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Abstract

Comparing Performance Of Firms in EU Accession Countries with an
EU Benchmark

The process of the East-West integration has come to a point that enlargement
appears inevitable. But are these countries really ready to join the EU in terms
of competitive performance? Firstly, I construct a virtual best practice production
frontier for firms active in a European Union member state (EU) and firms in Central
and East European (CEE) countries. By means of this common benchmark, I make
inferences about the relative technical efficiency of firms in candidate countries. I
show that technical efficiency is higher in the EU, however, firms in CEE countries
are converging towards the EU average. I show that efficiency is not only different
between countries, but even within countries. The latter suggests the need to look
at industry-level technical efficiency. Secondly, I combine two existing techniques
to develop a methodology to estimate firm level total factor productivity (TFP)
change, decomposed into technical change, technical efficiency change and a scale
component. It is mainly technical change that drives the change in TFP, i.e. techno-
logical progress. Firms in EU candidate countries are reallocating resources under
decreasing returns to scale, leading to an increase in TFP. I suggest interpreting
efficiency estimates as measures of firm heterogeneity.

Keywords: EU enlargement, stochastic frontier, technical efficiency, total factor
productivity.

JEL: P2, P5, L6, C33



1 Introduction

The enlargement of the European Union (EU) towards Central - and Eastern Europe
is an ongoing debate, with far reaching implications for both EU members and EU
candidates. The process of the East-West integration has come to a point that
enlargement appears inevitable. But are these countries really ready to join the
EU? One of the criteria set in the Copenhagen summit of 1993 is that a country
has to be able to meet the competition in the single market. Whether they can or
not is of course of great interest for policy makers and business men in both the
EU and in the candidate-countries. According to the European Commission (EC)
the existence of a functioning market economy requires an economic policy that
improves efficiency of the economy. This is evaluated in the EC’s annual report
on the progress of the EU candidates and for e.g. Poland the EC (2001) states:
“Poland is a functioning market economy. Provided that it continues and intensifies
its present reform efforts in a consistent policy environment, it should be able to
cope with the competitive pressure and market forces within the Union, in the near
term.”. The latter is based on an overall evaluation of Poland’s economic situation,
however, we check whether efficiency at the firm level gives additional information
to discuss these statements.

Comparing countries from both sides of the iron curtain is one of the most im-
portant methodological challenges related to the East-West integration (Osiewalski,
Koop and Steel, 1997). In this paper we construct a virtual best practice production
frontier for firms active in an European Union member state (EU) and Central and
East European (CEE) countries. This is the first paper that we know of that creates
such a common benchmark for both West and East European countries using firm
level data. By means of this common benchmark, we can make inferences about the
relative technical efficiency of firms in candidate countries, both at the sector and the
subsectoral level. We use this framework as a workhorse model to estimate firm level
total factor productivity (TFP) change, decomposed into technical change, technical
efficiency change and a scale component. To this end we extend the approach of
Battese and Coelli (1995), who estimate firm level efficiency and its determinants
simultaneously, and allow for a firm and time specific decomposition of TFP change
using the framework of Kumbhakar and Lovell (2000). This methodology is used to
estimate a firm-specific decomposition of TFP change.

We focus on the manufacturing sector of two EU candidates (Poland and the
Czech Republic) and Belgium. Belgium is a small open economy and therefore it is
subject to competitive pressures from international markets and we expect it to set
the benchmark.1 This permits us to compare the relative efficiency of Polish and
Czech firms to an EU-benchmark (created by the Belgian firms). If these countries
are to be ready to join the EU and let their firms compete freely within the single
market, efficiency differences between these countries and the EU should not be
too big or at least become smaller. Of course the words not too big are a relative
concept that is to be treated with care. However, as stated in Konings and Repkine
(1994) :“ a base line estimate of efficiency would be useful starting point to be able
to judge whether economic reforms can indeed achieve higher efficiency”. Geared
towards the EU enlargement, this can serve as an indicator to compare the potential
new member states from Central and Eastern Europe with the current EU member
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states.
Productivity efficiency has two components: i) the purely technical or physical

component that refers to using as little input as output production allows, ii) the
allocative or price-component that refers to the ability to combine inputs and outputs
in optimal proportions in light of prevailing prices.2 In this paper we look at firm
performance measured by technical efficiency and we also check the share of it in
firm TFP growth.

In some cases economic theory does not provide unambiguous guidance explain-
ing efficiency differences between firms and concerning the impact of some forces on
market performance. In those cases empirical analysis can provide both qualitative
and quantitative evidence (Fried, Lovell and Schmidt, 1993). This appears to be
the case in this analysis, i.e. is a firm in a CEE country less efficient or productive
than an EU firm? If the question is whether producers in EU firms outperform
those in CEE firms, ordinary least squares with dummies will do. However, these
dummies categorize producers prior to estimation. In this case frontier techniques
can be more informative.

Measurement of efficiency that is based upon a production frontier can essentially
be done in two ways. The stochastic frontier approach implies creating a (stochas-
tic) best-practice frontier based on an underlying production function and allows us
to distinguish the effects of noise from the effects of inefficiency. This means that a
fraction of the distance between the benchmark and a point under this benchmark
results in a measure of technical efficiency (TE).3 The programming approach, like
D.E.A., is deterministic in nature and does not distinguish between noise and inef-
ficiency effects, i.e. every deviation from the benchmark is attributed to technical
inefficiency. This advantage of the stochastic frontier approach comes at a cost:
the econometric approach is subject to specification errors (e.g. functional form).
However, the size of the data used can reduce the potential problem substantially.

The theoretical framework is presented in the second section. We first discuss
cross sectional models and we extend these models to allow for panel data. Further-
more, we discuss a methodology to estimate firm level TFP change decomposition.
The third section deals with the data and issues of pooling several countries into one
data set. The estimated technical efficiencies are discussed in section 4 and we check
whether technical efficiency changes over time. We also perform a sectoral analysis
of technical efficiency within and over the three countries by estimating technical
efficiency (TE) at a subsectoral level. We then estimate TFP change into its various
components using firm level data. The penultimate section gives an interpretation
to these estimated technical efficiencies and the last section concludes.
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2 Theoretical Framework

In this section we give a brief overview of the stochastic frontier theory that started
only 25 years ago. We first introduce the cross sectional model and then we look at
different models that allow for the use of panel data. We discuss both the Battese
and Coelli (1992) and (1995) specification more in detail since these are the core
specifications we use in the empirical application.4 We briefly comment on the
different types of production functions and conclude this section with a method to
estimate a firm level TFP change decomposition into technical change, technical
efficiency change and a scale component. To this we extend the approach of Battese
and Coelli (1995), where firm level efficiency and its determinants are estimated
simultaneously, to allow for a firm and time specific decomposition of TFP change
using the framework of Kumbhakar and Lovell (2000).

2.1 A Cross Sectional Model for Technical Efficiency

The ‘stochastic frontier’ production function was first proposed in 1977 indepen-
dently by Aigner, Lovell and Schmidt (1977) and by Meeusen and van den Broek
(1977). They came up with an original specification for a cross sectional model. The
novelty of these models was that they constructed an error term consisting of two
components: one that accounts for random effects and the other that accounts for
technical inefficiency. This model can be represented as follows

yi = f(xi,β) exp(vi − ui) (1)

with i the firm index, y the vector of outputs and x = (x1, ..., xN ) the vector of
inputs. The vector of parameters is denoted by β. The error term consists of random
variables vi assumed to be i.i.d. with a zero mean and variance σ

2
v and the elements

in vector ui which are crucial in this model. These non-negative random variables
account for technical inefficiency in production and are often assumed to be i.i.d. or
half-normal with mean µ and variance σ2u. A common criticism of stochastic frontier
models is that there is no a priori justification for the selection of any particular
distributional form for the technical inefficiency ui. The common assumptions of
half-normal or exponential distributions for the u are just arbitrary selections that
imply a high probability that technical inefficiencies are in the neighborhood of zero.
This may lead to very high technical efficiency estimates.

A reaction to this critique led to different specifications like the truncated-normal
distribution (Stevenson, 1980) and the 2-parameters gamma distribution (Green,
1990) for the uis. The truncated-normal distribution is a generalisation of the half-
normal distribution. It is obtained by truncation at zero of the normal distribution
with mean µ and variance σ2. It is easily seen that restricting µ to zero results in a
half-normal distribution. The distribution depends strongly on the sign and size of
µ. We can test whether this mean is significantly different from zero by means of a
Wald or generalized likelihood-ratio test. The test-statistic has a slightly different
distribution under the null hypothesis of no technical inefficiency in the model and
thus other critical values are appropriate (Kodde and Palm, 1986).
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2.2 Panel Data models

The previous discussion assumes that cross sectional data on N firms are available
for the estimation of the parameters of the stochastic frontier. With the growing
availability of panel data, both on the micro and the macro level, techniques have
been developed to incorporate panel data within the stochastic frontier framework.
The firm-specific technical inefficiency could be captured by the firm-specific effect
within the fixed effects framework. Strong distributional assumptions that are nec-
essary in a cross sectional setting were replaced by the single - and very strong -
assumption that technical inefficiency is time-invariant. The last years, the liter-
ature developed techniques to allow for time-variant technical efficiency measures.
The crucial question for this research was to relax the assumptions of time-invariant
technical efficiency measures without losing the advantages of panel data.

Panel data have some advantages over cross sectional data in the estimation of
the stochastic frontier. A larger number of degrees of freedom for the estimation
of parameters is available, and more importantly simultaneous investigation of both
technical change and technical efficiency change over time is possible.5

Pit and Lee (1981) specified a panel data version of the Aigner, Lovell and
Schmidt (1977) half-normal model and is given by the following expression

log yi,t = (logXi,t)
0β + vi,t − ui,t (2)

with i = 1, ...,N and t = 1, ..., T and same definitions as before.6 The vi,ts are
random errors and assumed to be i.i.d. and have a N(0,σ2v) distribution and are
distributed independently of the technical inefficiency effect u.7 The latter were
first assumed to be i.i.d., but this resulted in no particular advantages in obtaining
additional observations on a given firm versus obtaining observations on more firms
at particular time periods. Thus, the second basic model assumed ui,t = ui, i.e.
time-invariant technical inefficiencies.

Battese and Coelli (1988) extended this model and assumed ui to be truncated-
normally distributed and later on permitted unbalanced panels (Battese, Coelli and
Colby, 1989). The assumption of time-invariant technical inefficiency becomes, how-
ever, more and more difficult to justify as T becomes larger. As Battese and Coelli
(1998) stated “one would expect that managers learn from their previous experience
in the production process and so their technical inefficiency effects would change in
some persistent pattern over time”.

Kumbhakar (1990) suggested a stochastic frontier model for panel data in which
technical inefficiency effects vary systematically with time according to the time-
varying specification ui,t =

£
1 + exp(bt+ ct2)

¤−1
ui, where b and c are to be esti-

mated. However, no empirical application has yet been attempted. Battese and
Coelli (1992) suggest an alternative to this approach in which the ui,t are assumed
to be an exponential function of time involving only one unknown parameter.

Schmidt and Sickles (1984) observed that when panel data are available there
is no need to specify a particular distribution for the technical inefficiency effects,
because the parameters of the model can be estimated by means of standard panel
data techniques (fixed effects) or error-components estimation (see also Hill and
Jugde, 1993). In the fixed effects approach, the largest estimated firm intercept
is used to estimate the intercept parameter so that all firm effects are estimated
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to be zero or negative. An estimate of the technical inefficiency of the various
firms are obtained relative to the most efficient firm(s). An advantage of traditional
panel data is that fixed effects approach are preferred when one assumes that the
technical inefficiency effects ui,t are correlated with the production inputs Xi,t. Yet,
this approach implies that efficient and inefficient firms have the same influence on
the frontier. Cornwell, Schmidt and Sickles (1990) and Lee and Schmidt (1993)
came up with generalizations of Schmidt and Sickles (1984).8 The advantage of
the Schmidt and Lee (1993) approach is that it allows for inclusion of observables
that are time-invariant or invariant over firms. The Schmidt and Lee (1993) model is
represented by yi,t = X

0
i,tβ+θtδi+vi,t. The vi,t are assumed to be independently and

identically distributed with mean zero and variance σ2v(note that we do not have
to assume normality). This type of estimation of technical efficiency is essentially
based on weighted averages of residuals (with the average taken over time for a given
firm). In the presence of a small time period T these could be very noisy. This may
lead to overestimation of the differences between the firms’ intercepts, and therefore
in the underestimation of the technical efficiency levels.

A number of authors allowed for time-variant efficiencies, however in rather struc-
tured ways. The Battese and Coelli (1992) approach is an illustration of such a
structured model whereas Schmidt and Lee (1993) brought more flexibility9 in the
way these change over time. Battese and Coelli (1992) propose a time varying model
for the technical inefficiency effects in the stochastic frontier production function for
panel data. The technical inefficiency effects are assumed to be defined by

ui,t = [exp(−η(t− T )]ui (3)

where the uis are the random variable defined as before and assumed to be i.i.d.
according to the generalized truncated-normal and η is an unknown parameter to
be estimated. If the i-th firm is observed in the last period of the panel (T ) then
ui,T = ui because the exponential function in (3) has value one when t = T . Thus
the random variable can be considered as the technical inefficiency effect for firm i in
the last period of the panel. For earlier periods in the panel, the technical inefficiency
effects are the product of the technical inefficiency at the last period and the value
of the exponential function [exp(−η(t− T ))], whose value depends on the parameter
η and the number of periods before the last period of the panel (−(t− T ) ≡ T − t).
If this parameter is positive then the value of the exponential function is no less
than one, which implies that ui ≤ ui,t. The converse is true if the parameter that
accounts for time-variance of technical inefficiency - η - is negative.10 This approach
implies that the ordering of the firms according to the magnitude of the technical
inefficiency effects is the same at all time periods.11 The Battese and Coelli (1992)
specification does not account for situations in which some firms may be relatively
inefficient but become relatively more efficient in subsequent periods. The Cornwell,
Schmidt and Sickles (1990) and Lee and Schmidt (1993) specifications do allow for
this possibility.12

One of the advantages of the B&C (1992) time varying inefficiency model is
that the change of technical inefficiency over time can be distinguished from tech-
nical change, provided the latter is appropriately specified in the frontier function
(see section 2.5). This discrimination of technical change and technical inefficiency
change over time is only possible given that the technical inefficiency effects are
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stochastic and have the specified distributions. The next section discusses an exten-
sion of the Battese and Coelli (1992) specification, in the sense that they develop a
model that allows to estimate the efficiencies and its determinants simultaneously.

2.3 Modelling Determinants of Inefficiency Effects

In this section we briefly discuss the BC(1995) specification13 that allows for the
simultaneous estimation of technical inefficiency and its determinants. A number
of empirical studies (e.g. Pitt and Lee, 1981) have estimated the determinants of
technical inefficiencies among firms. In a second stage analysis the estimated firm-
specific technical inefficiencies are regressed on a number of characteristics, like firm
size, age and others. This two stage approach has a major drawback. In a first
stage, the technical inefficiencies are assumed to be i.i.d. in order to estimate them.
However, in the second stage, the predicted inefficiency effects are assumed to be a
function of a number of firm specific factors, which implies that they are not i.i.d.
unless all the coefficients of the factors are simultaneously equal to zero (Battese
and Coelli, 1998). Battese and Coelli (1995) extend the approaches of Kumbhakar,
Ghosh and McGuckin (1991) and Stevenson (1991) to accommodate for panel data.
This allows the estimation of the parameters of the factors believed to determine the
levels of technical inefficiency together with the separate components of technical
inefficiency change and technical change over time. The error component accounting
for technical inefficiency ui,t is obtained by truncation of the N(µi,t,σ

2) distribution
where

µi,t = zi,tδ (4)

where zi,t is a vector of explanatory variables whose values are fixed constants and
δ is a vector of unknown parameters to be estimated. Equation (4) specifies that
the means of the normal distributions (which are truncated at zero to obtain the
distributions of the technical inefficiency effects) are not the same but are functions
of values of observable variables and of a common vector of parameters. If all δ-
parameters are zero then the model is efficiently estimated by OLS and if only the
constant term is different form zero we have the Aigner, Schmidt and Lovell (1977)
model. The technical efficiency for the i-th firm in the t-period is now defined by
TEi,t = exp(−ui,t).

2.4 The Underlying Production Function

The model described above uses a production function f(x,β), which can take var-
ious forms. The most known and simple is the Cobb-Douglas production function.
This form has the advantage that it is easy to interpret. Its log-linear transforma-
tion also immediately reveals the output elasticity’s of the different inputs. The
Cobb-Douglas production in its log-linear form can be represented as

logYi,t = logAi,t + β1 logKi,t + β2 logLi,t (5)

and this representation will be used later on. Output, capital and labour of firm i
at time t are denoted by Yi,t, Ki,t and Li,t respectively. The Cobb-Douglas produc-
tion function, however, is a very restrictive function in that it assumes a constant
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elasticity of substitution between the different inputs. Therefore we need a produc-
tion function that has less restrictions. A more ‘unrestrictive form’ is the translog
production function, as it allows for non-linear impacts of the inputs and for an
unrestricted elasticity of substitution and is represented in equation (6)

log Yi,t = logAi,t+β1 logKi,t+β2 logLi,t+β3(logKi,t)
2+β4(logLi,t)

2+β5 logKi,t logLi,t
(6)

The output elasticity’s are the result of simply deriving the translog with respect to
capital and labour. The different functional forms will be explored when estimating
the firm level technical efficiencies.

2.5 Decomposition of TFP within a Stochastic Frontier Model

In this section14 we discuss a potential methodology to disentangle total factor pro-
ductivity change into its various components at the firm level using the framework
suggested by Lovell and Kumbhakar (2000). To keep notation as general as possible,
we assume the following representation of a stochastic frontier production function
without explicitly denoting a firm index and a time index

y = f(x, t;β). exp(v − u) (7)

with x = (x1, ..., xN ) the input vector, β the vector of technological parameters and
t a time trend. As before u captures the output oriented technical efficiency and
u ≥ 0. We want to decompose changes in firm productivity into three different
components. The first is technical change (T M) which captures a shift upwards or
downwards in the production frontier. The second component refers to a change in
technical efficiency (TE M). This is the rate at which firms move towards or away
from the frontier. A third component captures the scale elasticity of the firm. The
difficulty occurs (and this is not unrealistic) when these three components change
simultaneously. We define productivity15 change as the difference between the rate
of change of output and the rate of change of an input index. The change in Total
factor productivity (TFP) can formally be represented as

◦
TFP=

◦
y − ◦

X (8)

where a dot above a variable indicates its rate of change (
◦
y= d ln y/dt). The change

in the input is defined by
◦
X=

P
n Sn

◦
xn with Sn =

wnxn
E and E =

P
nwnxn. So

the change in input is the sum of all different individual changes in input weighted
by their respective share in total costs, where w = (w1, ..., wN) is the vector of
input prices. Taking logs of equation (7) and totally differentiating16 results in the
following expression:

d ln y =
NX
n=1

∂ ln f(x, t;β)

∂xn
dxn +

∂ ln f(x, t;β)

∂t
dt− ∂u

∂t
dt

Dividing every term by dt and using the definitions of TFP, technical change and
technical efficiency change we can rewrite this as
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◦
TFP= T M +TE M +

NX
n=1

∂ ln f(x, t;β)

∂xn

dxn
dt
− ◦
X

Using the definition for the input change index, we can rewrite
o
X in terms of output

elasticities (εn =
∂f(x,t;β)

∂xn
xn

f(x,t;β) =
∂ ln f(x,t;β)

∂ lnxn
) and elasticity of scale (ε =

P
n εn).

◦
TFP= T M +TE M +

NX
n=1

∂ ln f(x, t;β)

∂xn

dxn
dt
−

NX
n=1

wnxnP
nwnxn

d lnxn
dt

◦
TFP= T M +TE M +(ε− 1)

NX
n=1

(
εn
ε
)
◦
xn +

NX
n=1

h
(
εn
ε
)− Sn

i ◦
xn

This last expression is obtained by adding and subtracting (εn/
P
n εn)

d lnxn
dt and

rearranging terms. It shows that the change in productivity can be decomposed into
technical change, technical efficiency change and a scale component. We have an
additional term that captures the change in allocative efficiency. Since we have no
information on the prevalent input prices we assume away the allocative efficiency
component by setting Sn =

εn
ε .
17 This results in our final expression (9) that will

be used in the empirical analysis

◦
TFP= T M +TE M +(ε− 1)

NX
n=1

(
εn
ε
)
◦
xn (9)

From now on we assume a specific functional form for f(x, t;β), that is the
translog production function. If we want to estimate and calculate the three dif-
ferent components of TFP change, we have to introduce a time variable t into the
framework. Equation (10) represents the translog production function with a time
trend allowing for a non linear time trend by taking both t and t2 into the regression.

ln yit = β0 +
NX
n=1

βn lnxnit + βt.t+
1

2

NX
n=1

KX
k=1

βnk lnxnit. lnxkit +
1

2
βtt.t

2

+
NX
n=1

βnt. lnxnit.t+ vit − uit (10)

The technical change is easily obtained by taking the partial derivative of ln yit with
respect to the time trend t and the change in technical efficiency is defined as before

T M= βt + βtt.t+
NX
n=1

βnt. lnxit and TE M= −
∂u

∂t
(11)

The third component in equation (9) depends on the elasticity of scale under which
the firm is producing. If the firm exhibits constant returns to scale, a change in
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the input will not affect its productivity. Formally this means that the last term
disappears because under constant returns to scale since ε = 1. In this case the
change in productivity is due to the other components. However, if the firm exhibits
increasing or decreasing returns to scale, we have three components of TFP change.
Whether this last term is positive or negative depends on the change in the input
factors. Even with increasing returns to scale (ε > 1) we can have an additional
negative term if the rate of change of inputs is negative. The same is true under
decreasing returns to scale and a positive rate of change of inputs.

A variety of tests can be performed within this framework. We can check whether
technical change is neutral with respect to inputs by testing the hypothesis that
βnt = 0 or whether there is no technical change at all by testing βt = βtt = βnt = 0.
The described framework is truly capturing the nature of our data. All three different
components are allowed to vary over time and across firms. The difficulty lies in
disentangling the technical change and the change in technical efficiency since often
they both rely on the same variable t.18
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3 Data

We use firm level data of Belgian, Polish and Czech firms active in the manufacturing
sector between 1995 and 1999. The data consist of all companies that have to report
full company accounts to the national statistical offices for which at least one of the
following criteria is satisfied: total turnover of at least 1 million Euro, total assets
of at least 1.5 million Euro or total employment of at least 10 employees. This is a
commercial database collected by “Bureau Van Dijck” which is a quoted software and
consulting company on the (Euronext) stock market and the data are sold under the
name of ‘Amadeus’. The data include information on sales, employment, total wage
bill, etc. and are representative for the manufacturing sector. Appendix 1 shows the
share of employment in our sample in the total manufacturing employment, going
from 90% in Belgium to 45% in the Czech Republic. Overall, our data set covers
between 57% and 72% of the total manufacturing of Belgium, Poland and the Czech
Republic.

Comparison of the data across countries is facilitated as Bureau Van Dijck har-
monises the reported data to make comparisons of financial items across countries
easier. For each firm we also have information on the sector of activity (within the
manufacturing) it has its main operations in, which implies that we are able to make
not only country comparisons, but also intersectoral comparisons.

We use operating revenue as a proxy for output (y) in the production function.
The number of employees and tangible fixed assets are the inputs, labour and capital
respectively. We use the (nominal) book value of capital expressed in thousands of
Euros and represents the true historical capital value correcting for depreciation.
Our data consists of 34,026 observations over 5 years (1995-1999). We have 7,291
firms including 746 Polish firms, 1,953 Czech firms and 4,592 Belgian firms.

We drop outliers in our data since these outliers can be detrimental for the
estimated production frontier and may result in over- or underestimated technical
efficiencies. We drop the top and bottom one percentiles from the distribution of
employment, operating revenue and capital. This guarantees us that we exclude
from our sample unrealistic high values for the different variables. As a double
check we look at the growth rates of the different variables and eliminate those with
a year to year growth rate of over 250%. However, this means that we loose small
firms, e.g. firms that had one employee in 1995 and had four in 1996. In this way, we
are left with relatively big firms in terms of size and this is reflected in the average
size of the firms in our sample. However, estimating a production function for small
firms with e.g. only one employee is not very appealing.

3.1 The Pooled Data

The pooling of the three countries into one data set, however, introduces a few addi-
tional issues. Firstly, all Belgian firms are on average much smaller then the Polish
and Czech firms. This heterogeneity issue is usually problematic when estimating
production functions at the firm level. But given the framework of the Stochastic
Frontier where the error term consists of a firm-specific efficiency part, the hetero-
geneity should be less worrying. Previous studies that looked at efficiency of firms in
transition countries created a national benchmark (Piesse and Thirtle, 2000; Kon-
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ings and Repkine, 1994 and others). To our knowledge there are only two papers
so far where a common benchmark is created; i) Osiewalski, Koop and Steel (1997)
create a world frontier to analyse output level and output growth in Poland and
different Western countries, and ii) Funke and Rahn (2002) create a common bench-
mark for East and West Germany using stochastic frontier techniques. In this study
we pool the data of the three countries enabling us to create a common benchmark
for the three countries.

Secondly, a production function describes the transformation of inputs, measured
in physical terms and thus we use variables in real terms.19 These measures are not
biased by inflation as we transformed all variables into Euros, provided the real
exchange rate is approximately 1.

3.2 Summary Statistics

In this section we present some descriptive statistics of the data set, since an un-
derstanding of the structuring of the data is very important for the setup of the
estimation of the technical efficiencies (TE).20 Since we are dealing with an unbal-
anced panel and we want to compare average technical efficiencies, it is important
to see the structure of the panel. Table 1 shows the number of firms that are present
in the panel for 5, 4, 3, 2 and 1 consecutive year(s).

We can see that 81% of the firms in our sample run through the entire time
period 1995-1999. Moreover, only 5% of firms from the sample appear once or twice
(consecutively) and they are all Czech firms. We end this section by reporting the
average employment and output (in 1000 euro) for the three countries for every year
(1995-1999). These results are reported in table 2.

We can see that on average Belgian firms are much smaller and the level of
employment is more stable over time as compared to Polish and the Czech firms.
The average size of CEE firms is, however, decreasing over time. This is consistent
with the general finding of shedding off labour in former planned economies due
to massive labour hoarding during the central planned period (Roland, 2000). This
time pattern is also found for other CEE countries, e.g. Slovenia (Hutchinson, 2002).
Average labour productivity is higher in Belgium, although the differences are not
big. This is because we use operating revenue as a measure of output. Ideally one
would like to use value added to get a correct measure of labour productivity. We
can thus see these differences in labour productivity as lower bound differences.21
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4 Results

To obtain a measure for technical efficiency we use maximum likelihood estimation
techniques to estimate a stochastic frontier production function. While estimating
the average efficiency relative to some best-practice for a number of sectors is in-
teresting, recently more effort has been made to estimate it at the firm level. We
use the program FRONTIER 4.1 (Coelli and Battese, 1994) to estimate the max-
imum likelihood parameters of the production function and firm specific technical
efficiency estimates.22 We emphasize the fact that all results are based on a com-
mon best-practice frontier estimation for three countries and this is important when
looking at the results.

We apply the B&C(1992 and 1995) framework to the data described in the
previous section. We first look at the cross sectional case for the years 1995 and 1998.
We explore the different functional forms of the underlying production function. In
a second section we exploit the time dimension of the panel and allow for time
varying technical inefficiency. In a third section we estimate technical efficiency at
the sectoral level, dropping the implicit assumption of a common technology across
industries. Using a partial adjustment model we check whether technical efficiency
in CEEs is converging towards the EU level. Finally, we develop a methodology to
estimate total factor productivity change at the firm level building on the Lovell and
Kumbhakar (2000) and the B&C (1995) framework and apply it to the data.

4.1 Cross Sectional Analysis

We use the B&C (1992) model expressed in equation (3) to estimate the technical
efficiency (TE) estimates for 1995 for Belgium, Poland and the Czech Republic. We
have 6,628 firms in 1995, 746 of which are Polish, 4,592 Belgian and 1,290 Czech firms
all active in the manufacturing sector. We do this for both the Cobb-Douglas and
Translog production functions represented in equation (5) and (6) respectively. We
first report the estimates of the production functions, we denote the Cobb-Douglas
as model A and the translog as model B. Table 3 represents these estimates for
model A and B.

We see that all coefficients are significant at the 1% level. Since model A and B
are both in logs, the above estimates are elasticities (e.g. if we increase the labour
force with 10% than output increases with 2.171% for model A). The interpretation,
however, is not so interesting since we pooled three countries and come up with
constant elasticities. The log-likelihood function value of model B is higher than that
of model A. With this information we can test model B against model A by means of
a likelihood ratio test (provided that model A and B are nested).23 The test-statistic
is 151.9096 and thus this hypothesis has to be rejected at any appropriate significance
level. Of course, this test only tells us that our model reaches a significant higher
likelihood value when we use a translog production function and cannot be used on
itself to judge on the underlying production functional form.

In table 4 we report the technical efficiency estimates for model A and B respec-
tively. This tables is at the core of this paper. We see that Belgium firms are on
average 3 % more efficient than those in Poland and 10% more than those in the
Czech Republic.
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There are no big differences between the TEs from model A and B. Model B
results in slightly higher technical efficiencies for Poland and the most inefficient firm
in Poland falls back to 16.97% which remains bigger than the one in Belgium. Of
course the mean does not completely reveal the distribution of the TE in the different
countries. Using the firm-specific estimates, Figure 1 in Appendix 2 represents the
distribution of the TE per country, we also insert the overall average24 (0.6218) of
model A. We see that TEs are quite symmetrically distributed in all three countries.
The distribution of TEs in Belgium is centered around a bigger average than the
overall average. These distributions confirm our prior findings.

We can test whether these distributions are significantly different from each other
by means of a Kruskal-Wallis test.25 We have to reject this both for model A and
model B, with test-statistics of 1555.25 and 1181.28 respectively. These are to be
compared with the critical values of the χ2 distribution with 2 degrees of freedom
(we have 3 countries). As a final criteria to compare the distribution of TE in the
different countries, Table 5 shows the kurtosis and the skewness for the countries for
model A and B.

The above table shows that the TE in Poland is much more symmetric around
its mean and with a lower peak. TE in both Belgium and the Czech Republic is
more spread around their averages. These four moments of the distribution of TEs
are sensitive to the choice of the underlying production function. For the translog
model (B), we see that all variances are higher and that now in all three countries
the TE is skewed to the right.

We repeat the analysis that we conducted above for the year 1998.26 We briefly
report the results and focus on the comparison with the year 1995. Further on in the
paper we allow for repeated observations over time and use panel data techniques.
Comparing table 6 and 3 we see that he production function coefficients have not
changed in sign and only marginally in elasticities, except for the elasticity of labour
for model B.

Table 7 represent the technical efficiency estimates for model A and B for the
year 1998. The main conclusions remain the same, Belgium firms are on average
more efficient than Polish firms, who are more efficient than the Czech firms.

We see that the TE level is higher than in the year 1995: the overall TE average
for model A and B increased by ca 5% and ca 3% respectively. The Czech firms’
TE increased more than the Polish firms. We could argue that the Czech firms’
efficiency increased more than that of the firms in the other two countries. Since
we have an unbalanced panel we can only say something on the distribution of TEs
and we explore the change of efficiency on a firm level later on.27 We note that the
overall efficiency in 1998 for model A and B is no longer only marginal different.
The translog production function results in smaller estimates which makes sense
since more (nonlinear) effects are considered in the production frontier than in the
first order approximation (model A). Finally we report the first four moments of
the three distributions of technical efficiency in Table 8 and these distributions are
shown in Figure 2 in Appendix 2.

Again the translog production function framework introduces a bigger variance
(this can also been seen by comparing the minima and maxima of the TE under
model A and B).

We use simple economic reasoning to evaluate the change over time of the tech-
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nical efficiency, following Jovanovic (1982) framework, as suggested by Funke and
Rahn (2002). He assumes a competitive industry with known time-path of future
output prices where firms differ in efficiency. Firms have a specific cost function
ϕic(Y ) with c(Y ) a common convex cost function and ϕi is a firm-specific inefficiency
parameter. The firm maximizes profits π = p.Y −ϕ∗i c(Y ) with ϕ∗i = E(ϕi|It)28. To-
tally differentiating the FOC at dP = 0 gives us a relationship between the output
and the (in)efficiency level. Output is negatively (positively) related to inefficiency

(efficiency) or formally dY
dϕ∗i

= − c0(Y )
ϕ∗i c00(Y )

< 0. A firm will considers its efficiency level

and will adjust later on accordingly. An efficient firm will grow because it adapts its
output accordingly, whereas an inefficient firm becomes smaller. Jovanovic (1982)
assumes that there is a threshold value ϕc such that all firms with ϕi < ϕc will
exit the market. This results in a higher mean efficiency level and a lower variance
around it. Applied on our results29, we see that indeed average efficiency increases
and that the variance around it decreases over time. This is shown in Table 9.

From Figure 1 and 2 (Appendix 2) we could argue that the the threshold values
are different across countries, i.e. ϕcB > ϕcP > ϕcCZ and this results in a larger share
of relative more efficient firms in Belgium.

4.2 Panel Data Analysis: Allowing Technical Efficiency to Change
over Time

In this section we use the B&C (1992, 1995) specifications to estimate TE for the
period 1995-1999.30 Panel data allows us to relax the strong distributional assump-
tions of the cross sectional models and we can obtain estimates with more desirable
statistical properties (see Kumbhakar and Lovell (2000) for a discussion). We exper-
imented with different specifications and only report the ‘preferred’ specification.

The B&C (1992) specification allows for technical efficiency estimates to vary
over time. However, as stated earlier this approach does not allow for a firm to
become more or less efficient than another firm. The fixed ordering of firms by their
TEs is not very appealing. This analysis can be done in two different ways. We can
use the B&C (1992) model and estimate the parameter η together with the other
parameters. A second way to perform panel data estimations - in a less structured
way - is to take B&C (1995) specification and introduce determinants in the z-
variable in equation (4). We follow the last approach31 for the period 1995-1999 and
use the translog production function in all the regressions. For these estimations we
have an unbalanced panel of 7,291 firms. The model we estimate is represented as
follows

log Yi,t = β0+β1 logLi,t+β2 logKi,t+β3(logLi,t)
2+β4(logKi,t)

2+β5 logKi,t logLi,t+(vi,t−ui,t)
(12)

with ui,t nonnegative random variables and assumed to be independently distributed
as truncations at zero of the N(µi,t,σ

2
u) where µi,t = zi,tδ. We proceed in three steps:

i) we only allow for a constant term (model C.1), ii) we introduce year dummies
(model C.2) and iii) we introduce subsectoral dummies (model C.3).

Firstly, we only allow for a constant term in the z-variable and this is just the
Aigner, Schmidt and Lovell (1977) model specification. On average, Belgian firms are
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more efficient than their Polish and Czech counterparts, but we find that the Polish
average is very close to the Belgian one. It is hard to compare these results with
the ones obtained from the cross sectional analysis. Cross sectional TE estimates
are only moment registrations of a firm’s efficiency whereas the panel data approach
allows to trace this more accurately because of repeated information. However, this
model specification is very simple in the way the inefficiency effects u are modelled
over time and it is not fully capturing the strengths of the panel data techniques.

Therefore, we introduce more determinants of TE and estimate these simultane-
ously with the TE estimates. We use the B&C (1995) specification that allows for
time varying inefficiencies in a more flexible way, the zi,t are chosen freely (see equa-
tion (4)) in contrast to the fixed function in the B&C (1992) specification (equation
(3)). For now, we only use time dummies to correct for macro economic shocks and
differences in inflation and producer price inflation rates between the three coun-
tries. We take the year 1995 as our reference year and thus have four year dummies
for 1996, 1997, 1998 and 1999. So the vector z = (D1,D2,D3,D4) plays the role
of a very simple model to allow for time variant TE.32 Maximum likelihood is used
to estimate the production frontier coefficients and the technical efficiencies and the
parameters δ0, δ1, δ2, δ3, and δ4. The estimated coefficients have the same signs and
magnitudes as model B in 1995 and 1998. For the same reasons as before we do not
devote a lot of attention to the interpretation of the elasticities, but we do check
whether these are sensible. The δ-parameters are all negative and significant from
zero, this means that TE is increasing significantly over time.33 Table 10 represents
the estimated TE for the three countries for every year and the average over the five
years (1995-1999).

We see that Belgian firms remain more efficient on average, but the difference
with Polish firms is much smaller than in the cross sectional cases. We see that
this model specification delivers higher technical efficiency estimates. However, we
cannot compare the TE in 1995 from Table 10 with the TE from table 4 since these
are different model specifications. The TE of the three countries are surprisingly
close to each other and this could be due to the very simple structure we choose for
the µi,t = zi,tδ part of the model.

Finally, we introduce sectoral dummies (SECTij = 1 if firm i is in sector j) as
explanatory variables for the technical efficiency in order to capture industry-specific
inefficiency effects. The system exists of equation (13), (14) and (15) and the results
are presented in Table 11. We note that these estimates are averages over the period
1995-1999.

log Yi,t = β0 + β1 logLi,t + β2 logKi,t + β3(logLi,t)
2 (13)

+β4(logKi,t)
2 + β5 logKi,t logLi,t + (vi,t − ui,t)

ui,t∼ i.i.d. N+(µi,t,σ
2
v) (14)

µi,t= δ0+
37X
j=16

δjSECT i,j+ς i,t (15)

The subsectors in bold are those with an above national average efficiency level
in every country. ‘Tobacco Products’ is the most efficient subsector in every country
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and sets the benchmark.34 We do not go further into the subsectoral analysis since
up till now we have assumed identical technologies. We drop this assumption in the
following section and allow for different technologies between the subsectors.35 How-
ever, it indicates that there is a large heterogeneity between the various subsectors
of the manufacturing sector.

4.3 Sectoral Analysis of Technical Efficiency

In this section we look for sectoral patterns within and across the three countries
based on the cross sectional TE estimates of 1995 and 1998.36 We split up the
manufacturing sector in 23 subsectors following the NACE 2-digit classification (see
Appendix 3). We compare the sectoral pattern of TE between 1995 and 1998. In
a second stage we drop the assumption of identical production technology for every
subsector and we estimate a best-practice frontier at the subsector level and suggest
an interpretation for the technical (in)efficiency.

4.3.1 A Sectoral Blueprint of Technical Efficiency

We find that the subsectoral averages differ when we use model A or B, and this
difference is most apparent for Poland and the Czech Republic. We demean the
TEs (using model A) from their respective national unweighted average and we can
identify sectors that are above the national average, these deviations are calculated in
the following way: (TEj,N −TEN).37 In 1995 we can identify four sectors that have
a positive deviation in every country, the ‘Tobacco Products’, ‘Chemicals’, ‘Basic
Metals’ and ‘Office Machinery and Computers’. There are 9 common sectors (17, 18,
20, 24, 26, 28, 33, 35 and 36) with negative deviations from their respective national
average. In 1998 there are only three common sectors with a positive deviation. The
sector ‘Tobacco Products’ appears to be the most efficient sector in each country,
with an average TE in 1995 of 66.12%, 60.98% and 70.37% for Poland, the Czech
Republic and Belgium respectively. We discuss the sectoral analysis in more detail
in the next section, where subsectoral frontiers are estimated at the NACE 2-digit
level.

4.3.2 Subsectoral Estimation of Technical Efficiency for 1995 and 1998.

We drop the assumption that every subsector of the manufacturing sector is pro-
ducing under the same technology. For this, we estimate a best-practice frontier at
the 2-digit NACE level. We use the translog production function for all estimations.
For some sectors we have few observations, which makes the estimation less robust.
Cross sectional frontier analysis is in itself problematic when it comes to having
consistent estimates, when facing few observations this problem is exacerbated.

We estimate firm level technical efficiencies for every subsector (15,..., 37) using
the B&C (1992) model and keep η restricted to zero since we are dealing with a
cross sectional case. We consider two specifications, a model that restricts µ = 0
and another that does not have this restriction, model D and model E respectively.
The former specification is the same as suggested by Pitt and Lee (1981) whereas the
latter coincides with the model proposed by Stevenson (1980). These specifications
are tested against each other by means of a log likelihood ratio test since these
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models are nested by a linear restriction.38 The null has to be rejected for sectors
21, 23 and 28.

Before we discuss the results we have to stress the fact that the subsectoral TE
estimates are not to be compared between subsectors or with the results from pre-
vious sections. A TE of e.g. 60% for a subsector j reflects the average relative
technical efficiency within the subsector j, however this subsector can still be more
efficient than a subsector j + 1 with an average of 75%. The estimated TE gives
an insight in the relative difference in efficiency within each subsector of the manu-
facturing sector, i.e a measure of firm heterogeneity. If one is interested in knowing
whether a given subsector is more efficient than another, one has to follow the anal-
ysis presented in the previous section39. Table 12 presents the average estimated TE
at the subsectoral level for the three countries and the overall average is presented
as well.40

The numbers in the above table should be interpreted as follows: a relative high
overall TE average reflects rather homogeneous TE levels, although Belgium firms
are consistently on average more efficient (with exception of subsectors 23 and 30).
Subsector (35) with an overall TE of 23.29% has a wide divergence in firm TE levels
within this subsector and for each country. Indeed, we see that this low average
is due to the very low average of Poland and Czech Republic, 18.56% and 13.01%
respectively. The same remark that was made in previous sections is still valid here,
i.e. the average is very sensitive to the proportion of Belgian firms in a (sub)sector.
We therefore check whether the distribution of TEs is different for the three countries
within every subsector by means of a Kruskal-Wallis (KW) test. Table 13 presents
the results of this test.

We stress the fact that we performed this test within a subsector and we check
whether the TE are distributed differently in Poland, Czech Republic and Belgium.
We see that the distribution of TE in Belgium, Poland and Czech Republic of 6
subsectors are not statistically different from each other. The other subsectors’ dis-
tributions are statistically different from each other between the three countries.
However, if we want to compare subsectoral TE distributions across the three coun-
tries and perform a KW-test, we see that subsectors have significant different dis-
tributed TEs.41 However, this test is done for the whole manufacturing sector. This
result is quite intuitively, we can expect a textile producer (17) to use a different
technology than a chemical firm (24).

4.4 Partial Adjustment to Analyse Convergence of CEE Countries

In the treaty of Nice 2000 a roadmap was approved that gives a potential timing
of the (most early) accession of CEE countries. For firms in CEEs to be able to
meet the competitive pressure in the single market; firms’ efficiency level should
converge towards the EU level. Given this ‘road map’ the European Union set up,
it is interesting to see whether the efficiency in the candidate countries is converging
towards the EU level. In this section we analyse whether Polish and Czech firms’
TE converges to the level of Belgian firms over time. Since our time period is rather
short (1995-1999), we expect to find quite low speed of adjustment parameters. We
use the following simple Partial Adjustement (SPA)-model for Poland and the Czech
Republic respectively
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TEj,Pi,t − TEj,Pi,t−1 = λP (TE
j,B
t − TEj,Pi,t−1) (16)

TEj,Ci,t − TEj,Ci,t−1 = λC(TE
j,B
t − TEj,Ci,t−1) (17)

with the following definitions: TEj,Pi,t = Technical Efficiency of a Polish firm i active

in subsector j in the year t, TEj,Pi,t−1=Technical Efficiency of a Polish firm i active in

subsector j in the year t− 1, TEj,Bt = Average Technical Efficiency of Belgian firms
active in subsector j in the year t and λ = speed of adjustment parameter (λ = 0 :
no adjustment; λ = 1: fully adjustment)

For these regressions we only use the firms that are in our sample for five con-
secutive years, creating a balanced panel. This results in 2740 Polish and 3712
Czech observations over five years. Table 14 reports the results of the regressions
for Poland and the Czech Republic.

We see that the speed of adjustment parameter of Poland is higher than the
one of the Czech Republic. The magnitude of λ is low as expected and significant
for both countries. This means that Polish and Czech firms are on average getting
closer to the EU benchmark created by the Belgian firms.

However, the model above results in an average convergence parameter λ. We
drop this assumption and introduce time dummies (for the four years 1996-1999)
and time dummies interacted with the independent variable. The fact that we
have no constant term in our model implies that we take all four dummies and
all four interaction terms into the regression. Taking the time dummies into the
regression allows us to have different year-intercepts. The PA-model with time
dummies is represented in equations (18) and (19) for Poland and the Czech Republic
respectively.

TEj,Pi,t − TEj,Pi,t−1 =
4X
s=1

λPs(TE
j,B
t − TEj,Pi,t−1).Ds +

4X
s=1

αPsDs (18)

TEj,Ci,t − TEj,Ci,t−1 =
4X
s=1

λCs(TE
j,B
t − TEj,Ci,t−1).Ds +

4X
s=1

αCsDs (19)

The results are shown in Table 14. We see that for both Poland and the Czech
Republic the results of the simple PA-model hide the differences of the convergence
across years. All coefficients are significant at the 1% significance level. The conver-
gence parameter42 is always positive, implying that firms in Poland and the Czech
Republic are getting closer to the Belgian average, which itself is changing over time.
However, the rate at which they do is decreasing, indicating a concave time pattern.
We see that Polish firms have on average a higher speed of convergence and that
the fall in the magnitude of the rate is smaller than that of the Czech firms. The
extension of the PA-model indicates that there is indeed a heterogeneous process go-
ing on over time, and thus makes the simple PA-model expressed in equations (16)
and (17) less appealing. Note that the speed of adjustment in the Czech Republic
is 0.1091 in 1996, whereas the average over time in Table 14 suggest a parameter
of only 0.0305. These findings are quite intuitive, we expect to find that the rate
of convergence decreases over time since it is harder to get closer to the benchmark
the smaller the distance to this benchmark becomes.
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4.5 Estimating TFP Change in a System of Equations.

By combining two existing techniques (Lovell and Kumbhakar (2000) with B&C
(1995)) we develop an empirical methodology to decompose productivity growth
into various elements. One of these elements is technical efficiency, in this way
we can see how much of technical efficiency improvements feed into productivity
gains. We introduce a more flexible framework that allows us to capture all possible
movements within the input-output space (X,Y ). That is: i) keeping the frontier
constant, moving closer to or further away from the frontier reflects a change in
technical efficiency, ii) keeping the frontier constant, moving along the horizontal
axis, reducing or increasing inputs and finally iii) a shift of the frontier itself, re-
flecting a change in technology or technical change. The second move (ii) depends
on the economies of scale the firm is producing under. The analysis we pursue is
disentangling these effects at the firm level using the methodology suggested above
(section 2.3 and 2.5) as building blocks.

We use the translog production function with labour and capital as inputs.43 We
introduce a time trend and allow for a non linear trend effect. We interact the inputs
with the time trend to allow for non neutral technical change. Finally we interact the
time trend with country dummies to allow for country-specific technical changes44.
We assume that the efficiency effect uit is a function of subsectoral dummies, a time
trend and interacted terms. We derive the different components of TFP change
within this framework and give expressions for the different estimated components
of the TFP change. The system of two equations (20) and (21), representing the
stochastic frontier production and the technical inefficiency effect respectively, is
estimated in one step using maximum likelihood and looks as follows

ln yit = β0 + β1 lnLit + β2 lnKit +
1

2

£
β3 lnLit

2 + β4 lnKit
2 + β5 lnLit. lnKit

¤
+β6.t+

1

2
β7.t

2 + β8 lnLit.t+ β9 lnKit.t+ β10BELi.t+ β11POLi.t

+β12BELi + β13POLi + vit − uit (20)

uit = δ0 + δ1.t+ δ2.t
2+

25X
j=3

δjSECTij +
46X
j=26

δjSECTij .t+ ζit (21)

with i the firm index, t the time index and the subsectors within the manufacturing
sector are denoted by j.45 As before we have a composed error term in the pro-
duction function, vit is a random component that is i.i.d.(0,σ2v) and independent
of the inefficiency effect and the error term ζit in the second equation. We allow
for non linear technical efficiency changes by adding t2 in the second equation. We
know from the previous section that efficiencies are signifantly different across the
subsectors within the manufacturing sector. So, we include sectoral dummies in the
regression (SECTij) and introduce an interaction term between the time trend and
the subsectoral dummies to capture the subsectoral differences in technical efficiency
change.

The estimated components and parameters are denoted with hats. We stress that
the parameter significancy is of course an issue here, and only significant parameters
are relevant throughout the whole analysis. The estimated technical change (bT M),
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estimated technical efficiency change (dTE M), estimated output elasticities (bεL andbεK) and the scale elasticity (bε = bεL + bεK) are represented in equations (22), (23),
(24), (25) and (26) respectively.bT Mit= bβ6 + bβ7.t+ bβ8 lnLit + bβ9 lnKit (22)

dTE Mit= −(bδ1 + 2.bδ2.t+ 25X
j=3

bδjSECTij + 46X
j=26

bδjSECTij .t) (23)

bεLit = bβ1 + bβ3 lnLit + bβ5 lnKit + bβ8.t (24)bεKit =
bβ2 + bβ4 lnKit + bβ5 lnLit + bβ9.t (25)bεit = bα0 + bα1 lnLit + bα2 lnKit + bα3.t (26)

with obvious definitions for bα0, bα1, bα2 and bα3. Note that the different components
are firm specific and time varying. The above expressions are in their most general
form and it is easily seen how these expression simplify under different parameter
restrictions like e.g. no non-neutral technical change (β8 = β9 = 0).46 Now we
have a final expression for estimating the change in total factor productivity under
a simultaneous translog stochastic frontier (STSF) model. The change in TFP is
defined in equation (9) and using above expressions results in equation (27).

\◦
TFP it = bT Mit +dTE Mit +(bεit − 1) ·bεLitbεit ◦

Lit +
bεKitbεit ◦

Kit

¸
(27)

with
◦
Lit= lnLit − lnLit−1 and

◦
Kit= lnKit − lnKit−1, the rate of change of labour

and capital respectively. We only report the estimated components of the TFP
change and the TFP change itself. The production function estimated coefficients
and all the δ’s are significant different from zero and are used to estimate the TFP
change4748. Table 15 illustrates the differences in the (average) TFP decomposition
between Belgium and CEEs.

TFP growth in CEEs firms is mainly due to an increase in technical change (a
shift upwards of the production frontier), whereas the Belgian firms TFP growth
is also driven by an increase in technical efficiency (a move towards the frontier).
Belgian TFP change clearly exhibits a different pattern, having a persistence in
technical efficiency change although at a decreasing rate.

The scale component is quite large for the Polish firms in comparison with that
of the Czech and Belgian firms. This might be due to the size of an average Polish
firm. We know from Table 2 that firm size is - on average - bigger in Poland and
thus reducing labour into the production process can explain this larger share. In
order for this explanation to hold, an average Polish firm needs to produce under
decreasing returns to scale. Thus, before we can interpret the scale component of
the TFP change we have to make inferences about the returns to scale. Table 16
presents this average elasticity per country and per year.

The increasing share of the scale component means that on average - and under
decreasing returns to scale - firms in the manufacturing sector are reallocating re-
sources, i.e. reducing labour and/or capital.49 In the case of Poland and the Czech
Republic we know from section 3 that average employment is decreasing over time.
It is a general finding that firms in CEEs under the planned regime suffered from
labour hoarding (Roland, 2000).
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5 Interpretation of the Results and Some Policy Impli-
cations

In this section we briefly interpret the estimated technical efficiencies on a more gen-
eral level. The interpretation of (in)efficiencies goes back to the concept of Leiben-
stein’s X-inefficiency first proposed in 1966. He stated that the motivation to reduce
production costs comes primarily from external pressure. This leads to assume
that the reasons firms do not maximise profits is because of effort discretion. The
view was later on criticised, e.g. Stigler (1976) and Demsetz (1969) to name but a
few. The latter refers to the common practice of comparing the real world with an
ideal but not existent world to conclude that the real world is (relatively) inefficient
(Fidalgo and Garcia, 2000). It remains a fact that the very concept of technical inef-
ficiency cannot be rationalised with the tools of neoclassical theory of the firm, since
this notion violates central assumptions of economic theory. However, traditional
production theory is used to develop techniques to measure such misperformances.
How to go from here then?

As suggested in the sectoral analysis above, we see the technical efficiency mea-
sure rather as a measure of heterogeneity of the firms in the sample, violating the
assumptions made by economic theory. It is clear that if some firms perform better
than others it can be because they are different and not homogeneous as is implicitly
assumed when creating a common production frontier. The issue of inefficiency than
appears to be one of heterogeneity and therefore leads to the question why are firms
different? Our intepretation of TE as a measure of heterogeneity coincides with
the view put forward by the resource-based view of technology (Fidalgo and Garcia,
2000). This view states that technology differs across firms even in the same indus-
tries, because firms usually posses some resources and capabilities which are unique
and which are ignored in the estimation of the efficiencies. This is what we find
when estimating the TE at the 2-digit NACE level. It is thus very important to be
aware of the common technology assumption when interpreting the results. Within
this setup, estimated TE measures the relative value of resources and capabilities
not observed or not included in the model that were assumed to be homogeneous
across firms. The latter can be interpreted as a measure of competitive advantage
of the firm, although restricting it to the productive component. This means that
firms in the EU still have a competitive advantage over the firms in CEE countries
and more precisely a productive advantage. However, given the results using the
PA-model we see that this advantage is becoming smaller.
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6 Conclusion

We created a common production frontier for two EU-candidates (Poland and the
Czech Republic) and a EU country (Belgium). As expected, Belgian firms set the
benchmark and are on average more (technically) efficient than firms in Poland
and the Czech Republic. However, Polish firms are very close to the Belgian level,
whereas Czech firms are further away from the benchmark. Average technical effi-
ciency (TE) is around 60% and points to the fact that firms are failing to be profit
maximizers or cost minimizers as suggested by neoclassical micro economic theory.

If we estimate technical efficiency at a more disaggregated level (2 digit NACE)
we find that there are big differences between subsectors of the manufacturing sec-
tor. We interpreted the technical efficiency estimates as measures of heterogeneity of
TE within a subsector. We identified three common industries (‘Tobacco Products’,
‘Chemicals’, ‘Basic Metals’) that are relatively efficient compared to a national av-
erage. When allowing for repeated observations over time, we find evidence for an
increasing TE. The panel data results confirm the results suggested in the cross sec-
tional analysis, although the former are preferred because they are based on repeated
observations.

Using a partial adjustment model we find evidence for convergence of the ef-
ficiency levels of firms in CEE countries towards an EU level. However, the con-
vergence is at a decreasing rate, starting off higher in Poland than in the Czech
Republic, suggesting a concave time pattern of convergence.

Combining two existing techniques we develop a methodology of estimating a
firm and year specific decomposition of total factor productivity into several com-
ponents and estimate this. In this way we can put the estimated technical efficiency
in perspective. We see that is mainly technical change that drives the total factor
productivity change. Firms in EU- candidate countries are reallocating resources
under decreasing returns to scale and the scale component has an increasing share
in TFP change. Belgian TFP change clearly exhibits a different pattern, having a
persistence in technical efficiency change, although at a decreasing rate.
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Notes

1Within this setup we allow for a CEE firm to set the benchmark as well as a Belgium firm.
In this way we do not catagorise firms from CEE countries a priori as being less efficient. In a
normal regression framework one could think to use country dummies, however these do catagorise
producers by construction.

2See Fried, Lovell and Schmidt (1993) for a discussion on the different components.

3We note that a firm is technical inefficient if it is under the best-practice frontier and that it is
technical efficient when it is on the frontier.

4We refer to these specifications as B&C(1992) and B&C(1995) respectively.

5Given that technical change is defined by an appropriate parameter model and the technical
inefficiency effects in stochastic frontier model are stochastic and have the specified distribution.
We incorporate this type of analysis in section 2.5.

6However, X is now a matrix capturing the two dimensions of the panel, i.e. time and number
of producers.

7We stress that the vector u refers to the inefficiency effects (substracting output from the
potential output). The firm specific efficiency, however, is measured in terms of technical efficiency.

8We present the model suggested by Lee and Schmidt (1993) as this approach shows that one
can model time-variant technical inefficiency effects and still use time-invariant determinants (this
cannot be done within the framework of traditional panel data techniques as fixed effects.) Their
model is suited for applications in which the number of firms is large and the number of time-series
observations per firm is relatively small. Schmidt and Lee (1993) consider a linear production
frontier. Let there be N firms indexed by i = 1, ...,N and T time-series observations per firm,
indexed by t = 1, ..., T . Let yi,t denote the output (in logs) of firm i at time t , and Xi,t the
corresponding vector of inputs (in logs). As before vi,t represents statistical noise, whereas ui,t ≥ 0
represents technical inefficiency of a firm i at time t. The model in its general form can then be
written as follows

yi,t = αt +X
0
i,tβ + vi,t − ui,t = αi,t +X

0
i,tβ + vi,t (28)

with αi,t = αt − ui,t the intercept for a firm i at time t. And αt is the frontier intercept or the
maximum possible value of αi,t. In this way they incorporated time-variant technical efficiency at
the firm level. Schmidt and Lee (1993) consider the model in which αi,t = θtδi where the θ are
parameters to be estimated. One can see that for θt = 1 for all t, we are in the simple Panel Data
model. Otherwise the temporal pattern of technical inefficiency is completely unrestricted although
assumed the same for all firms. The model that these authors consider can also be compared to the
two-way analysis of covariance model that includes both individual and time effects. This model
has αi,t = δi + θt.

9The only restriction they imposed is that all firms should have the same pattern of change.

10One must bear in mind that increasing technical inefficiency effects (ui,t) imply decreasing
technical efficiency estimates (exp(−ui,t) = TEi,t). Thus if the estimation for parameter η is
positive this implies that the efficiency of firms increase over time, at a rate determined by the
exponential function depending on (t− T ).
11This is because the technical inefficiency effects of different firms at any given time period t are

equal to the same exponential function ([exp−η(t− T )] ≡ exp(T − t)) of the corresponding firm
specific inefficiency effects at the last period of the panel (ui).

12Since we have a rather small time dimension in our data, we could argue that the ordering of
firms’ efficiency is not changed. However this can be questioned because we are dealing with firms
in transition countries and our panel starts at the year 1995. After 1995, the transition process
really took off and it can be expected that this process can alter the ordering of firms according to
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their technical inefficiency.

13This approach follows on the previous sections although there is a fundamental difference in
the way time variant technical inefficiencies are modelled.

14This section relies mostly on Lovell and Kumbhakar (2000) and references herein.

15This definition is a conventional Divisia index of productivity change provided we are in a scalar
output case.

16We assume that the technical efficiency component is a function of time, u(t). This general
representation allows us to incorporate different specifications (e.g. Battese and Coelli (1992) and
Kumbhakar (1990)) into our analysis.

17This assumption implies that we assume perfect competition in the product market since prices
are equal to marginal costs. When assuming the latter, the estimated total factor productivity
estimates are biased if product markets are imperfectly competitive (Hall, 1988). This assumption
of perfect factor markets is debatable, however, it is just a working assumption often used in
empirical work (see e.g. Levinsohn and Petrin, 2001).

18For instance Battese and Coelli (1992) specification uit = [exp(−η(t− T ))]ui is an example
how the inefficiency variable is depending on t. However, we will partially overcome this problem
by using a system of equations where technical efficiency itself is a function of different variables
that change over time, but no longer directly depending on t.

19Note though that as we scale everything in logs this price difference is captured by the constant
term. However, the producer price index may also capture monopoly power in the output market.

20The programm FRONTIER has a very stringent setup of the data set in order for the programm
to converge.

21To fully compare labour productivity between the countries one needs to correct for quality
differences as well. Since we construct a different measure to compare these countries, we do not
go into these issues.

22We use estimate here and not measure - as often used throughout the literature - since these
are actual estimates with standard errors around them. This allows us to make inferences about
the TEs. Whereas deterministic approaches like DEA produce efficiency measures, that are just
point estimates (Horrace and Schmidt , 1996).

23This test-statistic is obtained by taking twice the difference of the log likelihood values, and
under the null hypotheses (β3 = β4 = β5 = 0) has a χ2 distribution with 3 degrees of freedom.

24This average is sensitive to the proportion of Belgian firms in the sample, which in our case is
more than one third. However, we also encounter a lot of very inefficient Belgian firms.

25The null hypotheses is that the distribution of technical efficiency is the same in the three
countries.

26We would like to compare the last period of our sample (1999) with the beginning of the sample
(1995). However, the estimation of TE in the last year of the sample did not converge. This can
be due to the lack of variation in this year.

27We did not create a balanced panel for the years 1995-1998 because this would introduce a
sample selection bias, that is we would only compare the efficiency of firms that were active both
in 1995 and in 1998.

28It is the information set at time t and as t→∞ ϕ∗i = ϕi.

29We do not have the full population of firms to adress the entry-exit issue in full.
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30Note that here we are able to produce estimates for the year 1999. This is because the panel data
approach uses both the variation in cross section and in time to estimate the technical efficiency.

31The first approach results in very low TE estimates due to various reasons. Even if we supply
the program with starting values as to guide the maximum likelihood estimation iterative proce-
dure, using different starting values, the results from the cross sectional estimations and various
combinations of them, the results are not robust. This is why we prefer the B&C (1995) model.

32Alternatively one can include a time variable in stead of dummies. We use this approach when
estimating the total factor productivity change later on.

33To see this, note that exp(x) > 0 if x < 0 and that TEi,t = exp(−ui,t).
34The tobacco products (16) industry has a high and stable demand for its products. The

international competition coupled with a rather inelastic demand could explain this finding.

35One could argue that introducing country dummies is exactly doing this at a more aggregated
level, but then it is no longer informative to estimate technical efficiency. If one is interested in
the frontier country differences, an OLS regression with country dummies will do. By estimating
efficiency at the 2 digit NACE level, we can still compare CEE firms relatively to a EU benchmark
(only within that subsector).

36The results of the panel data are less robust to functional form than the cross sectional results,
so we base our sectoral analysis on the cross sectional TE estimates.

37Using following definitions that TEj,N is the average TE of sector j from country N and TEN
is the national average TE for country N , with j = (15, ..., 37) and N = (Poland, Czech Rep.,
Belgium).

38The null hypothesis of having a correct restriction is tested against having an incorrect restric-
tion, the test-statistic has to be compared with 3.841 (χ2 critical value with one degree of freedom
at the 5% significance level).

39Although one could argue that assuming the same technology over all subsectors and over three
countries is not realistic.

40The missing sectors 15, 16, 18, 32 and 36 are better estimated with OLS or need different
starting values which results in very high TE estimates of ca. 0.99, meaning that there are no
inefficiency effects. The TE estimates of the three sectors where the restriction µ = 0 was rejected,
are based on model E.

41The null hypotheses states that TEs are distributed the same over every subsector. But just
as in a test of overidentifying restrictions, we can not identify which sector(s) is (are) causing this
hypothesis to be rejected. Think of the classical example of Verbeek (2000), if a pub allows you to
get three beers and only pay two, could you tell which one is for free?

42We only report the adjustment parameters in tables 14.

43We use a different variant of the translog production function here. The second order terms
are weighted by 1/2, this simplifies the further analysis.

44This implies that we have to include the country dummies as well to control for country differ-
ences.

45There are 23 different subsectors in the manufacturing sector (according to the NACE rev.1
classification). Leaving the first subsector (15) out to avoid the dummy-trap, this implies having
22 dummies (from 3 to 25) and having 22 interaction terms (from 26 to 46).

46Except for the fact that we assume away the allocative efficiency component because we do not
have any information on the prevailing input prices.
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47There are 45 coefficients (for every subsector of the manufacturing (22) and interacted with the
time trend (22) and the constant term) in the inefficiency model. Negative coefficients imply that
the sector is more efficient than the reference sector (15, Food Products) and if the interacted term
is significant, this means that technical efficiency is significantly changing over time in that given
subsector. We do not go further into this, since our main interest lies in the different components
of the TFP decomposition.

48The production function coefficients (β) and the coefficients from the inefficiency model (δ) are
used to calculate the TFP decomposition. The table below shows the coeffiicients of the production
function, where Y: significant at any appropriate significance level and N: not significant.

β coefficient significant
β1 0.870 Y
β2 -0.400 Y
β3 -0.048 Y
β4 0.029 Y
β5 0.015 Y
β6 0.190 Y
β7 -0.019 Y
β8 -0.005 Y
β9 -0.001 N
β10 -0.024 Y
β11 -0.010 N
β12 2.06 Y
β13 4.24 Y

The coefficients for labour and capital (including the higher order) are as before. Coefficients
β6 and β7 suggest a shift upwards of the production function, however at decreasing rate over time.
The interpretation of the coefficients β8 and β9 (both inputs interacted with the time variable)
confirm that labour is a flow variable and is significantly changing over time, whereas capital is a
stock variable and is reflected in an insignificant coefficient. From the above table it is also clear
that the Czech Republic has a significant higher shift upwards in the production frontier, i.e. both
coefficients β10 and β11 are negative. This result is also found when we decompose the total factor
productivity into its various components (see table 15). The last two coefficients imply that Poland
and Belgium have a higher intercept relative to the Czech Republic.

49These are the summary statistics of the estimated scale elasticities. To make inferences about
them (CRS, DRS or IRS) we need to test these various hypothesis.
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Table 1: The Structure of the Panel (1995-1999)

Number of years in panel Number of firms

Poland Czech Rep. Belgium Total %

5 685 928 4315 5928 81
4 57 415 247 719 10
3 4 266 30 300 4
2 0 266 0 266 4
1 0 78 0 78 1

Total 746 1953 4592 7291 100
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Table 2: Summary Statistics (x1000 euro)

Year Poland Czech Rep. Belgium
output empl LP output empl LP output empl LP

1995 417 896 0.4651 149 471 0.3161 57 97 0.5911
1996 421 886 0.4746 148 419 0.3528 58 94 0.6219
1997 455 836 0.5448 154 375 0.4097 63 94 0.6695
1998 441 774 0.5697 147 334 0.4410 65 94 0.6862
1999 404 682 0.5930 157 341 0.4595 64 93 0.6906

LP: labour productivity (output/emp); Exchange rate used: EC, 2001
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Table 3: Estimating model A and B for 1995 (N=6628)

Dependent Variable Model A Model B
log Yi coefficient standard error coefficient standard error

logK 0.5511 0.0092 -0.6646 0.0621
logL 0.2171 0.0098 0.4389 0.0531
(logK)2 - - 0.0408 0.0036
(logL)2 - - -0.1441 0.0051
logK logL - - 0.0845 0.0070
constant 6.31 0.0987 12.58 0.2801

log-likelihood -9884.5011 -9808.5463

*: significant at 1%
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Table 4: Technical Efficiency Model A and B (1995)

TE 1995 Poland Czech Republic Belgium Overall

A B A B A B A B

average 0.5937 0.6180 0.5503 0.5433 0.6453 0.6445 0.6210 0.6218
median 0.5904 0.6191 0.5498 0.5479 0.6521 0.6462 0.6262 0.6821
min 0.2662 0.1697 0.0147 0.0054 0.1053 0.1146 0.0147 0.0054
max 0.844 0.8823 0.822 0.8327 0.8405 0.8543 0.844 0.8823

Observations 746 1290 4592 6628
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Table 5: Moments of Distribution of TE for Model A and B (1995)

Moments Poland Czech Republic Belgium

A B A B A B

mean 0.5937 0.61798 0.5503 0.5433 0.6453 0.6445
variance 0.0039 0.0059 0.0058 0.0095 0.0051 0.0054
kurtosis 4.1984 4.8277 6.6529 4.6408 6.4181 5.4824
skewness 0.1450 -0.4361 -0.6267 -0.5621 -0.9075 -0.5834
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Table 6: Estimating model A and B for 1998 (N=7068)

Dependent Variable Model A Model B
log Yi coefficient standard error coefficient standard error

logK 0.5497 0.0086 -0.6032 0.0513
logL 0.2208 0.0092 0.2534 0.0484
(logK)2 - - 0.0424 0.0032
(logL)2 - - -0.1093 0.0047
logK logL - - 0.0704 0.0065
constant 6.2758 0.1091 12.4303 0.2374

log likelihood -10492.620 -9883.676

*: significant at 1%
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Table 7: Technical Efficiency Model A and B (1998)

TE 1998 Poland Czech Republic Belgium Overall

A B A B A B A B

average 0.6556 0.6505 0.6254 0.5958 0.6935 0.6759 0.6722 0.6528
median 0.6521 0.6481 0.6262 0.6026 0.6983 0.6764 0.6746 0.6570
min 0.3591 0.2422 0.1245 0.6028 0.2182 0.2167 0.1245 0.0628
max 0.8319 0.8748 0.8262 0.8278 0.8463 0.8581 0.8463 0.8748

Observations 735 1801 4532 7068
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Table 8: Moments of Distribution of TE for Model A and B(1998)

Moments Poland Czech Republic Belgium

A B A B A B

mean 0.6556 0.6505 0.6254 0.5958 0.6935 0.6758
variance 0.0020 0.0038 0.0040 0.0063 0.0026 0.0036
kurtosis 7.3027 6.6178 12.1067 8.6479 5.3983 4.5218
skewness -0.0891 -0.4917 -1.4570 -1.3133 -0.6529 -0.3858
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Table 9: Comparing Technical Efficiency over Time (1995, 1998)

Moments Poland Czech Republic Belgium

A B A B A B

1995 mean 0.5937 0.61798 0.5503 0.5433 0.6453 0.6445
variance 0.0039 0.0059 0.0058 0.0095 0.0051 0.0054

1998 mean 0.6556 0.6505 0.6254 0.5958 0.6935 0.6758
variance 0.0020 0.0038 0.0040 0.0063 0.0026 0.0036
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Tabel 10: Results TE Model C.2: Year Dummies (µit = δ0 +
P

δlDt)

Year Poland Czech Rep. Belgium Overall

TI Obs. TI Obs. TI Obs. TI Obs.

1995 0.7127 746 0.6400 1291 0.7295 4592 0.7100 6629
1996 0.7379 728 0.6759 1445 0.7581 4493 0.7380 6666
1997 0.7478 722 0.6870 1640 0.7649 4509 0.7445 6871
1998 0.7352 735 0.6738 1801 0.7584 4532 0.7344 7068
1999 0.7406 734 0.6923 1531 0.7684 4527 0.7483 6792

1995-1999 0.7347 3665 0.6750 7708 0.7557 22653 0.7352 34026
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Table 11: Results TE Model C.3: Sectoral Dummies (µi,t = δ0 +
P37
j=16 δjSECTi,j + ςi,t)

Sector Poland Czech Rep. Belgium Overall

Food Products 0.7265 0.6743 0.7372 0.7216
Tobacco Products 0.8908 0.8752 0.8966* 0.8930

Textiles 0.6891 0.6457 0.7276 0.7076
Wearing Apparel 0.7475 0.6678 0.7510 0.7375

Leather 0.7998 0.7829 0.8180 0.8001
Wood 0.6747 0.5790 06950 0.6722

Pulp & Paper 0.6684 0.6242 0.7145 0.6945
Publishing & Printing 0.7383 0.6735 0.7580 0.7475

Coke & Petroleum 0.6948 0.6480 0.6480 0.6460
Chemicals 0.7212 0.6631 0.7613 0.7383

Rubber & Plastic 0.7062 0.6326 0.7400 0.7110
Other Non-Metallic Mineral 0.6081 0.5214 0.6580 0.6208

Basic Metals 0.7095 0.6793 0.7428 0.7173
Fabricated Metal 0.6838 0.5900 0.6915 0.6701

Machinery Equipment 0.6566 0.6055 0.7166 0.6670
Office, Machinery & Computers 0.8870 0.8745 0.8920 0.8880

Electrical Machinery 0.6752 0.6181 0.7230 0.6806
RTv & Communication 0.6700 0.6564 0.7518 0.7066

Medical 0.5666 0.4841 0.6020 0.5628
Motor Vehicles 0.7281 0.6556 0.7492 0.7181

Other Transport Equipment 0.6687 0.5561 0.6884 0.6394
Furniture 0.7262 0.6538 0.7393 0.7235
Recycling 0.8603 0.8145 0.8618 0.8608

Average 0.6978 0.6249 0.7248 0.6993

*: Tobacco Products (16) sets the benchmark (TE=1)
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Table 12: Subsectoral Technical Efficiency Model D, E

Subsector Poland Czech Rep. Belgium Overall

1995 1998 1995 1998 1995 1998 1995 1998

17 0.6089 - 0.5316 - 0.6383 - 0.6163 -
19* 0.4998 0.2434 0.3444 0.2227 0.5238 0.5393 0.4549 0.3479
20 0.6336 0.5891 0.4905 0.3893 0.6480 0.6246 0.6241 0.5696
21 0.5291 0.5441 0.3597 0.4053 0.5896 0.6169 0.5474 0.5701
22 0.6808 0.6093 0.6071 0.4994 0.7182 0.6999 0.7060 0.6682
23* 0.6655 0.5966 0.1587 0.3742 0.3913 0.5123 0.4325 0.5139
24 0.6365 0.5816 0.5763 0.4856 0.6826 0.6647 0.6599 0.6182
25 0.5826 - 0.3892 - 0.6445 - 0.4918 -
26 0.6384 - 0.5427 - 0.6636 - 0.6358 -
27 0.5861 0.6586 0.5338 0.6240 0.6321 0.7161 0.5951 0.6753
28 0.6688 0.6593 0.5382 0.5334 0.7059 0.6831 0.6786 0.6445
29 0.5972 - 0.5490 - 0.6432 - 0.6068 -
30* 0.5996 0.5576 0.2408 0.0992 0.5063 0.5426 0.4906 0.4798
31 0.4965 0.5827 0.4502 0.5069 0.6039 0.6589 0.5423 0.5912
33* 0.5574 - NO - 0.7237 - 0.6165 -
34 0.4933 0.6130 0.2847 0.5038 0.5069 0.6564 0.4446 0.6014
35 0.1856 0.6704 0.1301 0.5872 0.3207 0.7087 0.2329 0.6559
37 0.5120 - NO - 0.5729 - 0.5692 -

(*) Observations less than 50, - : OLS is better or no TI effects,

NO: no observations, See Appendix 3 for NACE classification.
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Table 13: Kruskal-Wallis Test for Distribution of TE between Countries (1995)

Distributions of TE ... Subsectors (NACE 2-digit level)

differ signifcantly 17, 20, 21, 22, 24, 25,
26, 27, 28, 29, 31, 34, 35

do not differ signifcantly 19, 23, 30, 31, 33, 37
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Table 14: Results of the Simple (SPA) and Extended (EPA) PA-Model

λ R2

Poland 0.1020 0.0417
(0.0093)

Czech Republic 0.0305 0.0128
(0.0044)

λ1 λ2 λ3 λ4 adjR2

Poland 0.1863 0.1898 0.0788 0.0890 0.0970
(0.0193) (0.0203) (0.0210) (0.0196)

Czech Republic 0.1091 0.0680 0.0428 0.0268 0.0466
(0.0124) (0.0131) (0.0130) (0.01263)

Standard errors are in parantheses
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Table 15: Average TFP Decomposition

Country TFP4 T4 TE4 scale

Poland 9.66 7.68 0.92 1.03
100 79.49 9.48 10.70

Czech Rep. 10.15 8.58 1.07 0.46
100 84.60 10.56 4.58

Belgium 10.79 6.20 3.94 0.64
100 57.49 36.51 5.95

Averaged over 1996-1999, shares in italic
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Table 16: Average-, Maximum- and Minimum Elasticity of Scale

Country 1995 1996 1997 1998 1999

average 0.7833 0.7845 0.7851 0.7839 0.7824
Poland max 0.9264 0.9257 0.9331 0.9490 0.9457

min 0.5091 0.4995 0.5054 0.4511 0.5197

average 0.7734 0.7681 0.7651 0.7610 0.7619
Czech Rep. max 0.9750 0.9731 0.9718 0.9534 0.9517

min 0.5067 0.3887 0.4105 0.4600 0.3887

average 0.8355 0.8365 0.8340 0.8309 0.8286
Belgium max 1.1068 1.1021 1.043 1.0976 1.1054

min 0.5601 0.5459 0.5300 0.5355 0.5171
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Appendix 1: Representativeness of the Sample

Country 1995 1996 1997 1998 1999

Belgium 89% 87% 90% 89% 90%
Poland 58% 54% 58% 56% 49%

Czech Republic 46% 49% 52% 51% 45%

Total 59% 57% 61% 59% 54%

% =
Total employment in sample

Total paid employment in manufacturing

Source: ILO Yearbook of Labour Statistics, 2001
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Appendix 2: Distribution of Technical Efficiency

Figure 1: Distribution of TE per country in 1995
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Figure 2: Distribution of TE per country in 1998
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Appendix 3: The NACE Rev. 1 Classification

Nace 2-Digit Description

15 Food Products
16 Tobacco Products
17 Textiles
18 Wearing Apparel
19 Leather and Leather Products
20 Wood and Wood Products
21 Pulp, Paper and Paper Products
22 Publishing and Printing
23 Coke and Petroleum Products
24 Chemicals
25 Rubber and Plastic Products
26 Other Non-Metallic Mineral Products
27 Basic Metals
28 Fabricated Metal Products
29 Machinery and Equipment n.e.c.
30 Office Machinery and Computers
31 Electrical Machinery
32 RTv and Communication
33 Medical, Precision and Optical Instr.
34 Motor Vehicles
35 Other Transport Equipment
36 Furniture/ Manufacturing n.e.c.
37 Recycling
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