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Abstract 

From Boston to Chinese Parallel to Deferred Acceptance: Theory and 
Experiments on a Family of School Choice Mechanisms 

by Yan Chen and Onur Kesten* 

We characterize a parametric family of application-rejection school choice mechanisms, 
including the Boston and Deferred Acceptance mechanisms as special cases, and spanning 
the parallel mechanisms for Chinese college admissions, the largest centralized matching 
in the world. Moving from one extreme member to the other results in systematic changes 
in manipulability, stability and welfare properties. Neither the ex-post dominance of the 
DA over the equilibria of Boston, nor the ex-ante dominance of Boston equilibria over the 
DA in stylized settings extends to the parallel mechanisms. In the laboratory, participants 
are most likely to reveal their preferences truthfully under the DA mechanism, followed 
by the Chinese parallel and then the Boston mechanisms. Furthermore, while the DA is 
significantly more stable than the Chinese parallel mechanism, which is more stable than 
Boston, efficiency comparisons vary across environments. 

Keywords: school choice, Boston mechanism, Chinese parallel mechanism, deferred acceptance, 
experiment 
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1 Introduction

School choice has been one of the most important and widely-debated education policies in the past

two decades (Hoxby 2003), with game theory playing a major role in the adoption of school choice

mechanisms. Shortly after Abdulkadiroğlu and Sönmez (2003) was published, New York City

public schools decided to replace its allocation mechanism with a capped version of the student-

proposing deferred acceptance (DA) mechanism (Gale and Shapley 1962, Abdulkadiroğlu, Pathak

and Roth 2005b). Later, presented with theoretical analysis (Abdulkadiroğlu and Sönmez 2003,

Ergin and Sönmez 2006) and experimental evidence (Chen and Sönmez 2006) that one of the most

popular school choice mechanisms, the Boston mechanism, is vulnerable to strategic manipulation

and thus might not result in efficient allocations,1 the Boston Public School Committee voted to

replace the existing Boston school choice mechanism with the deferred acceptance mechanism in

2005 (Abdulkadiroğlu, Pathak, Roth and Sönmez 2005a).

Despite the concern regarding potential manipulation, some recent literature on school choice

has provided a more optimistic view of the Boston mechanism and highlighted some virtues of

the Boston mechanism. Under certain restrictions, Abdulkadiroğlu, Che and Yasuda (2011) and

Miralles (2009) emphasize possible ex ante welfare advantages of the Boston mechanism com-

pared to the DA. Featherstone and Niederle (2008) confirm these predictions in the laboratory. In

a similar vein, Kojima and Ünver (2010) offer axiomatic characterizations of the Boston mecha-

nism, whereas Kesten (2011) shows that, contrary to the DA, the Boston mechanism is immune to

manipulation attempts by schools through concealing capacity.

In this paper, we strive to better understand the sources of these different points of view re-

garding the Boston mechanism and its comparison to the DA. Specifically, we ask: how do the

efficiency-incentive-stability trade-offs change when transitioning from the Boston mechanism to

a mechanism such as the DA? A class of mechanisms that we believe could provide key insights

to this question is one pioneered in Shanghai for high school admissions,2 and later adopted by 22

provinces in Chinese college admissions. In the latter context, they are called the parallel mecha-

nisms.

Like school choice in the United States, college admissions are among the most intensively de-

bated public policies in the past thirty years in China. After the establishment of the People’s Re-

public of China in 1949, Chinese universities continued to admit students via decentralized mech-

anisms. Historians identified two major problems with decentralized admissions during this time

period. From the perspectives of the universities, as each student could be admitted into multi-

1He (2012) presents an interesting analysis of strategic manipulations under the Boston mechanism using school
choice data from Beijing.

2This mechanism was adopted in Shanghai for high school admissions prior to 2003, http://edu.sina.com.
cn/l/2003-05-15/42912.html, retrieved on November 14, 2012.

2

http://edu.sina.com.cn/l/2003-05-15/42912.html
http://edu.sina.com.cn/l/2003-05-15/42912.html


ple universities, the enrollment to admissions ratio was low, ranging from 20% for some ordinary

universities to 75% among the best universities in 1949 (Yang 2006, p. 6). From the students’ per-

spectives, however, after being rejected by the best universities, some qualified students missed the

application and examination deadlines of ordinary universities and ended up not admitted by any

university. To address these coordination problems, in 1950, 73 universities formed three regional

alliances, with centralized admissions within each alliance. Based on the success of the alliances,3

the Ministry of Education decided to transition to centralized matching in 1952 by implementing

the first National College Entrance Examination, also known as gaokao, in August 1952.

In more recent years, each year approximately 10 million high school seniors compete for 6

million seats at various universities in China. To our knowledge, this annual event is the largest

centralized matching process in the world. The matching of students to universities has profound

implications for the education and labor market outcomes of these students. For matching theorists

and experimentalists, the regional variations of matching mechanisms and their evolution over time

provide a wealth of field observations which can enrich our understanding of matching mechanisms

(see Appendix A for a historical account of Chinese college admissions). This paper provides a

systematic theoretical characterization and experimental investigation of the major Chinese college

admissions (CCA) mechanisms.

The CCA mechanisms are centralized matching processes via standardized tests, with each

province implementing an independent matching process. These matching mechanisms fall into

three classes: sequential, parallel, and partial parallel. The sequential mechanism is a priority

matching mechanism similar to the Boston mechanism (Nie 2007b), but executed sequentially

across tiers in decreasing prestige. In the sequential mechanism, each college belongs to a tier.

Within each tier, the Boston mechanism is used. When assignments in the first tier are finalized, the

assignment process in the second tier starts, and so on. A common complaint about the sequential

mechanism is that “a good score in the college entrance exam is worth less than a good strategy

in the ranking of colleges” (Nie 2007a). In response to the college admissions reform survey

conducted by the Beijing branch of the National Statistics Bureau in 2006, a parent complained:

My child has been among the best students in his school and school district. He

achieved a score of 632 in the college entrance exam last year. Unfortunately, he was

not accepted by his first choice. After his first choice rejected him, his second and third

choices were already full. My child had no choice but to repeat his senior year.4

3This experiment achieved an improved average enrollment to admissions ratio of 50% for an ordinary university
(Yang 2006, p. 7). The enrollment to admissions ratio for an ordinary university in 1952 was above 95%, a metric used
by the Ministry of Education to justify the advantages of the centralized exam and admissions process (Yang 2006,
p. 14).

4Source: http://www.bjstats.gov.cn/ldcxxt/tjfx/tjbg/200606/t20060626_44830.htm,
retrieved on November 14, 2012.
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While the sequential mechanism used to be the only mechanism used in CCA prior to 2003, to

alleviate the problem of high-scoring students not accepted by any universities and the pressure to

manipulate preference rankings under the sequential mechanism, the parallel mechanism has been

adopted by 22 provinces by 2012. In the parallel mechanism, students can place several “parallel”

colleges for each choice. For example, a student’s first choice can contain four colleges, A, B, C

and D, in decreasing desirability. Colleges consider student applications, where allocations among

the parallel colleges are temporary until a student is rejected from all the parallel colleges he has

listed. Thus, this mechanism lies between the Boston mechanism, where every step is final, and the

DA, where every step is temporary until all seats are filled.5

In China, the parallel mechanism is widely perceived to improve allocation outcomes. For

example, using survey and interview data from Shanghai in 2008, the first year when Shanghai

adopted the parallel mechanism for college admissions, Hou, Zhang and Li (2009) find a 40.6%

decrease in the number of students who refused to go to the universities they were matched with,

compared to the year before when the sequential mechanism was in place.

An interview with a parent in Beijing also underscores the incentives to manipulate the first

choice under the sequential versus the parallel mechanisms:6

My child really wanted to go to Tsinghua University. However, . . ., in order not to take

any risks, we unwillingly listed a less prestigious university as her first choice. Had

Beijing allowed parallel colleges as the first choice, we could at least give [Tsinghua]

a try.

Transitioning from sequential to the parallel mechanisms, five provinces7 have adopted a hy-

brid between the sequential and parallel mechanisms, called the partial parallel mechanism. In

Beijing, for example, a student can list one college as her first choice which retains the sequential

nature, but three parallel colleges as her second choice. While variants of the parallel (and the

partial parallel) mechanisms, each of which differs in the number of parallel choices, have been

implemented in different provinces, to our knowledge, they have not been systematically studied

theoretically or tested in the laboratory.8 In particular, when the number of parallel choices varies,

5An alternative interpretation of the parallel mechanism is that it approximates serial dictatorship with tiers (Wei
2009). Note, however, in the college admissions context when colleges have identical preferences, serial dictatorship
and DA are equivalent.

6Li Li, 2009. “Ten More Provinces Switch to Parallel College Admissions Mechanism This Year.” Beijing Evening
News, June 8.

7In 2012, provinces using the partial parallel mechanism include Beijing, Chongqing, Gansu, Jilin and Sichuan.
8Note that the parallel mechanism differs from the Joint University Programmes Admissions System (JUPAS) used

in college admissions in Hong Kong (Liu and Chiu 2011). Under JUPAS, each student submits preferences over up to
25 programmes. These 25 choices are further divided into 5 bands A, B, C, D, E. For each student, the first three choices
are band A choices, next three are band B, etc. Each programme ranks its applicants with an objective formula (based
on academic performance and other considerations) to form a base priority ranking. Each programme is informed of
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how do manipulation incentives, allocation efficiency and stability change? In this paper, we inves-

tigate this question both theoretically and experimentally. We call the entire class of parallel (and

partial parallel) mechanisms the Chinese parallel mechanisms, the simplest member of this class

the Shanghai mechanism.

To study the performance of the different mechanisms more formally, we first provide a theo-

retical analysis and present a parametric family of application-rejection mechanisms where each

member is characterized by some positive number e ∈ {1, 2, . . . ,∞} of parallel and periodic

choices through which the application and rejection process continues before assignments are fi-

nalized.

As parameter e varies, we go from the familiar Boston mechanism (e = 1) to the Chinese

parallel mechanisms (e ∈ [2,∞)), and from those to the DA (e = ∞). In this framework, we find

that, as one moves from one extreme member of this family to the other, the experienced trade-

offs are in terms of strategic immunity, stability, and welfare. We provide property-based rankings

of the members of this family using some techniques recently developed by Pathak and Sönmez

(forthcoming). We show that any given member is more manipulable than a member with a higher

e number. As far as stability is concerned, while the ranking is more subtle within the general class

of mechanisms, the DA is more stable than the Shanghai mechanism, which is more stable than the

Boston mechanism.9 On the welfare side, the member of the family indexed by e is the one that

maximizes the number of students receiving one of their (reported) e choices. However, no ranking

can be made based on Pareto efficiency.10

In the literature the comparison of the equilibrium outcomes of the Boston mechanism with the

(dominant strategy equilibrium) outcome of the DA have lead to different conclusions depending

on what is assumed about the information participants hold. Under the assumption of complete

information, the DA outcome Pareto dominates that in any of the Boston equilibria (Ergin and

Sönmez 2006). Under the incomplete information assumption, however, this conclusion is to-

the band it is ranked by a student, but not the precise ranking. Most programmes use this information to adjust the base
priority ranking, giving students who rank it in a higher band more priority over those who rank it in a lower band.
Finally given student preferences and adjusted priority rankings, the outcome is obtained via the student-proposing
deferred acceptance algorithm. The parallel mechanism and JUPAS differ in two important dimensions. First, each
college knows the precise preference ranking of each applicant under the parallel mechanism, whereas it only knows
its band under JUPAS. Second, colleges are not allowed to adjust applicant priority based on how the applicant rank
the colleges in CCA, whereas such adjustments are allowed under JUPAS.

9More precisely, if the outcome of the Boston mechanism is stable at a given problem, then the outcome of the
Shanghai mechanism is also stable at the same problem, while the converse statement is not necessarily true.

10Nie and Zhang (2009) investigate the theoretical properties of a variant of the parallel mechanism where each
applicant has three parallel colleges, i.e., e = 3 in our notation, and characterize the equilibrium when applicant beliefs
are i.i.d draws from a uniform distribution. Using an example, the authors demonstrate that increasing the number of
parallel options, e, does not necessarily result in Pareto improvements for all students, which we generalize in Theorem
3. Wei (2009) considers the parallel mechanism where each college has an exogenous minimum score threshold drawn
from a uniform distribution. Under this scenario, she demonstrates that increasing the number of parallel options
cannot make an applicant worse off.
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tally reversed if students are also assumed to have common ordinal preferences and no priorities

(Abdulkadiroğlu et al. 2011) [henceforth, ACY]. It turns out that neither Boston nor the DA have

any such dominance over a Chinese parallel mechanism such as the Shanghai regardless of the

informational view.

Since the theoretical welfare ranking in this family of mechanisms assumes truthtelling, which

is a dominant strategy only under the DA, it is important to assess the behavioral responses to

members of this family. Furthermore, because of the multiplicity of Nash equilibrium outcomes

in this family of mechanisms, empirical evaluations of the performance of these mechanisms in

controlled laboratory settings will inform policymakers in school choice or college admissions

reform.

For these reasons, we evaluate three members of this family in two environments in the labo-

ratory. In both environments, we find that participants are most likely to reveal their preferences

truthfully under the DA mechanism, followed by the Chinese parallel and then the Boston mecha-

nisms. Consistent with theory, the DA achieves a significantly higher proportion of stable outcomes

than the Chinese parallel, which achieves a significantly higher proportion of stable outcomes than

Boston. However, the efficiency comparison is sensitive to the environment. While theory is silent

on equilibrium selection, we find that stable Nash equilibrium outcomes are more likely to arise

than the unstable ones. To our knowledge, our paper presents the first experimental evaluation of

the Chinese parallel mechanism relative to Boston and the DA, as well as equilibrium selection in

school choice mechanisms.

The rest of this paper is organized as follows. Section 2 formally introduces the school choice

problem and the family of mechanisms. Section 3 presents the theoretical results. Section 4 de-

scribes the experimental design. Section 5 summarizes the results of the experiments. Section 6

concludes.

2 School choice problem and the three mechanisms

A school choice problem (Abdulkadiroğlu and Sönmez 2003) is comprised of a number of students

each of whom is to be assigned a seat at one of a number of schools. Further, each school has

a maximum capacity, and the total number of seats in the schools is no less than the number of

students. We denote the set of students by I = {i1, i2, . . . , in}, where n ≥ 2. A generic element

in I is denoted by i. Likewise, we denote the set of schools by S = {s1, s2, . . . , sm} ∪ {∅}, where

m ≥ 2 and ∅ denotes a student’s outside option, or the so-called null school. A generic element in

S is denoted by s. Each school has a number of available seats. Let qs be the number of available

seats at school s, or the quota of s. Let q∅ = ∞. For each school, there is a strict priority order

of all students, and each student has strict preferences over all schools. The priority orders are

6



determined according to state or local laws as well as certain criteria of school districts. We denote

the priority order for school s by �s, and the preferences of student i by Pi. Let Ri denote the

at-least-as-good-as relation associated with Pi. Formally, we assume that Ri is a linear order, i.e., a

complete, transitive, and anti-symmetric binary relation on S. That is, for any s, s′ ∈ S, s Ri s
′ if

and only if s = s′ or s Pi s′. For convenience, we sometimes write Pi : s1, s2, s3, . . . to denote that,

for student i, school s1 is his first choice, school s2 his second choice, school s3 his third choice,

etc.

A school choice problem, or simply a problem, is a pair (�= (�s)s∈S, P = (Pi)i∈I) consisting

of a collection of priority orders and a preference profile. Let R be the set of all problems. A

matching µ is a list of assignments such that each student is assigned to one school and the number

of students assigned to a particular school does not exceed the quota of that school. Formally, it

is a function µ : I → S such that for each s ∈ S, |µ−1(s)| ≤ qs. Given i ∈ I, µ(i) denotes

the assignment of student i at µ and given s ∈ S, µ−1(s) denotes the set of students assigned to

school s at µ. Let M be the set of all matchings. A matching µ is non-wasteful if no student

prefers a school with unfilled quota to his assignment. Formally, for all i ∈ I, s Pi µ(i) implies

|µ−1(s)| = qs. A matching µ is Pareto efficient if there is no other matching which makes all

students at least as well off and at least one student better off. Formally, there is no α ∈ M such

that α(i) Ri µ(i) for all i ∈ I and α(j) Pj µ(j) for some j ∈ I.
A closely related problem to the school choice problem is the college admissions problem (Gale

and Shapley 1962). In the college admissions problem, schools have preferences over students

whereas in a school choice problem, schools are merely objects to be consumed. A key concept

in college admissions is “stability,” i.e., there is no unmatched student-school pair (i, s) such that

student i prefers school s to his assignment, and school s either has not filled its quota or prefers

student i to at least one student who is assigned to it. The natural counterpart of stability in our

context is defined by Balinski and Sönmez (1999). The priority of student i for school s is
violated at a given matching µ (or alternatively, student i justifiably envies student j for school

s) if i would rather be assigned to s to which some student j who has lower s−priority than i, is

assigned, i.e., s Pi µ(i) and i �s j for some j ∈ I. A matching is stable if it is non-wasteful and

no student’s priority for any school is violated.

A school choice mechanism, or simply a mechanism ϕ, is a systematic procedure that chooses

a matching for each problem. Formally, it is a function ϕ : R →M. Let ϕ(�, P ) denote the

matching chosen by ϕ for problem (�, P ) and let ϕi(�, P ) denote the assignment of student i at

this matching. A mechanism is Pareto efficient (stable) if it always selects Pareto efficient (stable)

matchings. A mechanism ϕ is strategy-proof if it is a dominant strategy for each student to truth-

fully report her preferences. Formally, for every problem (�, P ), every student i ∈ I, and every

report P ′i , ϕi(�, P ) Ri ϕi(�, P ′i , P−i).

7



Following Pathak and Sönmez (forthcoming), a mechanism φ is manipulable by student j at

problem (�, P ) if there exists P ′j such that φj(�, P ′j , P−j) Pj φj(�, P ). Thus, mechanism φ is said

to be manipulable at a problem (�, P ) if there exists some student j such that φ is manipulable by

student j at (�, P ). Mechanism ϕ is more manipulable than mechanism φ if (i) at any problem

φ is manipulable, ϕ is also manipulable; and (ii) the converse is not always true, i.e., there is at

least one problem at which ϕ is manipulable but φ is not. Mechanism ϕ is more stable (more
efficient) than mechanism φ if (i) at any problem φ is stable (Pareto efficient), ϕ is also stable

(Pareto efficient); and (ii) the converse is not always true, i.e., there is at least one problem at which

ϕ is stable (Pareto efficient) but φ is not.11

We now describe the three mechanisms that are central to our study. The first two are the

familiar Boston and the DA mechanisms, while the third one is a stylized version of the simplest

parallel mechanism.

2.1 Boston Mechanism (BOS)

Our first mechanism is the most common school choice mechanism observed in practice. Its out-

come can be calculated via the following algorithm for a given problem:

Step 1: For each school s, consider only those students who have listed it as their first choice. Up to

qs students among them with the highest s−priority are assigned to school s.

Step k, k ≥ 2: Consider the remaining students. For each school s with qks available seats, consider

only those students who have listed it as their k-th choice. Those qks students among them

with the highest s−priority are assigned to school s.

The algorithm terminates when there are no students left. Importantly, note that the assign-

ments in each step are final. Based on this feature, an important critique of the Boston mechanism

highlighted in the literature is that it gives students strong incentives to misrepresent their prefer-

ences. Because a student who has high priority for a school may loose her priority advantage for

that school if she does not list it as his first choice, the Boston mechanism forces students to make

hard and risky strategic choices (see e.g., Abdulkadiroğlu and Sönmez 2003, Ergin and Sönmez

2006, Chen and Sönmez 2006, and He 2012).

2.2 Deferred Acceptance Mechanism (DA)

A second matching mechanism is the student-optimal stable mechanism (Gale and Shapley 1962),

which finds the stable matching that is most favorable to each student. Its outcome can be calculated
11See Kesten (2006, 2011) for similar problem-wise property comparisons across and within mechanisms for match-

ing problems.
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via the following deferred acceptance (DA) algorithm for a given problem:

Step 1: Each student applies to her favorite school. For each school s, up to qs applicants who have

the highest s−priority are tentatively assigned to school s. The remaining applicants are

rejected.

Step k, k ≥ 2: Each student rejected from a school at step k − 1 applies to her next favorite school.

For each school s, up to qs students who have the highest s−priority among the new appli-

cants and those tentatively on hold from an earlier step, are tentatively assigned to school s.

The remaining applicants are rejected.

The algorithm terminates when each student is either tentatively placed to a school. Note that,

in the DA, assignments in each step are temporary until the last step. The DA has several desirable

theoretical properties, most notably in terms of incentives and stability. Under the DA, it is a

dominant strategy for students to state their true preferences (Roth 1982, Dubins and Freedman

1981). Furthermore, it is stable. Although it is not Pareto efficient, it is the most efficient among

the stable school choice mechanisms.

In practice, the DA has been the leading mechanism for school choice reforms. For exam-

ple, the DA has been adopted by New York City and Boston public school systems, which had

suffered from congestion and incentive problems from their previous assignment systems, respec-

tively (Abdulkadiroğlu et al. 2005a, Abdulkadiroğlu et al. 2005b).

2.3 The Chinese Parallel Mechanisms

The Chinese parallel mechanism was first implemented as a high school admissions mechanism in

Shanghai prior to 2003. From 2003 to 2012, variants of the mechanism have been adopted by 22 (5)

provinces as the parallel (partial parallel) college admissions mechanisms to replace the sequential

mechanisms (Wu and Zhong 2012).

While there are many regional variations in CCA, from a game theoretic perspective, however,

they differ in two main dimensions which impact the students’ strategic decisions during the ap-

plication process. The first dimension is the timing of preference submission, including before the

exam (2 provinces), after the exam but before knowing the exam scores (3 province), and after

knowing the exam scores (26 provinces).12 The second dimension is the actual matching mecha-
12Zhong, Cheng and He (2004) demonstrate that, while there does not exist a Pareto ranking of the three variants

in the preference submission timing, the first two mechanisms can sometimes achieve Pareto efficient outcomes. Fur-
thermore, experimental studies confirm the ex ante efficiency advantage of the Boston mechanism with pre-exam pref-
erence ranking submissions in both small (Lien, Zheng and Zhong 2012) and large markets (Wang and Zhong 2012).
Lastly, using a data set from Tsinghua University, Wu and Zhong (2012) find that, while students admitted under the
sequential mechanism with pre-exam preference ranking submissions have on average lower entrance exam scores than
those admitted under other mechanisms, they perform as well or even better in college than their counterparts admitted
under other timing mechanisms.
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nisms used in each province. The sequential mechanism used to be the only college admissions

mechanism used in China. In 2012, while the sequential mechanism was still used in 3 provinces,

variants of the parallel (and partial parallel) mechanism have been adopted by 27 provinces, while

the remaining province, Inner Mongolia, uses a dynamic admissions process which resembles a dy-

namic implementation of the parallel mechanism. A brief description of the evolution of Chinese

college admissions mechanisms from 1949 to 2012 is contained in Appendix A.

In this study, we investigate the properties of the family of mechanisms used for Chinese col-

lege admissions. We use the following stylized version of the Chinese parallel mechanisms in its

simplest version, with two parallel choices, adapted for the school choice context. A more general

description is contained in Section 3.

• An application to the first ranked school is sent for each student at the first step.

• Throughout the allocation process, a school can hold no more applications than its capacity.

If a school receives more applications than its capacity, it retains the students with the highest

priority up to its capacity and rejects the remaining students.

• Whenever a student is rejected from his first choice school, her application is sent to her

second choice school. Whenever a student is rejected from her second choice school, she can

no longer make an application in this round.

• Throughout each round, whenever a school receives new applications, these applications are

considered together with the retained applications for that school. Among the retained and

new applications, the ones with the highest priority up to the capacity are retained.

• The allocation is finalized every two choices. That is, if a student is rejected by his first two

two choices in the initial round, then he participates in a new round of applications together

with other students who have also been rejected from their first two choices, and so on. At

the end of each round the assigned students and the slots assigned to them are removed from

the system.

The assignment process ends when no more applications can be rejected. We refer to this

mechanism as the Shanghai mechanism.13

In the next section, we offer a formal definition of the parallel mechanisms and characterize the

theoretical properties of this family of matching mechanisms.

13In Appendix A, we provide a translation of an online Q&A about the Shanghai parallel mechanism used for middle
school admissions to illustrate how the “parallel choices” work.
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3 Theoretical Analysis: A parametric family of mechanisms

In this section, we characterize the theoretical properties of the family of application-rejection

mechanisms. Given student preferences, school priorities, and school quotas, consider the fol-

lowing parametric application-rejection algorithm that indexes each member of the family by a

permanency-execution period e:

Round t =0:

• Each student applies to her fist choice. Each school x considers its applicants. Those students

with highest x−priority are tentatively assigned to school x up to its quota. The rest are

rejected.

In general,

• Each rejected student, who is yet to apply to his e-th choice school, applies to his next choice.

If a student has been rejected from all his first e choices, then he remains unassigned in this

round and does not make any applications until the next round. Each school x considers its

applicants. Those students with highest x−priority are tentatively assigned to school x up to

its quota. The rest are rejected.

• The round terminates whenever each student is either assigned to some school or has re-

mained unassigned in this round, i.e., he has been rejected by all his first e choice schools.

At this point all tentative assignments are final and the quota of each school is reduced by the

number students permanently assigned to it.

In general,

Round t ≥1:

• Each unassigned student from the previous round applies to his te+ 1-st choice school. Each

school x considers its applicants. Those students with highest x−priority are tentatively

assigned to school x up to its quota. The rest are rejected.

In general,

11



• Each rejected student, who is yet to apply to his te + e-th choice school, applies to his next

choice. If a student has been rejected from all his first te + e choices, then he remains

unassigned in this round and does not make any applications until the next round. Each

school x considers its applicants. Those students with highest x−priority are tentatively

assigned to school x up to its quota. The rest are rejected.

• The round terminates whenever each student is either assigned to some school or has re-

mained unassigned in this round, i.e., he has been rejected by all his first te + e choice

schools. At this point all tentative assignments are final and the quota of each school is re-

duced by the number students permanently assigned to it.

The algorithm terminates when each student has been assigned to a school. At this point all the

tentative assignments are final. The mechanism that chooses the outcome of the above algorithm for

a given problem is called the application-rejection mechanism (e) and denoted by ϕe. This family

of mechanisms nests the Boston and the DA mechanisms as extreme cases, the Chinese parallel

mechanisms as intermediate cases, and the Chinese partial-parallel mechanisms as an extension

(see Section 3.3).

Remark 1 The application-rejection mechanism (e) coincides with

(i) the Boston mechanism when e = 1,

(ii) the Shanghai mechanism when e = 2,

(iii) the Chinese parallel mechanism when 2 ≤ e <∞, and

(iv) the DA mechanism when e =∞.

Remark 2 It is easy to verify that all members of the family of application-rejection mechanisms,

i.e., e ∈ {1, 2, . . . ,∞}, are non-wasteful. Hence, the outcome of an application-rejection mecha-

nism is stable for a given problem if and only if it does not result in a priority violation.

Next is our first observation about the properties of this family mechanisms.

Proposition 1 Within the family of application-rejection mechanisms, i.e., e ∈ {1, 2, . . . ,∞},
(i) there is exactly one member that is Pareto efficient. This is the Boston mechanism;

(ii) there is exactly one member that is strategy-proof. This is the DA mechanism; and

(iii) there is exactly one member that is stable. This is the DA mechanism.

All proofs and examples are relegated to Appendix B.
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3.1 Property-specific comparisons of application-rejection mechanisms

As Proposition 1 shows, an application-rejection (e) mechanism is manipulable if e < ∞. Hence,

when faced with a mechanism other than the DA, students should make careful judgments to de-

termine their optimal strategies, and in particular, when deciding which e schools to list on top

of their preference lists. More specifically, since priorities matter for determining the assignments

only within a round and have no effect on the assignments of past rounds, getting assigned to one

of the first e choices is extremely crucial for a student.

In other words, a “successful” strategy for a student is one that ensures that he is assigned to his

“target school” at the end of the initial round, i.e., round 0. In this sense, missing the first choice

in the Boston mechanism could be more costly to a student than in a Chinese parallel mechanism

such as the Shanghai, which offers a “second chance” to the student before he looses his priority

advantage. On the other hand, at the other extreme of this class lies the DA, which completely

eliminates any possible loss of priority advantage for a student. The three-way tension among

incentives, stability, and welfare that emerges under this class is rooted in this observation.

We next provide an incentive-based ranking of the family of application-rejection mechanisms.

Theorem 1 (Manipulability) For any e, ϕe is more manipulable than ϕe
′

where e′ > e.

Corollary 1 Among application rejection mechanisms Boston is the most manipulable and the DA

is the least manipulable member.

Corollary 2 Any Nash equilibrium of the preference revelation game associated with ϕe is also a

Nash equilibrium of that of ϕe
′

where e′ > e.

Remark 3 Notwithstanding the manipulability of all application-rejection mechanisms except the

DA, it is still in the best interest of each student to put his within-round choices in their true order.

More precisely, for a student facing ϕe, any strategy that does not list the first e choices, that are

considered in the initial round, in their true order is dominated by the otherwise identical strategy

that lists them in their true order. Similarly, not listing a set of e choices considered in a subsequent

round is also dominated by an otherwise identical strategy that lists them in their true order.

Corollary 2 says that the set of Nash equilibrium strategies corresponding to the preference rev-

elation games associated with members of the application-rejection family has a nested structure.14

A useful interpretation is that when making problemwise comparisons across the members of the

14A similar observation is made by Haeringer and Klijn (2008) for the revelation games under the Boston mechanism
when the number of school choices a student can make (in her preference list) is limited by a quota.
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application-rejection family (e.g., see Theorem 2), such comparisons might as well be made across

equilibria of two different members.

Corollary 2 also implies that for any given problem, the DA has the largest set of equilibrium

profiles within the entire family, whereas Boston has the smallest. Consequently, this observation

entails that coordination issues may become more serious for the Chinese parallel mechanisms as

e increases. Interestingly, this means that the DA would be subject to a more difficult coordination

problem than Boston if not for its strategy-proofness property.

We now turn to investigate a possible ranking of the members of the family based on stabil-

ity. An immediate observation is that under an application-rejection (e) mechanism, no student’s

priority for one of his first e choices is ever violated. This is simply because all previous assign-

ments are tentative in the application-rejection algorithm until the student is rejected from all his

first e choices. This observation hints that one might expect mechanisms to become more stable as

parameter e grows. The next result shows that this may not always be the case.

Theorem 2 (Stability) Let e′ > e.

(i) If e′ = ke for some k ∈ N ∪ {∞}, then ϕe
′

is more stable than ϕe.

(ii) If e′ 6= ke for any k ∈ N ∪ {∞}, then ϕe
′

is not more stable than ϕe.

Corollary 3 the DA is more stable than the Shanghai mechanism, which is more stable than the

Boston mechanism.

Corollary 4 Any other application-rejection mechanism is more stable than the Boston mecha-

nism.

Corollary 5 The only mechanisms which are more stable than the Shanghai mechanism are ϕ4,

ϕ6, . . . , and ϕ∞.

Theorem 2 indicates that while it is possible to rank all three special members of the family of

application-rejection mechanisms, i.e., e ∈ {1, 2,∞}, according to the stability of their outcomes,

within the Chinese parallel mechanisms, however, there may not be a problemwise systematic rank-

ing in general. Nevertheless, if the number of choices considered in each round by one mechanism

is a multiple of that of the other mechanism, in this case the mechanism that allows for more choices

is the more stable one.

When true preferences are not observable, a plausible metric for evaluating student welfare is

based on considering the number of students assigned to their first choices.15 As a way to assess
15For example, in evaluating the outcome of the Boston mechanism, Cookson Jr. (1994) reports that 75% of all

students entering the Cambridge public school system at the K-8 levels gained admission to the school of their first
choice. Similarly, the analysis of the Boston and NYC school district data by Abdulkadiroğlu, Pathak, Roth and
Sönmez (2006) and Abdulkadiroğlu, Pathak and Roth (2009) also report the number of first choices of students.
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student welfare, we next present a ranking of the mechanisms within the family based on the num-

ber of first choices they assign. It turns out that the Boston is the most generous in terms of first

choice accommodation, whereas the DA is the least. Hence, the next result shows that, while there

may not be a systematic ranking within the family of application-rejection mechanisms based on

Pareto efficiency, the reduction in the scope of manipulation with an increasing e parameter may

come at the cost of a diminishing number of first choice assignments.

Theorem 3 (Welfare) (i) Boston is more efficient than any other application-rejection (e) mech-

anism. Mechanisms other than Boston cannot be ranked based on efficiency. More precisely,

when 1 6= e < e′, ϕe is not more efficient than ϕe
′

nor vice versa.

(ii) ϕe assigns a higher number of students to their first choices than ϕe
′

where e < e′.

(iii) ϕe assigns a higher number of students to their first e choices than ϕe
′

where e 6= e′.

Corollary 6 The Boston mechanism maximizes the number of students receiving their first choices.

Corollary 7 The Shanghai mechanism maximizes the number of students receiving their first or

second choices.

Nonetheless, one needs to be cautious when interpreting Theorem 3. Since all members of

the family with the exception of the DA violate strategy-proofness, student preference submission

strategies may also vary across mechanisms. To address this issue, in the next section we investigate

the properties of Nash equilibrium outcomes of the family of application-rejection mechanisms

from both complete and incomplete information perspectives.

3.2 Equilibria of the Induced Preference Revelation Games

3.2.1 Ex post equilibria: Complete information view

Ergin and Sönmez (2006) show that under complete information every Nash equilibrium outcome

of the preference revelation game induced by the Boston mechanism leads to a stable matching

under students’ true preferences, and that any given stable matching can be supported as a Nash

equilibrium of this game. Hence, if one assumes that all students are strategic and able to coordinate

their actions to achieve an equilibrium outcome, then this result has a clear implication. Since

the DA is strategy-proof and chooses the most favorable stable matching for students, the Boston

mechanism can at best be as good as the DA in terms of the resulting welfare. Put differently, there

is a clear welfare loss associated with the Boston mechanism relative to the DA.
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To analyze the properties of the equilibrium outcomes of the application-rejection mechanisms,

we next study the Nash equilibrium outcomes induced by the preference revelation games under

this family of mechanisms. It turns out that the DA does not generate a clear welfare gain relative

to the Chinese parallel mechanisms.

Proposition 2 (Ex post equilibria) Consider the preference revelation game induced by ϕe under

complete information.

(i) If e = 1, then every Nash equilibrium outcome of this game is stable under the true prefer-

ences and thus it is Pareto dominated by the DA.

(ii) If e /∈ {1,∞}, there exist Nash equilibrium outcomes of this game which are unstable under

the true preferences and Pareto dominate the DA.

Proposition 2 shows that the welfare comparison between the DA and the Chinese parallel

mechanisms is ambiguous. On the other hand, the fact that both the Boston and the Chinese parallel

mechanisms admit multiple equilibria, precludes a direct equilibrium-wise comparison between the

two mechanisms. Nevertheless, a curious question at this point is then whether there could be any

validity to the widespread belief (also expressed in a quote in the introduction) that the parallel

mechanisms may better serve the interests of students than the sequential mechanisms, which are

based on the Boston mechanism. The next result provides a formal sense in which a Chinese

parallel mechanism may indeed be more favorable for each student relative to the Boston.

Proposition 3 (Insurance under the Parallel Mechanisms) Let µ be an equilibrium outcome un-

der the Boston mechanism. Under ϕe if each student i lists µ(i) as his e-th choice and any (e− 1)

schools he truly likes better than µ(i) as higher-ranked choices (not necessarily in their true order),

then each student’s assignment is at least as good as that under Boston.16

Remark 4 It is worth noting that Proposition 3 does not generalize to any two application-rejection

mechanisms as this result crucially hinges on part (i) of Proposition 2. For example, let µ be an

equilibrium outcome of the Shanghai. If each student lists his assignment at µ as his e-th choice

similarly to the above, then the resulting outcome of ϕe with any e > 2 need not be weakly preferred

to that of Shanghai by each student.17

16We stipulate that the e-th choice is the last choice when e = ∞. For expositional simplicity, we also assume that
student i has e − 1 truly better choices than µ(i). The proposition still holds if the statement were to be modified so
that each student i lists µ(i) as one of his first e choices.

17To illustrate this point for the Shanghai vs. the DA, for example, let µ correspond to an unstable equilibrium
outcome that Pareto dominates the DA matching under truthtelling.
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From a practical point of view, Proposition 3 says that whatever school a student is “targeting”

under the Boston mechanism, he would be at least as well off under a parallel mechanism by simply

including it among his first e choices while ranking better options higher up in his preferences,

provided that other students are doing the same. In other words, the Chinese parallel mechanisms

may allow students to retain their Boston assignments as “insurance” options while keeping more

desirable options within reach.

3.2.2 Ex ante Equilibria: Incomplete information view

Abdulkadiroğlu et al. (2011) [henceforth, ACY] study an incomplete information model of school

choice that captures two salient features from practice: correlated ordinal preferences and coarse

school priorities. More specifically, they consider a stylized setting where students share the same

ordinal preferences but different and unknown cardinal preferences and schools have no priorities,

i.e., priorities are determined via a random lottery draw after students submit preference rankings.

They focus on the symmetric Bayesian Nash equilibria under Boston and show that every student

is at least weakly better off in any such equilibrium than in the dominant strategy equilibrium of

the DA. This striking finding suggests that there may be a clear welfare loss to every student under

the DA relative to Boston in such circumstances.

As noted earlier, out of the 31 provinces and regions in China, two of them, Beijing and Shang-

hai, require students to submit preference rankings before taking the college entrance exam and

hence the ACY setting can be seen as a sensible, if not perfect model to capture behavior in these

provinces. Thus we next investigate whether or not the ex ante dominance of Boston also prevails

when compared with other members of the application-rejection family. It turns out the answer is

negative.

To gain a clear insight into the ex ante welfare issues we focus on the familiar Boston and the

DA together with Shanghai, the simplest member of the Chinese parallel mechanisms. We show

that, in the same setting as ACY, there may be students who are better off in a Bayesian equilibrium

of Shanghai than in one of Boston. The following example illustrates the intuition.

Let there be four students of three types, with values {vL,vM ,vH}, two from the low type and

one each from the medium and high types, and four schools {s0, s1, s2, s3}, each with one seat.

There are no priorities a priori, students have common ordinal preferences, and each student type

has the von Neumann Morgenstern (vNM) utility values given in the following table.
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vL vM vH

s0 .9 .53 .36

s1 .09 .36 .35

s2 .01 .11 .29

s3 0 0 0

First, consider Boston with random tie-breaking. Type vL students have a dominant strategy

of ranking schools truthfully. Given that, type vM student has a best response of ranking s1 as his

first choice (regardless of what type vH does). And, given all these strategies, type vH student has

a best response of ranking s2 as his first choice. This constitutes the unique equilibrium under the

Boston mechanism, where type vH student obtains an expected utility of .29.

Now let us consider the Shanghai mechanism with random tie-breaking. Type vL students

again have a dominant strategy of ranking schools truthfully. Given that, type vM student has a

best response of ranking schools truthfully (regardless of what type vH does). And, given all these

strategies, type vH student has a best response of respectively ranking s1 and s2 as his first and

second choices (see the proof of Proposition 4 part (ii) in Appendix B for details). This constitutes

the unique equilibrium under the Shanghai mechanism, where type vH student now obtains an

expected utility of .32.

The reason why some students may prefer the Shanghai to the Boston, unlike the case against

the DA, as in this example, can be intuitively explained as follows. In the Boston, students’ first

choices are crucial and thus students target a single school at equilibrium. In the Shanghai, first

two choices are crucial and students target a pair of schools. This difference, however, may enable

a high type student to guarantee a seat at an unpopular school under the Shanghai by ranking it as

his second choice and still give him some chance to obtain a more preferred school by ranking it as

his first choice. For example, in the above scenario, type vH student “gains priority” at school s2,

her sure outcome in Boston, when others do not include it in their first two choices and enjoys as

well a positive chance of ending up at s1.
18

Although we have assumed in the above example that students have complete information about

their cardinal preferences, it is possible to use the same insight to show the non-dominance of

Boston over Shanghai in a Bayesian setting.

Proposition 4 (Ex ante equilibrium) In the Bayesian setting of ACY (see the Appendix B for a

formal treatment),
18Loosely speaking, the Boston lottery (i.e., Boston with random tie-breaking) when compared with the Shanghai

lottery (i.e., Shanghai with random tie-breaking) can be seen as a weighted average over more extreme choices (when
the lotteries are non-degenerate). In the above example, for instance, a low type student faces a lottery between his first
and last choices under Boston. This is because if he misses his first choice, his second and third choices will already
be taken. On the other hand, the Shanghai lottery always puts positive weight on the first and the second choices. At
the other extreme, the DA lottery is an equal weighted average over all choices.
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(i) each student is weakly better off in any symmetric equilibrium of Shanghai than she is in the

DA, and

(ii) no ex ante Pareto ranking can be made between Boston and Shanghai, i.e., there exists prob-

lems where some student types are weakly better off at the equilibrium under Shanghai than

they are under Boston and vice versa.

Part (i) of Proposition 4 says that just like the Boston, the Shanghai also leads to a clear welfare

gain over the DA in the same setting. This shows that just like the Boston, the Shanghai may also

allow students to communicate their cardinal utilities, thereby resolving their conflicting interests

more efficiently than the DA.

3.3 The Extended Class of the Chinese Parallel Mechanisms

Thus far our analysis focused on the Chinese parallel mechanisms where the same number of

student choices were considered periodically, i.e., the parameter e has been constant across rounds.

In fact, in some Chinese provinces the college admission mechanisms allow for variations in the

number of choices that are considered within a round. For example, in Anhui province, the number

of parallel choices are set to e = 4, 4, 4, 6, . . . in 2012. We next augment and extend the application-

rejection family to accommodate for the extended class.

Given a problem, consider the following application-rejection algorithm that is associated with

a choice sequence (e1, e2, e3, . . .), where the terms in this sequence denote the number of choices

to be tentatively considered in each round.

Round t =0:

• Each student applies to her first choice. Each school x considers its applicants. Those stu-

dents with highest x−priority are tentatively assigned to school x up to its quota. The rest

are rejected.

In general,

• Each rejected student, who is yet to apply to his e1-th choice school, applies to his next

choice. If a student has been rejected from all his first e1-choices, then he remains unas-

signed in this round and does not make any applications until the next round. Each school x

considers its applicants. Those students with highest x−priority are tentatively assigned to

school x up to its quota. The rest are rejected.
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• The round terminates whenever each student is either assigned to some school or has re-

mained unassigned in this round. At this point all tentative assignments are final and the

quota of each school is reduced by the number students permanently assigned to it.

In general,

Round t ≥1:

• Each unassigned student from the previous round applies to his
t∑
i=1

ei + 1-st choice school.

Each school x considers its applicants. Those students with highest x−priority are tentatively

assigned to school x up to its quota. The rest are rejected.

In general,

• Each rejected student, who is yet to apply to his
t+1∑
i=1

ei-th choice school, applies to his next

choice. If a student has been rejected from all his first
t+1∑
i=1

ei-choices, then he remains unas-

signed in this round and does not make any applications until the next round. Each school x

considers its applicants. Those students with highest x−priority are tentatively assigned to

school x up to its quota. The rest are rejected.

• The round terminates whenever each student is either assigned to some school or has re-

mained unassigned in this round. At this point all tentative assignments are final and the

quota of each school is reduced by the number students permanently assigned to it.

The algorithm terminates when each student has been assigned to a school. At this point all the

tentative assignments are final. The mechanism that chooses the outcome of the above algorithm

for a given problem is called the application-rejection mechanism (e1, e2, e3, . . .).

Theorem 4 (Extended Parallel Class) An application-rejection mechanism associated with a choice

sequence (e1, e2, e3, . . .) is more manipulable than any application-rejection mechanism associated

with a choice sequence (e′1, e
′
2, e
′
3, . . .) with e1 < e′1.

Theorem 4 says that a mechanism using a choice sequence of fewer number of parallel colleges

in the initial round is more manipulable than a corresponding partial parallel mechanism with a
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greater number of such parallel colleges. This result in turn underscores the importance of the

initial round relative to all other rounds, a point much emphasized in the previous literature in

the context of the Boston mechanism.19 Theorem 4 implies, for example, that the partial parallel

mechanism used in Beijing, with choices of (1, 3, 1, 3, . . .), is more manipulable than the parallel

mechanism used in Anhui province, with choices of (4, 4, 4, 6, . . .).

4 Experimental Design

We design our experiment to compare the performance of the Boston, Shanghai and the DA mech-

anisms based on the theoretical characterization of the family of application-rejection mechanisms

in Section 3. We choose the complete information environment to test the theoretical predictions,

especially those on Nash equilibrium outcomes. While incomplete information environments might

be more realistic than the complete information environments in the school choice context, it has

proven useful to attack the problem one piece at a time.20 In the closely related area of implemen-

tation theory, “understanding implementation in the complete information setting has helped sig-

nificantly in developing characterizations of implementation in Bayesian settings” (Jackson 2001).

A 3(mechanisms) × 2(environments) factorial design is implemented to evaluate the perfor-

mance of the three mechanisms {BOS, SH, DA} in two different environments, a simple 4-school

environment and a more complex 6-school environment. The environments are designed to capture

the key aspects of the school choice problem and to simulate the complexity inherent in potential

applications of the mechanisms.

4.1 The 4-School Environment

The first environment, which we call the 4-school environment, has four students, i ∈ {1, 2, 3, 4},
and four schools, s ∈ {a, b, c, d}. Each school has one slot, which is allocated to one participant.

We choose the parameters of this environment to satisfy several criteria: (1) no one lives in the

district of her top or bottom choices; (2) the first choice accommodation index, i.e., the proportion

of first choices an environment can accommodate, is 1/2; (3) there is a small number of Nash

equilibrium outcomes, which reduces the complexity of the games.

The payoffs for each student are presented in Table 1. The square brackets, [ ], indicate the

resident of each school district, who has higher priority in that school than other applicants. Payoffs

19Intuitively, the reason why the ranking depends only on the number of parallel choices of the initial round is
because manipulations that happen in subsequent rounds can always be “translated” to the initial round by including
the target school among the parallel choices of the initial round. Consequently, the number of choices of in subsequent
rounds do not matter for manipulability.

20In a follow-up study, we test the same set of mechanisms under both the complete and incomplete information
settings in the college admissions context (Chen, Jiang and Kesten 2012).
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range from 16 points for a first-choice school to 5 points for a last-choice school. Each student

resides in her second-choice school.

Table 1: Payoff Table for the 4-School Environment

a b c d
Payoff to Type 1 [11] 7 5 16
Payoff to Type 2 5 [11] 7 16
Payoff to Type 3 7 16 [11] 5
Payoff to Type 4 5 16 7 [11]

For each session in the 4-school environment, there are 12 participants of four different types.

Participants are randomly assigned types at the beginning of each session. At the beginning of each

period, they are randomly re-matched into groups of four, each of which contains one of each of

the four different types. Four schools are available for each group. In each period, each participant

ranks the schools. After all participants have submitted their rankings, the server allocates the

schools in each group and informs each person of his school allocation and respective payoff. The

experiment consists of 20 periods to facilitate learning. Furthermore, we change the priority queue

every five periods to investigate whether participant strategies are conditional on their priority.21

For each of the 4 different queues, we compute the Nash equilibrium outcomes under the Boston

and Shanghai mechanisms (which are the same) as well as under the DA. For all four blocks, Boston

and Shanghai each have a unique Nash equilibrium outcome, where each student is assigned to her

district school. This college/student-optimal matching, µC/S , is Pareto inefficient, with the sum of

ranks of 8 and an aggregate payoff of 44:

µC/S =
(
1 2 3 4
a b c d

)
For all four blocks, the matching µC/S is also a Nash equilibrium outcome under the DA.

However, the DA has exactly one more Nash equilibrium outcome for all four cases, which is the

following Pareto efficient matching µ∗, with the sum of ranks of 6 and an aggregate payoff of 54:

µ∗ =
(
1 2 3 4
a d c b

)
.

The Nash equilibrium profile that sustains outcome µ∗ is the following (asterisks are arbitrary):

P1 = (a, ∗, ∗, ∗), P2 = (d, b, ∗, ∗), P3 = (c, ∗, ∗, ∗), and P4 = (b, d, ∗, ∗). This is an equilibrium

21The priority queues for each five-period block are 1-2-3-4, 4-1-2-3, 3-4-1-2 and 2-3-4-1, respectively. Appendix
D has detailed experimental instructions.
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profile regardless of the priority order.22 Note that, in this equilibrium profile, types 1 and 3 mis-

represent their first choices by reporting their district school as their first choices, while types 2 and

4 report their true top choices.23

We now analyze participant incentives to reveal their true preferences in this environment. We

observe that, in blocks 1 and 3, while truth-telling is a Nash equilibrium strategy under the Shanghai

mechanism, it is not a Nash equilibrium under Boston. Furthermore, under truth-telling, Shanghai

and the DA yield the same Pareto inefficient outcome. Recall that Corollary 2 implies that, if truth-

telling is a Nash equilibrium under Boston, then it is also a Nash equilibrium under the Shanghai

mechanism, but the converse is not necessarily true. Blocks 1 and 3 are examples of the latter.

Table 2: Truthtelling and Nash Equilibrium Outcomes in the 4-School Environment

Truthful Preference Revelation Nash Equilibrium Outcomes
BOS SH DA BOS SH DA

Block 1 not NE NE dominant strategy
Block 2 not NE not NE dominant strategy µC/S µC/S {µC/S , µ∗}
Block 3 not NE NE dominant strategy
Block 4 not NE not NE dominant strategy

In comparison, for blocks 2 and 4, truth-telling is not a Nash equilibrium strategy under either

Shanghai or Boston. Under truthtelling, Boston, Shanghai and the DA each yield different out-

comes. While the outcome under Shanghai is Pareto efficient, those under the DA is not. Table 2

summarizes our analysis on truthtelling and Nash equilibrium outcomes.

4.2 The 6-School Environment

While the 4-school environment is designed to compare the mechanisms in a simple context, we

now test the mechanisms in a more complex environment where student preferences are generated

by school proximity and quality.

In this 6-school environment, each group consists of six students, i ∈ {1, 2,. . . , 6}, and six

schools s ∈ {a, b,. . . , f}. Each school has one slot. Following Chen and Sönmez (2006), each

student’s ranking of the schools is generated by a utility function, which depends on school quality,
22This is a Nash equilibrium because, for example, if student 1 (or 3) submits a profile where she lists school d (resp.

b ) as her first choice, then she may kick out student 2 (resp. 4) in the first step but 2 (resp. 4) would then apply to b
(resp. d) and kick out 4 (resp. 2) who would in turn apply to d (resp. b) and kick out 1 (resp. 3). Hence student 1 (or
3), even though she may have higher priority than 2 (resp. 4), she cannot secure a seat at b (resp. d) under DA.

23Note that types 1 and 3’s manipulation benefits types 2 and 4, thus it does not violate truthtelling as a weakly
dominant strategy, since type 1 (resp. 3) is indifferent between truthtelling and lying. If type 1 (resp. 3) reverts
to truthtelling, she will then cause a rejection chain which gives everyone their district school, including herself.
Therefore, she is not better off by deviating from the efficient but unstable Nash equilibrium strategy.

23



school proximity and a random factor. There are two types of students: for notation purposes, odd

labelled students are gifted in sciences while even labelled students are gifted in the arts. Schools

a and b are higher quality schools, while c-f are lower quality schools. School a is stronger in the

arts and b is stronger in sciences: a is a first tier school in the arts and second tier in sciences, while

b is a second tier school in the arts and first tier in sciences; c-f are each third tier in both arts and

sciences. The utility function of each student has three components:

ui(s) = uip(s) + uiq(s) + uir(s), (1)

where the first component, uip(s), represents the proximity utility for student i for school s. We

designate this as 10 if student i lives within the walk zone of School s and 0 otherwise. The second

component, uiq(s), represents the quality utility for student i at school s. For odd labelled students,

uiq(a) = 20, uiq(b) = 40, and uiq(s) = 10 for s = c − f . For even labelled students, uiq(a) = 40,

uiq(b) = 20, and uiq(s) = 10 for s = c−f . Finally, the third component, uir(s), represents a random

utility (uniform in the range 0-40) which includes diversity in tastes. Based on this utility function,

we randomly generate 20 environments. We choose an environment which again satisfies several

criteria: (1) no one lives within the district of her top or bottom choices; and (2) the first choice

accommodation index is 1/3, a more competitive scenario than the 4-school environment.

We use Equation (1) to generate payoffs. We then normalize the payoffs such that the payoff

from the first to last choice schools spans {16, 13, 11, 9, 7, 5}, the same payoff range as in the

4-school environment. The normalized payoff table is reported in Table 3.

Table 3: Payoff Table for the 6-School Environment

a b c d e f
Payoff to Type 1 [9] 16 11 13 7 5
Payoff to Type 2 16 [11] 5 13 9 7
Payoff to Type 3 9 16 [7] 11 5 13
Payoff to Type 4 16 7 9 [13] 5 11
Payoff to Type 5 16 13 11 7 [9] 5
Payoff to Type 6 16 13 11 5 7 [9]

For each session in the 6-school environment, we include 18 participants of six different types.

Participants are randomly assigned types at the beginning of each session. The experiment consists

of 30 periods, with random re-matching into three groups of six in each period. Again, we change

the priority queue every five periods.
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Table 4: Features of Experimental Sessions

Treatment Mechanism Environment # Subjects × # sessions Total # of subjects
BOS4 Boston 4-school 12×4 48

SH4 Shanghai 4-school 12×4 48
DA4 Deferred Acceptance 4-school 12×4 48

BOS6 Boston 6-school 18×4 72
SH6 Shanghai 6-school 18×4 72
DA6 Deferred Acceptance 6-school 18×4 72

Compared with the 4-school environment, the 6-school environment has a much larger set

of Nash equilibrium outcomes. Furthermore, there are more equilibrium strategy profiles under

Shanghai than under Boston. We examine the 6 different priority queues and compute the Nash

equilibrium outcomes under Boston and Shanghai, which are the same. The list of Nash equilib-

rium outcomes for each block is included in Appendix C.

Lastly, we present the efficiency analysis for the 6-school environment. The allocations that

maximizes the sum of payoffs are the following ones, each leading to the sum of ranks of 13 with

an aggregate payoff of 78.

µ∗1 =
(
1 2 3 4 5 6
b d f a e c

)
or µ∗2 =

(
1 2 3 4 5 6
b a f d e c

)
.

In comparison, the No Choice benchmark, where each student is assigned to her district school,

generates the sum of ranks of 22 with an aggregate payoff of 58.

4.3 Experimental Procedures

In each experimental session, each participant is randomly assigned an ID number and is seated in

front of a terminal in the laboratory. The experimenter then reads the instructions aloud. Subjects

have the opportunity to ask questions, which are answered in public. Subjects are then given 10

minutes to read the instructions at their own pace and to finish the review questions. After everyone

finishes the review questions, the experimenter distributes the answers and goes over the answers

in public. Afterwards, participants go through 20 (respectively 30) periods of a school choice

experiment in the 4-school (respectively 6-school) environment. At the end of the experiment, each

participant fills out a demographics and strategy survey on the computer. Each participant is paid in

private at the end of the experiment. The experiment is programmed in z-Tree (Fischbacher 2007).

Table 4 summarizes the features of the experimental sessions. For each mechanism in each

environment, we conduct four independent sessions between May 2009 and April 2012 at the Be-
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havioral Economics and Cognition Experimental Lab at the University of Michigan.24 The subjects

are students from the University of Michigan. This gives us a total of 24 independent sessions and

360 participants (354 unique subjects).25 Each 4-school session consists of 20 periods. These ses-

sions last approximately 60 minutes. In comparison, each 6-school session consists of 30 periods.

These sessions last approximately 90 minutes. The first 20-30 minutes in each session are used for

instructions. The conversion rate is $1 = 20 points for all treatments. Each subject also receives

a participation fee of $5, and up to $3.5 for answering the Review Questions correctly. The aver-

age earning (including participation fee) is $19.08 for the 4-school treatments, and $25.42 for the

6-school treatments. Experimental instructions are included in Appendix D. The data are available

from the authors upon request.

5 Experimental Results

In examining our experimental results, we first explore individual behavior and equilibrium selec-

tion, and then report our aggregate performance measures, including first choice accommodation,

efficiency and stability of the three mechanisms. We also investigate the sensitivity of our results

to environment changes.

In presenting the results, we introduce several shorthand notations. First, let x > y denote that

a measure under mechanism x is greater than the corresponding measure under mechanism y at

the 5% significance level or less. Second, let x ≥ y denote that a measure under mechanism x is

greater than the corresponding measure under mechanism y, but the comparison is not statistically

significant at the 5% level.

5.1 Individual Behavior

We first examine the extent to which individuals reveal their preferences truthfully, and the pattern

of any preference manipulation under each of the three mechanisms. Theorem 1 suggests that the

Shanghai mechanism is less manipulable than the Boston mechanism. Furthermore, under the DA,

truthtelling is a weakly dominant strategy. This leads to our first hypothesis.

Hypothesis 1 (Truthtelling) (a) There will be a higher proportion of truthtelling under Shanghai

than under Boston. (b) Under the DA, participants will be more likely to reveal their preferences

24All Boston and DA sessions were conducted between May 2009 and July 2010. However, we found a z-Tree
coding error for the BOS6 treatment during our data analysis. Thus, four additional sessions were conducted in July
2011 for this treatment, to replace the corresponding sessions. Sessions for the Shanghai mechanism were conducted
in March and April 2012.

25Despite our explicit announcement in the advertisement that subjects should not participate in the school choice
experiment more than once and our screening before each session, six subjects participated twice, which might be due
to errors occurred in our database transition from ExLab to Orsee (Greiner 2004) in summer 2010.
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truthfully than under Boston. (c) Under the DA, participants will be more likely to reveal their

preferences truthfully than under Shanghai.

Figure 1: Proportion of Truth-Telling in Each Environment

Figure 1 presents the proportion of truthtelling in the 4- and 6-school environments under each

mechanism. Note that, under the Boston and Shanghai mechanisms, truthful preference revelation

requires that the entire reported ranking is identical to a participant’s true preference ranking.26

However, under the DA, truthful preference revelation requires that the reported ranking be identi-

cal to the true preference ranking from the first choice through the participant’s district school. The

remaining rankings, from the district school to the last choice, are irrelevant under the DA. While

the DA has a robustly higher proportion of truthtelling than Boston, we find that Shanghai has more

truthtelling behavior than Boston. Further, under each mechanism, the proportion of truthtelling

is higher under the 4-school than under the 6-school environment, especially under the DA, which

indicates that it is easier to figure out the dominant strategy in a simpler environment.

Result 1 (Truthtelling) : In both environments, the proportion of truthful preference revelation

under the DA is significantly higher than that under Boston over all periods, whereas it is sig-

nificantly (weakly) higher than that under Shanghai in the 6-school (4-school) environment. The

proportion of truthful preference revelation under Shanghai is significantly (weakly) higher than

that under Boston in the 4-school (6-school) environment.

26The only exception is when a participant’s district school is her top choice. In this case, truthful preference
revelation entails stating the top choice. However, by design, this case never arises in our experiment, as no one’s
district school is her first choice.
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Table 5: Proportions of Truthful Preference Revelation and Misrepresentations

Truthful Preference Revelation District School Bias
All Periods Proportion Ha p-value Proportion Ha p-value

BOS4 0.456 BOS < SH: p = 0.014 0.478 BOS > SH: p = 0.014
SH4 0.706 SH < DA: p = 0.200 0.147 SH > DA: p = 0.100
DA4 0.751 BOS < DA: p = 0.014 0.107 BOS > DA: p = 0.014

BOS6 0.232 BOS < SH: p = 0.271 0.549 BOS > SH: p = 0.343
SH6 0.258 SH < DA: p = 0.014 0.526 SH > DA: p = 0.014
DA6 0.468 BOS < DA: p = 0.014 0.144 BOS > DA: p = 0.014

SUPPORT: Table 5 presents the proportion of truthful preference revelation, as well as the propor-

tion of district school bias, a prevalent form of misrepresentation, for each treatment. P-values are

computed from one-sided permutation tests, treating each session as an observation.

By Result 1, we reject the null in favor of Hypothesis 1(a) that the Shanghai mechanism is less

manipulable than the Boston mechanism at the 5% level in the 4-school environment. Further-

more, we reject the null in favor of Hypothesis 1(b) that the DA is less manipulable than the Boston

mechanism. Lastly, we reject the null in favor of Hypothesis 1(c) that the DA is less manipulable

than the Shanghai mechanism in the 6-school environment. The result is similar for inexperienced

participants (first period). While the ranking of truthtelling between Boston and the DA is consis-

tent with Chen and Sönmez (2006), manipulability of the Shanghai mechanism is reported for the

first time. Even though truthtelling is not a dominant strategy under the Shanghai mechanism, the

extent of manipulation is significantly less under the Shanghai mechanism than under the Boston

mechanism in our simple 4-school environment. The same ranking holds in the more complex

6-school environment but it is only significant at the 10% level.

While we do not observe 100% truthtelling under the DA, it is less manipulable than the Boston

mechanism in both environments and the Shanghai mechanism in the 6-school environment. Fur-

thermore, we observe that the proportion of truthtelling in the DA is significantly higher in the

4-school environment than in the 6-school environment (p = 0.014, one-sided permutation test).

We interpret this as due to the relative simplicity of the environment.

Note that subjects are not told that truthtelling is a dominant strategy under the DA in the

experimental instructions (Appendix D). Following the convention in the experimental mechanism

design literature, we describe each algorithm without prompting the subjects to behave in one way

or another. Thus, results in this section summarize participant behavior without prompting from the

experimenter. In practice, however, the market designer can educate the students when truthtelling

is a dominant strategy. In fact, the Boston Public Schools, after switching to the DA, advise the
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students to “list your school choices in your true order of preference” and that “there is no need to

“strategize.”27 If parents follow the advice, we expect the DA to achieve close to 100% truthtelling

in practice, further enlarging the gap between the DA and the other mechanisms reported in Result

1.

Table 6: Probit: Truthful Preference Revelation

Dependent Variable: Truthtelling
Environments: 4-School Environment 6-School Environment
Specifications: (1) (2) (3) (4) (5) (6)
Mechanisms: BOS SH DA BOS SH DA

Lottery Position -0.128*** -0.074*** -0.013 -0.098*** -0.045*** -0.028***
(0.027) (0.013) (0.018) (0.010) (0.008) (0.005)

Period -0.009** -0.004 0.002 -0.004 -0.003*** -0.005**
(0.004) (0.003) (0.003) (0.003) (0.000) (0.002)

Log Likelihood -619.97 -564.42 -538.00 -986.75 -1194.58 -1475.81
Observations 960 960 960 2160 2160 2160

Notes:
1. Robust standard errors are adjusted for clustering at the session level.
2. Coefficients are probability derivatives.
3. Significant at the: ** 5 percent level; *** 1 percent level.

To investigate factors affecting truthtelling, we use probit regressions for each treatment. In

Table 6, we present six probit specifications. The dependent variable is a dummy variable indicating

whether a participant reveals her preferences truthfully. The independent variables include lottery

position (1 being the best, and 6 being the worst), and a period variable to capture any effects of

learning. In the 4-school environment (specifications 1-3), participants are 12.8% (resp. 7.4%) less

likely to tell the truth under BOS (resp. SH) for each increase in the lottery position, while such an

effect is absent under the DA, where truthtelling is a dominant strategy. We also observe a small but

significant effect of learning to manipulate under BOS. In comparison, in the 6-school environment

(specifications 4-6), we observe a similar lottery position effect on truthtelling, but for all three

mechanisms. The 2.8% marginal effect of lottery position on truthtelling under the DA indicates

that some participants might not understand the incentives in the DA in the 6-school environment,

consistent with the significantly lower level of truthtelling in this environment compared to the 4-

school environment (Figure 1). Again, we observe a small but significant effects of learning on

preference manipulation under SH and the DA.

A main critique of the Boston mechanism is centered around the fact that the mechanism puts a

lot of pressure on manipulation of first choices. The Shanghai mechanism alleviates this pressure.
27Source: http://www.bostonpublicschools.org/choosing-schools, Boston Public Schools

Website, retrieved on June 2, 2011.
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We now examine the likelihood that participants reveal their first choices truthfully under each

mechanism.

Hypothesis 2 (Truthful First Choice) A higher proportion of reported first choices will be true

first choices under the Shanghai than under the Boston mechanism.

Result 2 (Truthful First Choice) : The proportion of truthful first choices under the Shanghai

mechanism is significantly higher than that under the Boston mechanism in both environments.

SUPPORT: In the 4-school (6-school) environment, the proportion of truthful first choices is 78%

(55%) under the DA, 78% (48%) under the Shanghai, and 49% (37%) under the Boston. Using each

session as an observation, one-sided permutation tests for pairwise comparisons of the proportion

of truthful first choices yield DA > BOS (p = 0.014), DA ≥ SH (p = 0.529), and SH > BOS

(p = 0.014) for the 4-school environment. For the 6-school environment, using the same tests, we

obtain DA > BOS (p = 0.014), DA > SH (p = 0.057), and SH > BOS (p = 0.029).

By Result 2, we reject the null in favor of Hypothesis 2 that the Shanghai mechanism gen-

erates a higher proportion of truthful first choices than the Boston mechanism. In particular, the

Shanghai mechanism is virtually identical to the DA in the proportion of truthful first choices in the

4-school environment. Regardless of the environment, participants are more likely to submit true

first choices under the Shanghai mechanism than under the Boston mechanism.

We next examine our results regarding District School Bias, a prevalent form of manipulation

where a participant puts her district school into a higher position than that in the true preference

order. This type of preference manipulation has been reported in previous experimental studies

of the Boston mechanism (Chen and Sönmez 2006, Calsamiglia, Haeringer and Klijn 2010, Klijn,

Pais and Vorsatz 2010).

Result 3 (District School Bias) : The proportion of participants who exhibits District School

Bias is significantly (weakly) higher under Boston than under Shanghai in the 4-school (6-school)

environment, which is then followed by the DA.

SUPPORT: See columns under “District School Bias” in Table 5.

The proceeding analysis of individual behavior has implications for Nash equilibrium out-

comes. Generically, there are multiple Nash equilibria in the application-rejection family of mech-

anisms. Thus, from both the theoretical and practical implementation perspectives, it is important

to investigate which equilibrium outcomes are more likely to arise. To our knowledge, equilibrium

selection in school choice mechanisms has not been studied before.

Our 4-school environment is particularly well suited to study equilibrium selection. Recall that

in our 4-school environment, the student-optimal Nash equilibrium outcome, µC/S , is the unique
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Nash equilibrium outcome under the Boston and the Shanghai mechanisms, while there are two

Nash equilibrium outcomes under the DA, µC/S and µ∗, where the latter Pareto dominates the

former. Thus, it will be interesting to examine which of the two equilibrium outcomes arises more

frequently under the DA. While the Pareto criterion predicts that the Pareto optimal unstable Nash

equilibrium should be selected, experimental results from secure implementation suggest that the

dominant strategy equilibrium, when coinciding with the Nash equilibrium, is more likely to be

chosen (Cason, Saijo, Sjöström and Yamato 2006). This predicts that the student-optimal Nash

equilibrium outcome is more likely to arise.

Figure 2: Proportion of Stable and Unstable Nash Equilibrium Outcomes under DA

Figure 2 reports the proportion of the stable and unstable equilibrium outcomes over time under

the DA in the 4-school (left panel) and 6-school (right panel) environments, while Table 7 reports

session-level statistics for each mechanism and pairwise comparisons between mechanisms and

outcomes.

Table 7: Proportion of Nash Equilibrium Outcomes

4-School BOS (µC/S) SH (µC/S) DA DA (µC/S) DA (µ∗) Ha p-value
Session 1 0.683 0.933 0.967 0.950 0.017 BOS 6= SH 0.028
Session 2 0.600 0.817 0.850 0.717 0.133 BOS < DA 0.014
Session 3 0.600 0.867 0.817 0.800 0.017 SH < DA 0.457
Session 4 0.533 0.633 0.950 0.833 0.117 DA(µ∗) <DA(µC/S) 0.063
6-School BOS SH DA DA(Stable) DA(Unstable) Ha p-value
Session 1 0.011 0.122 0.822 0.811 0.011 BOS 6= SH 0.028
Session 2 0.011 0.267 0.778 0.778 0.000 BOS < DA 0.014
Session 3 0.033 0.189 0.844 0.789 0.056 SH < DA 0.014
Session 4 0.078 0.222 0.711 0.644 0.067 DA(unstable) <DA(stable) 0.063
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Result 4 (Nash Equilibrium Outcomes) : Under the DA, the proportion of the inefficient but

stable Nash equilibrium outcome (82.5%) is weakly higher than that of the efficient but unstable

Nash equilibrium outcome (8.9%) in the 4-school environment.

SUPPORT: The last column in Table 7 presents the p-values for permutation tests comparing the

proportion of equilibrium outcomes under different mechanisms. The null of equal proportion

against the Ha of DA(µ∗) < DA(µC/S) yields p = 0.063 (paired permutation test, one-sided).

We conjecture that the stable Nash equilibrium outcome (µC/S) is observed more often de-

spite being Pareto dominated by µ∗, because the former requires truthful preference revelation, the

weakly dominant strategy adopted by about 75% of the participants under the DA, while the latter

requires coordinated manipulation of top choices by players 1 and 3. However, we also note an

increase of the unstable but efficient Nash equilibrium outcome, µ∗, in the last block in Figure 2

(left panel), indicating that players 1 and 3 learn to coordinate their manipulation towards the end

of the game. This increase has direct implications for the efficiency comparisons in Result 6.

In comparison to the 4-school environment, the 6-school environment generates many Nash

equilibrium outcomes. Because of this multitude of Nash equilibria, without strategy-proofness, on

average, 3% and 20% of the outcomes are Nash equilibrium outcomes under the Boston and Shang-

hai mechanisms, respectively. In contrast, 79% of the outcomes under the DA are Nash equilibrium

outcomes. The proportion of this Nash equilibrium outcome follows DA > BOS (p = 0.014), DA

> SH (p = 0.014), and SH > BOS (p = 0.014). If we break down the Nash equilibrium outcomes

under the DA into stable and unstable equilibria, we again observe that the stable outcomes arise

weakly more frequently than the unstable ones (p = 0.063, paired permutation test, one-sided).

In sum, Result 4 and our analysis of the 6-school data indicate that the stable Nash equilibrium

outcome is more likely to arise than the unstable Nash equilibrium outcomes under the DA. To our

knowledge, this is the first empirical result on equilibrium selection under the DA.

5.2 Aggregate Performance

Having presented the individual behavior and equilibrium outcomes, we now evaluate the aggregate

performance of the mechanisms using three measures: the proportion of participants receiving their

reported and true first choices, the efficiency achieved, and the stability under each mechanism.

In the education literature, the performance of a school choice mechanism is often evaluated

through the proportion of students who receive their reported top choices. Thus, we compare

the proportion of participants receiving their reported top choices, as well as the proportion who

actually receive their true top choices. Theorem 3 suggests the following hypothesis.

Hypothesis 3 (First Choice Accommodation) The proportion of participants receiving their re-

ported top choices will be the highest under Boston, followed by Shanghai, and then the DA.
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Table 8: First Choice Accommodation: Reported versus True First Choices

Proportion Receiving Reported First Choice Proportion Receiving True First Choice
4-school BOS SH DA Ha p-value BOS SH DA Ha p-value

Session 1 0.596 0.217 0.138 BOS > SH 0.014 0.088 0.033 0.017 BOS 6= SH 0.114
Session 2 0.617 0.221 0.271 BOS > DA 0.014 0.113 0.063 0.121 BOS 6= DA 0.114
Session 3 0.583 0.158 0.192 SH > DA 0.257 0.121 0.067 0.071 SH 6= DA 0.943
Session 4 0.608 0.304 0.183 0.138 0.125 0.075
6-school BOS SH DA Ha p-value BOS SH DA Ha p-value

Session 1 0.717 0.400 0.196 BOS > SH 0.014 0.217 0.157 0.109 BOS 6= SH 0.057
Session 2 0.665 0.344 0.270 BOS > DA 0.014 0.230 0.139 0.111 BOS 6= DA 0.029
Session 3 0.667 0.441 0.231 SH > DA 0.014 0.178 0.157 0.085 SH 6= DA 0.029
Session 4 0.706 0.398 0.241 0.202 0.181 0.120

Table 8 reports the proportion of participants receiving their reported (left panel) and true first

choices (right panel) in each session in each treatment. Note that the alternative hypotheses com-

paring mechanisms accommodating true first choices are two-sided, as neither the Boston nor the

Shanghai mechanism is strategy-proof. P-values of permutation tests are reported in the last col-

umn. The results are summarized below.

Result 5 (First Choice Accommodation) : In both environments, the proportion of subjects re-

ceiving their reported first choice is significantly higher under Boston than under either the Shang-

hai or the DA mechanisms. Furthermore, the proportion receiving their reported first choice is

significantly higher under Shanghai than under the DA in the 6-school environment. However,

for the proportion receiving their true first choices, the Boston and Shanghai mechanisms are not

significantly different, but each significantly outperforms the DA in the 6-school environment.

SUPPORT: Treating each session as an observation, p-values from the corresponding permutation

tests are reported in Table 8.

By Result 5, we reject the null in favor of Hypothesis 3 for reported first choices. However,

looking at the accommodation of true first choices, we find that reported top choices are not a good

measure of performance when the incentive properties under each mechanism are different. In the

4-school environment, the three mechanisms are not significantly different from each other, while

in the 6-school environment, Boston and Shanghai are not significantly different from each other,

but each outperforms the DA.

We next compare the efficiency of the mechanisms in each environment. As our theoretical

benchmarks are based ordinal preferences, we present a corresponding efficiency measure using

ordinal ranking of assignments.28 We define a normalized efficiency measure as
28For robustness check, we have also completed a parallel set of efficiency analysis based on the sum of payoffs,

which yields similar results.
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Normalized Efficiency =
maximum group rank - actual group rank

maximum group rank - minimum group rank
, (2)

where the minimum group rank is the sum of ranks for all group members for the Pareto efficient

allocation(s), which equals 6 (resp. 13) for for the 4-school (resp. 6-school) environment. Likewise,

the maximum group rank is the sum of ranks for the worst allocation, which equals 14 (resp. 33)

for the 4-school (resp. 6-school) environment. Because of this normalization, this measure always

lies between zero and one, inclusive.

Figure 3: Normalized Efficiency in the 4- and 6-School Environments

Figure 3 presents the normalized efficiency under each mechanism in the 4-school and 6-school

environments. Session-level normalized efficiency for the first and last blocks, as well as the aver-

age efficiency over all periods, is reported in Table 9.

Table 9: Normalized Efficiency: First Block, Last Block and All Periods

First Block (periods 1-5) Last Block All Periods
4-school BOS SH DA BOS SH DA BOS SH DA

Session 1 0.733 0.750 0.750 0.733 0.817 0.767 0.721 0.767 0.752
Session 2 0.742 0.758 0.733 0.758 0.733 0.808 0.744 0.752 0.777
Session 3 0.742 0.758 0.750 0.742 0.775 0.775 0.733 0.775 0.748
Session 4 0.683 0.717 0.742 0.767 0.758 0.833 0.727 0.746 0.777
6-school BOS SH DA BOS SH DA BOS SH DA

Session 1 0.870 0.887 0.800 0.773 0.753 0.567 0.849 0.805 0.676
Session 2 0.850 0.820 0.807 0.780 0.597 0.593 0.850 0.714 0.685
Session 3 0.910 0.907 0.850 0.740 0.710 0.560 0.810 0.801 0.679
Session 4 0.890 0.893 0.817 0.767 0.777 0.717 0.828 0.792 0.720
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Result 6 (Efficiency) : While the DA is significantly more efficient than Boston and weakly more

efficient than Shanghai in the 4-school environment, Boston is more efficient than Shanghai, which

in turn is more efficient than the DA in the 6-school environment.

SUPPORT: Using one-sided permutation tests with each session as an observation, we find that

(1) First block: BOS6 > DA6 (p = 0.029), SH6 > DA6 (p = 0.029), while none of the pairwise

efficiency comparisons in the 4-school environment is significant.

(2) Last block: DA4 > BOS4 (p = 0.029); BOS6 > DA6 (p = 0.014); SH6 > DA6 (p = 0.043);

BOS6 ≥ SH6 (p = 0.057).

(3) All periods: DA4 > BOS4 (p = 0.014); DA4 ≥ SH4 (p = 0.071); BOS6 > SH6 (p = 0.043);

BOS6 > DA6 (p = 0.014); SH6 > DA6 (p = 0.014).

Result 6 is consistent with Theorem 3 in that there is no systematic efficiency ranking within the

class of the Chinese parallel mechanisms. It also contributes to our understanding of the empirical

performance of the school choice mechanisms. First, it indicates efficiency comparison is environ-

ment sensitive. While no single mechanism is more efficient in both environments, the Shanghai

mechanism is never the worst. Second, while a first-period pairwise efficiency comparison is not

significant in either environment, separation of performance occurs with learning, so that the last

block ranking is significant. Our first period results are consistent with Calsamiglia, Haeringer and

Klijn (2011). Our results point to the importance of allowing subjects to learn in school choice

experiments. Lastly, our finding that the DA is more efficient than Boston in the last block is driven

by the rise of the unstable but efficient Nash equilibrium outcome observed in Figure 2 (left panel).

Finally, we evaluate the stability achieved under each mechanism. Corollary 3 suggests the

following ranking:

Hypothesis 4 (Stability) the DA is more stable than Shanghai, which in turn is more stable than

Boston.

Figure 4 presents the proportion of stable allocations under each mechanism in the 4-school

(left panel) and 6-school (right panel) environments. An allocation is marked as unstable if any

student in a group of four (resp. six) is justifiably envious of another student in the group.

Result 7 (Stability) : the DA and Shanghai mechanisms are each significantly more stable than

the Boston mechanism in both environments. the DA mechanism is significantly more stable than

the Shanghai mechanism in the 6-school environment.

SUPPORT: Table 10 reports the proportion of stable allocations among all allocations in the first

and last block, and averaged over all periods in each session. Using one-sided permutation tests

with each session as an observation, we find that (1) DA4 ≥ SH4 (p = 0.457), DA4 > BOS4
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Figure 4: Proportion of Stable Allocations in the 4- and 6-School Environments

Table 10: Stability: First Block, Last Block and All Periods

First Block (periods 1-5) Last Block All Periods
4-school BOS SH DA BOS SH DA BOS SH DA

Session 1 0.733 1.000 1.000 0.533 0.733 0.867 0.683 0.933 0.950
Session 2 0.533 0.867 0.733 0.333 0.867 0.733 0.600 0.817 0.717
Session 3 0.800 0.867 0.933 0.400 0.867 0.600 0.600 0.867 0.800
Session 4 0.467 0.667 0.933 0.400 0.667 0.667 0.533 0.633 0.833
6-school BOS SH DA BOS SH DA BOS SH DA

Session 1 0.000 0.067 0.800 0.000 0.000 0.867 0.011 0.122 0.811
Session 2 0.000 0.200 0.600 0.000 0.200 0.867 0.011 0.267 0.778
Session 3 0.000 0.067 0.333 0.000 0.133 0.933 0.033 0.189 0.789
Session 4 0.133 0.333 0.467 0.000 0.000 0.467 0.078 0.222 0.644
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(p = 0.014), SH4 > BOS4 (p = 0.029); (2) DA6 > BOS6 (p = 0.014), DA6 > SH6 (p = 0.014),

and SH6 > BOS6 (p = 0.014).

By Result 7, we reject the null in favor of Hypothesis 4. Thus, consistent with Corollary 3,

in both environments, the DA and Shanghai mechanisms each achieve a significantly higher pro-

portion of stable allocations than the Boston mechanism. In the 6-school environment, the DA

also achieves a higher proportion of stable outcomes than the Shanghai mechanisms. However, in

the 4-school environment, the proportion of stable outcomes is indistinguishable between the DA

and Shanghai mechanisms. While our empirical stability ranking between the DA and Boston is

consistent with Calsamiglia et al. (2010), the stability evaluation of the Shanghai mechanism is

new.

In sum, our experimental study has several new findings. First, we evaluate the performance

of the Shanghai mechanism, and find that its manipulability, reported first-choice accommoda-

tion, efficiency and stability measures are robustly sandwiched in between the Boston and the DA

mechanisms. Second, compared to the one-shot implementation of previous experiments on school

choice except Featherstone and Niederle (2008),29 our experimental design with repeated random

re-matching enables us to compare the performance of the mechanisms with experienced partici-

pants. In doing so, we find that learning separates the performance of the mechanisms in terms of

efficiency. Lastly, we report equilibrium selection under the DA for the first time, which reveals

that stable Nash equilibrium outcomes are more likely to arise than the unstable ones even when

the latter Pareto dominates the former.

6 Conclusions

School choice and college admissions have profound implications for the education and labor mar-

ket outcomes of the students involved in these processes worldwide. Whereas much of the debate on

school choice in the literature exclusively focused on the Boston vs. DA comparison, in this paper

we synthesize these well-known mechanisms with those used for college admissions in China, and

characterize them as members of a family of application-rejection mechanisms, with the Boston,

the Chinese parallel, and the DA being special cases. A key insight is that the Chinese parallel

mechanism used for both high school admissions in Shanghai and for college admissions in many

provinces in China bridges the well studied Boston and the DA mechanisms.

Our theoretical analysis indicates a systematic change in the incentive, stability, and welfare

properties of this family of mechanisms as one goes from one extreme member to the other. We

29Featherstone and Niederle (2008) investigate the performance of the Boston and DA mechanisms under incomplete
information, whereas we study the family of mechanisms under complete information. While their experiment is
implemented under a random re-matching protocol, they do not explicitly analyze the effects of learning.
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also see that the Nash equilibrium strategies corresponding to the induced preference revelation

games associated with members of the application-rejection family are nested. Although the DA

has been shown to dominate the equilibria of the Boston under complete information, no such

conclusion holds relative to the Shanghai.

In practice, parallel mechanisms such as the Shanghai may alleviate the pressure parents face

under the Boston mechanism by giving them the guarantee to maintain priority at their safety

schools while keeping more desirable options within their target range. Unlike with the DA, such

insurance does not entail any ex ante welfare cost since the Shanghai also allows students to com-

municate their preference intensities more efficiently relative to the DA.

To test our theoretical predictions and to search for behavioral regularities where theory is silent,

we conduct laboratory experiments in two environments differentiated by their complexity. We find

that the proportion of truthtelling follows the order of DA > Shanghai > Boston, while the propor-

tion of District School Bias follows the reverse order. While the manipulability ranking of the DA

and the Boston is consistent with both theory and prior experimental findings, the manipulability of

the Shanghai mechanism is reported for the first time. Whereas theory is silent about equilibrium

selection, we find that stable Nash equilibrium outcomes are more likely to arise than unstable ones.

On the stability front, consistent with theory, the DA achieves a significantly higher proportion of

stable outcomes than either the Shanghai or the Boston in both environments, while the Shanghai

is more stable than Boston. However, the efficiency comparison is sensitive to the environment.

In our 4-school environment, the DA is weakly more efficient than Boston, while the Shanghai

mechanism is not significantly different from either. In comparison, in our 6-school environment,

the Boston achieves significantly higher efficiency than Shanghai, which, in turn, achieves higher

efficiency than the DA.

Our study represents the first systematic theoretical and experimental investigation of the Chi-

nese parallel mechanisms. The analysis yields valuable insights which enable us to treat this class

of mechanisms as a family, and systematically study their properties and performance. More im-

portantly, our results have policy implications for school choice and college admissions. As the

Shanghai mechanism is less manipulable than the Boston mechanism, and its achieved efficiency

is robustly sandwiched between the two extremes whose efficiency varies with the environment, it

might be a less radical replacement for the Boston mechanism compared to the DA.

Like school choice in the United States, college admissions reform is among the most inten-

sively discussed public policies in China. While variants of the parallel mechanism have been

implemented in various provinces to replace the sequential mechanism since 2003, the choice of

the number of parallel colleges (e) seems arbitrary. Our study provides the first theoretical anal-

ysis and experimental data on the effects of the number of parallel colleges on the incentives and

aggregate performance of these mechanisms.
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In our ongoing work, we extend this stream of research to evaluate this family of mechanisms

in the incomplete information settings, and in the college admissions settings, both of which will

help inform education policies in the school choice and college admissions domain.
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Appendix A: Evolution of the Chinese College Admissions Mechanisms

In this Appendix, we present the evolution of the Chinese College Admissions mechanisms from

1949 to 2012. In summarizing its main variations, we rely primarily on several books written by

educators, policy-makers and historians. In particular, Yang (2006) provides the historical and po-

litical contexts of Chinese college admissions from 1949 to 1999. Liu (2009) reports the policy

debates surrounding college admissions reforms up to 2009, including survey data around some

major policy reforms. In comparison, Qiu and Zhao (2011) offer practical advice for high school

seniors and their parents on recent admission statistics of each university, the admissions mecha-

nisms, and application strategies. While Chinese college admissions have been traditionally studied

by educators, Chinese economists recently started analyze their game-theoretic properties. We ref-

erence most of the latter in the main text of this paper. As matching mechanisms in historical

documents are not described in game theoretic language, we provide the translation of the relevant

paragraphs and our own interpretation in game-theoretic terms.

For more up to date information on college admissions rules and policies in various provinces,

we refer the reader to the official Ministry of Education website on college admissions, http:

//gaokao.chsi.com.cn/, which has remained stable at least since 2006.

6.1 From Decentralized to Centralized Examinations and Admissions (1952 - 1957)

After the establishment of the People’s Republic of China in 1949, Chinese universities continued

to admit students via decentralized mechanisms, i.e., each university administered its own entrance

exams and admissions processes. In 1950, there were 227 universities and colleges, with 134,000

students (Yang 2006, p. 5).30 Historians identified two major problems with decentralized admis-

sions during this time period. From the perspectives of the universities, as each student could

be admitted into multiple universities, the enrollment to admissions ratio was low, ranging from

20% for some ordinary universities to 75% among the best universities in 1949 (Yang 2006, p. 6).

Therefore, many ordinary universities could not fill their first-year classes. From the students’ per-

spectives, however, after being rejected by the best universities, some qualified students missed the

application and examination deadlines of ordinary universities and ended up not admitted by any

university. To address these coordination problems, in 1950, 73 universities formed three regional

alliances, with centralized admissions within each alliance. This experiment achieved an improved

average enrollment to admissions ratio of 50% for an ordinary university (Yang 2006, p. 7).

Based on the success of the alliances, the Ministry of Education decided to transition to cen-

tralized matching in 1952 by implementing the first National College Entrance Examination, also

30In reporting statistics, we exclude universities in Taiwan, Hong Kong and Macau. Also note that Chinese sources
prior to 1977 typically report statistics in units of ten thousand (wàn).
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known as gaokao, in August 1952.31 The exam consisted of eight subjects (math, physics, chem-

istry, biology, foreign language, history and geography, politics, and Chinese), and lasted for three

consecutive days, a format that more or less persisted to 2012, with various adjustments on the

content of the exam. The enrollment to admissions ratio for an ordinary university in 1952 was

above 95%, a metric used by the Ministry of Education to justify the advantages of the centralized

exam and admissions process (Yang 2006, p. 14).

Between 1952 and 1957, the Ministry of Education made several adjustments to the central-

ized admissions process. First, minority-serving institutions, fine arts and music institutions were

allowed to include institution-specific admissions processes in addition to gaokao, such as inter-

views, auditions and portfolio presentations. Second, the single-track gaokao evolved into two

tracks in 1954, and three tracks in 1955. The three tracks included the science/engineering track, the

medicine/biology/agriculture track, and the humanities/social sciences track. The first two tracks

were recombined into a single track in 1964, forming the present-day two-track exam system.

Lastly, key universities, such as Beijing, Tsinghua, and Jiaotong, were allowed to recruit nation-

wide, while ordinary universities were restricted to recruit within their respective province, which

created the tier system among universities.

From a game-theoretic perspective, the centralized admissions mechanism used during this time

period, “Exam-Score Based Admissions” (fēn jı́ lù qǔ), resembled a serial dictatorship mechanism.

“[Admissions] should proceed in decreasing exam scores, starting with the highest score, and pro-

ceeding to the next score after [the admission of the student with] the highest score is finished. For

each student, proceed based on the student’s preference ranking. That is, send the student’s appli-

cation to his first choice. If that university decides to admit the student, it keeps his application file

and marks ‘Admitted’ in the Admission Results column. If the university decides not to admit the

student or if its quota is full, it should mark ‘Not Admitted’ on the student’s application, and pass

his file to his second-choice university (with the same process as described above). And so on.”

(Gaokao Documents, volume I, p. 287-288; Yang 2006, p. 76-77)

The transition from decentralized to centralized matching was designed to alleviate coordina-

tion failure and excess demand. In 1956, for example, universities had a target of admitting 165,500

students, whereas 156,000 students graduated from high school that year (Yang 2006, p. 40). By

encouraging cadres from workplaces to apply for colleges,32 the situation changed in 1957, with a

target of admitting 120,000 students and 199,000 applicants (Yang 2006, p. 45). After a nation-wide

debate of whether to go back to the decentralized admissions processes, used in the Soviet Union

at the time, the Ministry of Education decided to continue the centralized admissions processes,

31Using a national examination to select talent for various government positions had been a long tradition in China,
dating back to 605 A.D. (Liu 2009, p. 2).

32Affirmative action, in the form of adding 10-15 points per subject (out of a 100-point scale), was implemented in
1954 to increase the number of cadres in universities (Yang 2006, p. 55).

41



mainly based on its advantages of better coordination and lower transaction costs, i.e., students did

not have to participate in multiple exams administered by different universities. It appears that,

after a national exam, separate admissions processes within each province was established after the

1957 debate.

6.2 The Leftists’ Attacks on College Admissions (1958 - 1965)

Since 1958, gaokao had been scrutinized and attacked by the leftists in the Communist Party, on

its intellectual focus and its lack of communist ideology. In response, the Ministry of Education

stepped up the screening of student political backgrounds in the admissions process, and imple-

mented the Guaranteed Admissions of cadres from proletariat families who went through the Crash

Training Schools for Workers and Farmers. Prior to 1958, the cadres were required to take gaokao

and go through the same admissions process after bonus points were added to their scores. In con-

trast, they were exempt from gaokao since 1958 (Yang 2006, p. 91). The admissions rate was a

staggering 97% in 1958 (Yang 2006, p. 139).

To our knowledge, the first documented tiered admissions appeared in 1959. “Admissions of

new students should proceed in tiers. National key universities admit students first.” The second

tier included provincial and ministry-level key universities, whereas the third tier included all other

universities and colleges (Gaokao Documents, volume I, p. 252-254, 389-393; Yang 2006, p. 104).

After the Great Leap Forward (1958 - 1961) ended in a disastrous famine, in 1962, college ad-

missions rate reached its lowest point prior to the Cultural Revolution, 24%, with 107,000 students

admitted among 440,000 applicants.

In 1963, it appeared that the college admissions mechanism transitioned from a serial dictator-

ship into a hybrid of serial dictatorship and priority matching mechanism, “Exam-Score Interval

Based Admissions” (fēn duàn lù qǔ). Average exam scores were chunked into (typically) five-point

intervals (duàn), e.g., [80, 100], [75, 79], [70, 74], [65, 69], etc. Admissions proceeded sequentially

from the highest interval downward, clearing one interval before starting the next (duàn duàn qı̄ng).

Within an interval, admissions proceeded in the order of student preference ranking of universities

and exam scores (Gaokao Documents, volume I, p. 437, 461 and 471; Yang 2006, p. 135-136).

Under this mechanism, each student could apply for five national key universities. Within each

university, he could apply for three different departments. Admission decisions were made by

each university. This mechanism was designed to reduce the disparity of student qualities between

different departments within a university (Yang 2006, p. 150).

Meanwhile, because of the increased competitiveness, some students considered that “gaokao is

a battle that determines your fate: one point [difference] in gaokao can determine whether you go to

heaven [i.e., universities] or hell [i.e., becoming a farmer]” (Yang 2006, p. 171), which underscores
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the importance of gaokao in labor market outcomes. Until recently, labor market mobility had

been constrained by the Household Registration (hù kǒu) system. For millions of youths from rural

areas, gaokao offered the only way of breaking away from a life time on the farms.

6.3 Demise of Gaokao During the Cultural Revolution (1966-1976)

The year 1966 marked the start of the ten-year Cultural Revolution, and the abolition of gaokao. In

its place, farmers, workers and soldiers who had the equivalence of a high school education could

be recommended to go to universities. The political turmoil dictated that none of the universities

recruited new students for the subsequent six years. From 1972 to 1976, university education

resumed based on a recommendation system. Students had to have completed at least two years of

real-life work experience, i.e., having worked on farms, in factories or served in the armed forces,

to be eligible. The recommendation system opened the door for rampant corruption in college

admissions during this time period.

6.4 College Admissions Reform (1977 - 2012)

With the end of the Cultural Revolution in October 1976, gaokao resumed in 1977. As a result, 5.7

million applicants participated in gaokao, including many from the ten-year backlog of high school

graduates together with the class of 1977, with 4.8% of all applicants admitted into universities. In

1977, each province wrote its own exams and administered its own admissions process. Starting

1978, gaokao again became a national exam, written by the Ministry of Education. A record 6.1

million students participated in the 1978 gaokao, with admissions rate again at 4.8%. To further

curb corruption, every applicant’s score was publicly posted.33 Compared with gaokao before the

Cultural Revolution, where the average admissions rate was 55.92%, the average admissions rate

between 1977 and 1982 was 6.05% (Yang 2006, p. 278), indicating a much more competitive

process.

While the hybrid serial dictatorship and priority matching mechanism, “Exam-Score Interval

Based Admissions,” continued to be used till 1984, to grant more autonomy to individual uni-

versities, starting from 1985, it was gradually replaced by a priority matching mechanism, which

resembled the Boston mechanism with tiers (Yang 2006, p 314-315; Gaokao Documents, volume

2, p. 253-256; Liu 2009, p. 41). Using this mechanism, based on the distribution of gaokao exam

scores, the number of applicants who list it as their first choice, and its quota, each university deter-

mines a minimum threshold. It then receives applications that list it as the applicants’ first choice.

After admitting first-choice applicants in the order of high to low exam scores up to its quota, the

first round allocations are finalized and the first round is closed. After the first round, universi-
33In comparison, individual gaokao scores were kept secret before the Cultural Revolution (Yang 2006, p. 269-270).
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ties which have not fulfilled their quotas each review applicants who list it as their second choice;

etc. This mechanism is called the sequential mechanism (shùn xù zhı̀ yuàn), or preference-ranking-

priority mechanism (zhı̀ yuàn yōu xiān).

The sequential mechanism places huge strategic importance on an applicant’s first choice.

Among those admitted into a key university in 2010, more than 95% of them list it as his or her first

choice, whereas 80% of those admitted into an ordinary university list it as his or her first choice

(Qiu and Zhao 2011, p. 243). Therefore, Qiu and Zhao (2011) warn the applicants that if their first-

and second-choice universities are too close in quality, they might not get into any university in the

first tier (p. 243). An obvious problem is that some students with very high scores do not get into

any university in the first tier simply because they miss their first choice, leading to the popular

saying that “a good score in the college entrance exam is worth less than a good strategy in the

preference ranking of universities.” (Nie 2007)

To remedy the strategic manipulation inherent in the sequential mechanism, the parallel mecha-

nism (pı́ng xı́ng zhı̀ yuàn) used in Shanghai high school admissions was first introduced into college

admissions in Hunan Province in 2003. Jiangsu and Zhejiang adopted the mechanism in 2005 and

2007, respectively (Liu 2009, p. 382). The main innovation of the parallel mechanism is that stu-

dents can put several “parallel” universities for each choice. For example, a student’s first choice

can contain four universities, A, B, C and D, in decreasing desirability. Among matching theorists,

there are two interpretations of the parallel mechanism, which are theoretically equivalent in the

college admissions context. One interpretation is that it is serial dictatorship with tiers (Wei 2009).

Applicants are ranked by exam scores. Starting from the applicant with the highest score to the

one with the lowest score, each applicant applies for the parallel universities in the order of her

preference ranking, from A to D. She gets into the first university with unfulfilled quota. After

every applicant has applied to his first choice universities, the first round is closed. Those who are

not admitted in the first round start the same process in the second round, and so on. The second

interpretation is that it is a modified deferred acceptance mechanism as we formalize in our paper.

Our interpretation has a broader set of applications as it can also be applied to the school choice

context where priorities are not unique.

In addition to the matching mechanisms, many other important components of the college ad-

missions process underwent changes in the 1990s and the early 21 century. While these com-

ponents are not the focus of our paper, we include five of them below to illustrate the scope of

the reform. First, the content of the exam, i.e., subjects that should be covered and the number

of tracks, changes several times. For example, in 1999, “3 + X” system, where 3 refers to the

three exams required for every applicant, math, Chinese, and foreign language, and X refers to any

number of exams taken from physics, chemistry, biology, geography, history, politics. Second, a

controversial institutionalized feature implemented in the 1990s is the guaranteed admissions for
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up to 5% of the high school graduates, who are recommended by each high school. Third, stan-

dardized test techniques, such as an increase in multiple choice problems and machine grading

were gradually implemented in the late 80s and 90s. Fourth, computerized admissions process was

first implemented in Guangxi and Tianjin in 1996. By 2001, nation-wide computerized admissions

through the Internet was completed (Liu 2009, p. 41). Lastly, starting in 1985, Shanghai started to

implement its own exams. By 2006, 16 provinces each implemented its own exams.

Compared to the historical accounts and qualitative analysis of Chinese college admissions,

game-theoretic analysis of Chinese college admissions mechanisms is relatively new. The latter

focuses on two issues, the timing of preference ranking submissions and the matching mechanisms

themselves. We discuss both aspects in the main text of our paper.

6.5 Shanghai Mechanism: Online Q&A

Question: If a student lists a school as his first choice or second choice, what difference

does it make in the admission process?34

Answer: Middle school admission principles are: based on the student exam scores

and school preference ranking, place the applications accordingly, while also consid-

ering their moral, intellectual and physical aspects, choose the best from high to low

scores. For each individual student, the Middle School Admissions Office will submit

his application in the order of his preference ranking. Only when he cannot get into his

first choice, will his second choice be considered. In the admissions process of the en-

tire district, each school has only one threshold. If a student’s score is above the school

threshold, whether he lists is as his first or second choice, he should be admitted.

For example, if student A’s first choice is Luwan Middle School, and student B’s second

choice is Luwan. If A and B’s scores are both above the Luwan minimum threshold,

then both should be admitted into Luwan. However, if student B is already admitted

into his first choice, it is impossible for him to get into Luwan. On the other hand,

if the two students have different scores, e.g., A’s score is low and below the Luwan

threshold, while B (whose second choice is Luwan) has a high score, which is above

the Luwan threshold, then A (whose first choice is Luwan) cannot be admitted into

Luwan because his score is below the threshold; whereas B (whose second choice is

Luwan), if not admitted by his first choice, should be admitted by Luwan, even though

he listed Luwan as his second choice.
34Translated from http://edu.sina.com.cn/l/2003-05-15/42912.html, accessed on November 14,

2012.

45

http://edu.sina.com.cn/l/2003-05-15/42912.html


The complication which we abstract away is the minimum threshold used by each school, which

is endogenously determined based on the distribution of student exam scores.

Appendix B: Proofs and Examples (For Online Publication)

Proof of Proposition 1: (Part i). It is easy to see that the Boston mechanism is Pareto efficient.

Now consider the following problem with four students and four schools each with one seat. Prior-

ity orders and student preferences are as follows.

�s1 �s2 �s3 �s4
i4 i2

...
...

i2 i3

i1 i4

i3 i1

Pi1 Pi2 Pi3 Pi4

s1 s1 s2 s2

s4 s2 s3 s1

...
...

...
...

The outcome of the application-rejection mechanism (e) for all e ≥ 2 is the following Pareto

inefficient matching

µ =

(
i1 i2 i3 i4
s4 s2 s3 s1

)
.

(Parts ii & iii). Fix e < ∞. Consider the following problem. Let I = {i1, i2, . . . , ie+2} and

S = {s1, s2, . . . , se+2}, where each school has a quota of one. Each ik ∈ I with k ∈ {1, 2, . . . , e}
ranks school sk first and each ik ∈ I with k ∈ {1, 2, . . . , e + 1} has the highest priority for school

sk. The preferences of student ie+1 are as follows: s1 Pe+1 s2 Pe+1 . . . se+1 Pe+1 se+2. And student

ie+2 ranks school se+1 first. Let us apply the application-rejection (e) mechanism to this problem.

Consider student ie+1. It is easy to see that he applies to school se+1 in step e + 1 of the algorithm

when a lower priority student is already permanently assigned to it in round 0. Hence he is rejected

from school se+1 and his final assignment is necessarily worse than se+1. Then the outcome of the

application-rejection (e) mechanism for this problem is clearly unstable. Moreover, student ie+1

can secure a seat at school se+1 when he submits an alternative preference list in which he ranks

school se+1 first.

Example 1a. (The Boston mechanism is manipulable whenever the Shanghai mechanism is)
Consider the following example with five students and four schools. Schools s1, s2, and s4 each

have a quota of one, while school s3 has a quota of two.
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�s1 �s2 �s3 �s4
i4 i1

... i5

i1 i3 i1

i2 i4
...

...
...

Pi1 P ′i1 Pi2 Pi3 Pi4 P ′i4 Pi5

s1 s2 s1 s2 s2 s1 s4

s4
... s3 s3 s1

...
...

s2
... s2 s1 s3

s3 s4 s4 s4

The following two tables illustrate the steps of the Shanghai mechanism applied to the problem

(�, P ). A student tentatively placed at a school at a particular step is outlined in a box.

Round 0 s1 (qr=1
s1

= 1) s2 (qr=1
s2

= 1) s3 (qr=1
s3

= 2) s4 (qr=1
s4

= 1)

Step 1 i1, i2 i3, i4 i5

Step 2 i4, i1 i3 i2

Step 3 i5, i1

Round 1 s1 (qr=2
s1

= 0) s2 (qr=2
s2

= 0) s3 (qr=2
s3

= 1) s4 (qr=1
s4

= 0)

Step 4 i1

Step 5
... i1

In the above tables, observe that student i1 ends up at his last choice at problem (�, P ). Now

consider the following two tables that illustrate the steps of the Shanghai mechanism when student

i1 reports P ′i1 , as opposed to Pi1 .

Round 0 s1 (qr=1
s1

= 1) s2 (qr=1
s2

= 1) s3 (qr=1
s3

= 2) s4 (qr=1
s4

= 1)

Step 1 i2 i1, i3, i4 i5

Step 2 i4, i2 i1 i3

Step 3 i2, i3

In this case, student i1 is assigned to school s2. Thus, the Shanghai mechanism is manipulable

by student i1 at problem (�, P ). Next, let us apply the Boston mechanism to problem (�, P ). The

specifications are illustrated in the following tables.

Round 0 s1 (qr=1
s1

= 1) s2 (qr=1
s2

= 1) s3 (qr=1
s3

= 2) s4 (qr=1
s4

= 1)

Step 1 i1, i2 i3, i4 i5

Round 1 s1 (qr=2
s1

= 0) s2 (qr=2
s2

= 0) s3 (qr=2
s3

= 1) s4 (qr=1
s4

= 0)

Step 2 i4 i2

Step 3
... i2, i4
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Observe that student i1 ends up at s1 (his first choice), and thus cannot gain by a misreport, but

student i4 ends up at s3 (his third choice) at problem (�, P ). Next consider the following tables

that illustrate the steps of the Boston mechanism when student i4 reports P ′i4 , as opposed to Pi4 .

Round 0 s1 (qr=1
s1

= 1) s2 (qr=1
s2

= 1) s3 (qr=1
s3

= 2) s4 (qr=1
s4

= 1)

Step 1 i4, i1, i2 i3 i5

Round 1 s1 (qr=2
s1

= 0) s2 (qr=2
s2

= 0) s3 (qr=2
s3

= 2) s4 (qr=1
s4

= 0)

Step 2 i2 i1

Round 2 s1 (qr=2
s1

= 0) s2 (qr=2
s2

= 0) s3 (qr=2
s3

= 1) s4 (qr=1
s4

= 0)

Step 3 i1

Now student i4 ends up at school s1. Thus, the Boston mechanism is also manipulable at prob-

lem (�, P ).

Example 1b. (Shanghai mechanism is not manipulable when the Boston mechanism is) Con-

sider the following example with the given priority structure and the profile of preferences. Each

school, s1, s2, and s3, has a quota of one.

�s1 �s2 �s3
i1 i2

...

i2 i3
...

...

Pi1 Pi2 P ′i2 Pi3

s1 s1 s2 s2

... s2
... s3

s3
...

Clearly, at problem (�, P ) under the Boston mechanism, student i2 can obtain a seat at s2 by

submitting P ′i2 as opposed to Pi2 which places him at s3. Note, however, that under the Shanghai

mechanism no student can ever gain by a misreport at problem (�, P ).

Proof of Theorem 1 (Manipulability):
We start with a useful definition. Given a preference relation Pi of a student i, let ranki(a)

denote the rank of school a in student i’s preferences.

Definition: Given a preference profile P, student i ranks school a at a highere-class than student j

iff ⌈
ranki(a)

e

⌉
<

⌈
rankj(a)

e

⌉
.

Intuitively, a student who lists a school among his first e choices ranks that school at a higher

e-class than those who do not list it as one of their first e choices; a student who lists a school

among his first e + 1 through 2e choices ranks that school at a higher e-class than those who do
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not list it as one of their first 2e choices; etc. The following construction will be instrumental in the

proof of Theorem 1 as well as some of the subsequent proofs.

For a given problem (�, P ), the corresponding e-augmented priority profile �̃ is constructed

as follows. For each a ∈ S, and all i, j ∈ I, we have i�̃aj if and only if either

(1) i ranks school a at a higher e-class than j, or

(2) i and j both rank school a in the same e-class and i �a j.

Lemma 1: Given a problem (�, P ) and the corresponding e-augmented priority profile �̃, ϕe(�
, P ) = ϕ∞(�̃, P ).

Proof of Lemma 1: Let Jr denote the set of students who are permanently assigned to some school

at the end of round r of ϕe at problem (�, P ). We first argue that the students in J0 receive the

same assignments under the DA at problem (�̃, P ). First observe that by the construction of the

e-augmented priority profile �̃, a student who ranks a school in a higher e-class than some other

student can never be rejected by that school under the DA at (�̃, P ) because of the application of

that other student. Then since round 0 of ϕe is equivalent to applying the DA algorithm to the first

e choices of all students and the assignments are made permanent at the end of round 0 of ϕe, the

assignments of students in J0 under ϕe at problem (�, P ) has to coincide with their assignments

under the DA at problem (�̃, P ). Decreasing each school’s quota under ϕe before round 1 and

applying the same reasoning to this round the students in J1 must receive the same assignments

under the DA at problem (�̃, P ). Iterating this reasoning for the next rounds in turn we conclude

that ϕe(�, P ) = ϕ∞(�̃, P ).

Given i ∈ I and x ∈ S, let P x
i denote a preference relation where student i ranks school x as

his first choice.

Lemma 2: Given a problem (�, P ), let ϕEi (�, P ) = x. Then ϕEi (�, P ) = ϕei (�, P x
i , P−i) = x

where e < E.

Proof of Lemma 2: By Lemma 1, ϕEi (�, P ) = ϕ∞i (�̃, P ) = xwhere �̃ is theE-augmented prior-

ity profile corresponding to (�, P ).By the strategy-proofness of the DA,ϕ∞i (�̃, P ) = ϕ∞i (�̃, P x
i , P−i).

Hence, we have

ϕEi (�, P ) = ϕ∞i (�̃, P x
i , P−i). (1)

On the other hand, by Lemma 1,

ϕEi (�, P x
i , P−i) = ϕ∞i (�̂, P x

i , P−i) (2)
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where �̂ is the E-augmented priority profile corresponding to (�, P x
i , P−i). Note that �̂−x and

�̃−x agree on all students’ relative priority orderings but i and �̂x (weakly) improves the priority of

student i for school x in comparison to �̃x. Then it follows from the working of the DA algorithm

that

ϕ∞i (�̂, P x
i , P−i) = ϕ∞i (�̃, P x

i , P−i). (3)

Last we claim that

ϕEi (�, P x
i , P−i) = ϕei (�, P x

i , P−i). (4)

To see this note that when applied to (�, P x
i , P−i), the set of students who apply to school x in

round 0 of ϕE is weakly larger than that in round 0 of ϕe and since student i is not rejected from

school x after applying to it in the first step under ϕE, he cannot be rejected from it under ϕe either.

Combining (1), (2), (3), and (4), we obtain ϕEi (�, P ) = ϕei (�, P x
i , P−i) = x.

Now we are ready to prove Theorem 1. Let (�, P ) be a problem such that there exists i ∈ I and

preferences P ′i where ϕe′i (�, P ′i , P−i) Pi ϕe
′
i (�, P ).We show that there exists j ∈ I and preferences

P ′j such that ϕej(�, P ′j , P−j) Pj ϕej(�, P ) where e < e′. Let ϕe′i (�, P ′i , P−i) = x. We consider two

cases.

Case 1. x Pi ϕei (�, P ) : Since ϕe′i (�, P ′i , P−i) = x, by Lemma 2 ϕei (�, P x
i , P−i) = x. Thus, i

manipulates ϕe at (�, P ).

Case 2. ϕei (�, P ) Ri x : We claim that for all k ∈ I, ϕek(�, P ) Rk ϕ
e′

k (�, P ). Suppose not.

Then, there exists j ∈ I such that ϕe′j (�, P ) Pj ϕ
e
j(�, P ). By Lemma 2, ϕej(�, P

ϕe′
j (�,P )

j , P−i) =

ϕe
′
j (�, P ) and thus j manipulates ϕe at (�, P ). Hence the claim is true. Moreover, since ϕei (�, P )

Ri x and x Pi ϕe
′
i (�, P ), by transitivity we have ϕei (�, P ) Pi ϕ

e′
i (�, P ). This together with the

preceding claim implies that ϕe(�, P ) Pareto dominates ϕe′(�, P ).

Next, consider the rounds of ϕe′ when applied to problem (�, P ). Let y = ϕe
′
i (�, P ). Let also

r be the round at the end of which student i is (permanently) assigned to school y. We claim that

r ≥ 1. Suppose for a contradiction that r = 0. Then since ϕe′i (�, P ′i , P−i) = x Pi y = ϕe
′
i (�, P ),

student i ranks school x at the same (and the highest) e′-class at both (P ′i , P−i) and P. Let �̃ and �̂
be the e′-augmented priority profiles corresponding to (�, P ′i , P−i) and (�, P ) respectively. Thus,

by Lemma 1, ϕ∞i (�̃, P ′i , P−i) = x and ϕ∞i (�̂, P ) = y. Let P xy
i be a relation where i ranks x

first and y second. By the strategy-proofness of the DA, ϕ∞i (�̃, P xy
i , P−i) = x. Note that since

student i ranks school x at the same (and the highest) e′-class at both (P ′i , P−i) and P, �̂x = �̃x.
Thus, ϕ∞i (�̂x, �̃−x, P xy

i , P−i) = x. Recall that ϕ∞i (�̂, P ) = y. By the strategy-proofness of the
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DA, ϕ∞i (�̂, P xy
i , P−i) = y. But then, at both (�̂x, �̃−x, P xy

i , P−i) and (�̂, P xy
i , P−i) the preference

profiles are the same and student i lists school x as first choice. Since the priority order for x is

also identical at both problems, the DA should give i the same assignment for both problems. A

contradiction. Thus, r ≥ 1 as claimed.

Let z0 = ϕei (�, P ). Sinceϕei (�, P ) Pi ϕ
e′
i (�, P ) andϕe′i is nonwasteful, there exists j1 ∈ ϕe

′
(�

, P )(z0)\ϕe(�, P )(z0). Since ϕe(�, P ) Pareto dominates ϕe′(�, P ), we must have ϕej1(�, P ) Pj1

ϕe
′
j1

(�, P ). Letting z1 = ϕej1(�, P ) 6= z0, there exists j2 ∈ ϕe
′
(�, P )(z1)\ϕe(�, P )(z0). Since

I is finite, iterating this reasoning we obtain a set J = {i, j1, . . . , jk} of students with k ≥ 1

each of whom is assigned to a distinct school from the set A = {z0, z1, . . . , zk = y} at ϕe(�, P ).

Reconsidering the ϕe′ algorithm when applied to problem (�, P ), each student in J must then be

assigned to the corresponding school inA in the same round. For otherwise, the school from the set

A that admits a student at a later round will still have a vacant position in all previous rounds which

contradicts the fact that the student from the set J assigned to it atϕe(�, P ) is better off compared to

ϕe
′
i (�, P ). In other words, all Pareto improving assignment exchanges from ϕe

′
(�, P ) to ϕe(�, P )

must involve students who receive their (permanent) assignments in the same round. Hence, each

student in J are (permanently) assigned to the corresponding school in A in round r ≥ 1.

Consider round r of the ϕe′ algorithm when applied to problem (�, P ). Let Jr ⊃ J be the set

of students such that (1) they each receive their (permanent) assignments at the end of round r, and

(2) they each are better off at ϕe(�, P ) compared to ϕe′(�, P ).35 Let j∗ ∈ Jr be the last student

in J∗ to apply to his assignment at ϕe(�, P ) in that round and let z∗ = ϕ∗je
′(�, P ). Let k∗ be the

student who is kicked out from z∗ at that step. Note that k∗ necessarily exists since a student from

Jr has already been kicked out from z∗ at a previous step in that round. Thus, z∗ P ∗k ϕ
∗
ke
′(�, P ).

Moreover, by the choice of j∗, k∗ /∈ Jr. If student k∗ receives his (permanent) assignment at the

end of round r, then ϕ∗ke(�, P ) = ϕ∗ke
′(�, P ). Otherwise, student k∗ receives his (permanent)

assignment at a later round than r and by the argument in the preceding paragraph pertaining to

students who are better off at ϕe(�, P ), z∗ P ∗k ϕ
∗
ke(�, P ).

Finally, since school z∗ has a vacancy before round r ≥ 1, it follows that ϕe′k∗(�, P z∗

k∗ , P−k∗) =

z∗. Then by Lemma 2, ϕe′k∗(�, P z∗

k∗ , P−k∗) = ϕek∗(�, P z∗

k∗ , P−k∗) = z∗ Pk∗ ϕ
e
k∗(�, P ). Hence, stu-

dent k∗ manipulates ϕe at (�, P ).

We next prove that ϕe′ may not be manipulable when ϕe is. Fix e <∞. Consider the following

problem. Let I = {i1, i2, . . . , ie+2} and S = {s1, s2, . . . , se+1} where each school has a quota of

one. Each student i ∈ I has the following preferences: s1 Pi s2 Pi . . . se Pi se+1 Pi ∅. There is a

single priority order for each school given as follows: for each s ∈ S, suppose ik �s ik′ whenever

k < k′, i.e., i1 has the highest priority, i2 has the second highest priority and so on. Let us apply the

35Note that the set Jr is well-defined by the argument made in the previous paragraph.
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application-rejection (e) mechanism to this problem. Consider student ie+2. It is easy to see that

he is unassigned in round 0 and is assigned to his last choice (i.e., the null school) at step e + 2 of

round 1 after being rejected from school se+1. If student ie+2 were to report school se+1 as his first

choice, he would clearly be assigned to it in round 0. Hence, ϕe is manipulable by student ie+1 at

this problem. It is easy to see that no student can manipulate ϕe′ via a preference misreport at this

problem.

Proof of Theorem 2:
Part (i). Proposition 1 implies that Boston is more efficient than all ϕe with e > 1. To show

the second statement let 1 6= e < e′. First consider the following problem (�, P ). Let I =

{i1, i2, . . . , ie+1} and S = {s1, s2, . . . , se}, where qs = 1 for all s ∈ S. Each ij ∈ I\{ie, ie+1}
top-ranks school sj and has the highest priority for it. Let Pie : se, s1, ∅ and Pie+1 : s1, s2, . . . , se, ∅.
Also let ie �s1 1 �s1 ie+1 and ie+1 �se ie. We then have for each ij ∈ I\{1, ie, ie+1}, ϕeij (�
, P ) = ϕe

′
ij

(�, P ) = sj, ϕ
e
ie(�, P ) = ϕe

′
1 (�, P ) = ∅, ϕeie+1

(�, P ) = ϕe
′
ie+1

(�, P ) = se, and

ϕe1(�, P ) = ϕe
′
ie(�, P ) = s1. Note that ϕe(�, P ) is Pareto efficient but ϕe′(�, P ) is not since

students ie and ie+1 can be better off by swapping their assignments.

Next consider the following problem (�′, P ′). Let I = {i1, i2, . . . , ie+5} and S = {s1, s2, . . . , se+2}
where qs = 1 for all s ∈ S. Each ij ∈ {i1, i2, . . . , ie} top-ranks school sj and has the highest pri-

ority for it. Let P ′ie+1
: se+1, se+2, ∅; P ′ie+2

: se+2, se+1, ∅; Pie+3 : se+1, ∅; and P ′ie+4
: se+2, ∅. Also

let ie+5 �′se+1
ie+2 �′se+1

ie+3 �′se+1
ie+1 and ie+1 �′se+2

ie+4 �′se+2
ie+2. We then have for each

ij ∈ {i1, i2, . . . , ie}, ϕeij (�
′, P ′) = ϕe

′
ij

(�′, P ′) = sj, for each k ∈ {ie+3, ie+4, ie+5} and each

l ∈ {ie+2, ie+3, ie+4}, ϕek(�′, P ′) = ϕe
′

l (�′, P ′) = ∅, ϕeie+1
(�′, P ′) = ϕe

′
ie+1

(�′, P ′) = se+2, and

ϕeie+2
(�′, P ′) = ϕe

′
ie+5

(�′, P ′) = se+1. Note that ϕe′(�′, P ′) is Pareto efficient but ϕe(�′, P ′) is not

since students ie+1 and ie+2 can be better off by swapping their assignments.

Part (ii). Fix a problem (�, P ). Take any two mechanisms ϕe and ϕe′ with e′ > e. We contrast

round 0 of ϕe with that of ϕe′ . For any school s ∈ S, the set of students who apply to s in round 0

of ϕe′ is weakly larger than the set of students who apply to s in round 0 of ϕe. This implies that

any student who is assigned to his first choice at the end of round 0 of ϕe′ is also assigned to his

first choice at the end of round 0 of ϕe but not vice versa. In other words, a student who is assigned

to his first choice under ϕe, may be rejected from that school under ϕe′ due to the application a

higher priority student who ranks it as one of his e+ 1 through e′ choices.

Part (iii).Fix a problem. Suppose e′ < e. Consider any student-say i- who is assigned to one of his

first e choices-say s- under ϕe′ but not under ϕe. Since assignments under ϕe are final after the first

e choices have been considered (or alternatively, since the equivalent the DA algorithm constructed

in Lemma 1 prioritizes the first e choices), student i’s slot at s is filled by another student who also

ranks s as one of his first e choices. Thus, the number of students who receive one of their first e
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choices cannot decrease under ϕe.

Suppose e′ > e. Take any student-say j- who is assigned to one of his first e choices under ϕe′ .

Note that the corresponding e−augmented priority profile for this problem gives (weakly) higher

priority to student j for all his first e choices than the corresponding e′−augmented priority profile.

Then by Lemma 1 and the stability of the DA, student j must be assigned to one of his first e

choices under ϕe as well.

Proof of Theorem 3:
(Part i). Let e′ = ke. If k = ∞, Proposition 1 implies that the DA is more stable than ϕe for any

e < ∞. So let k ∈ N. We show that if ϕe′ is unstable at a problem, then so is ϕe. We prove the

contrapositive of this statement. Let (�, P ) be a problem at which ϕe(�, P ) is stable. We show

that ϕe(�, P ) = ϕe
′
(�, P ).

Consider mechanism ϕe when applied to problem (�, P ). Since ϕe(�, P ) is stable, any unas-

signed student of round 0 (who was rejected from all his first e−choices) must have lower priority

at his first e−choice schools than every student who obtained a seat at any such school in round

0. Similarly, since ϕe(�, P ) is stable, any unassigned student of round 1 (who was rejected from

all his first 2e−choices) must have lower priority at his first 2e−choice schools than every student

who obtained a seat at any such school in round 0 or round 1. In general, any unassigned student

of round k − 1 must have lower priority at his first ke−choice schools than every student who

obtained a seat at any such school in round k − 1 or any previous round. But this implies that any

student who is unassigned at the end of round k − 1 of ϕe is also unassigned at the end of round 0

of ϕe′ as he applies to and gets rejected from the same set of schools in the same order under both

mechanisms. Similarly, any student who is assigned to some school s in some round t ≤ k − 1 of

ϕe is also assigned to school s in round 0 of ϕe′ as he cannot be rejected by a student who does

not list school s among his first (t + 1)e−choices. Then the students who participate in rounds

k through 2k − 1 of ϕe are the same as those who participate in round 1 of ϕe′ and by the same

argument they apply to and get rejected from the same set of schools in the same order under both

mechanisms. Iterating this reasoning, we conclude that ϕe′(�, P ) = ϕe(�, P ).

The problem given at the end of the proof of Theorem 1 shows a situation where ϕe′ is stable

while ϕe is not.

(Part ii). Since e′ 6= ke for any k ∈ N∪{∞}, there exists t ∈ N such that te < e′ < (t+ 1)e. Con-

sider the following problem (�, P ). Let I = {i1, i2, . . . , ite+e′+3} and S = {s1, s2, . . . , ste+e′+2}
where qs = 1 for all s ∈ S. Each ij ∈ I\{ite+1, ite+e′+3} top-ranks school sj and has the highest

priority for it. The remaining two students’ preferences are as follows. Pite+1 : s1, s2, . . . , ste+1, ∅
and Pite+e′+3

: ste+2, ste+3, . . . , ste+2+e′ , ste+1, ∅. Let ite+e′+3 �ste+1 ite+1.

It is not difficult to calculate that for each ij ∈ I\{ite+1, ite+e′+3}, ϕeij (�, P ) = ϕe
′
ij

(�, P ) = sj,
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ϕeite+1
(�, P ) = ϕe

′
ite+e′+3

(�, P ) = ∅, and ϕe′ite+1
(�, P ) = ϕeite+e′+3

(�, P ) = ste+1. Clearly, ϕe(�
, P ) is stable whereas ϕe′(�, P ) is not. The problem given at the end of the proof of Theorem 1

shows a situation where ϕe′ is stable while ϕe is not.

Proof of Proposition 2: Part (i) is established in Theorem 1 of Ergin and Sönmez (2006). We

prove part (ii). Let I = {i1, i2, i3} and S = {s1, s2, s3}, where each school has a quota of one.

Consider the following priority profile � and true preferences P = (P1, P2, P3) of students.

�s1 �s2 �s3
i3 i2 i2

i2
... i1

i1 i3

Pi1 Pi2 Pi3

s1 s1 s3

s3 s2 s1

s2 s3 s2

the DA outcome for problem (�, P ) is the following matching

µ =

(
i1 i2 i3
s3 s2 s1

)
.

Consider a strategy profile Q = (Q1, Q2, Q3) where Q1 = Pi1 , Q3 = Pi3 , and Q2 is a strategy

in which student i2 ranks school s2 as his first choice. For problem (�, Q) the outcome of the

application-rejection mechanism (e), for any e ≥ 2, is the unstable matching

µ′ =

(
i1 i2 i3
s1 s2 s3

)
,

where µ′ Pareto dominates µ. To see that Q is indeed an equilibrium profile, it suffices to consider

possible deviations by student i2. For any preferences in which he ranks s1 first, he gets rejected

from s1 at the third step. If he ranks s2 first, clearly his assignment does not change. If she ranks

s3 first, he is assigned to s3.

Proof of Proposition 3: Let (�, P ) be the problem where P is the list of true student preferences.

By Proposition 2, µ is stable under (�, P ). Let P ′ be a preference profile where each i ∈ I lists

µ(i) as his e-th choice and such that for any s ∈ S, s P ′i µ(i) implies s Pi µ(i). We show that for

each i ∈ I, ϕei (�, P ) Ri µ(i) for any e. Suppose to the contrary that student i remains unassigned

at the end of round 0. This means that school µ(i) is full at the end of round 0, and in particular,

there is j 6= i such that ϕej(�, P ) = µ(i) 6= µ(j) and j �µ(i) i. Then, since µ(i) Pj µ(j) and

j �µ(i) i, µ is not stable under (�, P ).

Proof of Proposition 4:
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Part (i). We start by adopting the ACY model. Let S = {s0, s1, . . . , sm} with m ≥ 1 be the

set of schools (without the outside option). Each student privately draws vNM utility values v =

(v0, . . . , vm) from a finite set V = {(v0, . . . , vm) ∈ [0, 1]m|v0 > v1 . . . > vm} with probability

f(v),which is common knowledge. Without loss of generality, we assume that
∑

s∈S qs = n = |I|.
Let Π be the set of all ordinal preferences over S, and ∆(Π) the set of probability distributions over

Π. A symmetric Bayesian strategy is a mapping σ : V → ∆(Π).

In showing the dominance of Shanghai over the DA, we use exactly the same proof strategy as

ACY. Following ACY, the probability that any student is assigned to school s ∈ S is given by

P theDA
s =

qs
n
.

For any equilibrium strategy σ ∈ {σ∗(v)}v∈V , let P SHA
s (σ) be the probability that a student is

assigned to school s if he plays σ when all other students play σ∗. Then, in equilibrium, for each

s ∈ S,

∑
v∈V

nP SHA
s (σ∗(v))f(v) = qs.

Suppose a type ṽ ∈ V student chooses to play σ∗(v) with probability f(v).Denote that strategy

by σ̃. Then he is assigned to s ∈ S with probability

P SHA
s (σ̃) =

∑
v∈V

P SHA
s (σ∗(v))f(v) =

qs
n

= P theDA
s .

That is, by playing σ̃, which is not necessarily an equilibrium strategy, a student can guarantee

himself the same random assignment as that he would get under the DA.

Part (ii). We start by showing that the specified strategies for the complete information example

given in the text indeed constitute the unique equilibrium of Shanghai. Let ui(s) denote the vNM

utility of student i for school s and σi denote a (pure) strategy of student i. Suppose students 1 and 2

are of the low type, student 3 and 4 are respectively of the medium and high types. Let EUSHA
i (σ∗)

be the expected utility of student i at the specified strategy profile, i.e., when σ∗i = s0s1s2s3 for

i = 1, 2, 3 and σ∗4 = s1s2s0s3. Then we have EUSHA
i = 1

3
ui(s0) + 1

6
ui(s1) + 1

6
ui(s2) + 1

3
ui(s3) for

i = 1, 2, 3 and EUSHA
4 = 1

2
u4(s1) + 1

2
u4(s2) = .32.

Clearly, for any student, ranking s3 at any position but the bottom is dominated. Moreover, σ∗1
and σ∗2 are dominant strategies. We first claim that σ∗3 is a best response to σ∗1 and σ∗2 regardless of

what 4 does. To show this, we fix σ∗1 and σ∗2, and consider three possibilities for σ∗4.

1. σ∗4 = s0s1s2s3. Then, EUSHA
3 (σ∗3) = .25 > EUSHA

3 (σ3 = s1s2s0s3) = .24 > EUSHA
3 (σ3 =
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s0s2s1s3) = .23.36

2. σ∗4 = s1s2s0s3. Then, EUSHA
3 (σ∗3) = .25 > EUSHA

3 (σ3 = s0s2s1s3) = .22 > EUSHA
3 (σ3 =

s1s2s0s3) = .21.

3. σ∗4 = s0s2s1s3. Then, EUSHA
3 (σ∗3) = .25 > EUSHA

3 (σ3 = s1s2s0s3) = .23 > EUSHA
3 (σ3 =

s0s2s1s3) = .19.

Last, we claim that σ∗4 is a best response to σ∗1 , σ∗2, and σ∗3. Indeed, EUSHA
4 (σ∗4) = .32 >

EUSHA
4 (σ4 = s0s2s1s3) = .31 > EUSHA

4 (σ4 = s0s1s2s3) = .25. Thus, we have confirmed that

profile σ∗ constitutes the unique equilibrium of Shanghai.

We next prove part (ii) of Proposition 3 building on the example given in the main text. Let

I = {1, 2, 3, 4}, S = {s0, s1, s2, s3}, and V = {vL,vM ,vH} (as in the example) with probabilities

pL = 3
4
− ε

2
, pM = 1

4
− ε

2
, and pH = ε, where ε > 0 can be chosen arbitrarily close to zero.

Consider the following strategies under Boston: σBOS(vL) = s0s1s2s3, σ
BOS(vM) = s1s0s2s3,

and σBOS(vH) = s2s0s1s3. We claim that these strategies constitute a symmetric Bayesian Nash

equilibrium for a sufficiently small ε.

Since an exact analysis would be unnecessarily lengthy and cumbersome, we provide only

rough arguments. For a low type student it is still a dominant strategy to rank truthfully. Consider a

high type student. Fixing the strategies of the other students as above, the following table provides

possible realizations of the types of the remaining three students and a corresponding best response

of a high type student to the particular realization in each case. With an abuse of notation, let |vx|
denote the number of students of type vx. Note that we do not display those realizations involving

a high type student as they will have no affect on equilibrium verification when ε is chosen to be

sufficiently close to zero.

Realization Probability Best response Payoff loss from σBOS(vH) Minimum gain from σBOS(vH)

|vL| = 3 .42 σ = s1 −.06 -
|vL| = 2, |vM | = 1 .42 σBOS(vH) - .11
|vL| = 1, |vM | = 2 .14 σBOS(vH) - .11

|vM | = 3 .02 σBOS = s0 −.07 -

For example, the first row of the table represents the case when all three students are of low

type, which occurs with probability p3
L
∼= .42. In this case, a high type maximizes his payoff by

ranking s1 first, by which he receives a payoff of .35. But since σBOS(vH) is not a best response

to this realization, a high type receives only .29 by playing σBOS(vH). The second row represents

the case when two students are of low type and one of medium type, which occurs with probability

3p2
LpM

∼= .42. In this case, σBOS(vH) is a best response of a high type to this realization, by which

he receives a payoff of .29. The next-best action of a high type to this realization is playing σ = s1,

36Upon fixing σ∗1 and σ∗2 , we calculate that EUSHA
i (σ3 = s1s2s0s3, σ

∗
4 = s0s1s2s3) = 1

4ui(s0) + 1
3ui(s1) +

1
12ui(s2) + 1

3ui(s3) for i = 1, 2, 3 and EUSHA
4 (σ3 = s1s2s0s3, σ

∗
4 = s0s1s2s3) = 1

4u4(s1) + 3
4u4(s2).
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by which he receives .35
2
∼= .18. Hence playing σBOS(vH) gives him an extra payoff of at least .11

over any other strategy. The rest of the table is filled in similarly. It follows from the table that

expected utility loss of a high type due to playing σBOS(vH) when it is not a best response, is more

than offset by his gain from playing σBOS(vH) when it is a best response.

Consider a medium type student. Fixing the strategies of the other students as above, the fol-

lowing table provides possible realizations for the types of the remaining three students and the

corresponding best responses of a medium type student to the particular realization in each case.

Once again, we do not display those realizations involving a high type student.

Realization Probability Best response Payoff loss from σBOS(vM ) Minimum gain from σBOS(vM )

|vL| = 3 .42 σBOS(vM ) - .12
|vL| = 2, |vM | = 1 .42 σBOS(vM ) - .04
|vL| = 1, |vM | = 2 .14 σ = s0 −.15 -

|vM | = 3 .02 σ = s0 −.44 -

It follows from the table that expected utility loss of a medium type due to playing σBOS(vM)

when it is not a best response, is more than offset by his gain from playing σBOS(vM) when it is a

best response. Thus, (σBOS(vL), σBOS(vM), σBOS(vH)) is a Bayesian equilibrium under Boston.

In particular, EUBOS
vH

∼= .29.

Next consider the following strategies under Shanghai: σSHA(vL) = σSHA(vM) = s0s1s2s3

and σSHA(vH) = s1s2s0s3. We claim that these strategies constitute a symmetric Bayesian Nash

equilibrim for a sufficiently small ε. For a low type student, it is a dominant strategy to rank truth-

fully. Consider a high type student. Fixing the strategies of the other students as above, for any

particular realization (that does not involve a high type), a high type student faces three students

that are playing σSHA(vL), and as calculated above for the example with complete information, it

is then a best response for him to play σSHA(vH). Similarly, for a medium type student, it is also

a best response for him to play σSHA(vH) for any particular realization (that does not involve a

high type). Thus, (σSHA(vL), σSHA(vM), σSHA(vH)) is a Bayesian equilibrium under Shanghai.

In particular, EUSHA
vH

∼= .32 > EUBOS
vH

.

Proof of Theorem 4: Clearly, Theorem 1 shows this result for the special case when all the terms

in a choice sequence are identical. It is fairly straightforward to check that the proof of Theorem

1 depends only on the number of choices that are considered in round 0 and not on the number

of choices considered in any subsequent round of the application-rejection algorithm. Hence, the

same proof still applies once Lemmas 1 and 2 are appropriately modified for the extended class.

For brevity, we omit these details.
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Appendix C: Nash Equilibrium Outcomes in the 6-School Environment (For
Online Publication)

We first rewrite Table 3 as a preference profile, where, for each student, the underlined school is

her district school:

P1 P2 P3 P4 P5 P6

b a b a a a

d d f d b b

c b d f c c

a e a c e f

e f c b d e

f c e e f d

We now examine the 6 different priority queues and compute the Nash equilibrium outcomes

under Boston and Shanghai, which are the same. Since the outcomes are stable, the analysis is

simplified by first computing the student optimal the DA outcome µS and the college optimal µC

and checking if there are any stable allocations in between the two in case they are different. Note

that since school e is worse for each student than his district school, student 5 always gets matched

to school e in all stable matchings. An allocation below µC is always the same regardless of the

priority order since it simply assigns each student to his district school.

Every stable matching (with respect to the given profile and the corresponding priority order)

is a Nash equilibrium outcome of the DA. That is, the Nash equilibrium outcomes of the DA is a

superset of the stable set. This means any Nash equilibrium we compute for Boston (or Shanghai)

is also a Nash equilibrium of the DA. But there may be other unstable Nash equilibrium outcomes.

In what follows, we present the Nash equilibrium outcomes for each block.

Block 1: f = 1− 2− 3− 4− 5− 6.

There are two Nash equilibrium outcomes that are stable:

µS =
(
1 2 3 4 5 6
b a c d e f

)
and µC =

(
1 2 3 4 5 6
a b c d e f

)
There are three unstable Nash equilibrium outcomes:(
1 2 3 4 5 6
d b c a e f

)
,
(
1 2 3 4 5 6
c b a d e f

)
, and

(
1 2 3 4 5 6
a b f d e c

)
.

Block 2: f = 6− 1− 2− 3− 4− 5

There are three Nash equilibrium outcomes that are stable:

µS =
(
1 2 3 4 5 6
c b f d e a

)
, µ =

(
1 2 3 4 5 6
a b f d e c

)
, and µC =

(
1 2 3 4 5 6
a b c d e f

)
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There are three other unstable Nash equilibrium outcomes:(
1 2 3 4 5 6
d b c a e f

)
,
(
1 2 3 4 5 6
c b a d e f

)
, and

(
1 2 3 4 5 6
b a c d e f

)
.

Block 3: f = 5− 6− 1− 2− 3− 4

There is one stable Nash equilibrium outcome:

µS = µC =
(
1 2 3 4 5 6
a b c d e f

)
There are four other unstable Nash equilibrium outcomes:(
1 2 3 4 5 6
d b c a e f

)
,
(
1 2 3 4 5 6
c b a d e f

)
,
(
1 2 3 4 5 6
a b f d e c

)
, and

(
1 2 3 4 5 6
b a c d e f

)
.

Block 4: f = 4− 5− 6− 1− 2− 3.

There are two stable Nash equilibrium outcomes:

µS =
(
1 2 3 4 5 6
d b c a e f

)
and µC =

(
1 2 3 4 5 6
a b c d e f

)
There are three other unstable Nash equilibrium outcomes:(
1 2 3 4 5 6
a b f d e c

)
,
(
1 2 3 4 5 6
c b a d e f

)
, and

(
1 2 3 4 5 6
b a c d e f

)
.

Block 5: f = 3− 4− 5− 6− 1− 2.

There is one stable Nash equilibrium outcome:

µS = µC =
(
1 2 3 4 5 6
a b c d e f

)
There are three other unstable Nash equilibrium outcomes:(
1 2 3 4 5 6
d b c a e f

)
,
(
1 2 3 4 5 6
c b a d e f

)
, and

(
1 2 3 4 5 6
b a c d e f

)
.

Block 6: f = 2− 3− 4− 5− 6− 1

There is one stable Nash equilibrium outcome:

µS = µC =
(
1 2 3 4 5 6
a b c d e f

)
There are four other unstable Nash equilibrium outcomes:(
1 2 3 4 5 6
d b c a e f

)
,
(
1 2 3 4 5 6
c b a d e f

)
,
(
1 2 3 4 5 6
a b f d e c

)
, and

(
1 2 3 4 5 6
b a c d e f

)
.
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Appendix D: Experimental Instructions (For Online Publication)

Instructions for the SH4 treatment (Type 1) is presented first. Instructions for the BOS4 and the DA4

treatments are identical except for the subsection, “The allocation of schools . . .,” and the work

sheet for Review Question #1. Thus, only this subsection is presented. Instructions for the 6-school

treatments are identical except for the number of schools and players. Hence they are omitted, but

are available from the authors upon request.

D.1: Instructions for the Shanghai Mechanism (SH4, Type 1)

Instructions - Mechanism SH4

(Please turn off your cell phone. Thank you.)

This is an experiment in the economics of decision making. In this experiment, we simulate

a procedure to allocate students to schools. The procedure, payment rules, and student allocation

method are described below. The amount of money you earn will depend upon the decisions you

make and on the decisions other people make. Do not communicate with each other during the

experiment. If you have questions at any point during the experiment, raise your hand and the

experimenter will help you. At the end of the instructions, you will be asked to provide answers to

a series of review questions. Once everyone has finished the review questions, we will go through

the answers together.

Procedure

• There are 12 participants of four different types in this experiment. You are type 1. Your type

remains the same throughout the experiment.

• You will be randomly matched into groups of four at the beginning of each period. Each

group contains one of each of the four different types.

• In this experiment, four schools are available for each group. Each school has one slot. These

schools differ in geographic location, specialty, and quality of instruction in each specialty.

Each school slot is allocated to one participant.

• Your payoff amount depends on the school you are assigned to at the end of each period.

Payoff amounts are outlined in the following table. These amounts reflect the desirability of

the school in terms of location, specialty and quality of instruction.
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Slot received at School: A B C D

Payoff to Type 1 [11] 7 5 16

The table is explained as follows:

You will be paid 11 points if you hold a slot of School A at the end of a period.

You will be paid 7 points if you hold a slot of School B at the end of a period.

You will be paid 5 points if you hold a slot of School C at the end of a period.

You will be paid 16 points if you hold a slot of School D at the end of a period.

• *NOTE* different types have different payoff tables. This is a complete payoff table for
each of the four types:

A B C D
Payoff to Type 1 [11] 7 5 16
Payoff to Type 2 5 [11] 7 16
Payoff to Type 3 7 16 [11] 5
Payoff to Type 4 5 16 7 [11]

The square brackets, [ ], indicate the resident of each school district, who has higher priority

in that school than other applicants. We will explain this in more detail in the next section.

• In this experiment, participants are defined as belonging to the following school districts:

Participant Type 1 lives within the school district of school A,

Participant Type 2 lives within the school district of school B,

Participant Type 3 lives within the school district of school C,

Participant Type 4 lives within the school district of school D.

• The experiment consists of 20 periods. In each period, you will be randomly matched with 3

other people in the room to form a group of four, which has one of each type. Your earnings

for each period depend on your choices as well as the choices of the three other people you

are matched with.

• Every period, each participant will rank the schools. Note that you need to rank all four

schools in order to indicate your preferences.
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• After all participants have submitted their rankings, the server will allocate the schools in

each group and inform each person of his/her school allocation and respective payoff. Note

that your allocation in each period is independent of your allocations in the previous periods.

• Your total payoff equals the sum of your payoffs in all 20 periods. Your earnings are given

in points. At the end of the experiment you will be paid based on the exchange rate,

$1 = 20 points.

In addition, you will be paid $5 for participation, and up to $3.5 for answering the Review

Questions correctly. Everyone will be paid in private and you are under no obligation to tell

others how much you earn.

Allocation Method

• The priority order for each school is separately determined as follows:

–

– High Priority Level: Participant who lives within the school district.

– Low Priority Level: Participants who do not live within the school district.

The priority among the Low Priority Students is based on their respective position in a lottery.

The lottery is changed every five periods. In the first five periods, your lottery number is the same

as your type number. In each subsequent block of five periods, your lottery number increases

by one per block. Specifically, the lottery number for each type in each five-period block is

tabulated below:

Type 1 Type 2 Type 3 Type 4
Periods 1-5 1 2 3 4
Periods 6-10 2 3 4 1
Periods 11-15 3 4 1 2
Periods 16-20 4 1 2 3

• The allocation of schools is obtained as follows:

– An application to the first choice school is sent for each participant.

– Throughout the allocation process, a school can hold no more applications than its capacity.

If a school receives more applications than its capacity, then it temporarily retains the student

with the highest priority and rejects the remaining students.
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– Whenever an applicant is rejected at a school, his/her application is sent to his or her second

choice.

– Whenever a school receives new applications, these applications are considered together with

the retained application for that school. Among the retained and new applications, the one with

the highest priority is retained temporarily.

– After each applicant’s first two choices have been considered by the corresponding schools,

each applicant is assigned a school that holds his or her application in that step. These stu-

dents and their assignments are removed from the system. The remaining students are rejected.

Assignments at the end of this step is final.

– Students rejected from their first two choices then apply for their third choice.

– The process repeats for the third and fourth choices.

– The allocation process ends when no more applications can be rejected.

Note that the allocation is finalized every two choices.

An Example:

We will go through a simple example to illustrate how the allocation method works. This example has

the same number of students and schools as the actual decisions you will make. You will be asked to work

out the allocation of this example for Review Question 1.

Feel free to refer to the experimental instructions before you answer any question. Each correct answer is

worth 25 cents, and will be added to your total earnings. You can earn up to $3.5 for the Review Questions.

Students and Schools: In this example, there are four students, 1-4, and four schools, A, B, C and D.

Student ID Number: 1, 2, 3, 4 Schools: A, B, C, D

Slots and Residents: There is one slot at each school. Residents of districts are indicated in the table

below.

School Slot District Residents

A 1

B 2

C 3

D 4
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Lottery: The lottery produces the following order.

1− 2− 3− 4

Submitted School Rankings: The students submit the following school rankings:

1st 2nd 3rd Last

Choice Choice Choice Choice

Student 1 D A C B

Student 2 D A B C

Student 3 A B C D

Student 4 A D B C

Priority : School priorities first depend on whether the school is a district school, and

next on the lottery order:
Resident︷ ︸︸ ︷ Non-Resident︷ ︸︸ ︷

Priority order at A: 1 – 2 – 3 – 4

Priority order at B: 2 – 1 – 3 – 4

Priority order at C: 3 – 1 – 2 – 4

Priority order at D: 4 – 1 – 2 – 3

The allocation method consists of the following steps: Please use this sheet to work out the allocation and

enter it into the computer for Review Question #1.

Step 1 (temporary): Each student applies to his/her first choice. If a school receives more applications than

its capacity, then it holds the application with the highest priority and rejects the remaining students.

Applicants School Accept Hold Reject
3, 4 −→ A −→ N/A

−→ B −→ N/A

−→ C −→ N/A

1, 2 −→ D −→ N/A
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Step 2 (temporary): Each student rejected in Step 1 applies to his/her second choice. When a school

receives new applications, these applications are considered together with the application on hold

for that school. Among the new applications and those on hold, the one with the highest priority is

temporarily on hold, while the rest are rejected.

Accepted Held New Applicants School Accept Hold Reject
−→ A −→ N/A

−→ B −→ N/A

−→ C −→ N/A

−→ D −→ N/A

Step 3 (final): Each student rejected in Step 2 applies to his/her second choice. When a school receives

new applications, these applications are again considered together with the application on hold for that

school. Among the new applications and those on hold, the one with the highest priority is accepted,

while the rest are rejected. Since every student’s top two choices have been considered, the allocation

is final at this step.

Accepted Held New Applicants School Accept Hold Reject
−→ A −→ N/A

−→ B −→ N/A

−→ C −→ N/A

−→ D −→ N/A

Step 4 (temporary): Each student rejected in Step 3 applies to his/her third choice. If a school still has

vacancy, it holds the application with the highest priority and rejects the rest. If a school is already

full, it rejects all new applications.

Accepted Held New applicants School Accepted Hold Reject
−→ A −→
−→ B −→
−→ C −→
−→ D −→

Step 5 (final): Each student rejected in Step 4 applies to his/her fourth choice. If the fourth choice has a

vacancy, it accepts the application. Furthermore, all applications on hold are accepted in this step.

Accepted Held New Applicants School Accept Hold Reject

−→ A −→ N/A N/A

−→ B −→ N/A N/A

−→ C −→ N/A N/A

−→ D −→ N/A N/A

The allocation ends at Step 5.
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• Please enter your answer to the computer for Review Question 1.

• Afterwards, you will be asked to answer another 10 review questions. When everyone is finished with

them, we will go through the answers together.

Review Questions 2 - 11

2. How many participants are there in your group each period?

3. True or false: You will be matched with the same three participants each period.

4. True or false: Participant living in a school district has higher priority than any other applicants for

that school.

5. True or false: The priority for non-residents of a school district is determined by a lottery.

6. True or false: The lottery is fixed for the entire 20 periods.

7. True or false: A lottery number of 1 means that I have the highest priority among the other non-

resident applicants in a school.

8. True or false: Other things being equal, a low lottery number is better than a high lottery number.

9. True or false: If you are accepted by a school of your choice, the schools ranked below are irrelevant.

10. True or false: If you are not rejected at a step, then you are accepted into that school.

11. True or false: The allocation is final at the end of each step.

You will have 5 minutes to go over the instructions at your own pace. Feel free to earn as much as you can.

Are there any questions?

D.2: Instructions for the Boston Mechanism (BOS4)

. . . . . .

• The allocation of schools is described by the following method:

Step 1.

–
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a. An application to the first ranked school is sent for each participant.

b. Each school accepts the student with highest priority in that school. These students and their as-

signments are removed from the system. The remaining applications for each respective school

are rejected.

Step 2.

–

a. The rejected applications are sent to his/her second choice.

b. If a school is still vacant, then it accepts the student with the highest priority and rejects he

remaining applications.

Step 3.

–

a. The application of each participant who is rejected by his/her top two choices is sent to his/her

third choice.

b. If a school is still vacant, then it accepts the student with the highest priority and rejects the

remaining applications.

Step 4. Each remaining participant is assigned a slot at his/her last choice.

Note that the allocation is final in each step.

. . . . . .

D.3: Instructions for the Deferred Acceptance Mechanism (DA4)

. . . . . .

The allocation of schools is described by the following method:

• An application to the first ranked school is sent for each participant.

• Throughout the allocation process, a school can hold no more applications than its capacity.

If a school receives more applications than its capacity, then it temporarily retains the student with the

highest priority and rejects the remaining students.

• Whenever an applicant is rejected at a school, his or her application is sent to the next highest ranked

school.
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• Whenever a school receives new applications, these applications are considered together with the

retained application for that school. Among the retained and new applications, the one with the

highest priority is temporarily on hold.

• The allocation is finalized when no more applications can be rejected.

Each participant is assigned a slot at the school that holds his/her application at the end of the process.

Note that the allocation is temporary in each step until the last step.

. . . . . .
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