to �rm�s productivity growth. Huergo and Jaumandreu (2004), Harrison et al (2005),

Gri¢ th et al. (2006), Parisi et al. (2006), and Hall et al. (2007), Damijan et al. (2008)

demonstrate that it is process rather than product innovation that drives �rm productivity

growth. Process innovations have labor displacement e¤ects and are therefore expected

to result in signi�cant productivity growth, while, due to the demand e¤ect, product in-

novations are likely to cause employment growth, but not signi�cant productivity growth.

Salomon and Shaver (2005) �nd some evidence in favor of learning-by-exporting using

data on Spanish manufacturing �rms. They �nd that past exporting status increases

propensity of �rms to innovate.

The discussion so far has shown pieces of evidence that may be put together into a

coherent picture connecting �rm innovation decision, productivity improvements, export

decision and reverse productivity improvements from exporting. The evidence suggest

that the causality may run from �rm product innovation to superior productivity and

subsequent export decision and, on the other side, from exporting triggering process

innovations to productivity improvements.

3 Data description

3.1 Data Source

Our empirical analysis of the relationship between innovative activity and exporting is

based on �rm-level data from Community Innovation Surveys (CIS1, CIS2, CIS3) and

�rm accounting data (AJPES) for the period 1996-2002. CIS represent an EU wide e¤ort

to assess innovation activity and its e¤ects on �rm performance. In Slovenia Community

innovation surveys are conducted every even year since 1996 by the Slovenian Statistical

o¢ ce (SORS). The surveys are carried out on a censored sample of manufacturing and

non-manufacturing �rms with no additional conditions put on actual R&D activity or size

of these �rms. Most importantly, the data gathered by the innovation surveys include,

inter alia, information on product and process innovation of �rms in two year periods

as well as data on the determinants of innovation (employment and expenditure of re-

search and development, etc.). In order to obtain additional insight into the causes and

consequences of innovation, we merged CIS data with �rm accounting data from annual

�nancial statements as well as with data on �rm exports �ows. All value data was de�ated

using NACE 2-digit industry producer price indices, while the capital stock variable was

de�ated using the consumer price index.1

Table 1 compares the sample of �rms chosen for the Community Innovation Surveys

1A major share of physical capital in �rms balance sheets are physical structures. In the period of our
analysis the prices of commercial property had grown in line with consumer price index.
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and all �rms. The sample of surveyed �rms represents roughly 10 percent of the pop-

ulation. Average total factor productivity (TFP) and Kolmogorov-Smirnov stochastic

dominance tests show that surveyed �rms are more productive than all �rms in the econ-

omy.2 In addition, surveyed �rms are also larger both in terms of sales and employment

as well as more capital intensive than the population average.3 The sample of �rms cho-

sen to participate in the Community Innovation Surveys is therefore not representative

of the population of Slovene �rms and this has to be taken into consideration in the

interpretation of results.

Table 1: Comparison in total factor productivity per employee of sample and
population data

number of �rms di¤erence mean (pop.) > K-S stochastic
in TFP means > mean (sam.) dominance test

sample population t-stat. P-value D-stat P-value
pooled 9; 148 105; 560 �300:561 �13:83 0:000 0:099 0:000
1996 1; 743 25; 243 �89:165 �1:50 0:068 0:049 0:001
1998 2; 219 26; 649 �584:078 �7:99 0:000 0:102 0:000
2000 2; 601 27; 653 �404:945 �8:90 0:000 0:173 0:000
2002 2; 585 26; 015 �533:742 �8:66 0:000 0:203 0:000

Note: TFP means are calculated from residuals of regression of log of value added on log of labor,
log of physical capital and industry dummies.
Source: SORS, AJPES and authors�own calculations.

3.2 Descriptive statistics

Given a small size of domestic market, it is not surprising that roughly 85% of Slovene

manufacturing �rms export (Damijan and Kostevc. 2006). A large portion of Slovene

exports is destined to the highly-competitive EU-15 markets (Damijan et al (2007)) and

this increases the scope for bene�ts from either positive spillovers in the exporting markets

or by raising the productivity of exporting �rms (learning-by-exporting). Damijan and

Kostevc (2006) and de Loecker (2007) analyze Slovenian manufacturing �rms and �nd

that productivity exhibits a level shift in the year that �rms start exporting. This level

shift could be either related to capacity utilization, but also to spillovers and learning

e¤ects. The latter could re�ect introduction of more e¢ cient technologies or increased in-

vestment in R&D, and hence in improved innovation activity of exporters. Alternatively,

product innovation could stimulate exports especially when exports into highly competi-

tive marketplaces are considered. The causal link between exporting and innovation may

2Total factor productivity is constructed as a residual from the production function where value added
is being regressed against labor and capital inputs and industry dummies.

3For the sake of brevity we do not show these results.
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therefore work in both directions as innovation activity could have e¤ect on the future

exporting status and, in turn, exporting may boost �rm�s innovative activity.

Table 2: Comparison of �rm characteristics between exporters and non-
exporters and innovators and non-innovators for year 2002

non-exporters exporters
non-innovators innovators non-innovators innovators

Value added per employee 19,627 19,707 21,257 21,293
Capital per employee 48,156 48,781 68,843 65,998
R&D expenditure per employee 0 2,692 0 1,603
Size (sales) 1,158,203 1,180,575 2,843,517 7,612,973
Size (employment) 18 19; 5 28 112
Number of �rms 692 96 1181 394

Note: Median values of variables are reported. Value added per employee, physical capital per employee
and sales are given in Euros (constant 1994 prices).
Source: SORS, AJPES and authors�own calculations.

The characteristics of �rms in the sample with respect to both exporting and innovat-

ing status are described in Table 2. In line with existing literature, exporters are more

productive, larger and more capital intensive than non-exporters. Di¤erences between

innovators and non-innovators are more subtle: the former are only marginally more pro-

ductive when export status is controlled for. Furthermore, innovators are not found to be

substantially more capital intensive4 and in the case of non-exporters they are similar in

size to non-innovators. Expenditure on research and development per employee at �rst

seems to indicate that non-exporting �rms invest more in research, but, given the size

di¤erence, it is clear that the median exporting innovator invests substantially more in ab-

solute terms. Finally, innovating exporters are found to be far larger than non-exporters

or non-innovating exporters both in terms of sales and employment.

Table 3 presents an overview of the joint probabilities of being an exporter (non-exporter)

and/or innovator (non-innovator). A �rm is classi�ed as innovator if it reported to have

made process or product innovations in the period of two years prior survey. The results

shown in the top panel of the table reveal that innovating �rm is more likely to export

by almost 40 percentage points.5 Thus, innovating activity may be a determinant of

exporting status or, at the very least, that innovation and exporting are driven by the same

determinants. The bottom panel of Table 3, alternatively, demonstrates that exporters

are far more likely to innovate than non-exporters. Depending on the year (and survey)

in question exporters are between two and �ve times more likely to innovate than non-

exporting �rms. Another striking feature of the data is relatively low share of innovating
4Among exporting �rms, non-innovators are even found to be more capital intensive than non-

innovators.
5In year 2002 the probability of being an exporter is somewhat larger at 72,4%.
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Table 3: Share of exporters (innovators) depending on innovative activity
(exports) by �rms

innovators non-innovators
year share of exporters share of exporters
1996 87; 4% 49; 9%
1998 79; 6% 50; 5%
2000 87; 0% 54; 4%
2002 86; 5% 72; 4%

exporters non-exporters
year share of innovators share of innovators
1996 28; 1% 5; 3%
1998 29; 8% 9; 9%
2000 26; 5% 10; 1%
2002 23; 4% 11; 1%

Source: SORS, AJPES and authors�own calculations.

�rms in the total number of �rms. The average share of �rms that have innovated of

those surveyed was only about 20%, compared to 65% of German enterprises or 53% of

Austrian �rms.6

Although the positive link between innovative activity and exporting status appears ro-

bust, the direction of the relationship (causality) is not evident from the above statistics.

Variables such as �rm size, capital intensity and foreign ownership may all be positively

correlated with innovative activity and exporting and the correlation between these vari-

ables may be spurious.

4 Exploring the link between exporting and innova-

tive activity

The evidence shown so far revealed that heterogeneity in terms of productivity between

non-exporters and exporters may be explained with past decisions of �rms to innovate.

The descriptive statistics con�rm conjecture that innovators compared to non-innovators

are more likely to be exporters and that exporters compared to non-exporters are two

to three times more likely to be innovators. Although we still lack a convincing theory,

some pieces of empirical �ndings, including the above descriptive statistics, point towards

hypothesized endogenous link between innovation, productivity and exporting. Future

exporters may have taken decisions in the past about investing into R&D and undertaking

innovation activities, which served to expand their productivity levels and enabled them to

6The average share of innovating �rms in manufacturing and services for the 27 EU countries was 42%
(Fourth Community Innovation Survey, 2007, http://europa.eu/rapid/pressReleasesAction.do?
reference=STAT/07/27&format=HTML&aged=0&language).
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become exporters. Cassiman and Golovko (2007) and Cassiman and Martinez-Ros (2007)

�nd for a set of Spanish �rms that product innovations are crucial driver of exports of

small non-exporting �rms. Subsequently exporting may lead to further innovations and

enabling further improvements in productivity. Findings of Parisi et al. (2006) and Hall

et al. (2007), both using Italian microdata but not discriminating between exporting and

non-exporting �rms, demonstrate that process innovations lead to signi�cant productivity

growth through labor displacements. Hence, the causal link should run from innovation to

exporting and back to additional innovation. This causal chain is a subject of exploration,

with emphasis on distinction between product and process innovations.

In the remainder of this section we explore the correlation between innovation and ex-

porting while the direction of causality between the two is being studied more thoroughly

in the next Section.

4.1 Bivariate probit regressions

4.1.1 Methodology

Let us start the study of links between exporting and innovation by modelling joint

decisions using bivariate probit model. Our approach is similar to work by Aw et al.

(2005) and Girma et al. (2007), who model joint decisions to export and invest resources

in R&D or worker training as proxies for the stock of knowledge. However, our data allows

us to use the results of e¤orts to innovate rather than investment of resources. Namely,

our data contain information on the actual outcome of the innovation process (actual

product and/or process innovations undertaken) by the �rm, which allows us to test

whether exporting results in greater likelihood to innovate as well as whether innovation

e¤or fosters exporting.

The empirical model relates probabilities of exporting and innovating in period t to

lagged �rm characteristics (by two periods):

Prob(Expt = 1) = f(Expt�2; Inovt�2; Xt�2); (1)

Prob(Inovt = 1) = f(Inovt�2; Expt�2; Xt�2): (2)

Here Expt denotes an indicator variable for export status (assuming value 1 if a �rm is

exporter and 0 otherwise) and Inovt is an indicator of innovation7 (taking on value 1 if

a �rm has innovated in between the two consecutive innovation surveys and 0 otherwise)

7We do not discriminate between product and process innovations here, but deal with this distinction
below.
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while Expt�2 and Inovt�2 are the respective lagged variables. Xt�2 represents a set of

controls that also a¤ect the decisions to export and innovate.

Lagged dummy for innovation is the key variable of interest in equation 1.8 The corre-

sponding coe¢ cient shows whether innovating �rms are more or less likely to be exporters.

The inclusion of additional explanatory variables is waranted by the relevant literature

on the determinants of exports (Wagner, 2007). We include the lagged exporting status,

which is used in related literature to account for the sunk cost of entry into the export

markets (Roberts and Tybout, 1997). Among other determinants of exporting status (as

suggested in the relevant literature) we also include log of labor productivity (value ad-

dded per employee), which captures the possibility that more productive �rms self-select

into exporting. Size measured by log number of employees appears as a determinant of

both innovation as well as exporting status (Love and Roper, 2002; Barrios et al., 2003;

Damijan and Kostevc, 2006). Inclusion of capital intensity and investment in R&D (both

in logs) is necessary since �rms with higher capital to labor ratios and greater investments

in R&D are more likely to be able to compete in highly competitive mature markets. Fi-

nally, we follow Girma et al (2007) and include proxy for penetration of foreign �rms

with the share of R&D expenditures of foreign owned �rms in total R&D expenditures of

the sector.9 We have also estimated speci�cations where labor productivity and capital

intensity were replaced by total factor productivity per employee, but this does not alter

the signi�cance or even the magnitude of the remaining variables of interest.

In equation 2 we follow Aw et al. (2005) and Girma et al (2007) and assume that

the determinants of innovation are the same as those included in the determination of

exporting. The explanatory variable of particular interest is the lagged export status;

the corresponding coe¢ cient should indicate whether exporters are more or less likely

to innovate than non-exporters and thus provide a channel for learning-by-exporting.10

Again, our results are not directly comparable to those of Aw et al. (2005) and Girma et

al. (2007), as we use data on actual innovation rather than expenditure that may or may

not lead to innovation. A positive coe¢ cient on lagged exporting status would imply that

exporting leads to "new knowledge" and not just investment in "new knowledge".

In estimation we allow for correlation between residuals of equation (1) and (2). Given

that both export status as well as innovative activity are highly serially correlated and

that they appear both as dependent and explanatory variables, the error terms of the two

equations are likely to be correlated. The two equations therefore need to be estimated

simulatenously, which can be done by estimating bivariate probit model with maximum

likelihood estimation techniques.

8In line with Barrios et al (2003) and Girma et al. (2007).
9Again, replacing this variable with the share of innovation of foreign-owned �rms in total sectoral

innovation does not substantially alter the main results.
10Instead of the direct e¤ects of exporting on productivity growth which were not found in Slovene

manufacturing �rms (Damijan, Kostevc 2006).
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4.1.2 Results

Table 4 summarizes the estimates of equation (1) with export status as a dependent

variable. Column (1) shows the estimates for the basic equation with lagged innovation,

export status, labor productivity, employment and capital intensity. Lagged innovations

increase the likelihood of current export status, although, this relationship is not statis-

tically signi�cant. As expected, lagged export status increases the likelihood of current

export status. Also, more productive, larger and more capital intensive �rms are more

likely to become exporters. The impact of lagged innovation and productivity are not

robust to omission of time and industry dummies as well as R&D investment and FDI

penetration in industry (columns 2-6), which implies that lagged labor productivity and

innovation are weak determinants of export decision. The e¤ect of lagged R&D invest-

ment on exporting status is not signi�cant either, which con�rms the �nding that lagged

innovation does not a¤ect current exporting status. Finally, columns 5 and 6 contain esti-

mates for speci�cation that distinguish between product (column 5) and process (column

6) innovations. The coe¢ cients suggest that product innovations might have positive im-

pact, although the coe¢ cient is not statistically di¤erent from zero. Process innovations

are even negatively related to export status.

Table 5 show the estimates of innovation equation (2).11 Not surprisingly, lagged inno-

vation increases the likelihood of current innovation, which suggests that becoming an

innovator requires signi�cant sunk cost. More importantly, lagged export status has a

signi�cant positive impact in all but two speci�cations (columns 3 and 6). In column 3

are shown results with R&D spending, which suggest that R&D spending may be strongly

correlated to export status. Column 6 shows results with dependent variable for process

innovations. Lagged productivity also matters for the probability to innovate in most

speci�cations, while the e¤ect of lagged capital intensity is not robust to changes in spec-

i�cation. In line with predictions, the probability to innovate is positively linked with the

size of the �rms, which indicates the importance of scale in research activity.

The results based on bivariate probit regressions show weak support for self-selection and

stronger support for learning-by-exporting. However, estimation procedure includes all

�rms, those that are already exporting and those that are already innovating. If new

exporters and new innovators have di¤erent response to lagged innovation and export

status, then the results of bivariate probit may not be relevant to all �rms. Moreover,

since probit model does not compare the e¤ects of similar �rms, but instead yields results

for all �rms, we apply matching techniques in subsequent work.

11Note that the summary statistics in Tables 5 and 6 are identical as export and innovation decisions
are jointly estimated.

12



Table 4: Results of bivariate probit regressions
Export status

(1) (2) (3) (4) (5) (6)
Lagged innovation 0:129 0:054 0:096 �0:093 0:191 �0:041

(0:088) (0:112) (0:213) (0:291) (0:231) (0:219)
Lagged export status 1:876��� 2:281��� 2:128��� 2:443��� 2:421��� 2:401���

(0:072) (0:104) (0:156) (0:242) (0:241) (0:236)
Lagged productivity 0:126� 0:145 �0:076 �0:067 �0:108 �0:050

(0:066) (0:092) (0:144) (0:173) (0:193) (0:186)
Lagged employment 0:214��� 0:166��� 0:321�� 0:130� 0:177�� 0:145�

(0:035) (0:042) (0:071) (0:077) (0:084) (0:082)
Lagged capital intensity 0:144��� �0:108�� 0:067 �0:092� �0:029 �0:064

(0:042) (0:052) (0:085) (0:129) (0:129) 0:134
Lagged R&D Investment 0:004 0:025 0:009 0:026

(0:025) (0:030) (0:024) 0:022
FDI penetration in industry 0:151 0:114 �0:097 �0:079

0:183 0:303 (0:306) (0:311)
Industry dummies yes no yes no no no
Time dummies yes yes yes yes yes yes
N 3812 1551 1428 602 623 623
Log pseudolikelihood �2423:9 �1098:7 �918:8 �393:7 �410:3 �446:4
� 0:125 0:139 0:118 0:275 0:423 0:197
Prob � = 0 0:058 0:078 0:092 0:063 0:007 0:132

Note: standard errors robust for clustering at �rm level in parentheses.
(1) - (4) Both product and process innovation considered,
(5) only product innovation is considered and (6) only process innovation considered
�, ��, ��� indicate statistical signi�cance at 10%, 5% and 1% level of signi�cance, respectively.
Source: SORS and AJPES; authors�calculations.

4.2 Matching approach

In order to investigate the above results further as well as to provide a robustness check,

we �rst match innovating and non-innovating �rms according to their probability to in-

novate and then test for the average treatment e¤ects of lagged innovation status on the

propensity to export (exporting equation). We employ the following propensity score

speci�cation for the probability to innovate

Prob(Inovt = 1) = f(Inovt�2; Xt�2) (3)

where, again, Inovt�2 represents the lagged innovation status, while Xt�2 captures all

other lagged explanatory variables (productivity, employment, capital intensity, invest-

ment in research and development, foreign ownership indicator). Based on the propensity

score, we match innovating and non-innovating �rms in period t � 2 and test the e¤ects
of innovation on the current (t) exporting status. Second, we also match exporting and

13



Table 5: Results of bivariate probit regressions
Innovation status

(1) (2) (3) (4) (5) (6)
Lagged innovation 1:226��� 1:396��� 0:631��� 0:891��� 0:912��� 0:463���

(0:064) (0:091) (0:134) (0:196) (0:166) (0:132)
Lagged export status 0:223��� 0:332��� �0:053 0:536�� 0:478�� 0:254

(0:079) (0:099) (0:149) (0:211) (0:210) (0:212)
Lagged productivity 0:167��� 0:171�� 0:199�� 0:072 0:092 0:208�

(0:062) (0:080) (0:098) (0:135) (0:134) (0:120)
Lagged employment 0:224��� 0:256��� 0:178��� 0:130�� 0:134�� 0:228���

(0:026) (0:035) (0:039) (0:056) (0:053) (0:052)
Lagged capital intensity 0:069� �0:057 0:124� 0:049 �0:042 0:053

(0:041) (0:049) (0:069) (0:083) (0:087) (0:073)
Lagged R&D Investment 0:077��� 0:051��� 0:057��� 0:049���

(0:014) (0:020) (0:017) (0:014)
FDI penetration in sector 0:793��� 0:708�� 0:564��� 0:651���

(0:168) (0:219) (0:206) (0:204)
Sector dummies yes no yes no no no
Time dummies yes yes yes yes yes yes
N 3812 1551 1428 602 623 623
Log pseudolikelihood �2423:9 �1098:7 �918:8 �393:7 �410:3 �446:4
� 0:125 0:139 0:118 0:275 0:423 0:197
Prob � = 0 0:058 0:078 0:092 0:063 0:007 0:132

Note: standard errors robust for clustering at the �rm level in parentheses.
(1) - (4) Both product and process innovation considered,
(5) only product innovation is considered and (6) only process innovation considered
�, ��, ��� indicate statistical signi�cance at 10%, 5% and 1% level of signi�cance, respectively.
Source: SORS and AJPES; authors�calculations.

non-exporting �rms based on the probability to export and then test for the average treat-

ment e¤ects of exporting status on innovative activity. We use the following speci�cation

to estimate the probability of being an exporter

Prob(Expt = 1) = f(Expt�2; Xt�2) (4)

Based on the propensity score from the predicted probability to export (4), we use nearest

neighbour matching by NACE 2-digit industry to match exporting and non-exporting

�rms at time t � 2 and then observe the average treatment e¤ects of lagged exporting
status on current (t) innovation activity (innovation equation). Table 6 presents estimates

of average treatment e¤ects (ATT) that are pooled across all industries. In this instance

di¤erent types of matching were done industry-by-industry, but the treatment e¤ects were

pooled across all industries so that they can be compared with the estimates presented

above. We compare estimates of three di¤erent types of matching - nearest neighbour
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matching, kernel matching and radius matching. As Abadie and Imbens (2006) suggest

that bootsrapped standard errors may not be valid in the case of nearest neighbour

matching12, we also present sub-sampling based standard errors for average treatment

e¤ects in the case of nearest neighbour matching.

The results in Table 6 con�rm high and robust correlation between lagged export-

ing status and current innovation (innovation equation), while the link between lagged

innovative activity and current exporting status (export equation) is not con�rmed by

any of the types of matching. However, as these results present average treatment e¤ects

pooled over all industries, it is intresting to look at results for individual industries. The

industry-speci�c average treatment e¤ects for both the exporting and innovation equation

are presented in Table A1 in Appendix.13 With some notable exceptions, we can see that

in majority of industries average treatment e¤ects of the export equation reveal that inno-

vators are more likely to be also exporters,14 while, similarly, the innovation equation, by

and large, con�rms that lagged exporting status has a signi�cant impact on innovation.15

Table 6: Pooled average treatment e¤ects (across industries) of lagged inno-
vation (export status) on current export status (current innovation)

export equation innovation equation
ATT SEa obs.b ATT SEa obs.b

nearest neighbour matching 0:006 0:034 314 (36) 0:288��� 0:109 437 (17)
nearest neighbour matchingc 0:006 0:041 314 (36) 0:288��� 0:111 437 (17)
kernel matching 0:015 0:026 314 (155) 0:268��� 0:111 437 (29)
radius matching (r = 0.2) 0:027 0:056 43 (77) 0:254��� 0:080 336 (45)

Notes: a bootstrapped standard errors (100 repetitions)
b number of treatment observations, number of control observations in parentheses.
c sub-sampling based standard errors (100 draws)
�, ��, ��� indicate statistical signi�cance at 10%, 5% and 1% level of signi�cance, respectively.
Source: SORS and AJPES; authors�calculations.

12Abadie and Imbens (2006) show that due to the extreme non-smoothness of nearest neighbour match-
ing, the standard conditions for bootstrap are not satis�ed, leading the bootsrap variance to diverge from
the actual variance. The bootstrapped standard errors underestimate the actual standard errors and this
can be corrected with subsampling.
13Note that we performed these estimations disaggregated by sectors also separately for product and

process innovations, but no substantial di¤erences between both were found.
14This result is con�rmed in 12 out of the 20 industries tested. Additional 4 industries exhibit positive

but not signi�cant average treatment e¤ects, while the remaining 4 are negative and non-signi�cant.
15Of the 14 industries tested, 10 exhibit positive and signi�cant average treatment e¤ects, while of

the remaining four two are negative and non-signi�cant, one is negative sign�cant and one positive non-
signi�cant.
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5 Searching for causality using matching approach

5.1 Methodology and descriptive statistics

The bivariate probit and matching results con�rm some positive correlation between �rms�

exporting and innovation activity, but neither of them can be interpreted as causal. Our

primary interest is to explore the causal relationship between exporting and innovation,

i.e. is decision to start exporting a¤ected by �rms�past innovation activity and does past

exporting status increase innovation e¤ort? There has not been much empirical work

done on this particular issue so far. The only exception being the research by Cassiman

and Martinez-Ros (2007) studying the �rst part of the causal link - from innovation

to exporting. Using probit regression, they show that product innovations increase the

likelihood that �rms decide to become new exporters for small Spanish �rms with less than

200 employees.16 This e¤ect was not found for large non-exporting �rms, while for small

�rms the e¤ect of product innovation on the decision to start exporting diminishes when

process innovations are taken into account. They claim that product innovations may

be an important missing link between �rm heterogeneity, productivity and the decision

to export. In a related study Cassiman and Golovko (2007) explore this link directly

and �nd consistent evidence that product innovation drives productivity. For Slovenia,

however, Damijan et al (2008) �nd some empirical support of positive impact of process

innovation on productivity growth, but no signi�cant impact of product innovation.

Table 7: Transitional probabilities conditional on becoming an exporter
expt = 1jexpt�2 = 0

0 1
productt = 0 productt = 1 productt = 0 productt = 1

productt�2 = 0 8,158 849 421 16
(86.4%) (9,0%) (4.5%) (0.2%)

productt�2 = 1 294 532 13 11
(34.6%) (62,6%) (1.5%) (1.3%)

expt = 1jexpt�2 = 0
0 1

processt = 0 processt = 1 processt = 0 processt = 1
processt�2 = 0 8,540 678 429 16

(88.4%) (7.0%) (4.4%) (0.2%)
processt�2 = 1 255 360 11 5

(40.4%) (57.0%) (1.8%) (0.8%)
Source: SORS and AJPES; authors�calculations.

In this section we study both sides of the causal link between innovation and exporting. On
16Their results are robust also to alternative econometric speci�cations, such as linear probability model

or conditional logit model.
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one hand we examine whether the switches from non-exporting to exporting are induced

by past innovation activity and on the other hand we look whether switches from non-

innovation to innovation are induced by past exporting status. These switches can be

e¤ectively observed by examining the transition probabilities of �rms into di¤erent states.

Table 7 shows that only 2.8% of �rms (1:5%+1:3%) that were product innovators in period

t�2 switched from non-exporters to exporters in period t. Similarly, only 2.6% of process
innovators in t � 2 became �rst time exporters in period t. Allowing for simultaneous
decision to innovate and to start exporting and hence taking into account also innovators

in the present period, only 8.7% and 8.9% of all switchers into exporting can be attributed

to product or process innovators, respectively. This speaks of rather low probability of

advancing from innovators to exporters.

Table 8: Transitional probabilities conditional on becoming a product or
process innovator

product inovt = 1jproduct inovt�2 = 0
0 1

expt = 0 expt = 1 expt = 0 expt = 1
expt�2 = 0 1,458 633 46 16

(67.7%) (29,4%) (2,2%) (0.7%)
expt�2 = 1 276 4,492 5 239

(5.5%) (89,7%) (0,0%) (4,8%)

process inovt = 1jprocess inovt�2 = 0
0 1

expt = 0 expt = 1 expt = 0 expt = 1
expt�2 = 0 1,467 633 37 16

(68.1%) (29.4%) (1.8%) (0.7%)
expt�2 = 1 275 4,447 6 284

(5.5%) (88.7%) (0.1%) (5.7%)
Source: SORS and AJPES; authors�calculations.

On the other hand, the evidence of transition from exporting to innovation is more con-

vincing. Table 8 shows that 4.8% and 5.8% of past exporters became �rst time product

and process innovators, respectively, in the present period. Moreover, when allowing for

simultaneous decision to start exporting and to start innovating, 85% and 89% of �rst

time product and process innovators, respectively, can be attributed to be exporters in

the past or in the present period. This indicates that among Slovenian �rms the probabil-

ity of exporting to induce innovations is larger than probability of innovations to induce

exporting decisions.

In order to estimate the importance of innovation for the decision to start exporting

and importance of exporting for the decision to start innovating, we alter our exporting

and innovation equations. The exporting equation now restricts a sample of lagged non-
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exporting �rms:

Prob(Expt = 1jExpt�2 = 0) = f(Inovt�2) (5)

wheras the innovation equation restricts the attention to lagged non-innovating �rms:

Prob(Inovt = 1jInovt�2 = 0) = f(Expt�2) (6)

We use exporting equation (5) to match innovators with non-innovators in period t� 2;17

and then, using the average treatment e¤ects approach, test whether previously non-

exporting innovating �rms are likelier to become exporters in period t than non-innovating

non-exporters. Analogously, we estimate innovation equation (6) and match exporters

with non-exporters in period t � 2; to test whether previously non-innovating exporting
�rms are likelier to become innovators in period t than non-exporting non-innovators.

5.2 Results

Estimates of the average treatment e¤ects of lagged innovative activity on the change in

exporting (exporting equation) and of lagged exporting status on the change in innovation

activity (innovation equation) obtained with di¤erent matching techniques are presented

in Tables 9 and 10. Note that we distinguish between product and process innovations,

as this may have important implications for the relationship between exporting and inno-

vation. As demonstrated by Becker and Egger (2007), Cassiman and Golovko (2007) and

Cassiman and Martinez-Ros (2007) product innovations are crucial for �rm�s successful

market entry, while process innovations help maintaining its market position given the

maintained product characteristics. Product innovations should therefore play greater

role in the decision to start exporting, while the decision for process innovation may be

triggered by successful exporting.

Table 9 (top panel) reveals that when only product innovations are considered, innovators

are not more likely to become exporters than non-innovators (export equation). In only

one out of four speci�cations (radius matching) there is a signi�cant but negative impact

of past product innovations on decision to start exporting. On the other hand, we �nd no

evidence that exporting status enchances the probability of a �rm to become a product

innovator. In the Appendix we present estimates of the average treatment e¤ects of

speci�cations (5) and (6) industry-by-industry and �nd no support for signi�cant causal

relationship between exporting and product innovations.

17We continue applying the propensity score speci�cations (3) and (4) .
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Table 9: Pooled average treatment e¤ects of lagged innovation (lagged export
status) on the change in export status (innovation)

Product innovation
Pr[Expt] Pr[Inovprodt ]

ATT SEa obs.b ATT SEa obs.b

nearest neighbour matching 0:015 0:014 265 (172) �0:014 0:057 437 (33)
nearest neighbour matchingc 0:015 0:013 265 (172) �0:014 0:046 437 (33)
kernel matching �0:022 0:015 265 (722) �0:020 0:038 437 (45)
radius matching (r = 0.2) �0:024� 0:013 265 (722) 0:013 0:030 331 (45)

Process innovation
Pr[Expt] Pr[Inovproct ]

ATT SEa obs.b ATT SEa obs.b

nearest neighbour matching �0:001 0:016 245 (168) 0:016� 0:008 437 (33)
nearest neighbour matchingc �0:001 0:017 245 (168) 0:016� 0:009 437 (33)
kernel matching �0:030� 0:020 245 (168) 0:016� 0:010 437 (33)
radius matching (r = 0.2) �0:032�� 0:013 245 (756) 0:046��� 0:008 326 (45)

Notes: a bootstrapped standard errors (100 repetitions)
b number of treatment observations, number of control observations in parentheses
c sub-sampling based standard errors (100 draws)
�, ��, ��� indicate statistical signi�cance at 10%, 5% and 1% level of signi�cance, respectively.
Source: SORS and AJPES; authors�calculations.

In contrast, the bottom panel of Table 9 provides consistent evidence across all speci�-

cations that lagged exporting status has a statistically signi�cant positive impact on the

probability of becoming a process innovator. Past exporting status is shown to increase

the probability of engaging in process innovation in the future by some 1.6% to 4.6%.

Again, exporting equation reveals no or even negative signi�cant e¤ects of lagged process

innovation on becoming an exporter.

In Table 10 we provide results disaggregated by size classes for the relationship between

exporting and process innovations. Interestingly, we �nd consistent evidence of causal link

from past exporting to future process innovation for the samples of medium and large �rms

and no signi�cant impact for small �rms. Moreover, the marginal e¤ect of exporting on

process innovation seems to increase with �rm size. While for a group of small �rms the

e¤ect of exporting on process innovation is low and mostly insigni�cant, for a group of

medium sized �rms, exporting is shown to increase the probability of engaging in process

innovation by some 4.6% (nearest neighbour matching) to 8.2% (kernel matching). In

large �rms this e¤ect increases to the range of 5.7% - 6.4%. These �ndings support

a version of the learning-by-exporting hypothesis where exporters use their exporting

status to improve their knowledge of the production process, marketing activities and

managerial skills that lead to improvements in TFP.
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Table 10: Pooled average treatment e¤ects of lagged process innovation
(lagged export status) on the change in export status (process innovation)
for three size classes

Pr[Expt] Pr[Inovt]
Small (10 < Emp < 50) ATT SEa obs.b ATT SEa obs.b

nearest neighbour matching �0:024 0:037 95 (1026) 0:010 0:014 1050 (375)
nearest neighbour matchingc �0:024 0:038 95 (1026) 0:010 0:013 1050 (375)
kernel matching �0:074��� 0:020 95 (1389) 0:010 0:015 1050 (375)
radius matching (r = 0.2) �0:077��� 0:019 44 (382) 0:046��� 0:008 4340 (766)

Medium (50 < Emp < 200) ATT SEa obs.b ATT SEa obs.b

nearest neighbour matching 0:027 0:024 270 (1177) 0:046� 0:024 1386 (152)
nearest neighbour matchingc 0:027 0:021 270 (1177) 0:046 0:032 1386 (152)
kernel matching 0:023 0:022 270 (1351) 0:082� 0:049 1386 (154)
radius matching (r = 0.2) 0:014 0:025 105 (247)

Large (200 < Emp) ATT SEa obs.b ATT SEa obs.b

nearest neighbour matching 0:005 0:011 275 (1532) 0:064��� 0:023 1603 (164)
nearest neighbour matchingc 0:005 0:011 275 (1532) 0:064��� 0:024 1603 (164)
kernel matching 0:011 0:012 275 (1575) 0:057� 0:029 1603 (164)
radius matching (r = 0.2) 0:011 0:011 93 (88)

Notes: a bootstrapped standard errors (100 repetitions)
b number of treatment observations, number of control observations in parentheses
c sub-sampling based standard errors (100 draws)
�, ��, ��� indicate statistical signi�cance at 10%, 5% and 1% level of signi�cance, respectively.
Source: SORS and AJPES; authors�calculations.

5.3 Robustness check: Industrial production data

5.3.1 Data description and summary statistics

In this subsection we explore whether the above �nding of no impact of exporting on

product innovations and signi�cant impact of exporting on process innovations (for a

sample of medium and large sized �rms) is also consistent with other available microdata.

The results based on innovation surveys are often questioned as responses of �rms may

not be entirely consistent with their actual behavior. To check whether and how the

above results obtained from innovation surveys are robust to use of alternative measures

of product and process innovation, we use data from the industrial production survey

(IPS) for the period 1995-2003. This survey asks the respondents to list the products

they produce and sell to domestic and foreign markets, allowing us to consider whether

�rms that start exporting increase the number of products at higher pace than �rms that

do not decide to serve foreign markets.

The participation in the IP survey in Slovenia is obligatory.18 The survey sheets are sent

18The survey is conducted by the national Statistical O¢ ce.
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out to a sample of �rms that reported to employ at least 20 workers in the preceding year.

After being included in the survey, a �rm continues to receive survey sheets even if the

number of employees declines below the stated limit. Since many �rms start exporting

before they are �rst included in the survey, many new exporters are excluded from analysis.

As a consequence, the sample of new exporters in the IP survey is reduced to 108 �rms

out of 776 in the complete dataset. Table 11 compares the key characteristics of all

new exporters and new exporters that were in the IPS for the period 1995-2002. The

average size of all new exporters is as low as 20 employees, while the average �rm size

in the censored IP sample is almost four and a half times greater measured with either

employment or annual sales. In other words, while the whole sample of �rms is over

representative of micro and small �rms, the �rms with less than 20 employees are excluded

from the IP sample, leaving in the sample mostly medium sized �rst time exporters. On

the other side, the average productivity and capital intensity of new exporters in the IP

survey correspond to 80 and 86 percent of respective values for the entire sample of new

exporters. Clearly, inferior labor productivity and capital intensity of censored sample

may a¤ect the results on di¤erential performance of new exporters.

The last column of Table 11 shows the key statistics for the sample of surveyed �rms that

did not export. Comparison of �rm characteristics in the last two columns suggests that

�rms that did not start exporting were on average smaller, slightly more productive and

less capital intensive.19 On average these two sets of �rms produced similar number of

products.

5.3.2 Impact of exporting on number of products and productivity growth

This section reports the average treatment e¤ects (ATT) on treated �rms caused by ex-

porting regarding product and process innovation. Note that in this approach we di¤er-

ently account for both types of innovations as compared to the approach in the previous

subsection by observing the e¤ects of exporting on number of �rm�s products and on

�rm�s total factor productivity (TFP) growth. Here, an increase in a number of products

provides a direct evidence of �rm�s product innovation, while an increase in the TFP pro-

vides a direct evidence of �rm�s process innovations. Note that this distinction is based

on �ndings of Harrison et al (2005), Gri¢ th et al (2006), Parisi et al (2006), and Hall

et al (2007) which show that process innovations have labor displacement e¤ects and are

therefore expected to result in signi�cant productivity growth, while, due to the demand

e¤ect, product innovations may likely cause employment growth and, thus, may not result

in signi�cant productivity growth.

19Lower productivity of new exporters than non-exporters is speci�c to our censored sample. Damijan,
Kostevc and Polanec (2008) show that productivity of new exporters is higher than the productivity of
non-exporters.
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Table 11: Firm characteristics of new exporters and non-exporters, 1995-2002

Variable All new IP sample IP sample
exporters of new exporters of non-exporters

Number of �rms 776 108 238
Employment 19.66 89.78 38.03

(165.57) (432.42) (47.95)
Turnover 194.84 957.51 286.85

(2060.34) (5474.22) (468.28)
Labor productivity 3.03 2.41 2.56

(2.75) (1.62) (1.64)
Capital intensity 4.40 3.89 3.26

(8.82) (6.42) (5.77)
Number of products - 3.72 3.93

- (3.48) (4.36)
Source: SORS, Slovenian Customs O¢ ce and own calculations.

Notes: Table consists of average values for key �rm characteristics and standard

deviations in parentheses. Monetary variables are given in millions of Slovenian

tolars (1994 constant prices).

The propensity scores for export decision is estimated by

Prob(Expt = 1jExpt�1 = 0) = f(log TFPt�1; log kt�1; log lt�1; logNoPt�1; time) (7)

where explanatory variables are lagged log of TFP, log of capital intensity k, log of employ-

ment l and log of number of products NoP and time, which denotes dummy variables for

cyclical e¤ects (annual dummies).20 All regression coe¢ cients with exception of number

of products (reported in Table 14 in Appendix) are statistically signi�cant. In particular,

size of �rms is the most important explanatory variable. Validity of calculated treat-

ment e¤ects is granted by the fact that the observables behind the propensity score are

balanced.

Based on the above propensity score, we match �rst time exporters with non-exporters

in period t� 1 by using either nearest neighbour matching or kernel matching, and then
estimate average treatment e¤ects of exporting on treated �rms with respect to product

and process innovation.

Table 12 reports changes in log of number of products using nearest neighbor and kernel

matching for t+1, t+2 and t+3 years after �rms start exporting. The results suggest that

�rms that start exporting increase the number of products faster, however, these e¤ects

are marginally signi�cant only one year after start of exporting in case of nearest neighbor

matching and two years after start of exporting in case of kernel matching. These results

20This propensity score equation requires that �rms did not export in period t� 1. This is di¤erent to
previous speci�cations, which we constrained by biannual data on innovation survey.
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Table 12: Treatment e¤ects for number of products

Nearest neighbor matching
Time span Treated Controls ATT Std.Err. t-stat
t+1/t 165 118 0.083* 0.044 1.872
t+2/t 165 108 0.067 0.051 1.303
t+3/t 165 98 0.051 0.056 0.907

Kernel matching
Time span Treated Controls ATT Std.Err. t-stat
t+1/t 165 615 0.036 0.033 1.096
t+2/t 165 615 0.067* 0.035 1.900
t+3/t 165 615 0.018 0.051 0.354
Source: SORS, Slovenian Customs O¢ ce and own calculations.

Notes: Standard errros for kernel matching are based on bootstraping.

*, **, *** indicate statistical signi�cance at 10, 5 and 1 per cent, respectively.

con�rm our �ndings based on innovation survey that exporting decision does not trigger

signi�cant increases in product innovation.

Table 13: Treatment E¤ects for Total Factor Productivity

Nearest neighbor matching
Time span Treated Controls ATT Std.Err. t-stat
t+1/t 165 131 0.140*** 0.042 3.352
t+2/t 165 130 0.156*** 0.070 2.220
t+3/t 165 132 0.239*** 0.067 3.562

Kernel matching
Time span Treated Controls ATT Std.Err. t-stat
t+1/t 165 615 0.110*** 0.035 3.145
t+2/t 165 615 0.097* 0.060 1.625
t+3/t 165 615 0.168*** 0.046 3.670
Source: SORS, Slovenian Customs O¢ ce and own calculations.

Notes: Standard errros for kernel matching are based on bootstraping.

*, **, *** indicate statistical signi�cance at 10, 5 and 1 per cent, respectively.

Similarly, Table 13 reports results for the impact of exporting on process innovations.

Estimates of ATT for the change of TFP over �rst three years after starting exporting

demonstrate large and statistically signi�cant e¤ects of exporting decision on �rm produc-

tivity for a set of small and medium sized �rms. Based on nearest neighbor matching, we

�nd that one year after the start of exporting, the average productivity of �rms increases

by 14 percentage point faster in comparison to non-exporters. In subsequent periods, the
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e¤ect further increases.21 The results based on kernel matching are lower, but also sta-

tistically signi�cant, which leads us to conclude that exporting does lead to productivity

improvements that are likely to be related to process rather than product innovations.

These results are in line with the previous subsection, where exporting is shown to increase

the probability of medium and large sized �rst time exporters to become future process

innovators. The results are striking since both the likelihood of engaging in process

innovators after starting exporting (using the innovation survey) as well as the likelihood

of increasing the TFP after starting exporting (using the industrial production survey)

are obtained on a very similar sample of medium and large sized �rst time exporters. One

can therefore conclude that for Slovenian �rms exporting leads to process rather than

product innovations which in turn boost productivity. This causal relationship, however,

is not general but is likely to be limited to a group of medium and large sized �rst time

exporters only.

6 Conclusions

In this paper we explore the causal relationship between innovation and exporting activi-

ties of �rms. The majority of papers study only correlation between these two activities,

while we disentangle the causal link between the two. We argue that two causal links can

be identi�ed. First, the product innovation - productivity - decision to export link may

e¤ectively explain how �rm�s decision to invest into R&D and to innovate a product drives

its productivity and triggers the decision to start exporting. And, second, the exporting -

process innovation - productivity growth causal link may provide a missing link in under-

standing how exporting activity may have forced a �rm to undergo process innovation,

which in turn improves its productivity growth in the long run. Our empirical approach

is tackling both sides of the causality link by using the Slovenian microdata, including

�nancial data, innovation survey data, industrial survey data as well as the information

on trade �ows, for the period 1996-2002. This unique dataset allows us to test the pre-

diction that �rm�s innovation enhances its probability of becoming an exporter as well as

the prediction that learning e¤ects of exporting will manifest themselves in greater e¤ort

to innovate and thus improve its productivity.

In the �rst step, we aim at merely establishing the correlation between innovation activ-

ity and exporting by applying bivariate probit regressions of the model of simultaneous

exporting and innovation equations. These results show that past innovation does not

increase likelihood of exporting, whereas past exporting does have a positive impact on

innovation. These results are con�rmed when we apply matching techniques. We also

21Note that these results on learning-by-exporting for Slovenian �rms are more pronounced compared
to the evidence reported by Damijan and Kostevc (2006) and De Loecker (2007) for the entire sample of
new exporters.
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check for the direction of causality between both variables by testing whether lagged inno-

vations have an impact on decision to start exporting and whether past exporting a¤ects

�rms decision to start innovating. We estimate average treatment e¤ects on probabilities

of exporting and innovating using innovation survey data as well as industrial production

survey data.

We �nd no evidence that either product or process innovations increases the likelihood

of becoming a �rst time exporter. However, we �nd evidence tht past exporting status

increases the probability of medium and large sized �rms to become process innovators.

At the same time we �nd no impact of past exporting on product innovations. These re-

sults are reinforced with estimated treatment e¤ects when using the industrial production

survey data. We �nd no impact of past exporting on the number of products that �rms

produce, which is a direct evidence that exporting �rms are not faster product innovators.

However, we do �nd a positive impact of past exporting on productivity growth of medium

and large �rst time exporters, which is an indirect evidence of process innovations.

These �ndings suggest that participation in trade may improve e¢ ciency of �rms through

process innovations. One should note, however, that these positive e¤ects are likely to

be limited to a group of medium and large sized �rst time exporters. Export volumes

of small �rst time exporters are probably too small to achieve immediate e¢ ciency gains

through process innovations. Alternatively, longer time span of data is needed in order

to observe improvement of e¢ ciency also in small �rms.
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Appendix

Table A1: Industry average treatment e¤ects of lagged export status (lagged innovation)

on current innovation (current export status

industry export equation innovation equation

NACE 2-digit ATT SEa obs.b ATT SEa obs.b

15 0:004 0:253 101 (150) �0:207 0:246 284 (191)

17 0:085��� 0:020 51 (99) 0:511��� 0:099 253 (29)

18 �0:065 0:174 16 (124) 0:267��� 0:106 197 (35)

19 0:124��� 0:051 11 (39) 0:630��� 0:204 79 (10)

20 0:149� 0:098 30 (144) �0:212� 0:121 267 (43)

21 0:088�� 0:038 12 (54)

22 �0:023 0:290 12 (126) �0:252 0:298 177 (60)

24 �0:002 0:044 68 (55) 0:637��� 0:109 231 (9)

25 0:095��� 0:019 41 (102)

26 �0:056 0:163 33 (106) 0:502�� 0:220 240 (45)

27 0:142��� 0:037 22 (44)

28 0:082��� 0:014 81 (268) 0:361��� 0:068 571 (93)

29 0:057 0:115 124 (160) 0:575��� 0:208 509 (40)

30 0:447 0:352 8 (21) 0:250 0:361 26 (18)

31 0:141��� 0:030 56 (53)

32 0:079� 0:042 44 (25) 0:616��� 0:118 128 (12)

33 0:798��� 0:302 38 (53) 0:589��� 0:130 158 (20)

34 0:094��� 0:026 29 (51)

36 0:079��� 0:022 42 (145) 0:394��� 0:101 313 (50)

37 0:051 0:042 3 (14)

Notes: a bootstrapped standard errors (100 repetitions)
b number of treatment observations, number of control observations in parentheses.
�, ��, ��� indicate statistical signi�cance at 10%, 5% and 1% level of signi�cance,

respectively.

Source: SORS and AJPES; authors�calculations.
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Table 14: Exporting decision: Propensity score estimation

Variable Coe¢ cient (Std. Err.)
log(TFP) in t-1 -0.188

(0.081)**
log(capital per employee) in t-1 0.081

(0.035)**
log(employment) in t-1 0.173

(0.048)***
log(number of products) in t-1 0.042

(0.06)
Source: SORS, Slovenian Customs O¢ ce and own calculations.

Notes: *,**,*** denote statistical signi�cance at 5, 1 and 0.1 percent.
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