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Fiscal News and Macroeconomic Volatility∗
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Abstract

This paper analyzes the contribution of anticipated capital and labor tax shocks

to business cycle volatility in an estimated New Keynesian DSGE model. While fiscal

policy accounts for 12 to 20 percent of output variance at business cycle frequencies,

the anticipated component hardly matters for explaining fluctuations of real variables.

Anticipated capital tax shocks do explain a sizable part of inflation and interest rate

fluctuations, accounting for between 5 and 15 percent of total variance. In line with

earlier studies, news shocks in total account for 20 percent of output variance. Further

decomposing this news effect, we find that it is mostly driven by stationary TFP and

non-stationary investment-specific technology.
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1 Introduction

The current paper analyzes the role of news about future fiscal policy (“fiscal news”), and

in particular the anticipation of tax rate changes, for business cycle fluctuations. Recent

macroeconomic research has increasingly shifted from explaining business cycle fluctuations

through contemporaneous shocks to explaining them by anticipated, or news, shocks. Rational

agents, anticipating future changes will already react today to these news (see e.g. Beaudry

and Portier 2004, 2006, Jaimovich and Rebelo 2009, Schmitt-Grohé and Uribe 2010). However,

most empirical studies on the effects of anticipated shocks on business cycles have focused on

news about future productivity (see e.g. Forni et al. 2011, Fujiwara et al. 2011, Khan and

Tsoukalas 2010).1

This is remarkable for two reasons. First, fiscal measures are usually publicly debated well

in advance and often known before becoming effective, i.e. there are considerable decision and

implementation lags. A tax bill typically takes about one year from the U.S. President’s initial

proposal to the law’s enactment and another year until the tax change becomes effective

(Mertens and Ravn 2011, Yang 2005). As a recent example, consider the Patient Protection

and Affordable Care Act (“Obamacare”), whose core contents were debated for almost one

year and whose financing provisions will only phase in gradually over time. Second, surprise

fiscal policy shocks have long been discussed as a potential prominent driver of the business

cycle (see e.g. Baxter and King 1993, Cardia et al. 2003, Jones 2002, McGrattan 1994).

McGrattan (1994) for example attributes one third of the U.S. business cycle variance to

distortionary taxation. 2 This potential importance of fiscal policy shocks, combined with the

fact that many fiscal policy measures are known well in advance, makes fiscal news a natural

candidate for explaining aggregate fluctuations.

We add upon the previous literature by explicitly analyzing the business cycle variance

contribution of fiscal news. For this purpose, we employ a New Keynesian DSGE model

featuring several real and nominal rigidities as well as various shocks identified as important

drivers of the business cycle and augment it with a government sector financed through

distortionary labor and capital taxes. Our main focus lies on the effects of fiscal news, but

we also control for anticipation in technology, investment-specific productivity, and the wage

markup. The model is estimated by full information (Bayesian) methods using quarterly

U.S. data from 1955 to 2006. Model-based estimation allows us to circumvent the issue of

non-invertibility typically encountered when estimating structural VARs in the presence of

1There is a prominent literature branch dealing with the importance of fiscal foresight. However, its focus
has mostly been on analyzing single tax events (House and Shapiro 2006, Parker 1999, Poterba 1988) or
tracing out the consequences for econometric analyses (Leeper et al. 2011, Yang 2005).

2Although Forni et al. (2009) find that unanticipated tax shocks contribute little to macroeconomic
fluctuations of the Euro area, this could in principle be the result of ignoring fiscal foresight.

2



anticipation effects (Fernández-Villaverde et al. 2007, Hansen and Sargent 1991, Leeper et al.

2011).3

Computing forecast error variance decompositions, we find that while fiscal policy accounts

for 12 to 20 percent of output variance at business cycle frequencies, fiscal news generally

only plays a very limited role. Its contribution to output variance ranges around 3 percent.

With a variance share of 10 percent at the 5 year forecast horizon, government spending is

the fiscal variable with the largest effect on output variance. However, this contribution only

comes from surprise shocks, with anticipated spending shocks explaining virtually nothing.

Contemporaneous and anticipated capital tax shocks each contribute 2 − 3 percent to output

fluctuations. However, they are considerably more important for explaining inflation and

interest rate fluctuations. Depending on the forecast horizon, surprise capital tax shocks

contribute roughly 30 percent to their variance. Anticipated capital tax shocks are responsible

for 5 to 15 percent. The effect of contemporaneous and anticipated labor taxes, on the other

hand, is negligible.

In line with previous studies that do not consider news shocks (e.g. Smets and Wouters

2007), we find that the main drivers of the output variance are preference and wage markup

shocks. News shocks explain on average 20 percent of the variance of output, with the main

effect coming from news about TFP and investment-specific productivity. This result conforms

well with i) VAR evidence (Barsky and Sims forthcoming), ii) evidence coming from a factor

model (Forni et al. 2011), and iii) other DSGE-based estimates of the importance of news

shocks, who all find a similar fraction of output fluctuations explained by anticipated shocks.

The two papers most closely related to ours are recent contributions by Mertens and Ravn

(forthcoming) and Schmitt-Grohé and Uribe (2010). The former use a VAR to analyze the

business cycle contribution of narratively identified anticipated and unanticipated tax shocks.4

They find that both types of tax shocks together explain 20 to 25 percent of output variance,

with anticipation accounting for the majority. Schmitt-Grohé and Uribe (2010) evaluate

the role of news about TFP, investment-specific technology, wage markup, and government

spending shocks in an estimated RBC model with various real rigidities. In their setup, news

shocks account for 41 percent of output fluctuations. But while they find government spending

shocks to explain 10 percent, evenly distributed across surprise, one and two year anticipated

shocks, they do not consider foresight about the financing side of the government budget

3Non-invertibility means that the DGSE-model has a VARMA representation that cannot be inverted
to yield a finite-order VAR in the observables. Hence, the true innovations do not perfectly map into the
VAR residuals, meaning that the structural shocks cannot be recovered using a VAR. For alternative ways to
mitigate this problem, see e.g. Sims (2009), Giannone and Reichlin (2006), and Forni et al. (2011).

4Mertens and Ravn (forthcoming) classify the Romer and Romer (2010) tax shocks according to the time
passed between the presidential signing of a bill and the tax changes becoming effective into anticipated and
contemporaneous shocks.
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constraint.

Our paper is also related to other DSGE-based papers focusing on the effects of anticipated

technology shocks. Davis (2007), using a New Keynesian model, estimates news shocks to

be responsible for 50 percent of output fluctuations. Fujiwara et al. (2011) extend the

New Keynesian model of Smets and Wouters (2007) and Christiano et al. (2005) to include

news about TFP. They estimate news shocks to explain 9 percent of output variance in

the unconditional variance decomposition. The paper of Khan and Tsoukalas (2010) uses

the same basic New-Keynesian model framework, but additionally allows for news about

investment-specific technology growth. In their estimated model, both types of news shocks

together account for less than 10 percent. Finally, Auray et al. (2009) estimate a New

Keynesian model with an additional durables sector, featuring news about TFP in both

sectors. They find that technology news in the non-durables sector explain 52% of output

variance.

The outline of the paper is the following. Chapter 2 introduces the DSGE-model with

fiscal foresight, while chapter 3 presents the estimation approach and results. In chapter 4,

we compute variance decompositions and impulse responses. Chapter 5 concludes.

2 A DSGE-Model with Fiscal Foresight

We use a medium-scale DSGE-model featuring various real and nominal frictions as well as a

variety of shocks that have been identified as important drivers of the business cycle (see e.g.

Justiniano et al. 2010a, Smets and Wouters 2007). The model is an extended version of the

basic model used in Born and Pfeifer (2011), where we incorporate both contemporaneous and

anticipated elements into the shock processes as in Schmitt-Grohé and Uribe (2010) and allow

for non-stationary shocks. We first discuss the information structure of the shock processes in

the next section before describing the model in detail.

2.1 Shock Structure

Our model features 10 sources of stochastic fluctuations. On the government side, we include

shocks to labor and capital tax rates τn and τk, a shock to government spending g, and a

monetary policy shock ξR. The technology shocks considered are shocks to stationary neutral

productivity zt, non-stationary productivity Xt, stationary investment-specific productivity

zI
t , and non-stationary investment-specific productivity At. In addition, the model includes a

preference shock ξpref
t and a wage markup shock µw

t .

The monetary policy shock and the preference shock are assumed to only contain a
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contemporaneous, unanticipated component. For the other shocks, we follow the framework

proposed by Schmitt-Grohé and Uribe (2010) and allow for both contemporaneous shocks

and shocks that are anticipated 4 and 8 periods in advance. Anticipation horizons of 4 and 8

quarters fulfill the aim of capturing longer anticipation horizons while keeping the state space

at a manageable level. This is crucial as each additional anticipation horizon is an additional

state variable. While specifically choosing 4 and 8 quarters of anticipation might be seen as

arbitrary, this assumption can be rationalized by the workings of the political system. Four

quarters of anticipation are close to the average length of a tax bill from the President’s

proposal announcement to enactment (Yang 2005). Eight quarters serves as a plausible upper

bound for the anticipation of shocks to tax rates as Congressional elections take place every

two years. We think this makes it very unlikely that people are able to correctly predict both

the reigning majority and the tax laws being implemented by the next Congress. The same,

of course, applies to spending bills. For reasons of symmetry, we then assume this anticipation

structure for all shock processes.

The general structure for shock ǫi, i ∈
{

τn, τ k, g, z, x, zI , a, w
}

is given by

ǫi = ε0

i,t + ε4

i,t−4 + ε8

i,t−8 , (1)

where εj
i,t−j, j ∈ {0, 4, 8} denotes a shock to variable i that becomes known in period t−j and

hits the economy j periods later. For example, ε4
τn,t−4 denotes a four period anticipated shock

to the labor tax rate that becomes known at time t− 4 and becomes effective at time t. The

shocks are assumed to have mean 0, standard deviation σj
i , to be serially uncorrelated, and

to be uncorrelated across anticipation horizons, i.e. E(εj
i,t−j) = 0 and E(εk

i,tε
l
i,t−j) = (σk

i )2 for

j = 0, k = l, and 0 otherwise. Moreover, they are uncorrelated across shock types im, in ∈ i,

E(εk
im,tε

l
in,t−j) = 0 ∀j, k, l and im 6= in, .

The assumed information structure implies that agents foresee future shocks to the extent

of already known but not yet realized shocks εm
i,t−j, m > j. The forward-looking behavior of

rational optimizing agents results in them reacting to anticipated shocks even before they

are realized. By imposing a structural model on the data, this anticipatory behavior enables

the econometrician to achieve identification. However, it is exactly this foresight that makes

identifying the shocks with a VAR impossible. The econometrician attempting to do this only

uses current and past values of the observables and thus has a smaller information set than

the agents. In particular, he is missing the anticipated but not yet realized shocks as states in

his VAR.5 To remedy this issue, structural estimation has been advocated (Blanchard et al.

5Sims (2009) shows that in some cases it may be possible to recover the shocks using a structural VAR. By
including enough lags and forward-looking variables, it may be possible to move the non-invertible root(s)
close enough to unity so that the discrepancy between true structural errors and the estimated ones becomes
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2009). We will pursue this avenue in Section 3 by using Bayesian methods to estimate the

proposed model.

2.2 Conceptualizing Tax Shocks

The tax shocks considered in the present work do not necessarily stem from actual changes in

the labor and capital tax rates. Rather, they are interpreted as the probability weighted effect

of tax actions under legislative debate or due to judicative decisions. They are the product

of the likelihood of a tax change and the size of this effect, as perceived by rational agents

forming expectations about the future path of taxes. Hence, our definition is wider than the

one considered by Mertens and Ravn (forthcoming), who restrict their attention to the shocks

directly deriving from the legislative process. Shocks deriving from e.g. the SEC suing against

the legality of a tax shelter would be excluded from their definition but not from ours. Note

that news shocks are distinct from pure uncertainty about future taxes. While the former are

associated with an anticipated change in the mean of the tax rate, tax uncertainty shocks can

be conceptualized as mean-preserving spreads.6

To fix ideas, consider the Patient Protection and Affordable Care Act of 2010 as an example.

On June 9, 2009, a first draft of the health care bill was released. At that time, people at

the latest could anticipate that taxes were going to rise in order to finance the bill, if it ever

passed. However, both the size and the likelihood of such a change was largely unknown. The

first point of uncertainty changed on July 13, 2009, when the Congressional Budget Office

published official cost estimates: If passed, marginal income tax rates were going to increase

by 22 percentage points for households between 100% and 400% of the poverty level. Taking

these costs as given, households were experiencing tax shocks with changes in the likelihood

of the passage of the bill. Intrade bets on the passage of the bill show that some people were

constantly reevaluating this likelihood. Figure 1 presents the closing prices of an Intrade

betting contract that paid 100, if a health care reform bill was passed into law before mid-2010

and 0 if a health care reform bill was not passed. Hence, the closing price is a direct measure

of the likelihood of a bill becoming law. There is a large variance in the probability of passing

the bill that varies with the ebb and flow of the political process. These changes potentially

act like a huge sequence of tax shocks for households. If one considers only the change in

the likelihood from the time directly after the Massachusetts Senate election in January to

the final vote of the bill, this amounts in expectations to a tax shock of 0.7 × 22% = 15.4%

small.
6For an analysis of uncertainty about fiscal policy in the context of an estimated model, see Born and

Pfeifer (2011).
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during one quarter.7
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Figure 1: Intrade Daily Closing Prices:“Will ’Obamacare’ health care reform become law in
the United States?”
Note: This contract will settle (expire) at 100 ($10.00) if a health care reform bill is passed into
law before midnight ET 30 Jun 2010. It will settle (expire) at 0 ($0.00) if a health care reform
bill is not passed into law. Source: intradeTM(http://www.intrade.com/)

2.3 The Model

The model economy includes five sectors: the household sector with a large representative

household, the labor market featuring a continuum of monopolistically competitive unions

selling differentiated labor services to intermediate firms, the firm sector including a continuum

of intermediate goods firms producing intermediate goods and a final good firm bundling the

intermediate goods, and the government sector responsible for fiscal and monetary policy.

2.3.1 Household Sector

The economy is populated by a large representative household with a continuum of members.

Household preferences are defined over per capita consumption Ct and per capita labor effort

Lt, where each member consumes the same amount and works the same number of hours.8

7Unfortunately, due to the non-availability of data for the relative price of investment, our sample does not
cover this series of events.

8Due to the symmetric equilibrium, the decisions of the household members are identical. Hence, we
suppress the subscript denoting individual members.
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We follow Schmitt-Grohé and Uribe (2006) and assume that household members supply

their labor uniformly to a continuum of unions j ∈ [0, 1]. The unions are monopolistically

competitive and supply differentiated labor services lt(j) to intermediate goods firms. Overall,

total labor supply of the representative household is given by the integral over all labor

markets j, i.e. Lt =
∫

1

0 lt(j)dj. We will discuss the labor market structure in detail below.

Following Jaimovich and Rebelo (2009), we assume a preference specification that allows

to control the size of the wealth effect, but additionally assume habits in consumption:

U = E0

∞
∑

t=0

βtξpref
t

(

Ct − φcCt−1 − γ
L1+σl

t

1 + σl

St

)1−σc

− 1

1 − σc

. (2)

Here, the parameter φc ∈ [0, 1] measures the degree of internal habit persistence, σc ≥ 0

governs the intertemporal elasticity of substitution, σl ≥ 0 is related to the Frisch elasticity of

labor supply, and γ ≥ 0 measures the relative disutility of labor effort.9 The term

St = (Ct − φcCt−1)
σsS1−σs

t−1 (3)

makes the preferences non-separable in both consumption and work effort. This preference

specification introduces the parameter σs ∈ (0, 1] that allows to govern the magnitude of the

wealth effect on the labor supply. As special cases, the specification nests the preference class

discussed by King et al. (1988), i.e. σs = 1, and the preferences proposed by Greenwood et al.

(1988), i.e. σs = 0, where the latter case implies a zero wealth elasticity of labor supply. We

assume the preference shock ξpref
t to follow an AR(1)-process in logs:

log ξpref
t = ρpref log ξpref

t−1 + εpref
t . (4)

The household faces the budget constraint

Ct + zI
tAtIt +

Bt+1

Pt

= (1 − τn
t )
∫

1

0

Wt(j)lt(j)dj +
(

1 − τ k
t

)

RK
t utKt + Φt + Tt

+
(

1 − τ k
t

)

Ξt +
(

1 − τ k
t

)

(Rt−1 − 1)
Bt

Pt

+
Bt

Pt

.

(5)

Besides labor income from supplying differentiated labor services lt(j) at the real wage Wt (j),

the household has capital income from renting out capital services utKt at the rental rate

RK
t , from receiving firm profits Ξt, and from investing in bonds Bt+1, which are in zero net

9In a recent paper, Nutahara (2010) shows that it is important to distinguish between internal and external
habits in a model with news shocks. He finds that internal habits are able to generate news-driven business
cycles, whereas external habits are not.
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supply. Both forms of income are taxed at their respective tax rates τn
t and τ k

t . Only net

returns of bonds are taxed, such that the term
(

1 − τ k
t

)

(Rt−1 − 1) Bt

Pt
+ Bt

Pt
is the after-tax

return. In addition, the government pays lump sum transfers.

The household spends its income on consumption Ct and investment zI
tAtIt, where It

denotes gross investment at the price of capital goods. We assume that the relative price of

investment in terms of the consumption good is subject to two shocks, a stationary investment-

specific productivity shock zI
t and non-stationary investment-specific technological progress

At (see Greenwood et al. 1997, 2000). The relative price of investment is equal to the technical

rate of transformation between investment and consumption goods. Changes in this price do

not affect the productivity of already installed capital, but do affect newly installed capital

and become embodied in it. For the non-stationary investment-specific technology process,

we assume a random walk with drift in its logarithm

logAt = logAt−1 + log µa
t . (6)

The drift term µa
t is subject to contemporaneous and anticipated shocks according to

log

(

µa
t

µa

)

= ρa log

(

µa
t−1

µa

)

+ ε0

a,t + ε4

a,t−4 + ε8

a,t−8 . (7)

The stationary investment-specific technology shock zI
t follows an AR(1)-process

log zI
t = ρzI log zI

t−1 + ε0

zI ,t + ε4

zI ,t−4 + ε8

zI ,t−8 . (8)

Depreciation allowances are an important feature of the U.S. tax code, therefore, we

also include them in our model. They are captured by the term Φt in equation (5) and

have the form Φt = τ k
t

∑

∞

s=1 δτ (1 − δτ )s−1zI
t−sAt−sIt−s, where δτ is the depreciation rate for

tax purposes.10 Since depreciation allowances provide new investment with a tax shield at

historical costs, they may be important in capturing the dynamics of investment following

shocks (Christiano et al. 2007, Yang 2005).

The household members own the capital stock Kt, whose law of motion is given by

Kt+1 =

[

1 −

(

δ0 + δ1 (ut − 1) +
δ2

2
(ut − 1)2

)]

Kt +



1 −
κ

2

(

It

It−1

− µI

)2


 It . (9)

Household members do not simply rent out capital, but capital services utKt, where ut denotes

10Following Auerbach (1989), we allow the depreciation rate for tax purposes to differ from the physical
rate.
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capital utilization. Thus, they decide about the intensity with which the existing capital stock

is used. However, using capital with an intensity that is higher than normal is not costless, but

leads to higher depreciation of the capital stock. This is captured by the increasing and convex

function δ (ut) = δ0 +δ1 (ut − 1)+δ2/2 (ut − 1)2, with δ0, δ1, δ2 > 0. Without loss of generality,

capital utilization in steady state is normalized to 1. Following Christiano et al. (2005), we

assume the presence of investment adjustment costs S (It/It−1) = κ/2
(

It/It−1 − µI
)2

to

dampen the volatility of investment over the business cycle. κ > 0 is a parameter governing

the curvature of the investment adjustment costs and µI is the steady state growth rate

of investment, which is equal to the steady state growth rate of capital. This specification

assures that the investment adjustment costs are minimized and equal to 0 along the balanced

growth path, i.e. S = S ′ = 0 and S ′′ > 0, where the primes denote derivatives.

The household maximizes its utility, equation (2), by choosing Ct, Lt, St, Bt+1, Kt+1, ut,

and It, subject to the budget constraint (5), the law of motion for capital (9), and the resource

constraint for aggregate labor given by (10) below.

2.3.2 Labor Market

The labor market is characterized by differentiated labor services and staggered wage setting.

To model these features without letting idiosyncratic wage risk affect the household members,

and thus making aggregation intractable, we assume a continuum of unions j, j ∈ [0, 1]. The

household members supply their labor lt (j) equally to the unions, which are monopolistically

competitive and supply differentiated labor lt (j) to intermediate firms at wage Wt (j). Every

period, a union j is able to re-optimize its wage with probability (1 − θw), 0 < θw < 1. A

union j that is not able to re-optimize indexes its nominal wage to the price level according

to Wt (j)Pt = (Πt−1)
χwΠ̄1−χwµy

tWt−1 (j)Pt−1, where the parameter χw ∈ [0, 1] measures the

degree of indexing, Π̄ is steady state gross inflation, and µy
t is the gross growth rate of

output (see e.g. Smets and Wouters 2003). Thus, in the absence of price adjustment the wage

still partly adapts to changes in productivity and inflation (Christiano et al. 2008), thereby

assuring that no current wage contract will deviate arbitrarily far from the current optimal

wage.

Household members supply the amount of labor services that is demanded at the cur-

rent wage. Unions that can reset their wages choose the real wage that maximizes the

expected utility of its members, taking into account the demand for its labor services

lt (j) = (Wt(j)/Wt)
−ηw,t Lcomp

t , where Lcomp
t is the aggregate demand for composite labor

10



services, the respective resource constraint

Lt = Lcomp
t

∫

1

0

(

Wt(j)

Wt

)

−ηw,t

dj , (10)

and the aggregate wage level Wt =
(

∫

1

0 Wt (j)1−ηw,t dj
)

1

1−ηw,t . The time-varying substitution

elasticity ηw,t allows us to include a wage markup shock µw
t = (ηw,t − 1)−1 that follows

log

(

µw
t

µw

)

= ρw log

(

µw
t−1

µw

)

+ ε0

w,t + ε4

w,t−4 + ε8

w,t−8 . (11)

Including a wage markup shock is motivated by the finding that this shock is important for

explaining output fluctuations (see e.g. Schmitt-Grohé and Uribe 2010, Smets and Wouters

2007).

2.3.3 Firm Sector

A continuum of monopolistically competitive intermediate goods firms i, i ∈ [0, 1], produces

differentiated intermediate goods Yit via a Cobb-Douglas production function, using capital

services uitKit and a composite labor bundle Lcomp
it

Yit = zt (uitKit)
α (XtL

comp
it )1−α − ψXY

t , (12)

where α is the capital share, zt is a stationary TFP shock, Xt is a non-stationary labor

augmenting productivity process, and XY
t is the trend of output defined in Appendix B. The

fixed cost of production ψ is set such that profits are 0 in steady state and there is no entry

or exit (Christiano et al. 2005). The composite labor bundle is aggregated from differentiated

labor inputs Lit (j) with a Dixit-Stiglitz aggregator lcomp
it = [

∫

1

0 lit(j)
ηw,t−1

ηw,t dj]
ηw,t

ηw,t−1 .

For the non-stationary labor augmenting productivity process Xt, we assume a random

walk with drift in its logarithm

logXt = logXt−1 + log µx
t . (13)

The drift term µx
t is subject to contemporaneous and anticipated shocks according to

log

(

µx
t

µx

)

= ρx log

(

µx
t−1

µx

)

+ ε0

x,t + ε4

x,t−4 + ε8

x,t−8. (14)

Hence, in the deterministic steady state, the natural logarithm of the non-stationary component

of the neutral technology shock grows with rate µx. The stationary technology shock zt
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follows an AR(1)-process with persistence ρz

log zt = ρz log zt−1 + ε0

z,t + ε4

z,t−4 + ε8

z,t−8. (15)

We assume staggered price setting a la Calvo (1983) and Yun (1996). Each period,

an intermediate firm i can re-optimize its price with probability (1 − θp), 0 < θp < 1.

If a firm i cannot re-optimize the price, it is indexed to inflation Πt = Pt

Pt−1

according to

Pit+1 = (Πt)
χp (Π̄)1−χpPit, where χp ∈ [0, 1] governs the degree of indexation. The intermediate

firms maximize their discounted stream of profits subject to the demand from the final good

producer, equation (17) below, applying the discount factor of their owners, the household

members.

The intermediate goods are bundled by a competitive final good firm to a final good Yt

using a Dixit-Stiglitz aggregation technology with substitution elasticity ηp

Yt =

(

∫

1

0

Y
ηp−1

ηp

it di

)

ηp

ηp−1

. (16)

Expenditure minimization yields the optimal demand for intermediate good i as

Yit =
(

Pit

Pt

)−ηp

Yt ∀ i . (17)

2.3.4 Government Sector

Government expenditures are financed by taxing profits and the return to capital services at

the rate τ k
t and labor income at the rate τn

t . Following McGrattan (1994) and Mertens and

Ravn (forthcoming), we model average tax rates as AR(2)-processes

τn
t = (1 − ρn

1 − ρn
2 ) τn + ρn

1τ
n
t−1 + ρn

2τ
n
t−2 + ε0

τn,t + ε4

τn,t−4 + ε8

τn,t−8 (18)

τ k
t =

(

1 − ρk
1 − ρk

2

)

τ k + ρk
1τ

k
t−1 + ρk

2τ
k
t−2 + ε0

τk,t + ε4

τk,t−4 + ε8

τk,t−8 , (19)

where τ k, τn ∈ [0, 1) are parameters determining the unconditional mean. Using average

effective tax rates may be a problem for labor income taxes, because usually the tax code is

progressive. However, the clearly simplifying assumption can be justified on grounds that

dynamics of marginal and average tax rates are very similar (Mendoza et al. 1994).

Government spending Gt, which may be thought of as entering the utility function

additively separable, displays a stochastic trend XG
t . Log deviations of government spending

12



from its trend are assumed to follow an AR(1)-process

log

(

gt

ḡ

)

= ρg log

(

gt−1

ḡ

)

+ ǫ0

g,t + ǫ4

g,t−4 + ǫ8

g,t−8 , (20)

where gt = Gt

XG
t

denotes detrended government spending and ρg is the persistence parameter.

The stochastic trend in Gt is assumed to be cointegrated with the trend in output. This

assures that the output share of government spending Gt/Yt is stationary, while at the same

time allowing the trend in Gt to be smoother than the one in Yt. In particular,

XG
t =

(

XG
t−1

)ρxg
(

XY
t−1

)1−ρxg

. (21)

Lump sum transfers Tt are used to balance the budget. Thus, the government budget

constraint is given by11

Gt + Tt = τn
t WtL

comp
t + τ k

t

(

RK
t utKt + Ξt

)

− Φt. (22)

We close the model by assuming that the central bank follows a Taylor rule that reacts to

inflation and output growth:

Rt

R
=
(

Rt−1

R

)ρR





(

Πt

Π̄

)φR
Π

(

Yt

Yt−1

1

µy

)φRY





1−ρR

exp
(

ξR
t

)

, (23)

where ρR is a smoothing parameter introduced to capture the empirical evidence of gradual

movements in interest rates (see e.g. Clarida et al. 2000). The parameters φRY
and φRΠ

capture the responsiveness of the nominal interest rate to deviations of inflation and output

growth from their steady state values. We assume that the central bank responds to changes

in output rather than its level as this conforms better with empirical evidence and avoids the

need to define a measure of trend growth that the central bank can observe (see Lubik and

Schorfheide 2007). ξR
t is the i.i.d. monetary policy shock.

3 Model Estimation

We use a Bayesian approach as described in An and Schorfheide (2007) and Fernández-

Villaverde (2010). Specifically, we use the Kalman filter to obtain the likelihood from the

state-space representation of the model solution and the Tailored Randomized Block Metropolis-

Hastings (TaRB-MH) algorithm (Chib and Ramamurthy 2010) to maximize the posterior

11Note that private bonds are in zero net supply.

13



Table 1: Parameters fixed prior to estimation

Parameter Value Target/Motivation (matched to quarterly data)

σc 2 Common in RBC models
γ 0.0216 Set labor effort in steady state to 20%
β 0.99 Common in RBC models
δ0 0.025 Annual physical depreciation of 10%
δ1 0.0486 Set capacity utilization u = 1 in steady state
δτ 0.05 Twice the rate of physical depreciation δ0 (Auerbach 1989)
α 0.2935 Match capital share in output
ψ 0.0432 Set profits to zero
ηp 10 Set price markup to 11% in steady state
ηw 10 Set wage markup to 11% in steady state
µy 1.0045 Match average sample growth rate of per capita output
µa 0.9957 Match average sample growth rate of relative price of investment
τn 0.1984 Match average sample labor tax rate
τ k 0.3880 Match average sample capital tax rate
G/Y 0.2031 Match average sample mean

Π̄ 1.0089 Match average sample mean

likelihood.12

3.1 Data

We use quarterly U.S. data from 1955:Q1 until 2006:Q4 and include twelve observable time

series: the growth rates of per capita GDP, consumption, investment, wages and government

expenditure, all in real terms, the logarithm of the level of per capita hours worked, the growth

rates of the relative price of investment and of total factor productivity, the log difference of

the GDP deflator, and the federal funds rate. Since our main objective are the effects of tax

shocks, we also include capital and labor tax rates.13

3.2 Fixed Parameters

Prior to estimation, we fix a number of parameters to match sample means (see Table 1).

The curvature of the utility function σc is set to 2. This value is consistent with most DSGE

models. The discount factor β is fixed at 0.99. We set the parameter that governs the

12We used a t-distribution with 10 degrees of freedom as proposal density. The posterior distribution was
computed from a 10,000 draw Monte Carlo Markov Chain, where the first 2,500 draws were discarded as
burn-in draws.

13Detailed data sources and the observation equation that describes how the empirical time series are
matched to the corresponding model variables can be found in Appendices D and C.

14



disutility of labor effort γ such that labor effort in steady state is 20%. We assume an annual

physical depreciation rate of 10%, which corresponds to a δ0 of 0.025 per quarter. Following

Auerbach (1989) and Mertens and Ravn (2011), we set the depreciation rate for tax purposes

δτ to twice the rate of physical depreciation, i.e. 0.05. The depreciation parameter δ1 is fixed

to set the steady state capacity utilization to 1 (Christiano et al. 2005). The parameter α

is 0.2935, which matches the capital share in output over our sample, and the fixed cost

parameter ψ is set to ensure zero profits in steady state. We assume a steady state price and

wage markup of 11% and thus set ηp and ηw to 10.

The steady state gross growth rates of per capita output µy and of the relative price of

investment µa are set to their sample means of 1 + 0.45% and 1 − 0.43%. The parameters τ k

and τn, which determine the unconditional mean of the tax rates, equal the post-war sample

means of 0.388 and 0.1984. We set the steady state ratio of government spending to output

G/Y to 0.2031, which also corresponds to the sample mean. The steady state inflation rate

corresponds to the average sample mean of 1.0089, i.e. annual inflation of 3.6%

3.3 Priors

Tables 2 and 3 present the prior distributions. Where available, we use prior values that are

standard in the literature (e.g. Smets and Wouters 2007) and independent of the underlying

data. The autoregressive parameters of the tax processes, ρn
1 , ρ

n
2 , ρ

k
1, ρ

k
2, are essentially left

unrestricted, but we impose stability of the AR(2)-processes.14 The other autoregressive

parameters, ρi, i ∈
{

pref, g, z, x, zI , a, w
}

, are assumed to follow a beta distribution with

mean 0.5 and standard deviation 0.2. We assume the standard deviations of the shocks to

follow inverse-gamma distributions with prior means 0.1 and standard deviations 2. For the

parameters of the Taylor-rule, φRΠ
and φRY

, we impose gamma distributions with a prior

mean of 1.5 and 0.5, respectively, while the interest rate smoothing parameter ρR has the

same prior distribution as the persistence parameters of the shock processes. The habit

parameter φc is assumed to be beta distributed with a prior mean of 0.7, which is standard

in the literature. Following Justiniano et al. (2010b), the parameter determining the Frisch

elasticity of labor supply σl is assumed to follow a gamma distribution with a prior mean

of 2 and a standard deviation of 0.75. The prior distribution for the parameter governing

the wealth elasticity of labor supply σs is a beta distribution with mean 0.5 and standard

deviation 0.2. We impose an inverse-gamma distribution with prior mean of 0.5 and standard

deviation of 0.15 for δ2/δ1, the elasticity of marginal depreciation with respect to capacity

14Specifically, we impose a uniform prior for each of the corresponding autoregressive roots over the stability
region (−1, +1). Let ξ1 and ξ2 be the roots of such an AR(2)-process. The autoregressive parameters
corresponding to these roots can be recovered from: ρ1 = ξ1 + ξ2 and ρ2 = −ξ1ξ2 .
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utilization. The parameters governing the indexation of prices and wages, χp and χw, each

are beta distributed with mean 0.5 and standard deviation 0.2. For the Calvo parameters θw

and θp we assume a beta distribution with a prior mean of 0.5, which corresponds to price and

wage contracts having an average length of half a year (Smets and Wouters 2007). Finally, we

follow the literature (e.g. Justiniano et al. 2010a, Smets and Wouters 2007) and impose a

gamma prior with mean 4 for the parameter controlling investment adjustment costs κ.

3.4 Posterior Distribution

The last four columns of Tables 2 and 3 display the mean, the standard deviation and the

90%-posterior intervals for each of the estimated parameters. Most estimated parameters

and shock processes are in line with previous studies on the determinants of business cycle

fluctuations, both with those using only contemporaneous shocks (e.g. Justiniano et al. 2010a,

Smets and Wouters 2007) as well as those including contemporaneous and anticipated shocks

(Fujiwara et al. 2011, Khan and Tsoukalas 2010, Schmitt-Grohé and Uribe 2010).

However, some estimates deserve further comment. We find a considerable degree of

internal habits with φc = 0.86, which is right between the estimates obtained by Smets and

Wouters (2007) and Schmitt-Grohé and Uribe (2010). The posterior mean of the parameter

governing the wealth elasticity (σs = 0.1) implies a very low wealth elasticity of labor supply

and, thus, preferences that are close to the ones proposed by Greenwood et al. (1988). Schmitt-

Grohé and Uribe (2010) find an even lower wealth elasticity that is almost zero. Khan and

Tsoukalas (2010), on the other hand, estimate the wealth elasticity of labor to be quite high

at 0.85. A possible explanation for these differing estimates is the inclusion of government

spending as an observable. Increases in government spending may entail positive consumption

responses (Blanchard and Perotti 2002, Galí et al. 2007),15 a behavior which can be explained

by a New-Keynesian model with a low wealth elasticity (Monacelli and Perotti 2008). Thus,

including government spending as an observable, as Schmitt-Grohé and Uribe (2010) and we

do, restricts the parameter governing the wealth elasticity to a low value in order to account

for this effect. On the other hand, without the observable government spending as in Khan

and Tsoukalas (2010), this parameter remains mostly unrestricted with regard to the effects

of government spending on consumption.16

Turning to the nominal rigidities in our model, we find that prices are on average adjusted

about every three quarters, while the Calvo parameter for wages implies a high degree of

wage stickiness. The degree of price indexation is low (χp = 0.06) and in a similar range as

15For a dissenting view, see Ramey (2011).
16A small wealth effect also helps in explaining the empirical behavior of labor market variables (Galí et al.

2011).
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in Justiniano et al. (2011). Wages, on the other hand, are indexed to inflation with a higher

proportion than prices (χw = 0.6), which corresponds well with the estimates in Smets and

Wouters (2007).

The parameters of the Taylor rule are in line with previous estimates (e.g. Clarida et al.

2000). They imply a high degree of interest rate smoothing (ρR = 0.86), a strong response

to inflation (φRΠ
= 2.96), and a moderate value for the standard deviation of the monetary

policy shock (σR = 0.251%).

With the exception of the non-stationary technology shock, all shocks are estimated to

be highly persistent, with AR(1)-coefficients ranging from 0.94 for the government spending

shock to 0.99 for the preference, the stationary technology, and the non-stationary investment-

specific technology shock. The non-stationary productivity component has a relatively low

serial correlation of 0.34, a value commonly found in the literature (e.g. Justiniano et al.

2011).

The contemporaneous shock as well as the 4 quarter anticipated non-stationary technology

shock have relatively low standard deviations of 0.04% and 0.03%, respectively, whereas

the two year anticipated shock is the most important one with a standard deviation of

0.6%. A similar pattern emerges for the stationary technology shock. In this case, however,

the standard deviation of the unanticipated component has a similar size as the 8 quarter

anticipated component, 0.74% and 0.73%, whereas the 4 quarter anticipated shock is less

important with a standard deviation of 0.18%.

Examining investment-specific technology shows that investment-specific growth displays

the same pattern as neutral technology growth. The shock with the longest anticipation

horizon is the most important one, having the highest standard deviation (σ8
a = 0.14%),

albeit in this case it is only slightly higher than the one for the contemporaneous shock

(σ0
a = 0.11). The 4 quarter anticipated shock, on the other hand, is negligible (σ4

a = 0.04%).

In contrast, for stationary investment-specific technology anticipation does not play a role, the

standard deviations are less than 0.05%, while the unanticipated stationary shock component

has a higher standard deviation than the unanticipated non-stationary investment-specific

technology shock (σ0

zI = 0.31%).

Another shock, where the anticipated shock components are negligible, is the wage markup

shock. While the standard deviation of the unanticipated shock is relatively high, the

anticipated shocks have very low standard deviations that are below 0.04%. In contrast, the

surprise wage markup shock has a high standard deviation of almost 46%, which is consistent

with evidence from Smets and Wouters (2007) and Galí et al. (2011), who showed this shock

to be the most important driver of business cycles.17

17 Note that the shock applies to the net markup so a 46% shock increases the markup from 11% to about
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Next, we direct our focus to the fiscal policy shock processes. Both tax processes show a

very high persistence, with the roots of the autoregressive processes implying autoregressive

parameters of ρn
1 = 0.770, ρn

2 = 0.228, ρk
1 = 1.604, and ρk

2 = −0.605, respectively.18 The

posterior estimates suggest that for government spending and labor taxes fiscal foresight is

rather limited. The unanticipated government spending shock has a volatility of 3%, a value

also found by Leeper et al. (2010). The volatilities of the anticipated shock components, on

the other hand, are rather small, σ4
g = 0.03% and σ8

g = 0.04%. A similar pattern emerges

for the labor tax process τn
t . The shock with the largest volatility is the unanticipated

component ε0
τn,t with 0.48%, while the anticipated components have a similar size as the

anticipated government spending shocks. Only for the capital tax rate, news shocks display a

higher standard deviation. Particularly, compared to the shocks to the labor tax process, the

shocks εi
τk,t−i

to the capital tax process τ k
t display a much higher volatility. The unanticipated

component ε0

τk,t
has the highest standard deviation of 0.92%, while the anticipated components

have smaller, but still sizeable standard deviation, σ4

τk = 0.46% and σ8

τk = 0.65%.

4 Business Cycle Effects of Fiscal News

We are now in a position to analyze the dynamic effects of fiscal news. Given the estimated

deep parameters of the model, we compute forecast error variance decompositions to trace

out the shocks’ contributions to business cycle volatility. To better understand the dynamic

effects of news shocks, we then analyze their transmission into the economy in Section 4.2.

4.1 Variance Decomposition

4.1.1 Results

We use our estimated model to analyze the quantitative importance of the different anticipated

and surprise shocks for explaining business cycles. To this end, we compute conditional

and unconditional forecast error variance decompositions for the growth rates of output,

consumption, investment, hours, wages, the Federal funds rate, and inflation (see Table 4).19

Overall, we find that news shocks on average explain between 10 and 30 percent of the

16%. Chari et al. (2009) point out that wage markup shocks cannot be distinguished from labor supply shocks.
For policy makers this distinction matters, since both shocks entail different policy implications (Galí et al.
2011). However, as we are not interested in optimal policy, it is not important to identify the two shocks
separately.

18The high persistence of the labor tax rate has, for example, been documented in Cardia et al. (2003).
19For ease of exposition we have combined the two anticipated shock components into one and left out

three anticipated shocks (stationary investment-specific, wage markup, and government spending) that each
contributed less than 0.01 percent to the variance of the variables.
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variance of the variables considered. However, fiscal foresight only plays a very limited role.

Of the three types of fiscal foresight we consider, only the anticipated capital tax shock has

a sizeable variance contribution. While news about future capital taxes contribute only 2

percent to output growth variance, they matter for inflation and interest rate variability,

explaining more than 10 percent of the variability of inflation and interest rates at forecast

horizons longer than three years. This makes them the third largest source of inflation and

interest rate volatility, only behind preference and unanticipated capital tax shocks. Together,

surprise and anticipated capital tax shocks explain around 40 to 50 percent of inflation and

interest rate fluctuations. In contrast, news about labor tax and government spending shocks

explain at most 0.01 percent of the variance of any of the seven variables considered.

More important than fiscal foresight are the surprise components of the fiscal variables.

As already noted, besides the preference shock, the surprise capital tax shock is the most

important factor for the variance of the Federal funds rate and inflation. Moreover, it accounts

for 2 to 3 percent of output fluctuations. While the surprise government spending shock ε0
g

accounts for almost 10 percent of the output growth variance at the five year horizon and even

more at shorter horizons, it hardly contributes anything to the other variables’ fluctuations.

Whereas fiscal foresight seems to be of only minor importance for the fluctuations of output,

consumption, and investment, other news shocks contribute significantly to their variance.

The news shocks that matter most are news about stationary technology, which account

for 8 to 12 percent of the variance of output and consumption. News about non-stationary

technology mostly affects the volatility of wages, predominantly at long horizons. At the

five year horizon, it is the single most important factor affecting wage volatility. News about

non-stationary investment-specific technology explain around 8 percent of the variance of

investment at all horizons and about the same amount of the variance of hours (at the five

year horizon). In contrast, the news components of stationary investment-specific technology

and the wage markup shock account for at most 0.01 percent of the variance of any variable

we consider.

In general, the importance of news shocks increases at longer forecast horizons. E.g.,

anticipated shocks account for a larger share of output volatility at the five year horizon (21%)

than at the one year horizon (11%).

Turning to the surprise shocks, we find the most important drivers of business cycles to be

wage markup, preference, and unanticipated technology shocks. At business cycle frequencies,

these shocks combined explain about 60 to 70 percent of the fluctuations of real variables.

E.g., at the 20 period forecast horizon, these three shocks account for 31, 21, and 16 percent

of output volatility, respectively. Inflation and interest rate variability are mostly explained by

preference and capital tax shocks, whereas wage fluctuations are mainly driven by technology
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shocks, especially anticipated non-stationary technology shocks. Lastly, the monetary policy

shock plays a minor role in accounting for macroeconomic fluctuations, a result similar to

Smets and Wouters (2007). It explains around 15 percent of the Federal funds rate volatility,

but only at the short term, i.e. horizons of about one year, and has much smaller contributions

for the other variables.

4.1.2 Discussion

Using a DSGE-based estimation approach to determine the importance of news about fiscal

policy, we find that fiscal foresight only plays a minor role in explaining business cycle

fluctuations. Specifically, using full information Bayesian estimation and accounting for

different kinds of shocks, we find tax shocks and, in particular, news about taxes to explain

about 5 percent of output growth fluctuations. This compares to about 25 percent in the VAR

study of Mertens and Ravn (forthcoming), indicating that the rigid anticipation structure

and the strict exogeneity assumption in the latter paper may be problematic (see also Leeper

et al. 2011).

Our estimates also attribute less than one third of output fluctuations to surprise tax

shocks, which was found by McGrattan (1994). However, her paper only featured TFP,

government spending, and tax rate shocks. In contrast, our analysis features a richer set of

shocks commonly thought to be essential for explaining business cycles (Chari et al. 2007,

Smets and Wouters 2007).

Regarding the evidence on the effects of news shocks on the business cycles, our result of

10 to 30 percent of the variance of output growth being attributable to anticipated shocks

squares well with the evidence found by Forni et al. (2011) and Barsky and Sims (forthcoming).

Using a factor model, Forni et al. (2011) find that around 20 percent of output volatility is

explained by technology and 10 percent by news about technology, while Barsky and Sims

(forthcoming), in a VAR, attribute 10 to 40 percent to news shocks.

Fujiwara et al. (2011) and Khan and Tsoukalas (2010), using an estimated DSGE model

with nominal rigidities, find a technology news contribution to output variance of 8.5 and 1.6

percent, respectively, which is lower than our own estimates. On the other hand, Schmitt-

Grohé and Uribe (2010) find that news about technology account for as much as 41 percent

of output variance. Part of this higher number can be attributed to the absence of nominal

rigidities in their model (Khan and Tsoukalas 2010). Overall and consistent with these studies,

news shocks contribute a higher share to the unconditional variance of nominal variables

(wages, inflation, interest rate) than to the variance of real variables (output, consumption,

investment, hours). However, allowing anticipation not only for TFP but also for other shocks,

leads to a higher relative contribution of news shocks. Whereas the contribution of anticipated
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shocks in the study by Fujiwara et al. (2011) ranges from 4 percent (to the variance of

investment) to 15 percent (to inflation volatility), we find contributions of anticipated shocks

(combining all shocks) between 19 percent (investment and consumption volatility) and 52

percent (variance of wages).

Turning to the role of unanticipated shocks, we see that while the investment-specific

technology shock has been identified as an important driver of business cycles by previous

studies (Davis 2007, Fisher 2006, Justiniano et al. 2010a), it is of lesser importance in our

case and contributes a smaller fraction to fluctuations than TFP shocks. The contributions

of non-stationary investment-specific productivity vary between 5 and 15 percent, whereas

stationary investment-specific technology explains hardly 1 percent. The difference to the

previous studies finding the high contribution of investment-specific technology stems from

our decision to include the relative price of investment as an observable. Recent studies

including the relative price of investment as an observable find similarly small contributions

of investment-specific technology (Justiniano et al. 2011, Schmitt-Grohé and Uribe 2010).20

However, we have to stress that both the stationary as well as the non-stationary investment-

specific productivity shock pertain to the relative price of investment and are accordingly

mapped to this observable.21 Thus, our stationary investment-specific technology shock is not

directly comparable to the stationary investment-specific technology shock in Schmitt-Grohé

and Uribe (2010). This could explain the starkly differing results regarding the effects of this

particular shock for output and investment fluctuations, 30 to 60 percent in their case vs. less

than 1 percent in our case.

4.2 Impulse Responses

In order to better understand what drives the results of the previous section, we analyze the

impulse responses to stationary TFP shocks and to capital tax rate shocks. We choose to

focus on these shocks as they are the technology and fiscal policy shock, respectively, where

the anticipated component contributes most to business cycle variance.22

Figure 2 shows the impulse responses to an unanticipated (solid line) and an eight period

anticipated (dashed line) one percentage point cut of the capital tax rate.23 The top left

20Models that do not use the relative price of investment as an observable variable usually imply wrong
moments for this series (Justiniano et al. 2011). When this problem is eliminated, the variance contribution of
investment-specific technology shocks tends to disappear.

21The observation equation in appendix (C) shows the exact mapping.
22Although we find the preference and wage markup shocks to be the most important drivers of business

cycles, we omit analyzing their impulse responses as their importance and behavior is already well understood
(see e.g. Galí et al. 2011, Smets and Wouters 2007).

23For the surprise shock, this roughly corresponds to a one standard deviation shock as σ0

τk = 0.923%. For
the eight period anticipated shock, σ8

τk = 0.645%, so that we have re-scaled the size of this shock to make
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Figure 2: Impulse responses to unanticipated and anticipated capital tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the capital
tax rate τk; dashed line: impulse responses to an eight period anticipated 1 percentage point
cut of the capital tax rate τk that becomes known at t = −8 and effective at t = 0. All
impulse responses are semi-elasticities and measured in percent. Inflation and the policy rate are
measured as gross rates so that the responses can be interpreted as percentage point changes.
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panel shows the impulse response for the capital tax rate that is shocked. The actual response

of the exogenous capital tax rate is the same after the surprise and anticipated tax shock,

because the only difference between the two cases is the time at which the tax change that

happens at t = 0 is known. But the other variables react differently, because with anticipation

the future realization of the tax rate is already known at t = −8 and agents immediately start

to optimally respond to this information.

First, consider the solid line representing the impulse responses to a surprise 1 percentage

point decrease in the capital tax rate. This tax cut acts expansionary and leads to an increase

in output, investment, and consumption on impact. The effect is quite large due to the strong

estimated persistence of the shock process. Consistent with the evidence of high multipliers

for tax rates (Mountford and Uhlig 2009, Romer and Romer 2010), an initial 1 percentage

point decrease in the capital tax rate leads to a peak output response of 1.25 percent. Labor

and capital services increase in a hump shaped manner after the realization. For capital

services, this is driven by the higher after-tax rental rate that can be earned after the tax

cut. Note that the gross value of the rental rate decreases, reflecting the decreased tax wedge.

The increase in capital services also raises the marginal product of labor, leading to an initial

jump in the real wage as a fraction of unions is able to reset wages in the current period

and to a further rise over time when additional unions are able to reset their nominal wages.

The initial increase of the real wage is amplified by an overshooting of the nominal wage,

which is indexed to past inflation, due to a drop in inflation. Current inflation falls due to

the positive supply side effect of the tax decrease. This positive effect on inflation is also

the reason why the policy rate falls considerably, accommodating the expansion and further

fueling investment and consumption.

Although the impulse responses for the eight period anticipated tax shock look very

similar, there are two major differences. First, agents have more time to adjust and already

react during the anticipation phase. Hence, the impulse responses are now more drawn

out. Reacting immediately to an anticipated tax shock is optimal for the agents, because

the estimated degrees of consumption habits, capital adjustment costs, capital utilization,

and nominal rigidities imply that large abrupt changes in important choice variables are

welfare reducing and must be avoided. As a result of these more gradual and hence more

resource-saving responses, the peak responses of all variables are now higher than for the case

of a comparable surprise tax cut and generally occur earlier relative to the shock realization

at t=0. Note that relative to the announcement of the shocks, i.e. the point in time where the

horizon for the forecast error variance decomposition starts,24 the peak responses generally

both shocks comparable. Note that the impulse responses are semi-elasticities, i.e. they are measured in
percent of the steady state values of the corresponding variables.

24I.e. t=-8 for the anticipated shock and t=0 for the surprise shock.
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occur later for the news shocks. This peak response at later horizons for news shocks explains

why their importance in the forecast error variance decomposition tends to be larger at later

horizons.

Second, in contrast to the unanticipated shock, agents now substitute labor services for

capital services, leading to an immediate increase in the former and a decrease in the latter.

Only when the tax shock realizes, there is a jump in capital services. The higher production

resulting from the increase in labor services and the resources saved through the initially lower

depreciation resulting from the weaker capital use allows to increase consumption during the

anticipation phase. The net result of this substitution of labor for capital services with the

simultaneous increase in consumption and investment expenditures is a slight inflationary

pressure in the first period. As a response, the central bank somewhat tightens its policy.

However, the negative supply side effect of the input substitution subsides with the subsequent

further increase in labor supply. This increase is driven by the household’s desire to increase

the physical capital stock through investment while also keeping up consumption. As a result,

inflationary pressures abate and give room to an accommodating policy stance.

Note that physical investment in the capital stock slightly decreases initially. This behavior

is due to the depreciation allowances, whose present value for new investment decreases with

the future tax bill from which it is deducted. But, in contrast to the results of Mertens and

Ravn (2011), this incentive to disinvest is rather mild. Hence, in our estimated model, the

announcement of a tax cut is insufficient to generate the investment-driven slump during the

anticipation phase of a tax cut found in their model. This difference can be explained by the

different estimation procedures used. Mertens and Ravn (2011) rely on an impulse response

matching technique, where the empirical impulse responses were derived from a VAR using

a narrative identification scheme. The impulse responses to be matched by the model were

only the ones to anticipated and unanticipated labor and capital tax shocks. In contrast, our

estimation uses full information techniques and thus tries to match all moments given the full

set of exogenous driving forces of the model.

Figure 3 displays the impulse responses to one standard deviation surprise (solid line)

and anticipated (dashed line) stationary TFP shocks.25 The result of a surprise increase in

total factor productivity is a prolonged boom driven by both consumption and investment.

Consistent with a typical supply side shock, inflation decreases considerably with the central

bank lowering the policy rate by 20 basis points in response. This in turn leads to an increase

in the real wage and a subsequent increase in the labor services used.

For the eight period anticipated increase in technology, we observe an immediate increase

in output, investment, and consumption during the anticipation phase due to the entailed

25We scaled the news shock by 1.03 to have exactly the same standard deviation as the surprise shock.
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Figure 3: Impulse responses to unanticipated and anticipated stationary TFP shocks.
Notes: solid line: impulse responses to an unanticipated one standard deviation increase in
stationary TFP z; dashed line: impulse responses to an eight period anticipated one standard
deviation increase in stationary TFP z that becomes known at t = −8 and effective at t = 0.
All impulse responses are semi-elasticities and measured in percent. Inflation and the policy
rate are measured as gross rates so that the responses can be interpreted as percentage point
changes.
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wealth effect. This boom occurs already before the technology has actually increased and

is fueled by a rise in both capital and labor services.26 In this regard, the response differs

from the response to an anticipated capital tax shock, where a substitution of capital services

for labor services is observed. The reason for the difference is that, for the anticipated TFP

shock, agents have a stronger incentive to increase investment during the anticipation phase.

In contrast, for the anticipated capital tax shock, investment falls slightly on announcement

due to the decrease in the present value of the depreciation allowances.

Lastly, to better understand the contribution of capital tax and stationary TFP shocks to

business cycle variance, it is worth comparing the relative size and persistence of the impulse

responses of output, inflation, and the nominal interest rate to these shocks. As can be seen

from the the upper right panels of Figures 2 and 3, the peak response of output to an average

TFP shock is about 80% higher than to an average capital tax shock, although the latter

is somewhat more persistent.27 This difference in the size of the output responses explains

why stationary TFP shocks are more important for the volatility of output than capital tax

shocks. In contrast, both the inflation and the policy rate responses to capital tax shocks

have higher peaks and show more persistence. In particular, the average surprise TFP shock

leads to a peak reduction in the nominal interest rate of -0.2%, while the average surprise tax

shock leads to a drop of -0.4%. As this larger response is also more persistent, the difference

in response sizes explains why capital taxes are rather important for the variance of inflation

and the nominal interest rate, while they are less important for explaining output variance.

5 Conclusion

In this paper, we analyzed the contribution of fiscal foresight about labor and capital tax rates

and government spending to business cycle volatility in an estimated New Keynesian DSGE

model. Computing forecast error variance decompositions, we found that fiscal foresight

only plays a limited role for business cycle fluctuations. Its variance contribution was mostly

confined to inflation and interest rate fluctuations, where anticipated capital tax shocks were

responsible for between 5 and 15 percent of the total variance.

Our results show that accounting for fiscal foresight does not qualitatively alter the

importance of traditional business cycle factors like technology, wage markup, and preference

shocks (see e.g. Smets and Wouters 2007).

26This observation is consistent with Jaimovich and Rebelo (2009), who show theoretically that a low
estimated wealth elasticity of labor supply facilitates positive comovement of output, consumption, and hours
in response to TFP news.

27Note also that the average anticipated capital tax shock is roughly 40% smaller than the one depicted
due to re-scaling.
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Structural estimation always runs the risk of misspecifying the underlying model structure.

Hence, future work should test whether the results obtained here are robust against the speci-

fication of different fiscal rules where taxes respond to debt and possibly output as in Leeper

et al. (2010) or Forni et al. (2009). Moreover, the role of the information structure assumed

in the present work should be further scrutinized as the particular choice of information

structures may matter (Leeper and Walker 2011).
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A Tables

Table 2: Prior and Posterior Distributions of Preference and Technology Parameters

Parameter Prior distribution Posterior distribution

Distribution Mean Std. Dev. Mean Std. Dev. 5 Percent 95 Percent

φc Beta 0.7 0.1 0.858 0.014 0.834 0.880
σl Gamma 2 0.75 3.410 0.452 2.704 4.132
σs Beta 0.5 0.2 0.101 0.023 0.069 0.137
κ Gamma 4 1.5 4.860 0.425 4.128 5.526

δ2/δ1 Inverse-Gamma 0.5 0.15 0.280 0.023 0.243 0.316
χw Beta 0.5 0.2 0.590 0.069 0.486 0.704
χp Beta 0.5 0.2 0.059 0.024 0.022 0.098
θw Beta 0.5 0.2 0.938 0.006 0.927 0.948
θp Beta 0.5 0.2 0.662 0.009 0.646 0.676

Table 3: Prior and Posterior Distributions of the Shock Processes

Parameter Prior distribution Posterior distribution

Distribution Mean Std. Dev. Mean Std. Dev. 5 Percent 95 Percent

Preference Shock

ρpref Beta 0.5 0.2 0.991 0.003 0.987 0.996

σpref Inverse-Gamma 0.1 2 40.383 11.382 22.511 57.325

Wage Markup Shock

ρw Beta 0.5 0.2 0.976 0.006 0.967 0.986

σ0
w Inverse-Gamma 0.1 2 45.692 7.160 34.538 58.147

σ4
w Inverse-Gamma 0.1 2 0.037 0.018 0.020 0.058

σ8
w Inverse-Gamma 0.1 2 0.032 0.017 0.023 0.045

Stationary Technology Shock

ρz Beta 0.5 0.2 0.994 0.004 0.989 0.999

σ0
z Inverse-Gamma 0.1 2 0.738 0.043 0.663 0.806

σ4
z Inverse-Gamma 0.1 2 0.178 0.161 0.024 0.394

σ8
z Inverse-Gamma 0.1 2 0.730 0.047 0.648 0.804
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Table 3: Prior and Posterior Distributions of the Shock Processes - Continued

Parameter Prior distribution Posterior distribution

Distribution Mean Std. Dev. Mean Std. Dev. 5 Percent 95 Percent

Non-stationary Technology Shock

ρx Beta 0.5 0.2 0.336 0.059 0.245 0.438

σ0
x Inverse-Gamma 0.1 2 0.040 0.024 0.024 0.061

σ4
x Inverse-Gamma 0.1 2 0.034 0.015 0.021 0.047

σ8
x Inverse-Gamma 0.1 2 0.601 0.028 0.554 0.645

Stationary Investment-Specific Productivity Shock

ρzI Beta 0.5 0.2 0.968 0.019 0.942 0.992

σ0

zI Inverse-Gamma 0.1 2 0.313 0.021 0.274 0.342

σ4

zI Inverse-Gamma 0.1 2 0.034 0.015 0.025 0.053

σ8

zI Inverse-Gamma 0.1 2 0.037 0.017 0.023 0.053

Non-stationary Investment-Specific Productivity Shock

ρa Beta 0.5 0.2 0.986 0.0062 0.9766 0.996

σ0
a Inverse-Gamma 0.1 2 0.114 0.011 0.095 0.130

σ4
a Inverse-Gamma 0.1 2 0.036 0.013 0.020 0.056

σ8
a Inverse-Gamma 0.1 2 0.139 0.013 0.117 0.160

Taylor Rule and Monetary Policy Shock

ρR Beta 0.5 0.2 0.865 0.009 0.851 0.879

φRΠ
Gamma 1.5 3 2.958 0.107 2.779 3.126

φRY
Gamma 0.5 3 0.314 0.050 0.235 0.402

σR Inverse-Gamma 0.1 2 0.251 0.011 0.234 0.268

Government Spending Shock

ρg Beta 0.5 0.2 0.940 0.017 0.912 0.968

ρxg Beta 0.5 0.2 0.912 0.102 0.864 0.984

σ0
g Inverse-Gamma 0.1 2 3.024 0.124 2.815 3.217

σ4
g Inverse-Gamma 0.1 2 0.033 0.012 0.025 0.044

σ8
g Inverse-Gamma 0.1 2 0.038 0.023 0.025 0.058
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Table 3: Prior and Posterior Distributions of the Shock Processes - Continued

Parameter Prior distribution Posterior distribution

Distribution Mean Std. Dev. Mean Std. Dev. 5 Percent 95 Percent

Labor Tax Shock

ξn1 Uniform 0 0.577 -0.228 0.046 -0.313 -0.164

ξn2 Uniform 0 0.577 0.998 0.001 0.997 0.999

σ0
τn Inverse-Gamma 0.1 2 0.476 0.019 0.441 0.503

σ4
τn Inverse-Gamma 0.1 2 0.037 0.018 0.024 0.051

σ8
τn Inverse-Gamma 0.1 2 0.032 0.015 0.023 0.044

Capital Tax Shock

ξk1 Uniform 0 0.577 0.605 0.147 0.574 0.999

ξk2 Uniform 0 0.577 0.999 0.144 0.634 0.999

σ0

τk Inverse-Gamma 0.1 2 0.923 0.045 0.856 0.997

σ4

τk Inverse-Gamma 0.1 2 0.460 0.044 0.386 0.531

σ8

τk Inverse-Gamma 0.1 2 0.645 0.046 0.571 0.721
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Table 4: Variance Decomposition of Shocks (in %):

Pref./Wage Markup Technology Policy

ξpref ε0
w ε0

z ε4,8
z ε0

x ε4,8
x ε0

zI ε0
a ε4,8

a ξR ε0
g ε0

τn ε
4,8
τn ε0

τk ε
4,8

τk

4 Periods

GDP 5.00 35.26 24.03 7.98 0.01 0.65 0.27 1.96 2.09 1.48 18.43 0.46 0.00 2.11 0.25
Cons. 18.93 44.73 16.30 11.58 0.02 2.99 0.07 0.87 0.84 0.31 0.05 1.06 0.01 1.49 0.76
Invest. 37.59 17.99 20.53 3.63 0.00 0.00 0.41 7.75 7.91 2.08 0.04 0.09 0.00 1.86 0.12
Hours 3.29 48.73 4.29 7.96 0.03 0.84 0.07 9.48 5.61 4.11 8.91 0.66 0.00 0.13 5.89
Wages 7.39 2.65 50.01 3.35 0.65 0.09 0.12 8.72 5.51 1.71 0.18 0.05 0.00 17.58 1.99
FFR 16.46 2.39 17.85 1.10 0.00 0.20 0.01 5.62 9.99 15.01 0.75 0.00 0.00 29.51 1.11
Infl. 19.15 6.82 25.09 0.53 0.00 0.08 0.03 4.24 8.05 2.04 0.17 0.03 0.00 31.75 2.02

8 Periods

GDP 11.18 35.13 20.52 9.54 0.01 0.68 0.26 1.83 2.75 1.04 12.76 0.44 0.00 2.96 0.90
Cons. 15.94 46.39 16.20 12.43 0.02 3.16 0.08 0.79 0.74 0.26 0.04 1.10 0.01 1.76 1.08
Invest. 41.33 18.32 15.61 5.40 0.00 0.03 0.35 6.19 7.88 1.29 0.02 0.09 0.00 2.76 0.72
Hours 8.78 52.59 6.56 9.78 0.01 0.98 0.13 6.64 5.49 1.78 2.87 0.68 0.00 0.61 3.09
Wages 6.53 2.41 44.66 11.78 0.53 0.52 0.12 7.65 4.77 1.52 0.16 0.05 0.00 15.14 4.15
FFR 21.19 3.23 12.88 0.86 0.00 0.22 0.01 4.50 10.55 5.54 0.42 0.00 0.00 35.54 5.06
Infl. 22.27 7.10 17.80 1.90 0.00 0.07 0.02 3.01 6.82 1.39 0.15 0.03 0.00 31.29 8.14

20 Periods

GDP 21.15 30.89 16.43 9.13 0.01 0.98 0.21 1.58 3.44 0.87 9.89 0.39 0.00 2.89 2.12
Cons. 19.72 44.09 14.88 11.98 0.02 3.14 0.08 0.72 0.84 0.23 0.04 1.06 0.01 1.80 1.37
Invest. 45.16 16.75 12.51 5.79 0.00 0.17 0.28 5.04 8.13 1.07 0.03 0.09 0.00 2.73 2.24
Hours 22.63 50.14 4.20 4.30 0.00 0.25 0.12 5.14 8.29 0.49 0.71 0.67 0.01 1.52 1.52
Wages 6.16 2.26 18.65 8.87 0.20 48.45 0.06 3.00 2.22 0.64 0.06 0.02 0.00 6.08 3.31
FFR 31.49 4.15 5.45 1.94 0.00 0.12 0.00 1.64 5.08 1.53 0.17 0.00 0.00 30.96 17.48
Infl. 31.97 6.27 9.91 3.44 0.00 0.04 0.01 1.74 3.85 0.76 0.10 0.02 0.00 25.83 16.06

Uncond. Variance

GDP 23.57 26.88 12.88 7.67 0.01 0.73 0.19 5.61 11.02 0.66 6.83 0.28 0.00 2.09 1.58
Cons. 24.27 37.52 12.06 9.74 0.01 2.45 0.07 3.75 6.54 0.20 0.04 0.83 0.00 1.43 1.08
Invest. 44.46 15.95 9.61 5.26 0.00 0.14 0.22 7.14 12.98 0.73 0.02 0.07 0.00 1.85 1.56
Hours 46.58 16.62 2.83 2.68 0.00 0.09 0.06 9.97 18.68 0.11 0.15 0.96 0.01 0.67 0.59
Wages 19.01 4.34 13.37 6.78 0.14 32.83 0.05 6.53 9.74 0.45 0.05 0.02 0.00 4.26 2.42
FFR 31.89 1.64 0.42 0.27 0.00 0.01 0.00 1.46 2.76 0.06 0.01 0.01 0.00 35.25 26.22
Infl. 31.43 1.69 1.00 0.43 0.00 0.00 0.00 1.34 2.53 0.07 0.01 0.01 0.00 35.33 26.16

Notes: Variance decompositions are performed at the posterior mean. ε0

i represents contemporaneous shock components; ε
4,8
i represents the sum of the

4 and 8 quarter anticipated shock components. For ease of exposition, we leave out anticipated stationary investment-specific, wage-markup, and
government spending shocks, since these shocks contribute less then 0.01% to the variances of the variables.
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B Stationary Equilibrium

In order to derive a state-space representation of the model, the model presented in the main

text is solved by using a first-order perturbation method. However, due to the two integrated

processes At and Xt, which grow with rates

µa
t =

At

At−1

, µx
t =

Xt

Xt−1

, (24)

the model has to be detrended first in order to induce stationarity and to have a well-defined

steady state. Yt, Ct and Wt inherit the trend XY
t = A

α
α−1Xt, which corresponds to a growth

rate of

µy
t = (µa

t )
α

α−1µx
t . (25)

Kt and It inherit the trend XK
t = A

1

α−1Xt and thus grow with

µk
t = µI

t = (µa
t )

1

α−1µx
t . (26)

Gt inherits XG
t =

(

XG
t−1

)ρxg
(

XY
t−1

)1−ρxg

due to the assumed cointegrated trend with output.

It hence grows with rate

xg
t =

(xg
t−1)

ρxg

µy
t

. (27)

The detrending is performed by dividing the trending model variables by their respective trend.

For the estimation of our structural model, these stationary model variables are matched to

the data presented in Appendix D.
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C Observation Equation

The observation equation describes how the empirical times series are matched to the corre-

sponding model variables:28

OBSt =
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,

where ∆ denotes the temporal difference operator, L̄ denotes the steady state of hours worked,

µy is the steady state growth rate of output29, µa is the steady state growth rate of the relative

price of investment, τ k and τn are the steady state tax rates, TFPt = ztX
1−α
t is total factor

productivity, and R is the steady state interest rate. The hats above the variables denote log

deviations from steady state.

D Data construction

Unless otherwise noted, all data are from the Bureau of Economic Analysis (BEA)’s NIPA

Tables and available in quarterly frequency from 1955Q1 until 2006Q4.

Capital and labor tax rates. Our approach to calculate average tax rates closely

28The equation for Lt follows from

log Lt = log

(

Lt

L̄

L̄

)

≈ L̂t + log L̄ .

The equation for government spending follows from

log
Gt

Gt−1

= log
gtX

g
t

gt−1X
g
t−1

= log
gtx

g
t XY

t

gt−1x
g
t−1

XY
t−1

= log
gtx

g
t

gt−1x
g
t−1

µ
y
t .

29This is also the growth rate of the individual components of GDP along the balanced growth path.
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follows Mendoza et al. (1994), Jones (2002), and Leeper et al. (2010). We first compute the

average personal income tax rate

τ p =
IT

W + PRI/2 + CI
,

where IT is personal current tax revenues (Table 3.1 line 3), W is wage and salary accruals

(Table 1.12 line 3), PRI is proprietor’s income (Table 1.12 line 9), and CI ≡ PRI/2 +RI +

CP +NI is capital income. Here, RI is rental income (Table 1.12 line 12), CP is corporate

profits (Table 1.12 line 13), and NI denotes the net interest income (Table 1.12 line 18).

The average labor and capital income tax rates can then be computed as

τn =
τ p(W + PRI/2) + CSI

EC + PRI/2
,

where CSI denotes contributions for government social insurance (Table 3.1 line 7), and EC

is compensation of employees (Table 1.12 line 2), and

τ k =
τ pCI + CT + PT

CI + PT
,

where CT is taxes on corporate income (Table 3.1 line 5), and PT is property taxes (Table

3.3 line 8).

Government spending. Government spending is the sum of government consumption

(Table 3.1 line 16) and government investment (Table 3.1 line 35) divided by the GDP deflator

(Table 1.1.4 line 1) and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Total factor productivity (TFP). The construction of TFP closely follows Beaudry

and Lucke (2010), i.e.

TFPt =
Yt

KαH1−α
.

To construct K, we use data on capital services for the private non-farm business sector

(Bureau of Labor Statistics (BLS), Historical Multifactor Productivity Tables),30 multiply

it by the total capacity utilization rate (Federal Reserve System, Statistical Release G.17 -

Industrial Production and Capacity Utilization), and divide it by the civilian noninstitutional

population above 16 years of age (BLS, Series LNU00000000Q). Real GDP per capita Y is

nominal GDP (Table 1.1.5 line 1) divided by the GDP deflator (line 1 in Table 1.1.4) and

the population, and per capita hours H are non-farm business hours worked (BLS, Series

PRS85006033) divided by the population. The capital share α is set at 0.2935, the mean over

the sample compiled by the BLS (Bureau of Labor Statistics (BLS), Historical Multifactor

30Quarterly data is interpolated from the annual series using cubic spline interpolation.
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Productivity Tables).

Relative price of investment. The relative price of investment is taken from Schmitt-

Grohé and Uribe (2011). They base their calculations on Fisher (2006).

Output. Nominal GDP (Table 1.1.5 line 1) divided by the GDP deflator (Table 1.1.4 line

1) and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Investment. Sum of Residential fixed investment (Table 1.1.5 line 12) and nonresidential

fixed investment (Table 1.1.5 line 9) divided by the GDP deflator (Table 1.1.4 line 1) and the

civilian noninstitutional population (BLS, Series LNU00000000Q).

Consumption. Sum of personal consumption expenditures for nondurable goods (Table

1.1.5 line 5) and services (Table 1.1.5 line 6) divided by the GDP deflator (Table 1.1.4 line 1)

and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Real wage. Hourly compensation in the nonfarm business sector (BLS, Series PRS85006103)

divided by the GDP deflator (Table 1.1.4 line 1).

Inflation. Computed as the log-difference of the GDP deflator (Table 1.1.4 line 1).

Nominal interest rate. Geometric mean of the effective Federal Funds Rate (St.Louis

FED - FRED Database, Series FEDFUNDS).

Hours worked. Nonfarm business hours worked (BLS, Series PRS85006033) divided by

the civilian noninstitutional population (BLS, Series LNU00000000Q)
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