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Abstract

This paper analyzes the safety-first portfolio model under two different target
assumptions, the fixed target, which is commonly assumed in the literature, and
the random target, which has played only a minor role so far. As both targets can
be easily motivated, the open question is, which target choice leads to a better
performance? We answer this question by comparing optimal expected portfo-
lio returns of the fixed and the random target strategy. Assuming multivariate
normal returns the answer is: (1) The random target strategy outperforms the
fixed target strategy if the portfolio return and the random target are positively
correlated and riskless investing is prohibited, (2) the fixed target strategy out-
performs the random target strategy if the portfolio return and the random target
are not positively correlated and riskless investing is allowed. The first result is
practically most relevant, in particular for institutional portfolio management
and the skilled private investor, which is supported by an empirical analysis.
Furthermore, we show that these results also hold when relaxing the normal as-
sumption.
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1 Introduction

Portfolio optimization under the safety-first criterion is concerned with maximizing the
expected portfolio return, while, simultaneously, the probability of failing to achieve a
specified (fixed) target must fall below a critical level and has its origins in the early
papers of Roy (1952), Telser (1955) and Kataoka (1963). The safety-first risk measure
is commonly expressed by a probability statement as P (Z < T ) ≤ α where Z is a
random variable, e.g. portfolio return, T is a fixed target, e.g. a minimum desired
portfolio return and α is a critical level on the probability of failing to achieve the
target.

A comparative advantage of the safety-first criterion over deviation risk measures,
such as the variance, is its consistency with the way investors perceive risk (see for
example Atwood et al., 1988; Harlow, 1991; Brogan and Stidham, 2005). Empirically,
this is shown for example in Lopes (1987), Kroll et al. (1988), DeBondt (1998), Lopes
and Oden (1999) and Neugebauer (2008). These behaviorally appealing feature have
made the safety-first criterion attractive for behavioral portfolio theory, see for example
Shefrin and Statman (2000) and the recent paper by Das et al. (2010), in which they
transform the utility based interpretation of mean-variance portfolio theory to the
more appealing target based interpretation of safety-first portfolio theory under the
assumption of normal distributed asset returns. More generally, Kalin and Zagst (1999)
show the equivalence of mean-variance and safety-first portfolio theory for a wide class
of probability distributions.

What all the above cited papers about the safety-first model have in common is
the assumption of a fixed target T , which, however, leads to significant conceptual
disadvantages: Suppose an investment fund which seeks to achieve a fixed return T
for the next period. According to this target the fund manager purchases and sells
assets. But, what happen when the market return within the next period is greater
than T? The fund performed rather poorly. This situation could have been avoided
if the manager had reallocated the assets according to the expected performance of
the market, which is common practice in passive portfolio management. Or, suppose
a fund which seeks to outperform the market (active portfolio management), i.e. the
target for the next investment period is the sum of the expected market performance
and some extra return.1 Or, from an individual perspective the target may not even
be known. Many individuals have the target of “being successful”, but only a very few
know precisely which selection of money, leisure time, culture etc. must be attained to
achieve this target (Bordley and Licalzi, 2000). There are, thus, several situations in
which an unknown or random target seems to be a more suitable choice. But, does in
all these situations a random target lead to better results in terms of higher returns or
are there situations in which a fixed target should be the preferred choice? As we pay
particular attention to a portfolio optimization model, the question is, which target
choice leads ceteris paribus to larger optimal expected portfolio returns? In this paper

1For financial risk management with benchmarking see for example Basak et al. (2006), Browne
(2000) and Gaivoronski et al. (2005).
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we suggest a first answer to these questions.
In detail, assuming normal distributed asset returns, we know for example from

Kalin and Zagst (1999) that the (probabilistic) safety-first risk measure can easily be
transformed to a deterministic risk measure in terms of standard deviation. In section
2, we use this result to transform the safety-first portfolio model to an equivalent deter-
ministic version, which is general enough to consider both, fixed and random targets.
In section 3, which contains our main results, we compare optimal expected portfolio
returns of the fixed and random target strategy and obtain following results: The ran-
dom target strategy outperforms the fixed target strategy if the portfolio return and
the random target are positively correlated and riskless investing is prohibited, whereas
the fixed target strategy outperforms the random target strategy if the portfolio return
and the random target are not positively correlated and riskless investing is allowed.
By providing empirical evidence for the German stock market in section 4, we point out
that the first case, in which the portfolio return and the random target are positively
correlated, is practically most relevant. As the normal distribution is a good starting
point analyzing the safety-first model (see Leibowitz and Henriksson, 1989; Leibowitz
and Kogelman, 1991; Das et al., 2010), but typically violated in practice, we relax this
assumption in section 5 and show, using a well-known approximation, that all results
from section 3 remain the same. Section 6 offers a discussion and concludes the paper.

2 Safety-First Portfolio Optimization with Normal
Distributed Asset Returns

Consider an investment universe of n different financial assets with R := (R1, . . . , Rn)T

presenting the vector of random asset returns. A portfolio where short sales are prohib-
ited is defined as a vector x ∈ [0, 1]n with xi being the proportion invested in asset i and
the proportions sum to one, which is also known under the “fully invested constraint”.
Let the product xTR be the random portfolio return, T be a fixed or random target
and α be a critical probability, then the safety-first portfolio model which maximizes
the expected portfolio return subject to a safety-first constraint can be expressed as

Problem 1.

max
x∈[0,1]n

µ(xTR) s.t.

P (xTR < T ) ≤ α , (1)

1Tx = 1 . (2)

For a numerical treatment of problem 1 it is useful to provide a deterministic rather
than a probabilistic expression of the safety-first constraint (1), which can be eas-
ily achieved under the normal assumption (see for example Kalin and Zagst, 1999).
Many other papers studying the safety-first framework, among them Leibowitz and
Henriksson (1989), Leibowitz and Kogelman (1991), Albrecht (1993) and Das et al.
(2010), assume normal distributed asset returns. Define therefore Z := xTR− T with
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Z ∼ N (µ(Z), σ2(Z)) as a normal distributed random variable with expected value
µ(Z) and variance σ2(Z). Then, employing the usual textbook transformation for the
normal distribution, safety-first constraint (1) can be equivalently expressed as

P (Z < 0) ≤ α ⇔

P

(
Z − µ(Z)

σ(Z)
< −µ(Z)

σ(Z)

)
≤ α ⇔

Φ

(
−µ(Z)

σ(Z)

)
≤ α ⇔

Φ−1(α)σ(Z) + µ(Z) ≥ 0 , (3)

where Φ−1(α) is the α-quantile of the standard normal distribution and σ(Z) is the
standard deviation obtained from drawing the positive square root of the variance,
σ2(Z). The following theorem, found in a slightly modified version in Kall and Mayer
(2005, pp. 103-106) and Ruszczyński and Shapiro (2003, pp. 10), provides precise
expressions for µ(Z) and σ2(Z) (and σ(Z)).

Theorem 1. Let R = (R1, . . . , Rn)T be n-variate normal distributed with expected
value vector µ and covariance matrix Σ, R ∼ N (µ,Σ), and T be univariate normal
distributed with expected value µ(T ) and variance σ2(T ), T ∼ N (µ(T ), σ2(T )), then
the random variable Z = xTR−T is univariate normal distributed with expected value
µTx− µ(T ) and variance ‖LTx− b‖2, where L ∈ Rn×r and b ∈ Rr are obtained from
the factorization of the covariance matrix cov(RT , T ) and ‖.‖ denotes the Euclidean
norm.

Proof: A detailed proof, following Kall and Mayer (2005, pp. 103-106), and a
remark on the numerical treatment of the factorization of the covariance matrix are
provided in the separate appendix.

�
Note,

σ2(Z) = ‖LTx− b‖2 = (LTx− b)T (LTx− b) = xT LLT︸︷︷︸
=Σ

x− 2(Lb)Tx + bTb ,

where the first addend in the last equation of σ2(Z) is the variance of xTR. The
middle addend is two times the covariance between xTR and T with Lb ∈ Rn being
the cross-covariance vector between R and T . The third addend is the variance of T .

Applying then the deterministic safety-first constraint (3) with µ(Z) = µTx− µ(T )
and σ(Z) = ‖LTx− b‖, obtained from theorem 1, problem 1 can be reformulated as

Problem 2.

max
x∈[0,1]n

xT µ s.t.

Φ−1(α)‖LTx− b‖+ µTx ≥ µ(T ) , (4)

1Tx = 1 .
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Problem 2 is the deterministic equivalent of problem 1 and can now be solved numer-
ically. It is linear in its objective but quadratic in its constraints.2 It therefore relates
to the class of quadratic optimization problems. If α ∈ (0, 1/2), the deterministic
safety-first constraint (4) is concave, which was first shown by Kataoka (1963). Under
this assumption problem 2 can easily be solved by concave optimization methods.3 As
α represents the maximum probability of failing to achieve the target and is moreover
specified by the investor herself, it is usually chosen to be low, e.g. 5% or 10%. Thus,
the restriction of α not exceeding 50% does not limit the practical value of our results.
We therefore stick throughout our analysis to this assumption.

Note, modeling a riskfree asset j can be easily achieved by setting the j-th row of L
to the zero-vector. Then, we have Rj = µj with µj being the riskfree rate. Analogously,
a fixed target instead of a normal distributed target can be achieved by setting b to
the zero-vector. Then, the correlation between the target and the asset returns is zero
and T collapses to a fixed target with value µ(T ).

3 Fixed versus Random Target

This section concerns the comparison of the fixed target strategy (S1) with the random
target strategy (S2). The fixed and the random target is denoted as T1 and T2, respec-
tively. Both strategies face the same investment universe and the same estimates for
the expected returns, µ = (µ(R1), . . . , µ(Rn))T , and covariances, Σ. Additionally, the
crosswise covariations between the random target and the asset returns are denoted
by the n-vector (Lb) = cov(R, T2). Note, the n × r matrix L and the r-vector b
are obtained from the factorization of the covariance matrix cov(R1, . . . , Rn, T2) (see
theorem 1).

As assumed in theorem 1, T2 is normal distributed with expected value µ(T2) and
variance σ2(T2). It appears reasonable to assume, µ(T2) > T1, so that the expected
target return of S2 is greater than T1. This is due to the uncertainty about T2, making
S2 riskier than S1. This higher risk must thus be compensated by a greater expected
target return. However, to keep our results as simple as possible we assume throughout
this section that µ(T2) = T1. But, all results presented here can be straightforwardly
modified such that µ(T2) > T1, for example by defining µ(T2) := T1 + ε, ε > 0 and
adapting the calculations.

In the following two subsections, we evaluate the differences in the performance of
S1 and S2 by comparing optimal expected portfolio returns. In subsection 3.1 the
practical more interesting case, in which the random target and the asset returns are
crosswise positively correlated, is discussed, whereas the opposite case is discussed in
subsection 3.2.

2More precisely, (4) is a second-order cone constraint, also called ice-cream cone or Lorentz cone.
For a detailed discussion on that, consult Kall and Mayer (2005, pp. 273-276) and the references
therein.

3If the feasible domain is concave and not empty, there exists a unique maximum. For an overview
of convex optimization see Boyd and Vandenberghe (2007)
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3.1 The Positive Correlated Case

Consider strategy S2 in which a portfolio is managed subject to the performance of
a benchmark, such as a stock index like the S&P500, without directly investing into
the benchmark.4 There are at least three situations where this appears reasonable:
First, the portfolio manager seeks to outperform the benchmark, which is typically for
actively traded funds. Second, the manager seeks to invest in a foreign market without
suffering from foreign exchange risk. This can be realized by tracking or outperforming
a foreign index, representing this market, by a domestic portfolio. Third, the latter
situation can also be derived from an individual perspective, where a skilled private
investor is attracted by the performance of a foreign market, but does not want to invest
directly into the market. The individual investor rather seeks to track the performance
of the foreign market by only investing in domestic stocks. This situation is derived
from a behavioral phenomenon called home bias, which was first documented by French
and Poterba (1991).

Reducing all these examples to the stock market, they have in common to track or
outperform one stock market by investing in similar but different stocks from another
market. We therefore assume that asset returns are positively correlated with the
benchmark return, i.e. the cross-covariance vector between R = (R1, . . . , Rn)T and T2

is
(Lb) = cov(R, T2) > 0 . (5)

This assumption is generally justified for most of the risky financial assets, in particular
for stock markets. In section 4 we provide empirical evidence that even a stronger
version of (5) is justified for the stock market. Remark that assumption (5) excludes
riskless investing because it does not allow for a zero covariance. We have S1 with
fixed target, T1, and S2 with normal distributed target, T2 ∼ N (T1, σ

2(T2)). Applying
theorem 1 yields

Z1 = xTR− T1 with Z1 ∼ N (µTx− T1, ‖LTx‖2) ,

Z2 = xTR− T2 with Z2 ∼ N (µTx− T1, ‖LTx− b‖2) .

Note, the expected values of Z1 and Z2 coincide, but the variances differ. Thus, in
the normal distributed case, the question, whether S1 outperforms S2 or vice versa is
simply the question of comparing variances. The following theorem shows that, under
a weak additional assumption, the variance of Z2 is smaller than the variance of Z1

and therefore, S2 outperforms S1. To prove this theorem we make use of

Lemma 1. If

cov(Ri, T2) >
1

2
σ2(T2) , i = 1, . . . , n , (6)

holds, then for any critical probability α ∈ (0, 1/2) the following inequality is true:

Φ−1(α)σ(Z2) + µ(Z2) > Φ−1(α)σ(Z1) + µ(Z1)

4A direct investment in an index can be obtained by purchasing an exchange traded fund (ETF) on
the index, which explicitly tracks the index and is, moreover, attractive because of low transactions
costs and tax efficiency.
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Proof: From the fully invested constraint (2) together with (6) follows

cov(R, T2)Tx >
1

2
σ2(T2) ,

which is equivalent to

0 > −2cov(R, T2)Tx + σ2(T2) ⇔

‖LTx‖2 > ‖LTx‖2 − 2(Lb)Tx + bTb ⇔

‖LTx‖ > ‖LTx− b‖ ⇔

Φ−1(α)‖LTx‖+ µTx− T1 < Φ−1(α)‖LTx− b‖+ µTx− T1 ⇔

Φ−1(α)σ(Z1) + µ(Z1) < Φ−1(α)σ(Z2) + µ(Z2) .

Notice that the second last inequality reverses because Φ−1(α) < 0 ∀α ∈ (0, 1/2).
�

Theorem 2. Provided (6) holds, for any critical probability α ∈ (0, 1/2) the optimal
expected portfolio return of S2 is larger or equal than the optimal expected portfolio
return of S1.

Proof: It is sufficient to show that the set of feasible portfolios of S1, denoted as
F1, is a subset of the feasible domain of S2, denoted as F2. If F1 = ∅, then clearly
F1 ⊆ F2. All portfolios x ∈ F1 6= ∅ satisfy

P (Z1 < 0) ≤ α ⇔ Φ−1(α)σ(Z1) + µ(Z1) ≥ 0
lemma 1⇔

Φ−1(α)σ(Z2) + µ(Z2) > 0 ⇔ P (Z2 < 0) < α .

Thus, x ∈ F2.
�

Remark, in the special case where the safety-first constraint for S1 is satisfied for
all portfolios x, i.e. P (xTR < T1) < α ∀x ∈ [0, 1]n, the entire wealth is invested in
the single asset with the highest expected return and thus the same is true for S2. In
this case both investors obtain the same optimal expected portfolio return and only
one asset is hold. Remark, if inequality (6) reverses, the result clearly reverses, i.e.
S1 outperforms S2. But this is practically not the case as supported by the empirical
analysis in section 4.

In figure 1, where the safety-first efficient frontiers5 for S1 and S2 are sketched, we
illustrate the result: Suppose, both investors choose a critical probability of α1, then
the portfolio problem is neither feasible for S1 nor feasible for S2. Suppose, both
choose α2, then S2 outperforms S1 as µTx∗2 > µTx∗1. Finally, suppose that they choose
α3, then their optimal expected portfolio returns coincide and their entire wealth is
invested in the single asset with the highest expected return.

5Shefrin (2005) uses the term SP/A efficient frontier, which is the same as the safety-first efficient
frontier, plotted in (µT x∗, α)-space. The safety-first efficient frontier is monotone non-decreasing
as investors prefer higher portfolio returns (µT x∗) but lower risk (α).
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α
α1 α2 α3

µTx∗

µTx∗(α3)

µTx∗
2(α2)

µTx∗
1(α2)

S2 S1

Figure 1: Safety-first efficient frontiers for S1 and S2.

3.2 The Non-Positive Correlated Case

This case which assumes a non-positive correlation between the random target and the
asset returns, i.e. the cross-covariance vector between T2 and R is non-positive,

(Lb) = cov(R, T2) ≤ 0 , (7)

can be motivated by at least three situations: First, from an individual perspective the
target may not even be known. Many individuals have the target of “being successful”,
but only a very few know precisely which selection of money, leisure time, culture etc.
must be attained to achieve this target (Bordley and Licalzi, 2000). Second, individuals
may follow a group target, because they are uncertain about their individual target.
This can be interpreted as herd behavior (see for example Shiller, 2005, pp. 157-172).
In these two examples the target is not clearly specified and can thus be interpreted as
unknown or random and stochastically independent from the portfolio. Third, there
exists a negative correlation between T2 and R, which for example occurs when T2

presents the return of a bond market whereas R are stock returns.
As in the previous subsection, the corresponding random variables for the strategies

S1 and S2 are

Z1 = xTR− T1 with Z1 ∼ N (µTx− T1, ‖LTx‖2) and

Z2 = xTR− T2 with Z2 ∼ N (µTx− T1, ‖LTx− b‖2) ,
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respectively, obtained from theorem 1. Notice, in the case where T2 and R are stochas-
tically independent, the variance of the sum is the sum of variances, that is

σ2(Z2) = σ2(xTR− T2) = σ2(xTR) + σ2(T2) = ‖LTx‖2 + σ2(T2) .

From this, it follows immediately that S2 is riskier than S1 and therefore S1 outperforms
S2. We now prove that this is also true, when asset returns and the random target are
non-positively correlated. To prove this, we make us of

Lemma 2. Provided (7) holds, for any critical probability α ∈ (0, 1/2) the following
inequality is true:

Φ−1(α)σ(Z2) + µ(Z2) < Φ−1(α)σ(Z1) + µ(Z1)

Proof:

0 < −2 cov(R, T2)Tx︸ ︷︷ ︸
≤0

+σ2(T2)︸ ︷︷ ︸
>0

⇔

‖LTx‖2 < ‖LTx‖2 − 2(Lb)Tx + bTb ⇔

‖LTx‖ < ‖LTx− b‖ ⇔

Φ−1(α)‖LTx‖+ µTx− T1 > Φ−1(α)‖LTx− b‖+ µTx− T1 ⇔

Φ−1(α)σ(Z1) + µ(Z1) > Φ−1(α)σ(Z2) + µ(Z2)

Notice that the second last inequality reverses because Φ−1(α) < 0 ∀α ∈ (0, 1/2).
�

Theorem 3. Provided (7) holds, for any critical probability α ∈ (0, 1/2) the optimal
expected portfolio return of S1 is larger or equal than the optimal expected portfolio
return of S2.

Proof: Employing lemma 2 instead of 1 and redoing the proof of theorem 2 yields
the proposition.

�
This result requires, compared to the positive correlated case discussed in subsection

3.1, no additional assumption. Furthermore, it allows riskless investing, which is pro-
hibited in the previous case. As the fixed target strategy S1 outperforms the random
target strategy S2, it reveals two issues: First, a random target which is stochastically
independent from the portfolio return, induced by a general uncertainty about the
target, leads to a poor performance and should be avoided. Second, an inappropriate
target choice characterized by a negative covariation with the portfolio return leads
also to a poor performance and should be avoided.
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4 Empirical Evidence for Condition (6)

This section provides empirical evidence for condition (6) and therefore supports the
practical value of the result from section 3.1. To do this, we estimate

cov(Ri, T2)− 1/2σ2(T2) , i = 1, . . . , n , (8)

in which Ri is the return of stock i and T2 is the return of a stock index. We use
German stock data from the DAX (blue chip stocks) and the MDAX (mid cap stocks).
For T2 we use data from important national and international indices. Condition (6)
is satisfied if (8) is positive for all i.

Table 1 reports the empirical estimator for (8), where Ri, i = 1, . . . , 30, are the
returns of all 30 DAX stocks and for T2 we use the following stock indices: MSCI
WORLD, DJ STOXX 50, DJ EURO STOXX 50, MSCI EUROPE, FTSE 100, S&P
500 and NYSE. We use a sample period for which monthly return data for all DAX
stocks contained in the index in February 2010 is available, that is a period from
February 2001 to February 2010. Table 1 shows that (8) is positive and thus (6) is
true for all stocks in the DAX, except for three (BEIX: Beiersdorf, FMEX: Fresenius
Medical Care and DTEX: Deutsche Telekom, for which only the condition using the
MSCI EUROPE is not satisfied). Undocumented results for a larger sample period
from September 1991 to February 2010, for which complete return data of 14 DAX
stocks exist, reveal that (8) is entirely positive.

Table 2 reports the empirical estimator for (8) using the same index data, but stock
data from the MDAX. Again, we use a sample period from February 2001 to February
2010, for which complete return data of 33 MDAX stocks is available. Table 2 shows
that (8) is positive and thus (6) is true for all stocks in the MDAX, except for four
(CLS1: Celesio, DEQ: Deutsche Euroshop, FIE: Fielmann and VOS: Vossloh).

The empirical results presented here indicate that condition (6) is mostly true, at
least for the German stock market. This provides additional support that, in the
context of section 3.1, the random target strategy S2 should be preferred to the fixed
target strategy S1.

5 Return Distribution Is Unknown

It is shown empirically that return distributions are fat-tailed (see for example Adler,
1998, and the references therein) and skewed to the left, i.e. losses weigh heavier than
gains, discussed for example in Harlow (1991). These findings indicate that the normal
assumption does not necessarily hold in general. We therefore relax this assumption and
assume only that good estimates for the first two moments of the return distributions
exist. Then, we can use a well-known textbook inequality, the Chebyshev inequality.
In the following we apply Chebyshev’s inequality to the safety-first constraint (1) and
obtain a stronger but deterministic version of (1).6 Providing this, it is easy to verify

6This idea has been first suggested by Roy (1952). For a detailed discussion on the application of
Chebyshev’s inequality to the safety-first criterion consult Kall and Mayer (2005) or Birge and

10



that under unknown return distributions the results from section 3 hold analogously.
Again, let Z = xTR−T be a random variable with xTR being the random portfolio

return and T being a target, either fixed or random. For the expected value and the
variance of Z we get

µ(Z) = µTx− µ(T ) ,
σ2(Z) = ‖LTx− b‖2 .

The following inequalities provide an upper bound for the safety-first constraint (1):

P (xTR < T ) = P (Z < 0)

≤ P (Z ≤ 0) = P (Z − µ(Z) ≤ −µ(Z)) = P (µ(Z)− Z ≥ µ(Z))

≤ P (|µ(Z)− Z| ≥ µ(Z))

≤ σ2(Z)

µ(Z)2
=
‖LTx− b‖2

(µTx− µ(T ))2
,

where the last inequality is obtained from Chebyshev’s rule.7 Instead of (1) the stronger
inequality

‖LTx− b‖2

(µTx− µ(T ))2
≤ α

can be applied. Drawing the square root and rearranging yields

−α−
1
2‖LTx− b‖+ µTx ≥ µ(T ) . (9)

Comparing (9) to the deterministic safety-first constraint (4) obtained for the multi-
variate normal case (see section 2), the sole difference is the multiplier for the term

‖LTx−b‖. In (4) the multiplier is Φ−1(α) whereas it is −α− 1
2 for (9), both are negative

for all α ∈ (0, 1/2). Thus, redoing the proofs from section 3 with (8) instead of (4)
yields the same results. Moreover, as (9) is concave for all α the same efficient solving
methods as for problem 2 can be used.

Note, applying the stronger inequality (9) instead of (1) reduces the number of
feasible portfolios, i.e. the feasible domain of problem 1 with (9) instead of (1) is a
subset of the feasible domain of the original problem 1. Thus, choosing α very small
may lead to infeasibility of the safety-first problem under (9), but not necessarily under
the true safety-first constraint (1). Nevertheless, this approach provides a useful and
tractable alternative to the multivariate normal case.

6 Conclusion

This paper analyzes the safety-first portfolio model under two different target assump-
tions, the fixed target, which is commonly assumed in the literature, and the random

Louveaux (1997).
7A detailed illustration for the univariate case is provided in Breuer et al. (2006, pp. 119-121). For

the Chebyshev inequality in general consult a textbook on probability theory, such as Behnen and
Neuhaus (1995).
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target, which has played only a minor role in the existing literature on the safety-first
model so far. As a random target can be easily motivated for this framework, the open
question is, which target choice leads to a better performance? We answer this question
by comparing optimal expected portfolio returns of the fixed and the random target
strategy. Assuming multivariate normal returns the answer is: (1) The random target
strategy outperforms the fixed target strategy if the portfolio return and the random
target are positively correlated and riskless investing is prohibited, (2) the fixed target
strategy outperforms the random target strategy if the portfolio return and the random
target are not positively correlated and riskless investing is allowed. The first result
is practically most relevant, in particular for institutional portfolio management and
the skilled private investor, which is supported by the empirical analysis in section 4.
The second result suggests, general uncertainty about the target and an inappropriate
target choice, characterized by a negative correlation between the portfolio return and
the target, should be avoided. As the normal assumption is typically violated for real
return data, we relax this assumption in section 5 and show that both results hold when
approximating the safety-first statement by the well-known Chebyshev inequality.

The normal distribution and Chebyshev’s inequality are on the one hand very tractable
and easy to implement, but on the other hand not very accurate. To overcome this
limitation several extensions are possible: One, the normal assumption can be relaxed
to the general distribution family depending on a shift and a scale parameter (see
Kalin and Zagst, 1999). Two, the normal distribution can be generalized to the el-
liptical distribution. Third, a copula function, which provides a general technique for
formulating a multivariate distribution, can be used. Four, considering higher order
moments a more accurate probability inequality can be used. We recommend this
issues for further research.
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A Proof of Theorem 1

As R is n-variate and T univariate normal distributed, the vector (RT , T )T is n + 1-
variate normal distributed and can be written as(

R

T

)
=

(
L

bT

)
Y +

(
µ

µ(T )

)
,

in which L ∈ Rn×r, b ∈ Rr and Y = (Y1, . . . , Yr)
T has a r-variate normal distribution

with mean 0 and identity matrix as covariance matrix (see for example Giri, 2004, pp.

14



81-82). Simple algebra yields

Z = xTR− T = (RT , T )
(

x
−1

)
= YTLTx + µTx− bTY − µ(T )

= YT (LTx− b) + µTx− µ(T ) .

Hence, we get the expected value and the variance of Z, respectively, as

µ(Z) = µTx− µ(T ) ,

σ2(Z) = (LTx− b)T (LTx− b) = ‖LTx− b‖2 .

�

B A Note on the Numerical Treatment of the
Covariance Matrix Factorization

Kall and Mayer (2005) suggest the Cholesky-factorization

cov(RT , T ) = cov(R1, . . . , Rn, T ) =

(
L

bT

)(
L

bT

)T

,

with L being a lower triangular matrix, which, however, may lead to numerical prob-
lems. To compute the Cholesky-factorization the matrix must be positive definite,
which may, due to stochastic independences between two or more assets, not be the
case. In this case the covariance matrix is positive semidefinite and the Cholesky-
factorization can not be computed. To correct this drawback we suggest a more general
factorization for symmetric matrices, in which the covariance matrix is factorized as

cov(RT , T ) = QDQT .

The matrix D is a diagonal matrix and contains the eigenvalues of cov(RT , T ) and Q
is an orthogonal matrix. Numerically, if the covariance matrix is positive semidefinite,
small rounding errors may induce negative eigenvalues close to zero, which is theoreti-
cally impossible. This is corrected by hand by setting eigenvalues smaller than ε > 0
to zero. Doing this, D̃ arise from D and the covariance matrix can finally be factorized
as

cov(RT , T ) = Q
√
D̃
√
D̃QT =

(
L̃

b̃T

)(
L̃

b̃T

)T

,

in which L̃ is necessarily no triangular matrix.
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Table 1: This table reports the empirical estimator for cov(Ri, T2) − 1/2σ2
T2

where
Ri, i = 1, . . . , 30, are the returns of all 30 DAX (blue chip) stocks. For
T2 we use the following international stock indices: MSCI: MSCI WORLD,
DJST: DJ STOXX 50, DJES: DJ EURO STOXX 50, MSCE: MSCI EU-
ROPE, FTSE: FTSE 100, S&P: S&P 500 and NYSE. We use a sample period
for which monthly return data for all DAX stocks contained in the index in
February 2010 is available, that is a period from February 2001 to February
2010.

Datastream
code

MSCI DJST DJES MSCE FTSE S&P NYSE

ADSX 14.44 15.08 15.16 14.25 13.76 12.53 13.45

ALVX 39.31 41.08 46.68 40.00 35.37 39.63 39.00

BASX 22.65 22.63 24.30 22.93 21.00 20.57 22.53

BAYX 22.05 27.04 29.86 23.39 21.51 20.90 21.76

BEIX -0.20 0.39 -3.34 -3.13 3.31 -1.18 -0.90

BMWX 16.45 20.41 20.58 14.25 18.49 16.07 16.53

CBKX 65.60 66.66 76.66 70.82 57.34 62.97 65.72

DAIX 31.76 32.08 34.93 30.78 29.45 30.56 31.87

DBKX 45.33 43.78 49.99 46.89 37.13 44.17 44.48

DB1X 27.61 26.80 28.50 27.31 24.02 26.10 27.39

LHAX 32.18 33.99 38.34 31.25 29.23 32.15 31.32

DPWX 28.87 27.00 29.15 29.76 26.06 28.46 29.59

DTEX 2.24 9.28 7.61 -1.60 4.37 3.88 0.92

EONX 10.02 11.04 9.45 9.54 10.96 7.69 10.16

FMEX -1.99 -0.83 -3.92 -5.75 0.76 -1.76 -3.68

FR3X 12.78 12.86 10.77 10.79 14.21 11.55 10.76

HE3X 6.19 7.03 5.15 4.11 7.95 5.12 5.54

IFXX 92.54 94.40 106.32 97.91 75.35 87.42 90.11

SDFX 28.49 21.49 22.50 28.44 25.27 24.87 28.63

LINX 15.52 19.06 18.97 15.67 17.30 12.90 14.21

MANX 40.51 39.68 44.31 44.05 35.71 35.44 38.34

MRKX 4.16 4.78 2.38 2.50 5.41 3.45 3.52

MEOX 27.65 27.79 29.33 26.96 24.74 27.41 27.52

continued on next page
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MSCI DJST DJES MSCE FTSE S&P NYSE

MU2X 19.46 23.84 27.02 17.88 19.18 20.06 18.25

RWEX 5.61 8.97 8.14 4.27 7.60 4.54 5.93

SZGX 30.44 26.91 27.81 28.36 29.78 29.04 32.05

SAPX 30.61 29.57 31.68 26.44 26.26 32.52 28.66

SIEX 38.23 40.86 45.52 38.91 35.73 37.17 36.20

TKAX 43.44 39.91 43.89 45.01 39.07 39.91 42.94

VO3X 26.67 22.06 25.04 26.77 19.64 24.52 26.72
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Table 2: This table reports the empirical estimator for COV (Ri, T2) − 1/2σ2
T2

where
Ri, i = 1, . . . , 33, are the returns of 33 MDAX (mid cap) stocks, for which
complete return data for the sample period from February 2001 to February
2010 is available. For T2 we use the following international stock indices:
MSCI: MSCI WORLD, DJST: DJ STOXX 50, DJES: DJ EURO STOXX 50,
MSCE: MSCI EUROPE, FTSE: FTSE 100, S&P: S&P 500 and NYSE.

Datastream
code

MSCI DJST DJES MSCE FTSE S&P NYSE

NDA 8.93 7.03 4.79 4.40 9.11 8.31 9.73

BYW6 25.17 18.38 18.15 27.75 21.58 20.71 24.68

GBF 30.56 26.51 29.02 30.74 29.80 27.83 30.16

BOS3 38.78 38.16 40.06 40.33 37.32 35.83 39.05

CLS1 -8.01 -4.11 -9.96 -12.27 -2.44 -7.60 -7.01

CON 41.96 36.63 39.87 44.77 37.72 38.90 42.12

DEQ -2.68 -5.78 -9.52 -5.79 -0.51 -3.70 -2.36

DOU 3.91 4.84 3.09 1.24 7.19 2.69 3.51

EAD 27.13 32.06 34.40 26.37 28.79 25.60 26.65

ZIL2 30.67 24.83 25.85 28.54 25.50 29.57 31.17

FIE -1.88 1.57 -0.96 -5.10 2.43 -2.23 -2.03

FPE3 21.53 15.38 14.73 23.08 17.90 17.82 21.49

G1A 40.42 35.13 37.35 41.38 37.10 37.63 40.13

GIL 41.06 38.18 40.60 47.72 36.16 34.86 40.80

HNR1 19.12 17.36 19.93 17.95 16.89 19.65 19.36

HDD 48.36 48.48 52.77 52.95 45.57 43.61 50.12

HEI 28.42 32.58 34.58 30.92 27.73 25.43 29.12

HOT 47.38 41.22 45.74 49.83 44.43 42.49 46.52

IVG 46.05 38.32 42.45 53.07 41.19 38.64 45.44

KRN 12.27 13.42 12.01 9.57 15.04 10.96 11.85

LEO 37.71 31.30 31.46 38.85 32.64 35.88 38.90

MLP 60.65 62.87 75.20 60.85 48.68 62.38 59.61

PFD4 47.96 43.30 48.20 51.23 39.89 44.97 48.77

PSM 83.52 81.32 91.31 88.84 69.61 78.76 81.95

continued on next page
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MSCI DJST DJES MSCE FTSE S&P NYSE

PUM 25.11 22.51 22.50 25.40 24.67 23.00 24.71

RAA 17.86 16.47 16.84 18.11 18.14 14.99 16.42

RHM 12.25 11.20 8.60 11.95 14.90 9.81 12.63

RHK 4.70 7.55 4.61 2.74 9.69 3.34 4.26

SGL 52.18 39.24 46.29 52.16 40.80 50.59 50.24

SAZ 23.76 18.15 17.88 20.45 18.62 24.77 25.94

SZU 4.48 7.66 6.23 2.81 8.12 2.69 2.92

TUI1 51.02 52.12 59.03 55.17 46.99 48.36 52.19

VOS -1.06 -3.47 -6.97 -4.25 2.55 -1.65 -0.62
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