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Abstract

We study a stochastic model of influence where agents have “yes”
or “no” inclinations on some issue, and opinions may change due to
mutual influence among the agents. Each agent independently ag-
gregates the opinions of the other agents and possibly herself. We
study influence processes modelled by ordered weighted averaging op-
erators, which are anonymous: they only depend on how many agents
share an opinion. For instance, this allows to study situations where
the influence process is based on majorities, which are not covered by
the classical approach of weighted averaging aggregation. We find a
necessary and sufficient condition for convergence to consensus and
characterize outcomes where the society ends up polarized. Our re-
sults can also be used to understand more general situations, where
ordered weighted averaging operators are only used to some extend.
We provide an analysis of the speed of convergence and the possible
outcomes of the process. Furthermore, we apply our results to fuzzy
linguistic quantifiers, i.e., expressions like “most” or “at least a few”.
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1 Introduction

In the present work we study an important and widespread phenomenon
which affects many aspects of human life – the phenomenon of influence.
Being undoubtedly present, e.g., in economic, social and political behaviors,
influence frequently appears as a dynamic process. Since social networks play
a crucial role in the formation of opinions and the diffusion of information, it
is not surprising that numerous scientific works investigate different dynamic
models of influence in social networks.1

Grabisch and Rusinowska (2010, 2011a) investigate a one-step determinis-
tic model of influence, where agents have “yes” or “no” inclinations (beliefs)
on a certain issue and their opinions may change due to mutual influence
among the agents. Grabisch and Rusinowska (2011b) extend it to a dynamic
stochastic model based on aggregation functions, which determine how the
agents update their opinions depending on the current opinions in the soci-
ety. Each agent independently aggregates the opinions of the other agents
and possibly herself. Since any aggregation function is allowed when updat-
ing the opinions, the framework covers numerous existing models of opinion
formation. The only restrictions come from the definition of an aggregation
function: unanimity of opinions persists (boundary conditions) and influence
is positive (nondecreasingness). Grabisch and Rusinowska (2011b) provide a
general analysis of convergence in the aggregation model and find all termi-
nal classes, which are sets of states the process will not leave once they have
been reached. Such a class could only consist of one single state, e.g., the
states where we have unanimity of opinions (“yes”- and “no”-consensus) or
a state where the society is polarized, i.e., some group of agents finally says
“yes” and the rest says “no”.

Due to the generality of the model of influence based on arbitrary aggre-
gation functions introduced in Grabisch and Rusinowska (2011b), it would
be difficult to obtain a deeper insight into some particular phenomena of in-
fluence by using this model. This is why the analysis of particular classes of
aggregation functions and the exhaustive study of their properties are nec-
essary for explaining many social and economic interactions. One of them
concerns anonymous social influence which is particularly present in real-life
situations. Internet, accompanying us in everyday life, intensifies enormously
anonymous influence: when we need to decide which washing machine to buy,

1For an overview of the vast literature on influence we refer, e.g., to Jackson (2008).
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which hotel to reserve for our eagerly awaited holiday, we will certainly fol-
low all anonymous customers and tourists that have expressed their positive
opinion on the object of our interest. In the present paper we examine a par-
ticular way of aggregating the opinions and investigate influence processes
modeled by ordered weighted averaging operators (ordered weighted averages),
commonly called OWA operators and introduced in Yager (1988), because
they appear to be a very appropriate tool for modeling and analyzing anony-
mous social influence. Roughly speaking, OWA operators are similar to the
ordinary weighted averages (weighted arithmetic means), with the essential
difference that weights are not attached to agents, but to the ranks of the
agents in the input vector. As a consequence, OWA operators are in general
nonlinear, and include as particular cases the median, the minimum and the
maximum, as well as the (unweighted) arithmetic mean.

We show that OWA operators are the only aggregation functions that are
anonymous in the sense that the aggregation does only depend on how many
agents hold an opinion instead of which agents do so. Accordingly, we call
a model anonymous if the transitions between states of the process do only
depend on how many agents share an opinion. We show that the concept is
consistent: if all agents use anonymous aggregation functions, then the model
is anonymous. However, as we show by example, a model can be anonymous
although agents do not use anonymous functions. In particular, anonymous
models allow to study situations where the influence process is based on
majorities, which means that agents say “yes” if some kind of majority holds
this opinion.2 These situations are not covered by the classical (commonly
used) approach of weighted averaging aggregation.

In the main part, we consider models based on OWA operators. We dis-
cuss the different types of terminal classes and characterize terminal states,
i.e., singleton terminal classes. The condition is simple: the OWA operators
must be such that all opinions persist after mutual influence. In our main
result, we find a necessary and sufficient condition for convergence to con-
sensus. The condition says that there must be a certain number of agents
such that if at least this number of agents says “yes”, it is possible that
after mutual influence more agents say “yes” and if less than that number
of agents says “yes”, it is possible that after mutual influence more agents
say “no”. In other words, we have a cascade that leads either to the “yes”-

2Examples are simple majorities as well as unanimity of opinions, among others.
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or “no”-consensus. Additionally, we also present an alternative characteriza-
tion based on influential coalitions. We call a coalition influential on an agent
if the latter follows (adopts) the opinion of this coalition – given all other
agents hold the opposite opinion – with some probability.3 Furthermore, we
generalize the model based on OWA operators and allow agents to use a
(convex) combination of OWA operators and general aggregation functions
(OWA-decomposable aggregation functions). In particular, this allows us to
combine OWA operators and ordinary weighted averaging operators. As a
special case of this, we study models of mass psychology (also called herding
behavior) in an example. We find that this model is equivalent to a convex
combination of the majority influence model and a completely self-centered
agent. We also study an example on important agents where agents trust
some agents directly that are important for them and otherwise follow a ma-
jority model. Furthermore, we show that the sufficiency part of our main
result still holds.4

Besides identifying all possible terminal classes in the influence process,
it is also important to know how quickly opinions will reach their limit. In
Grabisch and Rusinowska (2011b) no analysis of the speed of convergence
has been provided. In this paper, we study the speed of convergence to ter-
minal classes as well as the probabilities of convergence to certain classes in
the general aggregation model. Computing the distribution of the speed of
convergence and the probabilities of convergence in examples can be demand-
ing if the number of agents is large. However, we find that for anonymous
models, we can reduce this demand a lot.5

As an application of our model we study fuzzy linguistic quantifiers, which
were introduced in Zadeh (1983) and are also called soft quantifiers. Typ-
ical examples of such quantifiers are expressions like “almost all”, “most”,
“many” or “at least a few”; see Yager and Kacprzyk (1997). For instance,
an agent could say “yes” if “most of the agents say ‘yes’ ”.6 Yager (1988)
has shown that for each quantifier we can find a unique corresponding OWA

3Note that although Grabisch and Rusinowska (2011b) have already studied conditions
for convergence to consensus and other terminal classes in the general model, our results
are inherently different due to our restriction to anonymous aggregation functions.

4When applying the condition to the OWA operators in the convex combinations.
5We have to compute powers and inverses of matrices whose dimensions grow expo-

nentially in the number of agents. In anonymous models this reduces to linear growth.
6Note that the formalization of such quantifiers is clearly to some extend ambiguous.
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operator.7 We find that if the agents use quantifiers that are similar in some
sense, then they reach a consensus. Moreover, this result holds even if some
agents deviate to quantifiers that are not similar in that sense. Loosely speak-
ing, quantifiers are similar if their literal meanings are “close”, e.g., “most”
and “almost all”. We also give examples to provide some intuition.

The seminal model of opinion and consensus formation is due to DeGroot
(1974), where the opinion of an agent is a number in [0, 1] and she aggre-
gates the opinions (beliefs) of other agents through an ordinary weighted
average. The interaction among agents is captured by the social influence
matrix. Several scholars have analyzed the DeGroot framework and pro-
posed different variations of it, in which the updating of opinions can vary in
time and along circumstances. However, most of the influence models usu-
ally assume a convex combination as the way of aggregating opinions. Golub
and Jackson (2010) examine convergence of the social influence matrix and
reaching a consensus, and the speed of convergence of beliefs, among other
things. DeMarzo et al. (2003) consider a model where an agent may place
more or less weight on her own belief over time. Another framework re-
lated to the DeGroot model is presented in Asavathiratham (2000). Büchel
et al. (2011) introduce a generalization of the DeGroot model by studying the
transmission of cultural traits from one generation to the next one. Büchel
et al. (2012) analyze an influence model in which agents may misrepresent
their opinion in a conforming or counter-conforming way. Calvó-Armengol
and Jackson (2009) study an overlapping-generations model in which agents,
that represent some dynasties forming a community, take yes-no actions.

Also López-Pintado (2008, 2010), and López-Pintado and Watts (2008)
investigate influence networks and the role of social influence in determining
distinct collective outcomes. Related works can also be found in articles
by van den Brink and his co-authors, see, e.g., van den Brink and Gilles
(2000); Borm et al. (2002). A different approach to influence, i.e., a method
based on simulations, is presented in Mäs (2010). Morris (2000) analyzes the
phenomenon of contagion which occurs if an action can spread from a finite
set of individuals to the whole population.

Another stream of related literature concerns models of Bayesian and ob-
servational learning where agents observe choices over time and update their
beliefs accordingly, see, e.g., Banerjee (1992), Ellison (1993), Bala and Goyal

7With the only restriction that, due to our model, the quantifier needs to represent
positive influence.
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(1998, 2001), Gale and Kariv (2003) and Banerjee and Fudenberg (2004). A
model of strategic influence is studied in Galeotti and Goyal (2009). Mueller-
Frank (2010) considers continuous aggregation functions with a special prop-
erty called “constricting” and studies convergence applied to non-Bayesian
learning in social networks.

The literature on OWA operators comprises, in particular, applications to
multi-criteria decision-making. Jiang and Eastman (2000), for instance, ap-
ply OWA operators to geographical multi-criteria evaluation, and Malczewski
and Rinner (2005) present a fuzzy linguistic quantifier extension of OWA in
geographical multi-criteria evaluation. Using ordered weighted averages in
(social) networks is quite new, although some scholars have already initiated
such an application; see Cornelis et al. (2010) who apply OWA operators
to trust networks. To the best of our knowledge, ordered weighted averages
have not been used to model social influence yet.

The remainder of the paper is organized as follows. In Section 2 we
present the model and basic definitions. Section 3 introduces the notion of
anonymity. Section 4 concerns the convergence analysis in the aggregation
model with OWA operators. In Section 5 the speed of convergence and the
absorption probabilities are studied. In Section 6 we apply our results on
ordered weighted averages to fuzzy linguistic quantifiers. Section 7 contains
some concluding remarks. The longer proofs of some of our results are pre-
sented in the Appendix.

2 Model and Notation

Let N := {1, . . . , n}, n ≥ 2, be the set of agents that have to make a “yes”
or “no” decision on some issue. Each agent i ∈ N has an initial opinion
xi ∈ {0, 1} (called inclination) on the issue, where “yes” is coded as 1.
During the influence process, agents may change their opinion due to mutual
influence among the agents.

Definition 1 (Aggregation function). An n-place aggregation function is
any mapping A : {0, 1}n → [0, 1] satisfying

(i) A(0, . . . , 0) = 0, A(1, . . . , 1) = 1 (boundary conditions) and

(ii) if x ≤ x′ then A(x) ≤ A(x′) (nondecreasingness).
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To each agent i we assign an aggregation function Ai that determines the
way she reacts to the opinions of the other agents and herself.8 Note that
by using these functions we model positive influence only. Our aggregation
model A = (A1, . . . , An)

T is stochastic,9 the output of agent i’s aggregation
function is her probability to say “yes” after one step of influence. The other
agents do not know these probabilities, but they observe the realization of the
updated opinions. The aggregation functions our paper is mainly concerned
with are ordered weighted averaging operators or simply ordered weighted
averages. This class of aggregation functions was first introduced by Yager
(1988).

Definition 2 (Ordered weighted average). We say that an n-place ag-
gregation function A is an ordered weighted average A = OWAw with weight
vector w, i.e., 0 ≤ wi ≤ 1 for i = 1, . . . , n and

∑n
i=1wi = 1, if A(x) =∑n

i=1wkx(k) for all x ∈ {0, 1}n, where x(1) ≥ x(2) ≥ . . . ≥ x(n) are the
ordered components of x.

Let us denote by 1S the characteristic vector of S ⊆ N , i.e., (1S)j = 1
if j ∈ S and (1S)j = 0 otherwise. We can represent the vector of current
opinions by such a characteristic vector. We say that the model is in state
or coalition S if 1S is the vector of current opinions. In other words, a
state consists of the agents that currently say “yes”. We sometimes denote
a state S = {i, j, k} simply by ijk and its cardinality or size by s. The
definition of an aggregation function ensures that the two consensus states –
the “yes”-consensus {N} where all agents say “yes” and the “no”-consensus
{∅} where all agents say “no” – are fixed points of the aggregation modelA =
(A1, . . . , An)

T . We call them trivial terminal classes. Before we go on, let us
give an example of an ordered weighted average already presented in Grabisch
and Rusinowska (2011b), the majority influence model. Furthermore, we also
use this example to argue why we do restrict opinions to be either “yes” or
“no”.

Example 1 (Majority). A straightforward way of making a decision is
based on majority voting. If the majority of the agents says “yes”, then all
agents agree to say “yes” after mutual influence and otherwise, they agree
to say “no”. We can model simple majorities as well as situations where far

8Note that we use a modified version of aggregation functions by restricting the opinions
to be from {0, 1} instead of [0, 1]. We discuss this issue later on in Example 1.

9Superscript T denotes the transpose of a vector.
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more than half of the agents are needed to reach the “yes”-consensus. Let
m ∈ {⌊n

2
⌋+ 1, . . . , n}. Then, the majority aggregation model is given by

Maj
[m]
i (x) := x(m) for all i ∈ N.

All agents use an ordered weighted average where wm = 1. Obviously, the
convergence to consensus is immediate.

To give some intuition for our restriction to opinions lying in {0, 1}, note
that in this example, allowing for opinions in [0, 1] means that the outcome
only depends on x(m). And the only way to avoid this is the restriction to
{0, 1}.10

Furthermore, let us look at some examples apart from the majority model.

Example 2 (Some ordered weighted averages). Consider some agent
i ∈ N = {1, 2, . . . , 5} who uses an ordered weighted average, Ai = OWAw.

(i) If w =
(
0, 0, 1

3
, 1
3
, 1
3

)T
, then this agent will say “no” for sure if there is

not even a simple majority in favour of the issue. Otherwise, she will
say “yes” with a positive probability, which increases by 1

3
with each

additional agent being in favour of the issue.

(ii) If w =
(
1
3
, 2
3
, 0, 0, 0

)T
, then this agent will already say “yes” if only one

agent does so and she will be in favour for sure whenever at least two
agents say “yes”. This could represent a situation where it is perfectly
fine for the agent if only a few of the others are in favour of the issue.

(iii) If w =
(
1
2
, 0, 0, 0, 1

2

)T
, then this agent will say “yes” with probability 1

2

if neither all agents say “no” nor all agents say “yes”. This could be
interpreted as an agent who is indifferent and so decides randomly.

We have already seen that there always exist the two trivial terminal
classes. In general, a terminal class is defined as follows:

10Note that also a change of the used ordered weighted average does not help, e.g.,

Maj
[m]
i (x) :=

∑m

j=1
1
m
x(j) for all i ∈ N . The reason is that in this case, it is possible that

an agent accepts with positive probability even if less than m agents have the inclination
to accept with positive probability.
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Definition 3 (Terminal class). A terminal class is a collection of states
C ⊆ 2N that forms a strongly connected and closed component, i.e., for all
S, T ∈ C, there exists a path11 from S to T and there is no path from S to
T if S ∈ C, T /∈ C.

We can decompose the state space into disjoint terminal classes – also
called absorbing classes – C1, . . . , Cl ⊆ 2N , for some l ≥ 2, and a set of
transient states T = 2N\(

⋃l
k=1 Ck). For convenience, we denote by C∪ =⋃l

k=1 Ck the set of all states within terminal classes. Let us now define the
notion of an influential agent (Grabisch and Rusinowska, 2011b).

Definition 4 (Influential agent). (i) An agent j ∈ N is “yes”-influential
on i ∈ N if Ai(1{j}) > 0.

(ii) An agent j ∈ N is “no”-influential on i ∈ N if Ai(1N\{j}) < 1.

The idea is that j is “yes”-(or “no”-)influential on i if j’s opinion to say
“yes” (or “no”) matters for i in the sense that there is a positive probability
that i follows the opinion that is solely held by j. Analogously to influential
agents, we can define influential coalitions (Grabisch and Rusinowska, 2011b).

Definition 5 (Influential coalition). (i) A nonempty coalition S ⊆ N
is “yes”-influential on i ∈ N if Ai(1S) > 0.

(ii) A nonempty coalition S ⊆ N is “no”-influential on i ∈ N if Ai(1N\S) <
1.

Making the assumption that the probabilities of saying “yes” are indepen-
dent among agents12 and only depend on the current state, we can represent
our aggregation model by a time-homogeneous Markov chain with transition
matrix B = (bS,T )S,T⊆N , where

bS,T = Πi∈TAi(1S)Πi/∈T (1− Ai(1S)).

Hence, the states of this Markov chain are the states or coalitions of the agents
that currently say “yes” in the influence process. Note that for each coalition

11We say that there is a path from S to T if there is K ∈ N and states S =
S1, S2, . . . , SK−1, SK = T such that Ai(Sk) > 0 for all i ∈ Sk+1 and Ai(Sk) < 1 oth-
erwise, for all k = 1, . . . ,K − 1.

12This assumption is not limitative, and correlated opinions may be considered as well.
In the latter case, only the next equation giving bS,T will differ.
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S ⊆ N , the transition probabilities to coalitions T ⊆ N are represented by
a certain row of B. The m-th power of a matrix, e.g., B = (bS,T )S,T⊆N , is
denoted by Bm = (bS,T (m))S,T⊆N . Moreover, let {Xk}k∈N be a homogeneous
Markov chain and (Ω,F ,P) a probability space corresponding to B, i.e.,

P(Xk+1 = T | Xk = S) = bS,T for all k ∈ N, S, T ⊆ N.

Note that this Markov chain is neither irreducible nor recurrent since it has at
least two terminal classes – also called communication classes in the language
of Markov chains.

3 Anonymity

We establish the notions of anonymous aggregation functions and models.
In what follows, we show that the notions of anonymity are consistent and
that anonymous functions are characterized by OWA operators. Moreover,
anonymity allows to reduce the complexity of the model a lot.

Definition 6 (Anonymity). (i) We say that an n-place aggregation func-
tion A is anonymous if for all x ∈ {0, 1}n and any permutation σ : N →
N , A(x1, . . . , xn) = A(xσ(1), . . . , xσ(n)).

(ii) Suppose B is obtained from an aggregation model with aggregation
functions A1, . . . , An. We say that the model is anonymous if for all
s, t ∈ {0, 1, . . . , n},

∑

T⊆N:

|T |=t

bS,T =
∑

T⊆N:

|T |=t

bS′,T for all S, S ′ ⊆ N of size s.

For an agent using an anonymous aggregation function, only the size of
the current coalition matters. Similarly, in models that satisfy anonymity,
only the size of the current coalition matters for the further influence pro-
cess. In other words, it matters how many agents share an opinion, but not
which agents do so. Let us now confirm that our notions of anonymity are
consistent in the sense that models where agents use anonymous functions
are anonymous. Moreover, we characterize anonymous aggregation functions
by ordered weighted averages.

Proposition 1. (i) An aggregation model with anonymous aggregation func-
tions A1, . . . , An is anonymous.
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(ii) An aggregation function A is anonymous if and only if it is an ordered
weighted average.

Proof. We omit the proof of (i) as well as the necessity part of (ii). For
the sufficiency part, suppose that A is an anonymous aggregation function,
i.e., for all x ∈ {0, 1}n and any permutation σ : N → N , A(x1, . . . , xn) =
A(xσ(1), . . . , xσ(n)). This is equivalent to A(1S) = A(1S′) for all S, S ′ ⊆
N such that |S| = |S ′|. Hence, there exists w ∈ Rn such that A(1S) =∑

i∈N wi(1S)(i) for all S ⊆ N . It follows by the definition of aggregation
functions, that wi ≥ 0 for all i ∈ N (nondecreasingness) and

∑n
i=1wi = 1

(boundary condition), which finishes the proof.

Note that the converse of the first part does not hold, a model can be
anonymous although not all agents use anonymous aggregation functions as
we now show by example. We study the phenomenon ofmass psychology, also
called herding behavior, considered in Grabisch and Rusinowska (2011b).

Example 3 (Mass psychology). Mass psychology or herding behavior
means that if at least a certain number m ∈ {⌊n

2
⌋ + 1, . . . , n} of agents

share the same opinion, then these agents attract others, who had a different
opinion before. We assume that an agent changes her opinion in this case
with probability λ ∈ (0, 1). In particular, we consider n = 3 agents and a
threshold of m = 2. This means whenever only two agents are of the same
opinion, the third one might change her opinion. This corresponds to the
following mass psychology aggregation model:

Mass
[2]
i (x) = λx(2) + (1− λ)xi for all i ∈ N.

Agents are “yes”- and “no”-influential on themselves and coalitions of size
two or more are “yes”- and “no”-influential on all agents. The model gives
the following digraph of the Markov chain:

∅

1

2

3

12

13

23

N

λ

1− λ

λ 1− λ

λ

1− λ

1− λ

λ

1− λ λ

1− λ

λ
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The aggregation functions are not anonymous since agents consider their
own opinion with weight 1 − λ > 0. However, the model turns out to be
anonymous, there is no differentiation between different coalitions of the
same size, as can be seen from the digraph.

An immediate consequence of Proposition 1 is that models where agents
use OWA operators are anonymous.

Corollary 1. Aggregation models with aggregation functions Ai = OWAwi, i ∈
N , are anonymous.

Suppose B is obtained from an anonymous aggregation model A1, . . . , An.
Then, we can reduce its complexity a lot: B can be reduced from a 2n × 2n

transition matrix to an (n+1)× (n+1) matrix Ba = (bas,t)s,t∈{0,1,...,n}, where

bas,t =
∑

T⊆N:

|T |=t

bS,T , for any S ⊆ N of size s,

are the transition probabilities from coalitions of size s to coalitions of size t.
However, note that the gain in tractability – the dimensions of the transition
matrix grow only linearly instead of exponentially in the number of agents
– comes at the cost of losing track of the transition probabilities to certain
states. For a given terminal class C and the set of transient states T , we
define the corresponding anonymous terminal class and the anonymous set
of transient states by Ca = {s ∈ {0, 1, . . . , n} | ∃ S ∈ C such that |S| = s}
and T a = {s ∈ {0, 1, . . . , n} | S ∈ T if |S| = s}, respectively. Note that
anonymous terminal classes are extended by states of the same size as states
within the original class.

4 Convergence Analysis

In this section, we study the convergence of aggregation models where the
influence process is determined by OWA operators, i.e., by anonymous ag-
gregation functions. In Grabisch and Rusinowska (2011b, Theorem 2), the
authors show that there are three different types of terminal classes in the
general model. To terminal classes of the first type, singletons {S}, S ⊆ N ,
we usually refer to as terminal states. They represent the two consensus
states, {N} and {∅}, as well as situations where the society is eventually po-
larized: agents within the class say “yes”, while the others say “no”. Classes

12



of the second type are called cyclic terminal classes, their states form a cycle
of nonempty sets {S1, . . . , Sk} of any length 2 ≤ k ≤

(
n

⌊n/2⌋

)
(and therefore

they are periodic of period k) with the condition that all sets are pairwise
incomparable (by inclusion).13 In other words, given the process has reached
a state within such a class, the transition to the next state is determinis-
tic. And the period of the class determines after how many steps a state is
reached again. We refer to the last type as regular terminal classes. They
are collections R of nonempty sets with the property that R = R1∪· · ·∪Rp,
where each subcollection Rj is an interval {S ∈ 2N | Sj ⊆ S ⊆ Sj ∪ Kj},
with Sj 6= ∅, Sj ∪ Kj 6= N , and at least one Kj is nonempty. If such a
class only consists of a single interval R1 = {S ∈ 2N | S1 ⊆ S ⊆ S1 ∪K1},
where S1 6= ∅ and S1 ∪ K1 6= N , then we can interpret this terminal class
as a situation where agents in S1 finally decided to say “yes” and agents
outside S1 ∪ K1 finally decided to say “no”, while the agents in K1 change
their opinion non-deterministically forever. With more than one interval, the
interpretation is more complex and depends on the transitions between the
intervals. Reaching an interval Rj means that the process attains one of its
states, i.e., the agents in Sj say “yes” for sure and with some probability,
also some agents in Kj do so.

Our aim is to investigate conditions for these outcomes under anonymous
influence. We also relax our setup and study the case where agents use or-
dered weighted averages only to some extend. Our results turn out to be – due
to the restriction to anonymous aggregation functions – inherently different
from those in the general model, see Grabisch and Rusinowska (2011b). We
first consider influential coalitions and discuss (non-trivial) terminal classes.
In the following, we derive a characterization of convergence to consensus
and finally provide a generalization of our setting.

Due to anonymity, it is not surprising that the influence of a coalition
indeed solely depends on the number of individuals involved.

Proposition 2. Consider an aggregation model with aggregation functions
Ai = OWAwi, i ∈ N .

(i) A coalition of size 0 < s ≤ n is “yes”-influential on i ∈ N if and only
if min{k ∈ N | wi

k > 0} ≤ s.

13Sets S1, . . . , Sk ⊆ N are called pairwise incomparable (by inclusion) if for any distinct
Si, Sj , i, j ∈ {1, . . . , k}, both Si 6⊆ Sj and Si 6⊇ Sj .
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(ii) A coalition of size 0 < s ≤ n is “no”-influential on i ∈ N if and only
if max{k ∈ N | wi

k > 0} ≥ n + 1− s.

Proof. Let S ⊆ N have size 0 < s ≤ n and be “yes”-influential on i ∈ N ,
i.e.,

Ai(1S) =

s∑

k=1

wi
k > 0 ⇔ min{k ∈ N | wi

k > 0} ≤ s.

The second part is analogous.

The result on influential agents follows immediately.

Corollary 2. Consider an aggregation model with aggregation functions Ai =
OWAwi, i ∈ N .

(i) All agents j ∈ N are “yes”-influential on i ∈ N if and only if wi
1 > 0.

(ii) All agents j ∈ N are “no”-influential on i ∈ N if and only if wi
n > 0.

Note that this means that either all agents are “yes”-(or “no”-)influential
on some agent i ∈ N or none. Next, we study non-trivial terminal classes.
We characterize terminal states, i.e., states where the society is polarized
(except for the trivial terminal states), and show that – due to anonymity –
there cannot be a cycle.

Proposition 3. Consider an aggregation model with aggregation functions
Ai = OWAwi, i ∈ N .

(i) A state S ⊆ N of size s is a terminal state if and only if
∑s

k=1w
i
k =

1 for all i ∈ S and
∑s

k=1w
i
k = 0 otherwise.

(ii) There does not exist any cycle.

Proof. The first part is obvious. For the second part, assume that there is a
cycle {S1, . . . , Sk} of length 2 ≤ k ≤

(
n

⌊n/2⌋

)
. This implies that there exists

l ∈ {1, . . . , k} such that sl ≤ sl+1, where Sk+1 ≡ S1. Thus,

sl∑

j=1

wi
j = 1 for all i ∈ Sl+1

and hence Sl+1 ⊆ Sl+2, which is a contradiction to pairwise incomparability
by inclusion, see Grabisch and Rusinowska (2011b, Theorem 2).
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For regular terminal classes, note that an agent i ∈ N such that wi
1 = 1

blocks a “no”-consensus and an agent j ∈ N such that wj
n = 1 blocks a

“yes”-consensus – given that the process has not yet arrived at a consen-
sus. Therefore, since there cannot be any cycle, these two conditions, while
ensuring that there is no other terminal state, give us a regular terminal
class.

Example 4 (Regular terminal class). Consider an aggregation model
with aggregation functions Ai = OWAwi, i ∈ N = {1, 2, 3}. Let agent 1 block
a “no”-consensus and agent 3 block a “yes”-consensus, i.e., w1

1 = w3
3 = 1.

Furthermore, choose w2
1 = w2

3 =
1
2
. Then, {{1}, {1, 2}} is a regular terminal

class. We have A(1{1}) = A(1{1,2}) = (1 1
2
0)T .

It is left to find conditions that avoid both non-trivial terminal states
and regular terminal classes and hence ensure that the society ends up in
a consensus. The following result characterizes the non-existence of non-
trivial terminal classes. The idea is that – due to anonymity – for reaching a
consensus, there must be some threshold such that whenever the size of the
coalition is at least equal to this threshold, there is some probability that
after mutual influence, more agents will say “yes”. And whenever the size is
below this threshold, there is some probability that after mutual influence,
more agents will say “no”.

Theorem 1. Consider an aggregation model with aggregation functions Ai =
OWAwi, i ∈ N . Then, there are no other terminal classes than the trivial
terminal classes if and only if there exists k̄ ∈ {1, . . . , n} such that both:

(i) For all k = k̄, . . . , n− 1, there are distinct agents i1, . . . , ik+1 ∈ N such
that

k∑

j=1

wil
j > 0 for all l = 1, . . . , k + 1.

(ii) For all k = 1, . . . , k̄ − 1, there are distinct agents i1, . . . , in−k+1 ∈ N
such that

k∑

j=1

wil
j < 1 for all l = 1, . . . , n− k + 1.

The proof is in the appendix. Note that Theorem 1 implies a straightfor-
ward – but very strict – sufficient condition:
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Remark 1. Consider an aggregation model with aggregation functions Ai =
OWAwi, i ∈ N . Then, there are no other terminal classes than the trivial
terminal classes if wi

1 > 0 for all i ∈ N (k̄ = 1), or wi
n > 0 for all i ∈ N

(k̄ = n).

We get a more intuitive formulation of Theorem 1 by using influential
coalitions.

Corollary 3. Consider an aggregation model with aggregation functions Ai =
OWAwi, i ∈ N . Then, there are no other terminal classes than the trivial
terminal classes if and only if there exists k̄ ∈ {1, . . . , n} such that both:

(i) For all k = k̄, . . . , n − 1, there are k + 1 distinct agents such that
coalitions of size k are “yes”-influential on each of them.

(ii) For all k = 1, . . . , k̄ − 1, there are n − k + 1 distinct agents such that
coalitions of size n− k are “no”-influential on each of them.

In more general situations, the agents’ behavior might only partially be
determined by ordered weighted averages. We consider agents who use aggre-
gation functions that are decomposable in the sense that they are (convex)
combinations of ordered weighted averages and general aggregation functions.

Definition 7 (OWA-decomposable aggregation function). We say that
an n-place aggregation function A is OWAw-decomposable, if there exists
λ ∈ (0, 1] and an n-place aggregation function A′ such that A = λOWAw +
(1− λ)A′.

Such aggregation functions do exist since convex combinations of aggrega-
tion functions are again aggregation functions. Note that these functions are,
in general, not anonymous any more, though. However, the mass psychology
influence model presented in Section 5 – to which we will come back later on
– is anonymous although the agents use in fact these decomposable aggrega-
tion functions. To provide some intuition for why these functions are useful,
let us consider the class where ordered weighted averages are combined with
weighted averages.14

14We say that an n-place aggregation function A is a weighted average A = WAw

with weight vector w, i.e., 0 ≤ wi ≤ 1 for i = 1, . . . , n and
∑n

i=1 wi = 1, if A(x) =∑n

k=1 wkxk for all x ∈ {0, 1}n.
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Example 5 (OWA-/WA-decomposable aggregation functions). Con-
sider a convex combination of an ordered weighted average and a weighted
average,

A = λOWAw + (1− λ)WAw′,

where λ ∈ (0, 1) and w,w′ are any weight vectors. This allows us to somehow
combine our model with the classical model by DeGroot.15 We can interpret
this as follows: to some extend λ, an agent updates her opinion anonymously
to account, e.g., for majorities within her social group. But she might as well
value her own opinion somehow – like in the mass psychology model – or
some agents might be really important for her such that she wants to put
also some weight directly on them, as we show in Example 7.

As it turns out, the sufficiency part of Theorem 1 also holds if agents
use such decomposable aggregation functions. If the ordered weighted aver-
age components of the decomposable functions fulfill the two conditions of
Theorem 1, then the agents reach a consensus.16

Corollary 4. Consider an aggregation model with OWAwi-decomposable ag-
gregation functions Ai, i ∈ N . Then, there are no other terminal classes than
the trivial terminal classes if there exists k̄ ∈ {1, . . . , n} such that both:

(i) For all k = k̄, . . . , n− 1, there are distinct agents i1, . . . , ik+1 ∈ N such
that

k∑

j=1

wil
j > 0 for all l = 1, . . . , k + 1.

(ii) For all k = 1, . . . , k̄ − 1, there are distinct agents i1, . . . , in−k+1 ∈ N
such that

k∑

j=1

wil
j < 1 for all l = 1, . . . , n− k + 1.

Let us finally apply the concept of decomposable aggregation functions
to more specific examples. As it turns out, the example on mass psychology
combines the majority influence model and a completely self-centered agent.

15With the restriction that, differently to the DeGroot model, opinions are in {0,1}.
16It is clear that, in general, the necessity part does not hold since convergence to

consensus may as well be (partly) ensured by the other component.
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Example 6 (Mass psychology, continued). We have seen in Example 3
that for parameters n = 3, m = 2 and λ ∈ (0, 1), we get the following mass
psychology aggregation model:

Mass
[2]
i (x) = λx(2) + (1− λ)xi for all i ∈ N.

This aggregation function is OWAw-decomposable, with w2 = 1 and by Corol-
lary 4, taking k̄ = 2, we see that the group eventually reaches a consensus.
This example is a particular case of Example 5 and furthermore, it is equiv-
alent to a convex combination of the majority influence model and a com-
pletely self-centered agent:

Mass
[2]
i (x) = λMaj

[2]
i (x) + (1− λ)xi for all i ∈ N.

Hence, λ could be interpreted as a measure for how “democratically” – or,
to put it the other way, “egoistically” – an agent behaves.

Finally, we study an example where agents use the majority influence
model, but also put some weight directly on agents that are important for
them. We study a case that turns out to be as well anonymous and further-
more, it is in some sense equivalent to the example on mass psychology.

Example 7 (Important agents). Although agents might follow somehow
a majority influence model, there might still be some important agents, e.g.,
very good friends or agents with an excellent reputation, whom they would
like to trust directly as well. In particular, we consider n = 3 agents and
that each agent follows to some extend λ ∈ (0, 1) the simple majority model.
Moreover, for each agent, the agent with the next higher index has a relative
importance of 1 − λ for her.17 This corresponds to the following important
agents aggregation model:

Imp
[2;i+1]
i (x) = λMaj

[2]
i (x) + (1− λ)xi+1 for all i ∈ N.

Agent i+1 is “yes”- and “no”-influential on agent i for all i ∈ N and coalitions
of size two or more are “yes”- and “no”-influential on all agents. The model
gives the following digraph of the Markov chain:

17We consider 4 ≡ 1.

18



∅

1

2

3

12

13

23

N

λ

1− λλ

1− λ

λ 1− λ

λ1− λ

λ

1− λ λ

1− λ

From the digraph, we can see that the model is anonymous although the
aggregation functions are not.18 Furthermore, the reduced transition matrix
Ba is identical to the one of the mass psychology example. Therefore, we
can say that the two models are anonymously equivalent : starting in a state
of size one or two, both models stay within the set of states of the same
size with probability 1 − λ and converge to the “no”- or “yes”-consensus,
respectively, with probability λ.

5 Speed of Convergence and Absorption

We first study the speed of convergence – also called time before absorption in
the language of Markov chains – of the influence process to terminal classes.
Secondly, we investigate the probabilities of convergence to each of the con-
sensus states and possibly other terminal classes – we call them absorption
probabilities. Since this analysis has not been done in Grabisch and Rusi-
nowska (2011b), we provide it for the general aggregation model and also for
anonymous models, which cover particularly the case where all agents use
OWA operators. Moreover, we find that anonymity leads to a substantial
gain in computational tractability.

Suppose that B is obtained from an aggregation model A1, . . . , An and
that there is at least one transient state, i.e., T 6= ∅. We assume that the
process starts from one of these states, that is, we take some S ∈ T as the
initial coalition. Note that since the set of transient states is finite, we have
convergence to the terminal classes almost surely. We say that the influence
process B converges to the terminal classes after m steps of influence if

18Note that this is a consequence of our choice of important agents. For most choices,
the model would not be anonymous, e.g., if two agents were important for each other and
one of them was important for the third one.
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{Xm−1 ∈ T , Xm /∈ T }. Thus, the speed of convergence is the time it takes
for the process to leave the set of transient states.19 To measure it, we use
stopping times and rely on results provided in Brémaud (1999). Let τS be
a stopping time such that {τS = m} if we have convergence to the terminal
classes after m steps of influence when S is the initial coalition, i.e.,

{τS = m} = {Xm /∈ T , Xm−1 ∈ T | X0 = S}.

The notation carries over to the case where Ba is obtained from an anony-
mous aggregation model.20

Our aim is to determine the distribution of the speed of convergence, given
by the distribution of τS. It turns out that the latter is solely determined by
the transition probabilities within the set of transient states.

Proposition 4. Suppose B is obtained from an aggregation model with ag-
gregation functions A1, . . . , An. If S ∈ T is the initial coalition, then

P(τS > m) =
∑

T∈T

qS,T (m),

where Q = B|T . Furthermore,

E[τS ] =

∞∑

m=0

∑

T∈T

qS,T (m) < +∞.

Proof. The first part follows from Brémaud (1999, p. 154, Theorem 5.2).
For the expected value of τS, first note that it only takes nonnegative integer
values. The first equality of the following computation follows from this fact,
whereas the third equality and the inequality follow since T is finite and Q
is strictly sub-stochastic, i.e.,

∑∞
m=0Q

m < +∞.21

E[τS] =
∞∑

m=0

P(τS > m) =
∞∑

m=0

∑

T∈T

qS,T (m) =
∑

T∈T

∞∑

m=0

qS,T (m) < +∞.

19Note that we do not consider the speed of convergence to certain terminal classes
since its expected value will be infinite if there is a positive probability that this may
not happen. Instead, we consider later on the absorption probabilities of certain terminal
classes.

20Accordingly, we denote by τs the stopping time such that {τs = m} if we have con-
vergence to the terminal classes after m steps of influence when s is the size of the initial
coalition.

21cf. Brémaud (1999, p. 155, Theorem 6.1). It is understood that the right member is
a matrix whose entries are all +∞.
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For anonymous models, recall first that anonymous terminal classes are
extended by states of the same size as states within the original class. This
implies that the speed of convergence will be distorted in case it is possible
that the process arrives at a state which is part of an anonymous terminal
class, but not of the corresponding original one. We call such a model dis-
torted. In this case, we need to use the original model to compute the speed
of convergence. Models that only have singleton terminal classes are not
distorted, though.

Corollary 5. Suppose Ba is obtained from an anonymous aggregation model
with aggregation functions A1, . . . , An that is not distorted. If s ∈ T a is the
size of the initial coalition, then

P(τs > m) =
∑

t∈T a

qas,t(m) and E[τs] =

∞∑

m=0

∑

t∈T a

qas,t(m) < +∞.

The next step is to look at the absorption probabilities of certain terminal
classes. Define by

D = (dS,T )S∈T ,T∈C∪ := (bS,T )S∈T ,T∈C∪

the matrix of transition probabilities from transient states to states within
terminal classes. We can decompose D into matrices

Dk := (dS,T )S∈T ,T∈Ck

of transition probabilities from transient states to states within a certain ter-
minal class. For our analysis, it does not matter at which state the influence
process enters a terminal class and hence we can reduce the matrix D by
considering a terminal class Ck simply as a terminal state C̃k. The transition
probabilities from transient states to a terminal class Ck are then given by
the vector

D̃k :=

(
∑

T∈Ck

dS,T

)

S∈T

.

Let us denote the matrix of transition probabilities from transient states to
the terminal classes by D̃ := (D̃1 : · · · : D̃l) and define F := (I−Q)−1.22

22Note that for absorbing Markov chains the matrix F always exists since Qm → 0 for
m → ∞.

21



Furthermore, denote by τkS a stopping time such that {τkS = m} if we have
absorption by the terminal class Ck after m steps of influence when starting
in state S. The following result immediately follows from Brémaud (1999, p.
157, Theorem 6.2).

Proposition 5. Suppose B is obtained from an aggregation model with ag-
gregation functions A1, . . . , An. If S ∈ T is the initial coalition, then we get
for the absorption probabilities:

P(τkS < ∞) = gS,C̃k , for k = 1, . . . , l, where (gS,C)S∈T ,C∈{C̃1,...,C̃l}
:= FD̃.

For anonymous models, the result is straightforward. The reason is that
if, in a distorted model, the influence process has reached a state that is part
of an anonymous terminal class, but not of the corresponding original one,
then it will converge to that original class immediately due to anonymity.
This also justifies not considering such states as possible initial states.

Corollary 6. Suppose Ba is obtained from an anonymous aggregation model
with aggregation functions A1, . . . , An. If s ∈ T a is the size of the initial
coalition, then we get for the absorption probabilities:

P(τks < ∞) = ga
s,C̃a

k

, for k = 1, . . . , l.

The initial coalition S ∈ T (or its size s) in the results above can as
well be seen as a coalition (or its size) at some stage of the influence process
before entering a terminal class. This finishes our analysis of the speed of
convergence and absorption probabilities.23

To illustrate the results, we continue the example on mass psychology.

Example 8 (Mass psychology, continued). We have seen in Example 3
that for parameters n = 3, m = 2 and λ ∈ (0, 1), we get the following mass
psychology aggregation model:

Mass
[2]
i (x) = λx(2) + (1− λ)xi for all i ∈ N.

23We could also discuss the convergence after the process has entered a terminal class.
This is obvious at least for singleton and cyclic terminal classes, though. For the lat-
ter, there is clearly no convergence to a stationary distribution. Furthermore, it holds
that regular classes are convergent if and only if their corresponding transition matrix is
aperiodic.
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Using anonymity, we get for any initial coalition of size 1 ≤ s ≤ 2:

P(τs > m) = (1− λ)m and E[τs] =
1

λ
.

So, the speed of convergence hinges on λ, the probability that an agent
follows the herd. If it is small, the process can take a long time. If initially
two agents said “yes”, the process terminates (with probability one) in the
“yes”-consensus and otherwise, it terminates in the “no”-consensus.

Recall that the example on important agents (Example 7) is anonymously
equivalent to this example.24 Therefore, also the speed of convergence is the
same in both examples.

6 Applications to fuzzy linguistic quantifiers

Instead of being sharp edged, e.g., as in the majority model, the threshold of
an agent initially saying “no” for changing her opinion might be rather “soft”.
For instance, she could change her opinion if “most of the agents say ‘yes’ ”.
This is called a soft majority and phrases like “most” or “many” are so-called
fuzzy linguistic quantifiers. Furthermore, soft minorities are also possible,
e.g., “at least a few of the agents say ‘yes’ ”. Our aim is to apply our findings
on ordered weighted averages to fuzzy linguistic quantifiers. Mathematically,
we define the latter by a function which maps the agents’ proportion that
says “yes” to the degree to which the quantifier is satisfied.25

Definition 8 (Fuzzy linguistic quantifier). A fuzzy linguistic quantifier
Q is defined by a nondecreasing function

µQ : [0, 1] → [0, 1] such that µQ(0) = 0 and µQ(1) = 1.

Furthermore, we say that the quantifier is regular if the function is strictly
increasing on some interval (c, c̄) ⊆ [0, 1] and otherwise constant.

Fuzzy linguistic quantifiers like “most” are ambiguous in the sense that
it is not clear how to define them exactly mathematically. For example, one
could well discuss which proportion of the agents should say “yes” for the

24see Example 7.
25cf. Zadeh (1983)
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quantifier “most” to be fully satisfied. Nevertheless, let us give some typical
examples.26

Example 9 (Typical quantifiers). We define

(i) Qaa = “almost all” by

µQaa
(x) :=





1, if x ≥ 9
10

5
2
x− 5

4
, if 1

2
< x < 9

10

0, otherwise
,

(ii) Qmo = “most” by

µQmo
(x) :=





1, if x ≥ 4
5

5
2
x− 1, if 2

5
< x < 4

5

0, otherwise
,

(iii) Qma = “many” by

µQma
(x) :=





1, if x ≥ 3
5

5
2
x− 1

2
, if 1

5
< x < 3

5

0, otherwise
,

(iv) Qaf = “at least a few” by

µQaf
(x) :=

{
1, if x ≥ 3

10
10
3
x, otherwise

.

Note that these quantifiers are regular. For every quantifier, there exists a
corresponding ordered weighted average in the sense that the latter represents
the quantifier.27 We can find its weights as follows.

Lemma 1 (Yager, 1988). Let Q be a fuzzy linguistic quantifier defined by
µQ. Then, the weights of its corresponding ordered weighted average OWAQ

are given by

wk = µQ

(
k

n

)
− µQ

(
k − 1

n

)
, for k = 1, . . . , n.

26cf. Yager and Kacprzyk (1997)
27Note that this is due to our definition. The conditions in Definition 8 ensure that

there exists such an ordered weighted average. In general, one can define quantifiers also
by other functions, cf. Zadeh (1983).
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In other words, the weights wk of the corresponding ordered weighted
average are equal to the increase of µQ between k−1

n
and k

n
, i.e., since µQ is

nondecreasing, all weights are nonnegative and by the boundary conditions,
it is ensured that they sum up to one. We are now in the position to apply our
results to regular quantifiers. We find that if all agents use such a quantifier,
then under some similarity condition, the group will finally reach a consensus.
This condition says that there must be a common point where all the fuzzy
quantifiers are strictly increasing. This implies that there is a common non-
zero weight of the corresponding OWA operators, which turns out to be
sufficient to satisfy the condition of Theorem 1. Moreover, we show that the
result still holds if some agents deviate to a quantifier that is not similar in
that sense. In the following, we denote the quantifier of an agent i by Qi.

Proposition 6. Consider an aggregation model with aggregation functions
Ai = OWAQi , i ∈ N .

(i) If Qi is regular for all i ∈ N and ∩i∈N(ci, c̄i) 6= ∅, then there are no
other terminal classes than the trivial terminal classes.

(ii) Suppose mini∈N ci > 0, then the result in (i) still holds if less than ⌈c̄dn⌉
agents deviate to a regular quantifier Qd such that c̄d < mini∈N ci.

(iii) Suppose maxi∈N c̄i < 1, then the result in (i) still holds if less than ⌈(1−
cd)n⌉ agents deviate to a regular quantifier Qd such that maxi∈N c̄i < cd.

The proof is in the appendix. Note that the deviating agents can in fact
also use different quantifiers, as follows.

Remark 2. (i) Suppose mini∈N ci > 0, then the result in part (i) of the
Proposition still holds if k < ⌈mind c̄dn⌉ agents id1 , . . . , idk deviate to
regular quantifiers Qd such that c̄d < mini∈N ci for all d = d1, . . . , dk .

(ii) Suppose maxi∈N c̄i < 1, then the result in part (i) of the Proposition
still holds if k < ⌈(1−maxd cd)n⌉ agents id1 , . . . , idk deviate to regular
quantifiers Qd such that cd > maxi∈N c̄i for all d = d1, . . . , dk .

(iii) Suppose mini∈N ci > 0 and maxi∈N c̄i < 1, then the result in part
(i) of the Proposition still holds if k < ⌈minp c̄pn⌉ agents ip1, . . . , , ipk
deviate to regular quantifiers Qp and k′ < ⌈(1 − maxq cq)n⌉ agents
iq1 , . . . , iqk′ deviate to regular quantifiers Qq such that c̄p < mini∈N ci
and cq > maxi∈N c̄i for all p = p1, . . . , pk and q = q1, . . . , qk′ .

25



We can also characterize terminal states in a model where agents use regu-
lar quantifiers. We find that S is a terminal state if and only if the quantifiers
of the agents in S are already fully satisfied at s

n
, while the quantifiers of the

other agents are not satisfied at all at this point.

Proposition 7. Consider an aggregation model with aggregation functions
Ai = OWAQi, i ∈ N . If Qi is regular for all i ∈ N , then a state S ⊆ N of
size s is a terminal state if and only if

max
i∈S

c̄i ≤
s

n
≤ min

i∈N\S
ci.

Proof. Suppose S ⊆ N of size s is a terminal state. By Proposition 3, we
know that this is equivalent to

s∑

k=1

wi
k = 1 for all i ∈ S and

s∑

k=1

wi
k = 0 otherwise

⇔µQi(s/n) = 1 for all i ∈ S and µQi(s/n) = 0 otherwise

⇔max
i∈S

c̄i ≤
s

n
≤ min

i∈N\S
ci.

To provide some intuition, let us come back to Example 9 and look at
the implications our findings have on the quantifiers defined therein.

Example 10 (Typical quantifiers, continued). Consider an aggregation
model with aggregation functions Ai = OWAQi, i ∈ N .

(i) If Qi ∈ {Qaa,Qmo,Qma} for all i ∈ N , then there are no other terminal
classes than the trivial terminal classes. The result still holds if less
than ⌈ 3

10
n⌉ agents deviate to Qaf.

(ii) If Qi ∈ {Qma,Qaf} for all i ∈ N , then there are no other terminal
classes than the trivial terminal classes. The result still holds if less
than ⌈1

2
n⌉ agents deviate, each of them either to Qaa or Qmo.

(iii) A state S ⊆ N of size s is a terminal state if Qi = Qaf for all i ∈ S,
Qi = Qaa (Qi ∈ {Qaa,Qmo}) otherwise and 3

10
≤ s

n
≤ 1

2
(≤ 2

5
).
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It is left to provide concrete examples where agents use these quantifiers.
We give an example where agents finally reach a consensus as well as one
where this might not be the case.

Example 11 (Typical quantifiers in a four-agents-society). Consider
an aggregation model with aggregation functions Ai = OWAQi, i ∈ N =
{1, 2, 3, 4}.

(i) Let each quantifier that we introduced be used by one agent, i.e., Q1 =
Qaa, Q

2 = Qmo, Q
3 = Qma and Q4 = Qaf. By Example 10 (i), there are

only the trivial terminal classes. If initially only one or two agents said
“yes” (row one and two of Table 1), the convergence can take quite long
since the first two agents are likely to hold a different opinion than the
fourth agent after mutual influence. However, we see that the group
tends to converge to the “yes”-consensus for most initial coalitions (last
column of Table 1). This is because the “at least a few” quantifier kind
of blocks the “no”-consensus.

(ii) Let two agents use the “almost all” quantifier and the other two the
“at least a few” quantifier, i.e., Q1 = Q2 = Qaa and Q3 = Q4 = Qaf.
By Example 10 (iii), S = {3, 4} is a terminal state, where the last two
agents say “yes” and the others say “no”. If initially only one agent
said “yes” (first row of Table 2), it is very likely that the society is split
up eventually since the probabilities to reach one of the other terminal
classes, N and ∅, are very small (last two columns of Table 2). If
instead three agents said “yes” (last row of Table 2), the group tends
to converge to the “yes”-consensus (second but last column of Table
2). Overall, the convergence is fast. Note that for an initial coalition of
size two other than S = {3, 4}, the convergence to S is immediate due
to anonymity.

We chose only the two extreme quantifiers in the second part because oth-
erwise the group would reach a consensus although the condition in Example
10 (i) was violated. The reason is that the number of agents is small in the
Example, the conditions on the deviating agents in Proposition 6 somehow
get “closer to necessity” when the number of agents increases. In other words,
reaching a consensus seems to be easier in our model for smaller groups.
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P(τs > m) 1 3 5 10 20 30 E[τs] P(τNs < ∞)
1 .85 .65 .48 .22 .04 < 10−2 7.05 .26
2 1 .73 .5 .21 .04 < 10−2 7.32 .61
3 .45 .13 .06 .02 < 10−2 < 10−3 2.26 .97

Table 1: Speed of convergence and absorption probabilities in Example 11
(i).

P(τs > m) 1 3 5 10 E[τs] P(τNs < ∞) P(τ ∅s < ∞)
1 .28 .02 < 10−2 < 10−5 1.38 0 .04
3 .47 .10 .02 < 10−3 1.88 .74 0

Table 2: Speed of convergence and absorption probabilities in Example 11
(ii).

7 Conclusion

We study a stochastic model of influence where agents aggregate opinions
using OWA operators, which are the only anonymous aggregation functions.
As one would expect, an aggregation model is anonymous if all agents use
these functions. However, our example on mass psychology shows that a
model can be anonymous although agents do not use anonymous functions.

In the main part of the paper, we characterize influential coalitions, show
that cyclic terminal classes cannot exist due to anonymity and characterize
terminal states. Our main result provides a necessary and sufficient condition
for convergence to consensus. It turns out that we can express this condi-
tion in terms of influential coalitions. Due to our restriction to anonymous
functions, these results are inherently different to those obtained in the gen-
eral case by Grabisch and Rusinowska (2011b). We also extend our model
to decomposable aggregation functions. In particular, this allows to combine
OWA operators with the classical approach of ordinary weighted averages.
This class of decomposed functions comprises our example on mass psychol-
ogy: it is equivalent to a convex combination of the majority influence model
and a completely self-centered agent. We also study an example on impor-
tant agents and show that in some cases, this model is anonymous as well
and, additionally, anonymously equivalent to the example on mass psychol-
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ogy. Moreover, it turns out that our previous condition on convergence to
consensus is still sufficient in this generalized setting.

We analyse the speed of convergence to terminal classes as well as prob-
abilities of absorption by different classes in the general model studied by
Grabisch and Rusinowska (2011b) and in our case of anonymous models.
For the latter, and in particular models based on OWA operators, we can
reduce the computational demand a lot compared to the general case.

Furthermore, we apply our results to fuzzy linguistic quantifiers and show
that if agents use in some sense similar quantifiers and not too many agents
deviate from these quantifiers, the society will eventually reach a consensus.

These results rely on the fact that for each quantifier, we can find a
unique corresponding ordered weighted average (Lemma 1), which allows to
apply our results on OWA operators. Note that these corresponding ordered
weighted averages clearly depend on the number of agents in the society.
Therefore, we can see a quantifier as well as a more general definition of an
OWA operator (usually called an extended OWA operator ; see Grabisch et al.,
2009), which does not anymore require a fixed number of agents. In other
words, assigning to each agent such an extended OWA operator allows to
vary the number of agents n in the society: for each extended OWA operator
µ, there is a unique function

µ : N → OWA, n 7→ OWAw(µ, n),

that assigns an OWA operator to each number of agents n in the society,
where OWA denotes the set of all OWA operators.
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A Appendix

A.1 Proof of Theorem 1

First, suppose that there exists k̄ ∈ {1, . . . , n} such that (i) and (ii) hold. Let
us take any coalition S ( N of size s ≥ k̄ and show that it is possible to reach
the “yes”-consensus, which implies that S is not part of a terminal class. By
choice of S, it is sufficient to show that there is a positive probability that
after mutual influence, the size of the coalition has strictly increased. That
is, it is sufficient to show that there exists a coalition S ′ ⊆ N of size s′ > s,
such that Ai(1S) > 0 for all agents i ∈ S ′. Set k := s, then by condition (i),
there are distinct agents i1, . . . , ik+1 ∈ N such that

Ail(1S) =
k∑

j=1

wil
j > 0 for all l = 1, . . . , k + 1,
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i.e., setting S ′ := {i1, . . . , ik+1} finishes this part. Analogously, we can show
by condition (ii) that for any nonempty S ⊆ N of size s < k̄ it is possible to
reach the “no”-consensus. Hence, there are only the trivial terminal classes.

Now, suppose to the contrary that for all k̄ ∈ {1, . . . , n} either (i) or (ii)
does not hold. Note that in order to establish that there exists a non-trivial
terminal class, it is sufficient to show that there are k∗, k

∗ ∈ {1, . . . , n −
1}, k∗ ≤ k∗, such that for all S ⊆ N of size s = k∗,

Ai(1S) < 1 for at most n− k∗ distinct agents i ∈ N (C∗[k∗])

and for all S ⊆ N of size s = k∗,

Ai(1S) > 0 for at most k∗ distinct agents i ∈ N. (C∗[k∗])

Indeed, condition C∗[k∗] says that it is not possible to reach a coalition with
less than k∗ agents starting from a coalition with at least k∗ agents. Similarly,
condition C∗[k∗] says that it is not possible to reach a coalition with more
than k∗ agents starting from a coalition with at most k∗ agents.28 Therefore,
it is not possible to reach the trivial terminal states from any coalition S of
size k∗ ≤ s ≤ k∗, which proves the existence of a non-trivial terminal class.

Let now k̄ = 1. Then, clearly condition (ii) is satisfied and thus condition
(i) cannot be satisfied by assumption. Hence, there exists k∗ ∈ {1, . . . , n−1}
such that there are at most k∗ distinct agents i1, . . . , ik∗ such that

k∗∑

j=1

wil
j > 0 for l = 1, . . . , k∗.

This implies that condition (i) is not satisfied for k̄ = 1, . . . , k∗. If k∗ ≥ 2
and additionally condition (ii) was not satisfied for some k̄ ∈ {2, . . . , k∗}, we
were done since then there would exist k∗ ∈ {1, . . . , k∗ − 1} such that there
are at most n− k∗ distinct agents i1, . . . , in−k∗ such that

k∗∑

j=1

wil
j < 1 for l = 1, . . . , n− k∗,

i.e., (C∗[k∗]) and (C∗[k∗]) were satisfied for k∗ ≤ k∗. Therefore, suppose
w.l.o.g. that condition (ii) is satisfied for all k̄ = 1, . . . , k∗. (∗)

28Note that monotonicity of the aggregation function implies that (C∗[k∗]) also holds if
we replace S by a coalition S′ ⊆ N of size s′ > k∗. Analogously for (C∗[k∗]).

33



For k̄ = n, clearly condition (i) is satisfied and thus condition (ii) cannot
be satisfied. Hence, using (∗), there exists k∗ ∈ {k∗, . . . , n − 1} such that
there are at most n− k∗ distinct agents i1, . . . , in−k∗ such that

k∗∑

j=1

wil
j < 1 for l = 1, . . . , n− k∗,

i.e., (C∗[k∗]) and (C∗[k∗]) are satisfied. We now proceed by case distinction:

(1) If k∗ = k∗, then we are done.

(2) If k∗ > k∗, then let k̄ = k∗. By assumption, either (i) or (ii) does not
hold.

(2.1) If (i) does not hold, then there exists k∗∗ ∈ {k∗, . . . , n − 1} such
that there are at most k∗∗ distinct agents i1, . . . , ik∗∗ such that

k∗∗∑

j=1

wil
j > 0 for l = 1, . . . , k∗∗,

i.e. (C∗[k∗]) and (C∗[k∗∗]) are satisfied for k∗ ≤ k∗∗ and hence we
are done.

(2.2) If (ii) does not hold, then, using (∗), there exists k∗∗ ∈ {k∗, . . . , k∗−
1} such that there are at most n− k∗∗ distinct agents i1, . . . , in−k∗∗

such that
k∗∗∑

j=1

wil
j < 1 for l = 1, . . . , n− k∗∗,

i.e., (C∗[k∗∗]) is satisfied. If k∗∗ = k∗, then we are done, otherwise
we can repeat this procedure using k∗∗ instead of k∗.

Since k∗∗ � k∗, we find k∗∗ = k∗ after a finite number of repetitions, which
finishes the proof.

A.2 Proof of Proposition 6

(i) By assumption, there exists c ∈ ∩i∈N(ci, c̄i). Let us define k̄ := min{k ∈
N | k

n
> c}, then clearly k̄−1

n
≤ c. We show that conditions (i) and (ii) of

Theorem 1 are satisfied for k̄. Since for all i ∈ N , µQi is nondecreasing
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and, in particular, strictly increasing on the open ball Bǫ(c) around c
for some ǫ > 0, we get by Lemma 1 that

wi
k̄ = µQ

(
k̄

n

)
− µQ

(
k̄ − 1

n

)
≥ µQ

(
k̄

n

)
− µQ (c) > 0 for all i ∈ N.

This implies that for all k = k̄, . . . , n− 1,

k∑

j=1

wi
j ≥ wi

k̄ > 0 for all i ∈ N

and for all k = 1, . . . , k̄ − 1,

k∑

j=1

wi
j ≤

∑

j 6=k̄

wi
j = 1− wi

k̄ < 1 for all i ∈ N,

i.e., (i) and (ii) of Theorem 1 are satisfied for k̄, which finishes the first
part.

(ii) Suppose mini∈N ci > 0 and denote by D ⊆ N the set of agents that
deviate to the quantifier Qd. Similar to the first part, there exists
c ∈ ∩i∈N\D(ci, c̄i) and we can define k̄ := min{k ∈ N | k

n
> c}. This

implies that for all k = k̄, . . . , n− 1,

k∑

j=1

wi
j > 0 for all i ∈ N\D (∗)

and for all k = 1, . . . , k̄ − 1,

k∑

j=1

wi
j < 1 for all i ∈ N\D. (∗∗)

Furthermore, we have by assumption µQd
(k̄/n) = 1, which implies wi

j =
0 for all j = k̄ + 1, . . . , n and i ∈ D. Thus, for all k = k̄, . . . , n− 1

k∑

j=1

wi
j =

k̄∑

j=1

wi
j = 1 > 0 for all i ∈ D,
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i.e., in combination with (∗), condition (i) of Theorem 1 is satisfied for
k̄. It is left to check condition (ii). Define for i ∈ D,

k̃ := max{k ∈ N | wi
k > 0} = min{k ∈ N | k/n ≥ c̄d} ≤ k̄.

Hence, for k = 1, . . . , k̃ − 1,

k∑

j=1

wi
j < 1 for all i ∈ D.

If k̃ = k̄, condition (ii) is – in combination with (∗∗) – satisfied for k̄ and
any D ⊆ N . Otherwise, we have k̃ < k̄ and then, for k = k̃, . . . , k̄ − 1,

k∑

j=1

wi
j = 1 for all i ∈ D.

This implies in combination with (∗∗) that condition (ii) is only satisfied
if maxk=k̃,...,k̄−1(n− k + 1) = n− k̃ + 1 agents do not deviate, i.e.,

|D| ≤ n− (n− k̃ + 1) = k̃ − 1 ⇔ |D| � k̃ ⇔ |D| � ⌈c̄dn⌉.

Thus, (i) and (ii) of Theorem 1 are satisfied for k̄ if |D| � ⌈c̄dn⌉, which
finishes the proof.

(iii) Analogous to the second part.
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