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Optimal Seedings in Elimination
Tournaments Revisited*

Matthias Krikel

Abstract

The paper addresses the problem of optimally matching hetero-
geneous players in a two-stage two-type Lazear-Rosen tournament in
which the semifinal losers are eliminated. The organizer of the tour-
nament can either choose two homogeneous semifinals — one between
two strong players and the other one between two weak players — or
two heterogeneous semifinals, each between one strong and one weak
player. I identify conditions under which the organizer is strictly bet-
ter off from two homogeneous semifinals if he wants to maximize total
expected effort and the strong players’ win probability. This finding is
contrary to both the typical procedure used in real sporting contests
and previous results based on all-pay auctions and the Tullock contest.
Hence, my findings point out that the optimal design of elimination
tournaments crucially depends on the underlying contest-success tech-
nology.
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geneous match.
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1 Introduction

There exist many situations from different fields that can be best described
by a winner-take-all competition. For example, in sporting contests individ-
ual athletes or teams compete for championship. In internal labor markets,
employees participate in job-promotion tournaments for a vacant position at
a higher tier of the corporate hierarchy. In addition, political contests, liti-
gation contests, rent-seeking contests, R&D races, the race for technological
or fashion leadership in certain markets, military conflicts, and song, beauty
and cooking contests also have the typical characteristics of a winner-take-all
competition.

In these situations, the contestants do not necessarily compete against
each other in a grand contest. Instead, they are often initially assigned
to several sub-contests whose winners are allowed to continue in a higher-
order tournament, whereas the sub-contest losers are eliminated. There are
several examples for such elimination tournaments:' Sporting contests are
frequently divided into a group phase and a subsequent knock-out phase,
where the group winners meet in the round of sixteen. Thereafter, the re-
spective winners are matched in the quarter final and so on. At the end,
the winner of the final receives the overall winner prize. Another example is
given by job-promotion tournaments. Here, managers typically have to win
subordinate tournaments (e.g., for becoming section or division head) before
they get the opportunity to compete for a top position at their corporation’s
headquarters (e.g., the CEO position).

In this paper, I analyze how an organizer should optimally design the
structure of such elimination tournaments. In particular, the organizer has
to decide on the matching of different player types in the single sub-contests,
which is called seeding (Groh et al., forthcoming). The answer to the ques-
tion on what is the optimal seeding may crucially depend on the objective

function of the tournament organizer. As a somehow natural objective func-

'For these and additional examples, see the introduction of Groh et al. (forthcoming)
and Moldovanu and Sela (2006), p. 71.



tion, the tournament organizer can be interested in maximizing players’ total
expected effort for a given winner prize.? In the case of a sporting contest,
the local organizer of the sports event may be free to choose the structure of
the tournament, but the winner prize is determined by an exogenous sponsor
or the respective sporting association. In that case, maximization of play-
ers’ total effort can be interpreted as maximizing the entertainment of the
audience. In the case of a job-promotion tournament within internal labor
markets, the firm owner may be primarily interested in maximizing workers’
overall effort for given wages being attached to jobs.

The examples of sporting contests and job-promotion tournaments indi-
cate a second possible objective of the tournament organizer, namely the
maximization of the top players’ win probability.> A national sporting asso-
ciation can be very interested in this aim, if the winner of a national contest
does not only obtain a winner prize but is also qualified for an international
tournament. In a job-promotion tournament, the owner of a firm usually
prefers the most able employee to climb the ladder to the top. Suppose that
the design of the tournament which maximizes total expected effort, being
thus optimal from an incentive perspective, is not optimal with respect to se-
lecting high-ability individuals for top positions. In that case, the firm owner
may be tempted to breach the rules of the tournament by declaring a more
able employee the tournament winner although another employee has per-
formed best. If the employees anticipate that such opportunistic behavior of
the owner will happen with a high probability, incentives from participating
in a job-promotion tournament will be erased. Altogether, if the incentive
aim and the selection aim lead to different solutions to the design problem,
the organizer must credibly commit either to single out one of the two aims
or to decide according to an optimal weighing of the two aims.

I consider a four-player two-type elimination tournament and address

2See, e.g., Gradstein and Konrad (1999), Moldovanu and Sela (2006), Cohen and Sela
(2007, 2008), Aoyagi (2010), Moldovanu et al. (2007, forthcoming), Groh et al. (forth-
coming), Franke et al. (forthcoming) and Fu and Lu (forthcoming).

3See also Hochtl. et al. (2011) and Groh et al. (forthcoming).



both possible objective functions — maximization of total expected effort and
maximization of the top players’ win probability. In this setting, there are two
semifinals whose winners compete in the subsequent final for a winner-take-
all prize, whereas the semifinal losers are eliminated and obtain nothing. Two
players have a high type (i.e., a high valuation of winning) and two players
have a low type (i.e., a low valuation of winning), which implies two possi-
ble seedings for the semifinals: The tournament organizer can either choose
a homogeneous seeding or a heterogeneous one. In the former case (hom),
the organizer matches the two high types in one semifinal and the two low
types in the other semifinal. In the latter case (het), the organizer chooses
two identical semifinals each between one high type and one low type. I use
a Lazear-Rosen (1981) type of tournament for modeling the winner-take-all

4 My results show that it can be optimal for the tournament

competition.
organizer not to match low types ("underdogs") and high types ("favorites")
together in the same semifinal, which is the typical procedure used in real
sporting contests. Particularly, if noise in the tournament is uniformly dis-
tributed — as in the setting of Meyer (1991) — the design hom dominates
the design het irrespective of whether the organizer wants to maximize total
expected effort or the top players’ win probability. Thus, there is no trade-off
between the two aims.

The intuition for my finding is the following: Design hom leads to bal-
anced competition in both semifinals, which is beneficial for the organizer
since players’ equilibrium efforts are higher the more balanced the competi-
tion.> Moreover, all semifinalists anticipate unbalanced competition in the
final for sure, implying low effort costs in the final and, hence, a rather
large expected utility from participating in the final. This second effect also
boosts overall incentives in the semifinals. In addition, the two high-type or
top players already know in the semifinal that, in case of winning, they will

be matched with a weaker opponent in the final. Thus, their win probability

4The underlying win technology has also been referred to as difference-form contest-
success function; see, e.g., Dixit (1987), Baik (1998) and Che and Gale (2000).
®See, e.g., Rosen (1986), pp. 707-710.



in the final will be quite large, so that especially the high-type players have a
very large incentive to win the semifinal. Note that the design hom has two
drawbacks: First, since it is clear that one high-type and one low-type player
will reach the final, total effort from the final will be rather small due to
unbalanced competition. Second, the low-type players in the semifinal antic-
ipate that they will have a rather low win probability in the final. However,
if the incentive advantages from the two homogeneous semifinals dominate
these incentive disadvantages from a surely heterogeneous final, design hom
will be optimal for maximizing total expected effort. Design hom is also ben-
eficial for maximizing the win probability of a high-type player: In contrast
to het, design hom guarantees that one high-type player reaches the final for
sure. In the final, the high-type player has a quite large win probability since
he competes against a low-type opponent.

My finding sharply contrasts with the main result of Groh et al. (forth-
coming) who analyze the same design problem but use an all-pay auction with
complete information instead of a Lazear-Rosen tournament (or difference-
form contest-success function [csf]). They show that design het is optimal
for maximizing both total expected effort and the top players’ win probabil-
ity. My contrary findings point out that the optimal design of elimination
tournaments crucially depends on the underlying contest-success technology.

Note that the all-pay auction with complete information can be seen as an
extreme case of the Lazear-Rosen tournament. In fact, by assuming that the
noise distribution is degenerate, the Lazear-Rosen tournament immediately
turns into an all-pay auction. Suppose that the tournament organizer can
choose between two different monitoring technologies. He may either choose
a perfect monitoring technology leading to an all-pay auction and high moni-
toring costs, or a less precise monitoring technology implying a Lazear-Rosen
tournament and lower monitoring costs. Under either contest type, the or-
ganizer has the advantage that one design is optimal in both dimensions —
maximizing total expected effort (incentive dimension) and the top players’

win probability (selection dimension). However, I can show that for uni-



formly distributed noise the optimally designed all-pay auction (using design
het) dominates any optimally designed Lazear-Rosen tournament (using de-
sign hom) in both the incentive and the selection dimensions. The decision
problem which kind of contest to choose then boils down to solving the trade-
off between better performance (in both dimensions) but higher monitoring
costs of an all-pay auction compared to a Lazear-Rosen tournament.

My paper is organized as follows. The next section gives a brief overview
about related work. Sections 3 and 4 introduce the model and present the
solution to the tournament game. Building on the findings of Section 4, the
next two sections compare the two possible seedings hom and het with re-
spect to total expected effort (Section 5) and the top players’ win probability

(Section 6). Section 7 concludes

2 Related Literature

Previous work on elimination tournaments typically builds on either the all-
pay auction or the Tullock csf.® As has been stressed above, my paper is
closest to the recent work by Groh et al. (forthcoming), who also consider
seedings of heterogeneous contestants in two semifinals. However, contrary
to my paper, Groh et al. apply an all-pay auction with complete information,
which leads to the converse outcome — het dominates hom. Moldovanu and
Sela (2006) consider an all-pay auction where cost functions are private infor-
mation of the contestants. They analyze whether a contest organizer should
design a single grand contest among all n > 2 players or split the players
into sub-contests with sub-contest losers being eliminated and winners com-
peting against each other in the final. If the organizer wants to maximize
total expected effort, the grand contest dominates splitting given that cost
functions are linear, but splitting can be advantageous if cost functions are
convex. This finding shows that the optimal design of tournaments does not

only depend on the csf but also on the shape of the players’ cost functions.

6See Konrad (2009), pp. 164-169, for an overview.



The vast majority of the papers on elimination tournaments uses the
Tullock csf. Rosen (1986) is the first paper at all that addresses elimination
tournaments. There, the n players compete in pairwise elimination matches
where in each round the losers receive certain prizes and are not allowed to
continue, but the match winners are assigned to the next stage in which each
one competes against another winner to further climb the ladder. Rosen
shows that the prize spread for winning the final should be very large to
induce sufficient effort levels to all players during the complete multistage
elimination tournament.

Gradstein and Konrad (1999) investigate whether the contest organizer
is better off from choosing a single grand contest or a sequence of pairwise
elimination tournaments to maximize total expected effort. Using a Tullock
contest, they show that the grand contest is optimal if the csf is sufficiently
discriminatory, but otherwise a sequence of elimination tournaments would
be advantageous.

Amegashie (1999, 2000) considers a multi-stage elimination tournament
between a given number of homogeneous players, who compete against each
other according to a Tullock csf. In an initial period, the total number of
contestants is divided into sub-contests of equal size. The sub-contest win-
ners are allowed to participate in the final whereas the losers are eliminated.
Amegashie shows that an elimination tournament with sub-contests is better
for maximizing overall effort than a single grand contest if the csf’s dis-
criminatory power in the sub-contests is sufficiently large compared to the
discriminatory power in the final.

Harbaugh and Klumpp (2005) analyze a four-player two-stage elimination
tournament with a Tullock csf. Players have a fixed budget for their effort
choices. In the beginning, they have to share their effort budget into the
amount that is invested in the semifinal and the remainder which is exerted
in the final given that the respective player reaches the final. In equilibrium,
the weaker player exerts more effort than his stronger opponent in each semi-

final. However, these asymmetric effort choices cannot completely equalize



the semifinalists’ win probabilities. Due to the fixed budget, weak players
have a quite low win probability when meeting a strong player in the final.

Similar to my paper, Hochtl et al. (2011) address the question of optimal
seeding in elimination tournaments.” However, they use a Tullock contest
with linear impact function, and assume costs to be linear and each contes-
tant’s valuation of the winner prize to be uniform. Hoéchtl et al. show that
hom is better than het if the tournament organizer wants to maximize total
expected effort, but het is better than hom for maximizing the top players’
win probability. Thus, given a Tullock csf, the incentive and selection aims
lead to a strict trade-off, contrary to the Lazear-Rosen tournament and the
all-pay auction.

Fu and Lu (forthcoming) analyze a multi-stage elimination tournament
between n homogeneous contestants. The tournament organizer chooses the
structure of the tournament (allocation of prize money, number of stages,
number of winners for each stage) to maximize total expected effort. Fu and
Lu show that, for a Tullock csf with concave impact function, the organizer
should give the entire prize money to the player that wins the final. In
addition, it is optimal to maximize the number of elimination stages.

With the exception of Hochtl et a. (2011) all papers on elimination tour-

naments with Tullock csf do not address the problem of optimal seeding.

3 The Model

In analogy to Groh et al. (forthcoming), I consider a two-stage elimina-
tion tournament between four players. In stage 1, pairs of two players are
matched within two semifinals that take place simultaneously. Matching is
deterministic, that is, individual players are seeded by the organizer of the
tournament, called O. After the semifinals, the game ends for the losers,

who obtain zero. However, the winners of the semifinals enter stage 2 where

"See Rosen (1986), pp. 709-710, on a related numerical example on seeding versus
random matching.



they meet one another in the final and compete for a given prize. As in the
semifinals, the loser obtains zero.

Players only differ in their individual valuations of the prize for winning
the final. I assume that there are two players whose value of the prize is given
by vy, whereas the two other players’ winner prize amounts to vy, € (0,vy).
Contrary to Groh et al. (forthcoming), I do not consider an all-pay auction
with complete information, but a tournament with difference-form csf (see,
among many others, Lazear and Rosen 1981, Dixit 1987, Baik 1998, Che and
Gale 2000). In particular, I assume that in a match between players i and
J, who choose non-negative efforts e; and e;, organizer O observes the noisy
signal s with

S:{Si if e —ej>c¢ (1)
s; if e;—e; <e,
where s; (s;) indicates that player i (j) has outperformed player j (). Thus,
the realization of the signal depends on the players’ efforts and the variable ¢
that describes an unobservable, exogenous random term (e.g., measurement
error or noise) with density g (¢) and cdf G (¢). I follow the usual assumption
that g (¢) is symmetric about zero and weakly unimodal.’

Effort e; entails costs on player i that are described by the function ¢ (¢;) =
ke?/2 with k > 0 being sufficiently large to ensure positive expected utilities
in equilibrium (see, e.g., (4) below). Similarly to Schottner (2008), I assume
that

vir -sup g’ (Ae)| < inf ¢ (¢) = (2)

to guarantee the existence of pure-strategy equilibria. Thus, the second-
order conditions are assumed to hold in each possible final and semifinal.
This condition is clearly satisfied in the example given below with uniformly

distributed noise.

8Groh et al. (forthcoming) assume that the four individual prizes of the players satisfy
v1 > vy > vy > vg > 0. In Subsection 3.1.1, they consider the two-type case analyzed in
this paper.

9Many tournament papers even assume strict unimodality with a unique mode at zero
(e.g., Dixit 1987, Drago et al. 1996, Hvide 2002, Chen 2003).



Each contestant maximizes the expected prize of winning the tournament
minus his effort costs. Following Groh et al. (forthcoming), I consider two
possible objective functions that organizer O wants to maximize for exoge-
nously given prizes vy and vy:!° On the one hand, organizer O can be inter-
ested in maximizing the sum of expected efforts of all players over all rounds.
Given that players’ efforts are productive (e.g., entertainment), this objective
function seems quite natural. On the other hand, O may be interested in
maximizing the probability that a vg-player wins in the final. As Groh et al.
(forthcoming) point out, this objective plays an important role in the statis-
tical literature. Under either objective function, O can choose between two
different seedings — one that constitutes two homogeneous semifinals (called

design hom), and one that constitutes two heterogeneous semifinals (design
het).

4 Solution to the Tournament Game

4.1 Final

I start with the solution of the final between players ¢ and j with valuations

v, v; € {vg, vy}, choosing efforts e]” and e}, respectively. Player i maximizes

EUlF(ef,eF):vi-G(eF—eF)—c(eF),

J ? J

whereas player j maximizes

EUJF(eF eF):Uj-[1—G(ef—ef)}—c(eF).

i€ i

10Groh et al. (forthcoming) also consider two additional criteria, whose application is
not interesting in the given setting.

10



Given condition (2), the equilibrium (ef * ef *) can be described by the first-

order conditions

which — using the specific cost function — yields

(eF* Fx KR ’

Piet) = <vig(AeF*) Ujg(AeF*)) £ kv, (3)

K ’ K
with Aef™ := ef* — el Note that g (0) > g (Ae™) since g is symmetric
about zero and weakly unimodal. Hence, each player chooses at least as
much effort in a homogeneous match as in a heterogeneous one. Expected

utilities in equilibrium read as

v ’U29(0)2 1 — —
L e P if v,=v;,=0v
EUZ];'* — 2 2":}29(A6F*)2 J (4)
UZ'G (AGF*) — ZT if Vi 7é UV

with EUS* .= EUF (ef*,el™) and G (Ae'™) 2 1 if Aef™ = 0. Not surpris-
ingly, each player’s equilibrium effort strictly increases in his valuation of the
winner prize. However, the same is not true for the expected utility since
the convex effort costs also increase in v;. Recall that, by assumption, x is

sufficiently large so that EU;* > 0.

4.2 Semifinals

We have to differentiate between two possible constellations for the semifi-
nals. Suppose that O decides to organize two homogeneous semifinals (design
hom) — one semifinal between the two vy-players and the other one between
the two vy -players. In the vgy-semifinal, each participant knows that, in case
of winning, he will be matched with a v, -opponent in the final. Let H; and

H, denote the two vy-players, efli (1 = 1,2) their respective effort levels, and

11



EUg, u; (4,5 = 1,2;0 # j) their expected utilities from participating in the

vy-semifinal. Then the players’ objective functions can be written as follows:

EUngQ - G (eil €H2) EU (elsil)
EUsiyn, = [1=G (€, — et )] BUgi — ¢ (eh,) -

Since existence of pure-strategy equilibria is guaranteed by (2), the first-order

conditions
g (621 €H2) EU HL — c (621) =c (622)

show that the vy-semifinal has a unique equilibrium which is symmetric:

(e%*l, 6%2) = (efl*,wm, er hom) with eH hom = [g (0) EU};E] /K. Analogously, in

the vy -semifinal each player, who anticipates to be matched with a vg-player
in the final when winning the semifinal, chooses effort 7%, . = [¢ (0) EUf ] /&
in equilibrium. Depending on the value difference vy — vy, and the magnitude
of the cost parameter k, the vy-players may choose more effort than the vy-
players in the semifinals (i.e., if EUL: > EUL}) or less (if EUL: < EUL).
Now suppose that O decides to organize two heterogeneous semifinals
each with one vy-player and one vz -player (design het). Let e3r (e7") denote
the effort level chosen by the vy-player (v -player) in semifinal n = 1,2, and
EUsn (EUP) the player’s respective expected utility from participating in

that semifinal. Thus, for the first semifinal, we obtain

EUR, = G(Ae™) (G (Ae™) EUf + [1— G (Ae™)] BURT) — ¢ (e)
EUYy = [1-G(Ae™)] (G (Ae®™) BU, + [L — G (Ae™)] EULY) —c(e7})

with AeS» := e — 7" (n = 1,2). Given (2), equilibria can be described by
the first-order conditions. I restrict the analysis to the most plausible case of
symmetric equilibria where players of the same type behave identically (i.e.,

5l = e3? and 7' = €7?). The existence of additional asymmetric equilibria
cannot be ruled out. However, in the example with uniformly distributed

noise considered below there exists a unique equilibrium which is symmetric.

12



First-order conditions together with symmetry yield that vg-players choose

Sx . 11 e S .
€7l her 1 equilibrium and vz-players e7%,,, with

* g Aesg * * * *
e = L) (s (mug; - BUE;) 6 (ack)
S = 189 (pur _ (BUt; - BUE) G (Ae)

and Aep?, = e}s}’fhet — eff‘het. At first sight, it is not clear which type of player
chooses more effort in the heterogeneous semifinals. However, I can state

under which conditions the stronger player exerts more effort in equilibrium:!*

Lemma 1 If EUfy > EULY, then €3, > €7

The lemma is based on the assumption that it is better to be a strong
player than a weak one when meeting another strong player in the final (i.e.,
EUEy, > EUEL).'2 Under this condition, vg-players choose higher efforts
than vz-players in the heterogeneous semifinals. Note that UL > EUL,
is only a sufficient condition for efj’:het > efj‘hat and may be much too strong

in many cases.

T All proofs are relegated to the appendix.

2Condition EUJ;; > EUf}; can be verified if the distribution of ¢ is further specified.
If, e.g., € is uniformly distributed over [—Z, ], the condition boils down to 422 > vy — vy,
which is always satisfied under an interior solution. If player heterogeneity is additive (see,
e.g., O'Keeffe et al. (1984); Bull et al. (1987); Akerlof and Holden (forthcoming)), the
relative-performance signal is given by

s si if e;+ai—ej—a;>c¢
S if e +a;, —e; —a; <Eg,

with a; and a; as the players’ abilities. Assuming a uniform tournament prize v, two
high-ability players (a; = ag > 0) and two low-ability ones (a; = ar € (0,ag)) would
allow to write UI};;{ > FEU 5 77 as a pure condition of the primitives of the model (see the
additional pages for the referees)

v < QH% — 1l —G(Aa)].
9(0)* = g (Aa)®

13



5 Total Expected Effort

We can use the results for the equilibrium efforts in the final and the two
semifinals under the two different seedings to answer the question whether
organizer O prefers the design hom or the design het if he wants to maximize
total effort. Under the design hom, total effort from both semifinals is given
by

24 (0)

ZS = 26%.:hom + 26€Thom = T (EUI?E + EUI}T}TI) (5)

hom

and total (expected) effort from the subsequent final by

AAF*
ZF e w (UH —|— ?}L) Wlth AéF* = 62* - 65* > 0 (6)

hom

Under the design het, the four equilibrium efforts from both heterogeneous

semifinals sum up to

Ei@t = 26%fhet+2€§:khet (7)

g (A€§:t) [(

K

2 1= G (Aeps)) (BUgy + EULE)

+ (EUfy + EULY) G (Aeys)] -

Expected equilibrium efforts from the subsequent final amount to

sE, = 2(@ (046 (e +vs [1 - G (Ae)]) ®)

g (AéF*

X ) (vg +vp) G (Aef;) [1 -G (Aef@]) )

Comparing the effort choices under the two different designs leads to the

following results:

Proposition 1 (i) If EULy > EUL,, then X5 >S9 .. (i) ©F < %F .

hom hom

The proposition shows that expected efforts in the final are always greater

or equal under design het compared to hom. The intuition for this result

14



is based on the fact that equilibrium efforts in the final are particularly
high if (a) a player’s winner prize is vy instead of vy, and if (b) there is
a homogeneous instead of a heterogeneous match. Under design hom, we
unambiguously have a heterogenous final between one vg-player and one vy -
player, so that total effort is quite low. However, under design het, there are
four possible constellations for the final. In three constellations at least one
vy-player enters the final and in two constellations there is a homogeneous
match, so that expected efforts are relatively high.

The two arguments (a) and (b) can be similarly applied to the semifi-
nals. Concerning argument (a), at first sight, both hom and het seem to be
identical because in either case there are two vy-players and two vp-players.
However, from the viewpoint of a semifinalist, not the values vy and vy, are
decisive for the creation of incentives, but the corresponding expected util-
ities EUg *. which also depend on the type of the other finalist. There are
four possible values — EUL:, EULy, EUEr and EUL} — and the relation
between these values is not clear in most of the cases since it depends on the
interplay of the win probability, the winner prize and the effort costs. It is
only clear that FUL: > EUL:,.

However, note that the disadvantage of a surely heterogeneous final un-
der hom turns into a strong advantage concerning the hom-semifinals. In the
hom-semifinals, all four players anticipate that, due to heterogeneous com-
petition, they will have rather low effort costs if they enter the final. This
fact implies rather large expected utilities of participating in the final and,
hence, strong incentives in the hom-semifinals. Especially the two players
in the vy-semifinal have very strong incentives because they anticipate that
they have a large win probability G (AéF *) > 1/2 and relatively small effort
costs when being matched with a vy -player in the final for sure.

Applying argument (b) to the semifinals shows that the designs hom and
het strictly differ. In the two homogeneous semifinals, equilibrium efforts
are quite high as indicated by ¢ (0) in expression (5), whereas efforts are

rather low in the two heterogeneous semifinals, indicated by g (Aej) in
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(7). Altogether, as Proposition 1 shows, the incentive advantages of the
two homogeneous semifinals can be so strong that total effort from the two
hom-semifinals exceeds that from the two het-semifinals.

According to Proposition 1, it is not straightforward which seeding max-
imizes total expected effort from the whole tournament. However, further
specifying the distribution of € can lead to a clear-cut result. For analytical
tractability, I follow Meyer (1991, Section 5.2) and assume that ¢ is uniformly
distributed over [—¢&,&| with & being sufficiently large to guarantee interior
solutions to the tournament game. Furthermore, I assume that x = 1 to save

notation. For this specification, the following result can be obtained:

Proposition 2 If¢ is uniformly distributed, then 35 +3F > 39 43F

hom hom

Proposition 2 shows that, under uniformly distributed noise, the tour-
nament organizer O should prefer the design hom to the design het if he
wants to maximize overall expected effort for a given tournament prize. This
finding is in sharp contrast to the result of Groh et al. (forthcoming), who
consider an all-pay auction with complete information, but qualitatively in
line with the finding of Hochtl et al (2011), using a Tullock csf. Interest-
ingly, my result holds although two of the main arguments in favor of hom
are eliminated by the use of the uniform distribution. In the discussion of
Proposition 1 above, I have argued that incentives in the hom-semifinals are
quite large — compared to het — since (1) all semifinalists face homogeneous
instead of heterogeneous competition, and since (2) the surely heterogeneous
final unambiguously leads to low effort costs and, hence, a rather high ex-
pected utility from participating in the final. These two arguments are absent
under Proposition 2, because the uniform distribution has a constant den-
sity, implying g (0) = g (Ae?,). Nevertheless, the design hom dominates the
design het.
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6 The Top Players’ Win Probability

In this section, the two designs hom and het will be compared with respect
to the second possible objective of the tournament organizer O — maximiz-
ing the probability that one of the vy-players wins the tournament. This
objective can be motivated as follows. Consider, for example, the case of a
job-promotion tournament where the winner of the final is promoted to an
important management position. Then not only incentives and, therefore,
total effort should play a role, but also the type of the promoted individual.
Let, for the moment, vy and v, also indicate the suitability of the play-
ers for the management position with vg-players being more suited for the
job.!3 In that situation, O should be interested in how the top players’ win
probabilities differ under the designs hom and het.

Under design hom, the final must be a match between a vy- and a vy -
player, so that the top players’ win probability is simply given by G (AéF *)
with Aéf™ > 0 (see (6)). Under design het, one of the vy-players will win the
tournament if the final is between two vy-players or if there is a heterogeneous
final but the vy-player wins. Thus, the top players’ win probability is higher

under hom than under het iff

G (Ae"™) > G (Aepr) G (A +2G (Aers) [1— G (Aerr)] G (Ae"™)
G (Aesr,)?
G (Aeggt)Q +[1-G (AQEZt)]Q.

& G (Ae™) > (9)
The left-hand side of (9) is strictly larger than 1/2 since Aé™ > 0. The right-
hand side describes a function that is monotonically increasing in G (Ae?,),
taking value 0 at G (Aej?,) = 0 and value 1 at G (Aey’) = 1 (i.e., tech-
nically, it has the characteristics of a cdf of G (Ae;?,)). The numerator
describes the probability that, under het, both semifinals are won by the

vy-players, whereas the denominator describes the probability that the final

130n the additional pages for the referees, I explicitly model player heterogeneity via
the players’ individual abilities.
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is homogeneous. Hence, the right-hand side of (9) is the probability of a ben-
eficial homogeneous final relative to the probability that the final will be a
homogeneous one under het. If this relation is sufficiently small, O will prefer
hom. Condition (9) is clearly satisfied for Aey* < 0, otherwise it depends
on the relation between Aéf™ and Aey*,.

Clear-cut results can only be derived when further specifying the under-
lying distribution G. If ¢ is again uniformly distributed over [—Z, |, the top
players’ win probability under hom is given by G (AéF *) = (282 + vy —vr)/

(42%), but under het it amounts to
G (Aer) G (Aer) +2G (Aeyr) [1— G (Aeps)] G (AéF™)

482 (168 + (v —vr)?) (v — v +48%)° + (v — vp)°
822 (168* + (vg — v1)?)” ’

which is strictly smaller than (282 + vy — vy) / (42%). These findings are

summarized in the following proposition:

Proposition 3 The top players’ win probability is higher under hom than
under het, iff G (Aéf™) > G (Ae;f;‘t)Q/ (G (Aef:t)Q +[1-G (Aef:t)f). If

e 1s uniformly distributed, this condition is satisfied.

Propositions 2 and 3 together show that, for the case of uniformly dis-
tributed noise, design hom strictly dominates design het in (A) maximizing
total effort as well as (B) maximizing the top players’ win probability. This
finding is in sharp contrast to that of Groh et al. (forthcoming) for the all-
pay auction with complete information, where het dominates hom in both
dimensions (A) and (B). My result also strictly differs from the finding of
Hochtl et al. (2011) on the Tullock contest, where O faces a trade-off con-
cerning objectives (A) and (B): hom is better than het for maximizing total
effort, but the top players’ win probability is maximized under het. Alto-
gether, this comparison demonstrates that the optimal design of elimination

tournaments crucially depends on the kind of underlying csf.

14 Again, k = 1 is assumed to save notation.
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In principle, the all-pay auction, considered by Groh et al. (forthcom-
ing), and the Lazear-Rosen tournament (or difference-form csf), analyzed in
this paper, belong to the same csf-class and can, therefore, be directly com-
pared with each other. If we assume that ¢ = 0 in (1), the Lazear-Rosen
tournament immediately turns into an all-pay auction with complete infor-
mation. Moreover, we can imagine that the organizer O has the possibility
to choose between different monitoring technologies that differ in precision
and costs. For simplicity, I consider the case of uniformly distributed noise.
Then, the relative performance signal s has the precision 1/Var (¢) = 3/&2
and we can characterize a monitoring technology with noise ¢ ~ U (—£, &) by
the monitoring-cost function C' (£) > 0 with C” () < 0 (i.e., the less precise
the performance signal the less costly will be the underlying monitoring tech-
nology). In this case, the use of an all-pay auction (i.e., a tournament with
perfect monitoring) is associated with costs C' (0), whereas the Lazear-Rosen

tournament with noise €y ~ U (—&g,&p) (€9 > 0) leads to monitoring cost

C (20) < C (0).

Let ¥, denote total effort generated by an optimally designed Lazear-
Rosen tournament (i.e., design hom) with noise ¢ ~ U (—¢,¢), and X}, .

total effort generated by an optimally designed all-pay auction (i.e., design
het) given the same effort-cost function as in the tournament, c(e) = €2/2.

Then, it can be shown that >* > X7

all—pay Tur (see the appendix). Furthermore,

the all-pay auction also dominates the tournament in the dimension (B): In
the all-pay auction with optimal design het, the two vy-players in the semi-
finals anticipate that possible participation in the final yields zero expected
payoffs for them. This fact minimizes their incentives in the semifinals, so
that the two vy-players almost surely reach the final. Hence, the probability
that a top player wins the final is approximately 1 in the all-pay auction. In
the Lazear-Rosen tournament with optimal design hom, however, the final
will be between a vy-player and a vy-player, so that the top players’ win
probability is strictly smaller than 1. Altogether, we obtain the following

result:
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Proposition 4 If O can choose between an all-pay auction and a tourna-
ment with noise g ~ U (—&¢,&0) (€0 > 0), he will prefer the all-pay auction
given that monitoring does not lead to costs. If, however, monitoring is costly
and described by the monitoring-cost function C, the organizer O will prefer

the tournament given that C (0) — C (€) is sufficiently large.

Neither the all-pay auction nor the tournament leads to a trade-off be-
tween the objectives (A) maximizing total expected effort and (B) maximiz-
ing the top players’ win probability when O chooses the optimal design. Since
the all-pay auction dominates the tournament in both dimensions (A) and
(B), O will unambiguously prefer the all-pay auction if monitoring is free.
However, if the all-pay auction under complete information requires monitor-
ing costs C' (0), the organizer’s preference will change if C' (0) is prohibitively

large relative to C' (£¢) under a tournament with imprecise monitoring.

7 Conclusion

Multi-stage elimination tournaments are often combined with explicit seed-
ing rules that determine the initial pairings of players. In sporting contests,
we can frequently observe seeding rules that generate matches between un-
derdogs and favorites (see Groh et al., forthcoming). Such seedings should
prevent that favorites meet each other in the tournament very early, which
could destroy suspense about the outcome of the whole tournament. How-
ever, it is not clear whether such seedings indeed maximize entertainment.
Heterogeneous seedings can lead to rather boring matches at the beginning
of a tournament so that the audience stays away and waits for more balanced
matches in later rounds. The results of this paper show that, indeed, homo-
geneous seedings may be optimal to maximize entertainment if spectators do
not have a too strong preference for a homogeneous final.

Moreover, unbalanced competition and, hence, low overall effort levels in
the beginning of an elimination tournament can lead to outcomes that are

highly determined by luck. As a consequence, there is a substantial proba-
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bility that favorites lose against underdogs in early rounds. Intuitively, we
can imagine that underdogs only choose low efforts in heterogeneous seed-
ings since they are the presumable losers anyway, so that the best they can
do is saving effort costs. However, the best response of the favorites then is
to withhold effort as well. At the end, the outcome of early rounds can be
mainly determined by luck. The findings of this paper for the setting with
uniformly distributed noise clearly supports this fear: The probability that
an underdog wins the tournament is strictly higher under the heterogeneous

seeding than under the homogeneous one.
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Appendix

Proof of Lemma 1:

The result can be shown by contradiction. Suppose that EU%LY > EU}, but
Sx

€Il het < effhet, which implies
EUgy = (BUg, — BUjy) G (Aeiy)
< BUL — (BULL — EUL;) G (Aeis)

EUl; — EUL;

G (Aedr 10
(BUEs — EULY) — (BEULY, — BUEY) <G (Aepy) (10)

=

with

(BUfL — EULT) — (BEUfy — BULy)
g(0)* — g (Aef)?
2K

— (om—v2) [G (AeF) - ﬂ (0 +12) > 0(11)

Condition (10) can only be satisfied if

EUl; — EUE}
(EUgy — EULL) — (EUgy — EUL)

<1& EULy < EUEY,

a contradiction.

Proof of Proposition 1:

(i) =

5 > Y7 can be rewritten as

9(0) (EUR, + EULy) >
g (Aepey) [(1 =G (Aeiz)) (BULL + BULE) + (BULy + EUry) G (Aeis)]

which is true if

EUlG+EUL > (1 -G (Aers)) (BEULT + EULY)+(EURY + EULY) G (Aer,)
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& (BUL — EULY) G (Aeyy) > (EULF — EULE) [1 - G (Aepr)] . (12)
Since, according to Lemma 1, Aey”, > 0= G (Aey,) > 1/2 under EUf}, >
EULY, inequality (12) is satisfied because EUY: — EULYy > EUL; — EUS},
(see (11)).

Result (ii) is proven by contradiction. Suppose that $F > 3 which

hom

can be rewritten as

o g (86™) (126G (Acfz) [1 = G (Acfn)]) = 20 (0) [1 = G (Aci)]’]
> on [20(0)G (Acfn)” = g (A6™) (1-2G (Acs) [1 - G (Aei)]) ]

This condition can only be satisfied if

g (A™) (1-2G (Aefs) [1— G (Aef)]) — 29 (0) [1 - G (Aefr)]?
> 29(0)G (Aes)” — g (AeF%) (1 —2G (Aefr) [1 = G (Aes7)])
& g (Aé"™) >g(0),

a contradiction.

Proof of Proposition 2:

Let players i and j with valuations v;,v; € {v, vy} compete in the final.
Using the quadratic cost function c(e;) = €?/2 and the uniform distribu-
tion G () = (x + &)/ (2¢) immediately shows that both players’ objective
functions are strictly concave so that the equilibrium efforts and the corre-

sponding expected utilities from participating in the final are

Fs V; Fs V; (452 -+ Vi — 2Uj)
e = % and EUZ-]- = =2

with 7,7 € {L, H}.

In order to guarantee that ef;* —e7* € (—£,&) and EU/* > 0, I impose the

technical restriction
v v



Consider first design hom. In the vg-semifinal, the players’ objective

functions can be written as follows:

S s - S \2
s e — € te o p (en)
EUH1H2 — =t 72 25 2 EUHL - 21
s S - S \2
er. —ey. +¢€ e
EU}SIQHI = 1 - = 25H2 EUII'-;Z - ( I_;) :

Thus, in equilibrium, each vg-player chooses effort e3f,,.. = EUST/ (28)
in the semifinal. Analogously, equilibrium effort of each participant in the
vr-semifinal is given by e?*,.,. = EUf};/ (22), so that we obtain

N 2 (EUf; + EULY) +vg + vy,
hom hom 2%

822 (vy + vr) + v% — dvgvr + V2
_ N | (14)

Now we consider design het. The participants of the first semifinal max-

imize
S1
— E — g
EUyy = A ;; - <€H ;; Cpuly,
Sz Sl 2
e —ep? +E (e3t)
1 — % EUE* ) —
+[ 28 } L 2
S1 S1 = Sa
BUS, — |:1_€H 2(3; —|—1 (eH ZegL +€EU
SQ Sl 2
e — e+ (eL)
1_% EBEUF*) —
A )
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and the participants of the second semifinal

U e —ef? 2 (ef} — e 4 E puPe
AL 2F 2 HH
+ {1 — %_2—?—{—6} EUEZ) _ (6%2)2
BUS: — {1 ey —2652 + é} (ezl —2651 + EEUf}i}
+ {1 - ei’_z—fw} EUf;) - %)2

Since all objective functions are strictly concave, the equilibrium efforts are

described by the four first-order conditions, which yield!?

Sox EUI EULY — EUEEUES + 282 (EUR + EURS)

' = 0 = S 9z (BUT 1 EUFE — EUL, - EUTY)
16t (482 —vg) — g, (vg — vg)? s
= 1653 (1654 n (UH _ UL)Q) UH = € het
S Sae EUf; EUTY — EUELEUET 4 282 (EULT + EULY)
L L 83 — 22 (EULY, + EUE; — EUL: — EUER)
168* (422 — vy) — vy (vg — vy Se

1683 (1624 + (v —vp)?) M

Altogether, expected total effort from seeding het amounts to

Zfet + Ziat =

Sx Sx Fx S Sx 2 Fx Sx Sk 2
2€7 het T 260 et + 265 G (eH,het - eL,het) + 2e], [1 -G (eH,het - eL,het)]

+ (eg* + ef*) 2G (e%‘:het - ei:khet) [1 -G (eiﬂjhet - 6€Thet)] =

6425 (v + vp) + 884 (v + v — dvgoy) + (282 (v + vr) — vgvr) (vg — vy
4% (162* + (v — vi)?) '

15Condition (13) ensures that e3, ., — e ., € (—&,&).
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The direct comparison of total expected efforts shows that

S F S F
2hom + 2hom > Zhet + Ehet <~

(’UH — UL)2 (452 (’UH + UL) + (UH — ’UL)2) >0

1s true.

Proof of Proposition 4:

Groh et al. (forthcoming) show that it is optimal for the tournament or-
ganizer to choose design het to maximize total expected effort. Under this
design, the two vy -players anticipate in the semifinals that they will have a
zero expected payoff from participating in the final, irrespective of the type of
their opponent. Consequently, they choose minimal efforts in the semifinals.
The two vgy-players anticipate that they will meet each other in the final
almost surely and win their respective semifinal with very low efforts. Total
expected effort under het is thus approximately given by the two vy-players’
equilibrium effort choices in the final.

In a symmetric all-pay auction with complete information in which play-
ers can choose non-negative efforts without restriction, only mixed-strategy
equilibria exist (see, e.g., Baye et al. 1996; Konrad 2009, Section 2.1). In
case of a convex cost function, ¢ (e), and two homogeneous contestants with
winner prize vy the equilibrium strategy of each vy-player in the final is
given by the cdf F (e) = ¢ (e) /vy with e € [0,¢™! (vy)] (Kaplan et al. 2003;
Konrad 2009, p. 27). Hence, total expected effort from the all-pay auction

¢ (vm) / 2% 3
all—pa 22'/ e-c(e)dez wH,
pay ; vi 3

amounts to

where the last equality follows from the specific cost function ¢ (e) = €2/2.
Recall that in the tournament setting considered in this paper, given uni-
formly distributed e, design hom is optimal for the organizer O to maximize
total expected effort. This effort X7 =37+ 3F is described by (14).

tour hom hom
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The claim X7 =< X

Four ail—pay €an be shown by contradiction. Suppose that

* *
Etour > Eallfpay<:>>

32/ 2vy
3

v%l —dvgvy, + v% > 822 (

g— (vg + vL)) : (15)

The right-hand side is positive since

3 (UH + UL)

=~ 2\VUH T L)
32\/ 2/UH

(13)
is true due to & > /& —*L > 3(vg +wvr)/[32y/2vy]. Inserting for the

best possible case, & = /%L — £, in (15) and rewriting yields

32 3
5v3 — v2 — 2ugug — 3\/2011 (2uy — vL)g > 0.

Replacing vy by avy with a > 1, leads to

32
5% — 20— v/2a (2a - 1)2 —1>0,

which is false.
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Additional pages for the referees

Condition EULY, > EUL} under additive heterogeneity:

Assume again that the tournament organizer O makes use of a relative-
performance signal which either indicates that player i (s = s;) or player j

(s = s;) has performed better. Let this signal be given by

{ s; if e, +a;, —e —a; >¢
S =

S if e +a;, —e; —a; <g,

with a; and a; as the players’ abilities. I assume that players have a uniform
tournament prize v and that there are two high-ability players (a; = ag > 0)
and two low-ability ones (a; = ar, € (0,ax)).

In the final, the two participants ¢ and j maximize their objective func-

tions

F
% J
EU-F(ef,e-) = v-[1—G(ef+ai—eF—aj)}—c(eF).

EU-F(e-,ef) = v-G(ef +a;—ef —aj)—c(ef)
F
7 J

J

Let, again, an equilibrium in pure strategies exist. In that case, this equilib-

rium (e, el*) can be described by the first-order conditions

vg(ef*—i-ai—ef*—aj):c/(ef*):c/(ef*).

Hence, in equilibrium, players always choose identical efforts in the final:

<L(O) L@) lf a; = Clj

Fx Fx\ _ g
(ei",ej") = <LAOL)’M> if a; # a;
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with Aa := ay — ar. The corresponding expected utilities read as follows:'

2 0)2
puPs — purs— UVl
HH LL 2 %
20 (A 2
EUE: = vG(Aa)—#
v?g (Aa)®

EULY = o[l —G(Aa)] —

K
with
EUj; > EULy = EUL;  and  EU} > EULE

Under the design hom, the expected utilities of the two high-ability play-

ers in the semifinal are given by

EUfy, = G (e, —eb,) EULL —c(eq,)
EU52H1 - [1 -G (621 eHz)] EU (effz) )
yielding equilibrium efforts e = e = e, = [9(0) EUJ;] /5. Analo-

gously, in the semifinal between the two low-ability players, each participant

chooses e7%,,.. = [9(0) EUL}] /+ in equilibrium. Total efforts in the semifi-

nal, ¥5 and in the final, ¥F

o amount to!”

hom>

Vhoom = 2g/§0) (EUk: + EUE) = 2‘1(0) (U _ Yg(Aay <Aa>2)
vg (Aa)

and Ehom = 2
K

Under the design het, the players’ objective functions in semifinal 1 are

16Let v be sufficiently small to guarantee strictly positive values.
17Let, again, v be sufficiently small to guarantee strictly positive values.
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given by

EUY, = G(Ae™ + Ad) (G (Ae™ + Aa) EULY
+[1-G(Ae” + Aa)] EUS;) — ¢ (e}g{l) and

EUD, = [1-G(Ae” + Ad)] (BUL;G (Ae® + Aa)
+[1 -G (Ae™ + Aa)| EUSY) — ¢ (eil) .

The first-order conditions show that, if players of the same type behave

identically in equilibrium, efforts in this symmetric equilibrium are described

by

S = LEHLED (pyr _ (BUL; - BUEL) G (A, + Ad)
e = LGB (i (BUL; - BUL) G (et + Aa)

; S* . 5% Sx
with Aept, := €, — €1 he- We have

eifhet > egjkhet A EU};Z - EUfL* >
[(EUf; — EULY) — (EUfy — EULH)G (Aeps, + Aa) <
EUl: — BUE
(EUgp — EULL) — (EUgy — EULR)

> G (Aepy, + Aa)
with

(BUE; - BUL;) — (BUL: — BUE) = = (30" — g(8a)?) > 0
Hence, a sufficient condition for e%’fhet > efj"het is given by

EUE: — EUL;

(EUy;, — EULL) — (EUgy — EULE)
EULY > BUL <
1_N-G(A

I{2 [2 ( a)2] > v,
9(0)" — g(Aa)

>1<
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the condition used in the footnote.

All equilibrium efforts from both heterogeneous semifinals sum up to

Aed* + A
s = RN L i (1- G (A + Aa))
+ (BUjg + EULy) G (Aepe, + Aa)]

AeS + A
_ ol eh@f a)[(EU§z+EU5;)

+ (BUEy + EUES — EUR; — BEULT) G (Aeyr, + Aa)).

The expected efforts from the subsequent final amount to

vg (0)

Shet = G(AGS;)22

+[1-G (Aef)] 27’9/{50)

vg (Aa)

K

20 (M) [1 - G (Aef)] 2

= 220 (6 (aeie)+ [1- 6 (o))

K
A
26 (M) [1 - G (Acs)] 2215

Players choose lower or equal efforts in the hom-final than in the het-final
if

S = 22280 <%0 (6 (aci)? 4 [1 - 6 (aci))?)
+2G (Aepr) [1— G (Aepr)] ACT)

g9(Aa) <g(0),

_vF
- Ehet g

which is true. Comparison of total efforts from the semifinal yields

Efom > Zﬁet <~ g (0) (Eng + EUf;I) >
g (Aepr, + Aa) [(BUS; + EULY) (1= G (Aer, + Aa))

+ (BUgy + EULg) G (Acyl, + Aa)l,
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which is true if

(BEUf; — EULY) G (Aeis, + Aa) > (BUT; — EULE) [1— G (Aep, + Aa)] .

. o 1 [1-G(Aa)]
Recall that under EULY, > EULY, < v < 2mm

that G (Aej?, + Aa) > 1/2 and, thus, the last inequality is satisfied because
EUE: — EULy, > EUEy — EUE} (see above).

Altogether, the setting with additive heterogeneity leads to exactly the

we have Aey*, > 0, so

same results as Proposition 1 above.
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