
Seithe, Mirko

Working Paper

Introducing the Bonn Experiment System (BoXS)

Bonn Econ Discussion Papers, No. 01/2012

Provided in Cooperation with:
Bonn Graduate School of Economics (BGSE), University of Bonn

Suggested Citation: Seithe, Mirko (2012) : Introducing the Bonn Experiment System (BoXS), Bonn
Econ Discussion Papers, No. 01/2012, University of Bonn, Bonn Graduate School of Economics
(BGSE), Bonn

This Version is available at:
https://hdl.handle.net/10419/74638

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/74638
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

 Financial support by the

 Deutsche Forschungsgemeinschaft (DFG)

 through the

 Bonn Graduate School of Economics (BGSE)

 is gratefully acknowledged.

 Deutsche Post World Net is a sponsor of the BGSE.

Introducing the Bonn Experiment System

(BoXS)

Mirko Seithe∗

February 5, 2012

Abstract

Computerised experiments play a vital part in the modern economic

and social sciences. As the technology advances, more complex and sophis-

ticated experiments become feasible. Fast internet connections are widely

available today and mobile devices have become capable of running com-

plex graphical applications. The Bonn Experiment System (BoXS) was

designed to provide a platform for designing and conducting computerised

experiments which is both easy to approach and use, as well as flexible in

its possible applications. It does not require installation and uses a lean

client which runs on Windows, MacOS and Linux and only requires a web

browser and a Java Runtime Environment to execute.

This paper intends to highlight the main features and limitations of the

BoXS and provide some guidance for experimenters getting started with

it. It also discusses some of the design decisions and provides in-depth

information on technical aspects of the system. The appendix includes

both the documentation and full code examples.

JEL-Classification: C88, C99

Keywords: Experiment System; Software; Experiment Conduction; Java

∗I would like to thank the participants of the Bonn Experiment Workshop and the users of
the Bonn Experiment System for their helpful comments and suggestions, as well as the DFG
for financial support. Contact details: Mirko Seithe, Schulstr. 15a, D-53757 Sankt Augustin,
Germany, mseithe@uni-bonn.de, http://boxs.uni-bonn.de

1

Contents

1 Introduction 6

1.1 Related Work . 6

1.2 Introducing the Bonn Experiment System 8

1.3 Outline . 10

2 Using the BoXS 11

2.1 Quick Start Tutorial . 11

2.2 Starting an Experiment . 14

2.3 The Experimenter View . 15

2.4 Internet Experiments . 17

2.5 Laboratory Experiments . 17

2.6 Using an Offline Server . 18

2.7 Autorun Experiments . 19

2.8 Troubleshooting . 19

2.9 Documentation . 20

3 The BoXS Programming Language 21

3.1 Code Based and Graphical Approaches 21

3.2 Program Execution . 22

3.2.1 Lexing and Parsing . 22

3.2.2 Internal Implementation 23

3.2.3 Error Handling . 24

3.3 Implemented Functionality . 25

3.4 Basic Calculus . 26

3.5 Variables . 27

3.5.1 Internal Data Representation 27

3.5.2 Local, Group and Global Variables 27

3.5.3 Arrays and Matrices . 28

3.5.4 Automatically Generated Variables 29

2

3.6 Displaying Information and User Input 30

3.6.1 Displaying Text and Graphics 30

3.6.2 Videos . 32

3.6.3 Subject Input . 33

3.6.4 Waiting and Assertions 33

3.7 Matching . 34

4 Design and Implementation 35

4.1 Programming Language . 35

4.2 Network Architecture . 37

4.3 Communication Protocol . 38

4.4 The Server . 39

4.4.1 Server Robustness . 39

4.4.2 Connection Robustness 40

4.4.3 Security . 41

4.4.4 Notes on the Implementation 42

4.5 The Client . 43

4.5.1 Implementation as Java Applet 43

4.5.2 Internal Implementation 46

5 Limitations and Future Development 46

5.1 Feature Selection . 47

5.2 Future Development . 47

5.3 Limitations . 48

6 Conclusion 48

A List of all Functions in the BoXS Programming Language 50

A.1 Basic Operations and Calculations 50

A.1.1 Basic Calculus . 50

A.1.2 More Calculus and Trigonometric Functions 50

A.1.3 Boolean Algebra . 50

3

A.1.4 Random Number Generation 51

A.2 Program Flow Control . 51

A.2.1 if(expression) { ... } . 51

A.2.2 while(expression) { ... } 52

A.2.3 for(initialization; condition; iteration) { ... } 52

A.3 Displaying Text and Graphics . 53

A.3.1 display([message]) . 53

A.4 Waiting . 54

A.4.1 wait([message],[messageafterclick]) 54

A.4.2 waitForPlayers([message],[messageafterclick]) 55

A.4.3 waitTime(time) . 55

A.4.4 waitForExperimenter() . 55

A.5 User Input . 56

A.5.1 inputString(variablename) 56

A.5.2 inputNumber(variablename) 56

A.5.3 choice(varname,values) . 57

A.5.4 checkbox(varname,description) 57

A.5.5 assert(expression) . 58

A.5.6 style(text) . 59

A.5.7 manualLayout() . 60

A.5.8 Non-compulsory Input . 61

A.5.9 Default values . 61

A.6 Matching . 61

A.6.1 matchAll(roles) . 61

A.6.2 matchPerfectStranger(roles) 62

A.6.3 matchStranger(roles) . 63

A.6.4 matchManual(username,group,role) 63

A.6.5 matchDone() . 64

B Example BoXS Programs 65

4

B.1 Questionnaire . 65

B.2 Public Good Game . 65

B.3 Chat Client . 66

B.4 Dutch Auction . 67

B.5 Localization . 68

B.6 Real Effort Task . 68

5

1 Introduction

Behavioural experiments have become a vital part of economic research in the

preceding decade as they allow researchers to study actual human behaviour be-

yond the predictions of theoretical models. Most major economics departments

now run dedicated laboratories which centralise the recruitment of experiment

subjects and simplify the experiment conduction.

Nowadays most experiments are conducted using computers instead of pen-

and-pencil methods, which brings both theoretical and practical advantages for

experimenters: 1) Computers allow for experiments involving complex real-time

interaction between subjects, e.g. in market or auction related experiments,

which would be extremely tedious to conduct otherwise. 2) Using computers

to interact with the subjects reduces possible experimenter effects and makes

reproducing an experiment easier. 3) An experiment which was programmed

once can be easily documented and shared amongst researchers. 4) The data

generated by an experiment can be automatically collected and exported to

spreadsheet and statistics programs.

In the course of the last decade, computer technology has vastly improved,

affecting both the abilities of modern computers as well as their possible ap-

plications. Fast and stable internet connections are widely spread among both

institutional and private users and computers have become able to display high

quality audio and video files. At the same time the acceptance of computers

has increased with most users as has their sophistication in using them.

1.1 Related Work

In the very beginning of computerised experiments no experiment software ex-

isted which would help experimenters design and run their experiments. This

required every experimenter to implement her experiment from scratch using

complex programming languages like C++, which in turn required the exper-

imenter to either acquire significant programming skills or delegate the imple-

6

mentation to a professional programmer. While many experiment designs are

easy to explain, they may be very hard to implement. Especially the program-

ming of network communication and the graphical user interface can be very

complicated and tedious and often outweighs the advantages of using computers

in the first place.

The first major improvement on this situation came in the form of RatImage,

developed by ?, which is a library of common functions required for most ex-

periments, for example user interface design. While RatImage still required the

experimenter to program his experiment in low-level programming languages,

many tasks could be vastly simplified by using its predefined routines. Unfor-

tunately, RatImage, which was designed for the outdated MS-DOS operating

system, seems to be neither supported nor available any more.

The next major improvement was z-Tree, which was introduced by ?1 and

has been steadily supported and improved ever since. Based on the citation

count it is probably the most relevant experiment software to date, especially

for economists. The main feature of z-Tree is that it allows the experimenter

to design many experiments without writing any program code. It provides an

extensive graphical user interface which makes all the important functions acces-

sible and allows the user to design experiments by arranging basic components

like text fields and buttons on a tree-like structure. By providing this simplified

approach z-Tree allows experimenters with no prior programming experience to

implement and run an experiment, while at the same time providing a feature

set extensive enough to allow for the implementation of most experiment types.

Z-Tree is designed for the Microsoft Windows operating system and provides

both server (zTree) and a client (zLeaf) applications which communicate using

the TCP-IP protocol. The most recent version of z-Tree implements graphics,

both for presentation and interaction, the support for external hardware and

chat functionality.

Regate, designed by ?, is another experiment software system for Win-

1See also ?.

7

dows which enables experimenters to program and conduct computerised ex-

periments2. It provides an elaborate and complex user interface which experi-

menters can use to program and supervise their experiments. Programs consist

of several script statements which are inserted in a tree structure. Debugging

and testing are simplified in Regate by a) enabling the experimenter to play

several subjects on the same computer and screen at the same time and b)

providing the possibility to simulate subjects’ behaviour by having the software

make random choices in a specified range. Regate includes an online documen-

tation and provides several sample programs.

Finally, ? provides a good overview on how internet experiments can be

implemented. He explains both how to use existing experiment software like

z-Tree and RatImage in an internet environment as well as the more basic

programming approach based on HTML and PHP.

All the mentioned platforms have weaknesses. First, they are designed for

laboratory experiments only and are often not designed for mobile or internet

experiments. They also heavily rely on Windows as their only supported plat-

form and cannot be used on devices like mobile phones. Second, they are often

not very user friendly, not very easy to learn and often lack a comprehensive

and up-to-date documentation. Finally, many of the mentioned platforms are

no longer supported and often cannot be used on recent computers.

1.2 Introducing the Bonn Experiment System

This chapter introduces the Bonn Experiment System (BoXS), which provides

a platform for experimenters which is both flexible and easy to use.

The flexibility of the Bonn Experiment System arises from two facts. First,

the system is based on the Java platform, which allows it to be used on a wide

variety of platforms, including both different device types like netbooks and

mobile devices as well as different operating systems like Windows, Linux and

2Since no published paper on Regate is available yet, this paragraph is
based on the presentation and the manual available at the official homepage:
http://www.gate.cnrs.fr/∼zeiliger/regate/regate.htm

8

(a) Program code. (b) Resulting screen.

Figure 1: A simple questionnaire in the Bonn Experiment System.

MacOS. Second, while it is still possible to download and use the BoXS in an

offline environment, it can use the internet as a medium to connect the comput-

ers participating in an experiment, which enables any computer worldwide to

participate in an experiment without requiring the experimenters to set up their

own network structure. This allows for a variety of experiment environments:

• Laboratory experiments, both using an official server (which is easier to

use) or an offline server (which allows for experiments without an internet

connection).

• Internet experiments in which subjects participate using their private com-

puters at home.

• International experiments where subjects from different countries partici-

pate using computers connected over the internet.

• Mobile experiments using netbooks, laptops or Java-compatible mobile

phones connected over wireless internet.

• Cross-platform experiments involving Windows, Linux and MacOS.

The Bonn Experiment System also introduces useful features like the simple

measurement of response times and the tracking of a input history for each

variable, which may be interesting for researchers interested in choice revision

behaviour or the individual decision process.

9

Besides being flexible, the BoXS is also very robust. When a subject’s com-

puter or even the experimenter’s computer crashes, the experiment continues

and the affected subjects/experimenter can simply reconnect and resume the

experiment at the point before the crash while all previous data is preserved.

The BoXS is easy to use for several reasons. The programming language

implemented in the BoXS is designed to be compact, easy to learn and intu-

itive to use and resembles popular programming languages like Java. The BoXS

also features extensive documentation including an online manual, example pro-

grams, a tutorial, a site answering frequent questions, a discussion group where

questions can be posted and, coming soon, video tutorials for the most common

questions. The user feedback from experimenters writing their first experiments

using the BoXS has so far been very positive. Furthermore, the BoXS does not

require any installation on a computer. This makes setting up even complex

experiment environments easy as inviting someone to participate in an exper-

iment only requires sending a link. Testing and debugging is also easy as the

BoXS allows the easy simulation of a large number of subjects.

1.3 Outline

Section 2 of this chapter is intended for experimenters who have not used the

BoXS before and want to learn about its features. It starts with a brief tutorial

and provides information on how to use the BoXS in different environments.

Section 3 describes the BoXS Programming Language (BoXSPL), which

is introduced by the BoXS and is intended to provide a simple way for non-

programmers to design experiments. The section describes how programs are

executed and how the most important commands work.

Section 4 provides a more in-depth technical description of the underlying

network architecture and communication, as well as on how the server and client

software is realised. It is primarily intended for readers with a computer science

background who are interested in how the Bonn Experiment System works.

The last two sections discuss the current state and the possible future de-

10

velopment of the BoXS. Finally, a full documentation of the BoXSPL as well as

several example programs are provided in the appendix.

2 Using the BoXS

This section provides practical tips for experimenters considering to use the

Bonn Experiment System (BoXS). It begins by providing a brief tutorial which

demonstrates how to write a simple experiment, proceeds with a description of

the user interface and explains how to use the BoXS in laboratory and internet

experiments.

2.1 Quick Start Tutorial

This tutorial explains how to write the quintessential ”Hello World”-program

in less than 5 minutes. For this tutorial to work an internet connection, an

internet browser and the Java plug-in for the browser are required.

1. Launch a web browser and open the site boxs.uni-bonn.de.

2. Click on ”Start Experiment!”.

3. Click on ”1 Experimenter, 2 Subjects”.

11

The Hello World program is successfully compiled by the server and exe-

cuted on the two simulated subject clients in the bottom. When you click on

”Continue” in the subject views the experiment ends and you can write and

start a new experiment. Feel free to experiment by editing and expanding the

example program.

13

Figure 2: The starting page.

2.2 Starting an Experiment

Figure 2 shows the BoXS web site which is typically used to the start an ex-

periment. At the beginning, the experimenter has to specify a realm id and, if

required, her email address. In the BoXS, each experiment is uniquely identified

by its realm id which ensures that your subjects do not get mixed up with other

experiments. By default the realm id is a generated random number which is

sufficient for most cases. Alternatively, it can be set to the experimenter’s name,

institution or her experiment’s name. Specifying an email address enables the

BoXS to automatically send results to the experimenter’s email account. Note

that this is completely optional as data can be exported without using this mail

option.

Upon clicking on ’Start Experiment!’, the ’Available Setups’-page shown in

figure 3 is displayed. This page offers a large number of possible display set-

ups for the experiment, which each include an experimenter view and/or one or

more subject views. The quick start tutorial uses one experimenter view and

two subject views on the same page, which is useful for testing purposes. Other

available set-ups include pure experimenter or subject views, which are useful

for actual experiments, as well as pages with up to 16 subjects each, which are

14

The data displayed in this table can be exported to a comma-separated values

file (CSV) by clicking on the export button on top of it.

The separation between the program editor and the variable view can be

dragged by the experimenter to suit her layout preferences.

2.4 Internet Experiments

In the tutorial both the experimenter and the subject clients are executed on the

same computer. Conducting a real experiment with other people is relatively

straightforward. In order to conduct an internet experiment, one can copy the

subject link displayed on the ’Available Setups’-page and send it to the desired

subjects. For example:

http://boxs.uni-bonn.de/expsys/es subject.html?host=boxs.uni-

bonn.de&port=58000&realm=1963527&email=&username=new

The link contains the realm id and the server data required for participating in

the experiment. If another person opens this link in her web browser, she shows

up in the subject list with the user name specified in the link. The experiment

can then be started by pressing the start-button in the experimenter’s view as

described in the tutorial. Information on starting the experiment automatically

is provided in section 2.7.

2.5 Laboratory Experiments

Laboratory experiments using the BoXS work very similar to internet experi-

ments. In the beginning the subject link copied from the ’Available Setups’-page

has to be opened on each computer in the laboratory. The user name should be

changed to reflect each computers’ cubicle/room number in order to correctly

identify the subjects and their computers later on. As copying this link can be

quite tedious, it is generally a good idea to bookmark the link on every computer

so that it can be reused for future experiments.

Like in the internet experiment example the subjects show up in the exper-

imenter’s available subjects list and the experiment can be started by clicking

17

(a) Laboratory experiments (b) International experiments

(c) Home experiments (d) Mobile experiments

Figure 5: Possible applications for the Bonn Experiment System.

on the start-button.

2.6 Using an Offline Server

Usually the official BoXS server is recommended for all experiments as it is

the most convenient way. There are some cases, however, in which the set-up

and use of a local BoXS server can be advantageous. Experiments for which

no internet connection is available, for instance due to technical restrictions or

restrictive laboratory policies, are a good example. Another kind of situation

are high-frequency experiments where extremely fast reaction times and very

low latencies are required.

The package required for running a local BoXS server can be downloaded

from the general information section of the homepage which also includes some

tips on how to set it up. In a nutshell, the experimenter needs to execute the

downloaded BoXS server on one of the computers. Then the official server’s

18

name (boxs.uni-bonn.de) on the participation links has to be substituted by

the IP address of the computer running the server. Afterwards, everything

should work like when using the official internet server with the exception of the

email functionality.

2.7 Autorun Experiments

Some experiments, especially internet experiments, require to be run while the

experimenter is not available. Consider the case in which the experimenter wants

participants to fill out an online questionnaire during a certain time period. Do-

ing this with the methods discussed previously would require the experimenter

to sit in front of her computer and manually start an experiment whenever a

participant connects to the BoXS.

In order to simplify this process so-called autorun experiments have been

implemented. An autorun experiment is created by writing a program as usual

and clicking the blue ’autorun’-button when done. The experiment is now stored

on the server and the experimenter can turn off her computer without affecting

it.

Whenever a subject with the appropriate realm id logs onto the server,

the stored experiment is automatically executed. The data of the experiment,

including all previous observations, is sent to the experimenter by email after

each completed observation. Note that a valid email address has to be specified

at the beginning of the experiment in this case.

2.8 Troubleshooting

The following two problems are encountered frequently when using the BoXS

and can be solved easily:

• If nothing is displayed after clicking on a link on the ’Available Subjects’-

page, the Java plug-in is probably not properly installed. The Java plug-in

is available for free and most web browsers notify the user in case it is miss-

19

ing and aid her in its installation. Otherwise it can be installed manually

by visiting the Java homepage at www.java.com and downloading and

installing the Java Standard Edition Runtime Environment (JRE).

• If a message claiming that clients cannot connect to the server is displayed

despite a working internet connection, the experimenter’s institute’s fire-

wall is probably at fault. In order to resolve this, the corresponding IT

department should be kindly requested to open the ports 58000 and 58001,

which are used by the BoXS, for TCP connections.

2.9 Documentation

Several ways are available to learn more about how to use the Bonn Experiment

System:

• The appendix of this chapter as well as the largely equivalent online doc-

umentation provide an elaborate documentation for each command avail-

able in the BoXSPL:

http://boxs.uni-bonn.de/documentation/index.html

• The documented example programs, which are printed in the appendix

of this chapter and can be downloaded on the web site provide examples

for how the BoXS can be used and how common experiment types can be

realised:

http://boxs.uni-bonn.de/examples/index.html

• The frequently asked questions section on the web site contains a big list

of answered questions and is a good place to start when problems and

questions are encountered:

http://boxs.uni-bonn.de/general/index.html

• A public mailing list exists where all users can ask questions and are

invited to contribute to the general discussion:

http://groups.google.com/group/bonn-experiment-system

20

• Video tutorials demonstrating the basic features of the BoXS are available

on the homepage and demonstrate how to do the most common tasks using

the BoXS.

3 The BoXS Programming Language

In this section I describe the thought process behind the design decisions met

concerning the BoXS Programming Language (BoXSPL). The goal of the BoXSPL

is to create a language which is easy to learn for novice users while still allowing

the implementation of most experiment types. This section intends to pro-

vide an overview of the BoXSPL. For more information on the commands and

concepts described in this section please refer to the appendix or the official

homepage where more elaborate documentation is available.

3.1 Code Based and Graphical Approaches

While most professional programming languages like C++ and Java are purely

text based programming languages, languages designed for novice programmers

like z-Tree or Regate provide strong graphical user interfaces for designing a

program. The advantage of graphical approaches is that they may be easier to

learn and less intimidating for novice users as standard experiment types like

questionnaires can often be created without even writing a single line of code.

In more complex experiments, however, the experimenter is usually required to

write program code at some point either way.

Text based languages provide advantages for advanced users as it is usually

faster to type a desired command using the keyboard than to create it using

a graphical interface. Sophisticated users may furthermore take advantage of

features like copying and pasting and are free to choose any text editor they like.

Another advantage of text based languages is that their programs can be easily

shared and archived, as they are compatible across versions and platforms, or

published, as they can be easily printed.

21

With the BoXSPL I introduce a text based programming language. In order

to ease the learning curve for novice users I provide a rich documentation,

several sample programs and an editor with syntax highlighting. I also provide

a tutorials and videos to reduce the time and effort required to get new users

started with the BoXS and create a first experiment.

3.2 Program Execution

This section describes how the BoXS server processes a program written by an

experimenter and how it is executed.

3.2.1 Lexing and Parsing

In computer science, a lexical analyser (lexer) is an algorithm which reads a

given text string and translates it into a set of tokens, for example string tokens,

numbers and operators3. These tokens are then handed over to a syntactic

analyser (parser), which analyses and structures the tokens and, as a final step,

arranges and translates them to a format which can be executed4.

When the BoXS project was initiated as a small prototype, a hand-made

simple lexing/parsing-algorithm was implemented. As the complexity of the

language increased and more test cases were created, the stability, quality and

performance of the lexing/parsing process has been steadily enhanced and im-

proved. An alternative to hand-made lexers are so-called lexer- and parser-

generators for Java, for example JLex and CUP5, which are freely available.

These generators process a given language specification, which can be enhanced

and changed later on, and create lexer- and parser-code which can be included

in any program.

The main advantage of using a such a professional lexer/parser generator

is the high reliability and robustness of the resulting algorithm. Furthermore

3See Wikipedia, http://en.wikipedia.org/w/index.php?
title=Lexical analysis&oldid=366935008

4See Wikipedia, http://en.wikipedia.org/w/index.php?
title=Parsing&oldid=373059757

5See http://www.cs.princeton.edu/∼appel/modern/java/JLex/.

22

For instance, the line var=round(15/4+6) is translated into the following

tree-like structure:

FunctionAssign ("var", OperationNodeRound (OperationNodeAdd

(OperationNodeDivide (OperationNodeDouble:15.0,

OperationNodeDouble:4.0),OperationNodeDouble:6.0)))

The FunctionAssign-object, which is on top of the hierarchy, assigns a value

to the variable named var. In order to calculate the correct value for this it

executes the OperationNodeRound-object which in turn executes and evaluates

objects further down in the hierarchy.

As a result of the lexing/parsing process, a program which is entered as a text

string is converted into a vector of Function-objects, which can each reference

one or more related Function-objects. In the first versions of the BoXS this

conversion, which is arguably the most computationally intensive and complex

process in the BoXS, was done while the experiment was running. In order to

improve performance this process is now done before the experiment is executed,

which vastly improves the execution performance in more complex experiments.

At runtime, the BoXS calls the execute-methods of all Function-objects, which

are implemented as very fast and efficient operations.

In order to ensure the proper functioning of the BoXS lexer/parser a suit

of critical test terms and expressions has been collected which is executed and

tested before a change is incorporated into the official BoXS server. Every time

an internal error in the BoXS is found, a corresponding expression is added to

this test collection in order to ensure that this error is not accidentally reintro-

duced in a future version.

3.2.3 Error Handling

Unfortunately not all programs written by experimenters are flawless. There

are two categories of errors which can occur when executing a user-written pro-

gram. The first category contains so-called compile-time errors which prevent

24

the program from being lexed and parsed correctly, for instance misspelled com-

mands, missing brackets or other types of syntax errors. The second category

consists of so-called runtime errors which occur and can only be detected while

the program is executed, for example the referencing of undefined variables or

an invalid mathematical operation.

Both compile-time and runtime errors which occur when running a program

in the BoXS are reported to the experimenter and displayed in a separate win-

dow, including the line which caused the error. Error messages serve the purpose

of informing the experimenter about mistakes in her program and making her

aware of possible implications.

When compile-time errors are encountered, the BoXS only shows the error

message and does not start the experiment. When runtime-errors occur, the

philosophy of the BoXS is to keep the experiment running whenever possible

and only halt the execution for subjects who are directly affected by the error.

Furthermore two specific types of possible errors do not raise error messages:

1) Referencing an undefined variable does not result in an error but returns the

numerical value 0. The rationale for this is that it makes programs signifi-

cantly shorter by eliminating the need to initialise every variable (for exam-

ple counter=0). 2) Some questionable mathematical expressions, for instance

var=1/0, does not result in an error message but in the pseudo-value Infty

(infinity), which may produce odd results when used for further calculations.

3.3 Implemented Functionality

One important process in creating a programming language is to find the right

compromise between its accessibility and its generality. While a simple language

with only a few commands might be very appealing to novice users, a lack of

functionality would narrow down its possible applications.

Before a description of the functions implemented in the BoXSPL is pro-

vided, consider the questionnaire example program shown in figure 7 for an

impression of how a typical BoXS-program looks. A typical program includes

25

display("Please enter your age:")

inputNumber(age)

assert(age>=10 && age<=100)

display("Please enter your gender:")

choice(gender,"male","female")

wait()

Figure 7: Example questionnaire.

Figure 8: List of all functions implemented in the BoXS.

display-commands to display instructions and questions, includes some input

commands like inputNumber and choice and ends with a wait-command.

Figure 8 shows the set of functions which are implemented in the first version

of the BoXS Programming Language (BoXSPL) grouped by function. The

functions allow for most experiment types and questionnaires. Each function is

designed to have a clear purpose and be easy to understand.

3.4 Basic Calculus

On the most basic level the BoXSPL includes the most common mathematical

functions as well as string concatenation. It can evaluate arithmetic expressions,

calculate with integer and real numbers at double precision and understands the

use of brackets. Furthermore the BoXS can generate uniformly and normally

26

distributed pseudo-random numbers based on the linear congruential generator

implemented in Java6. It also provides program flow control commands in the

form of an if-command for conditional execution as well as a for- and a while-

command for repeated execution.

3.5 Variables

The BoXS provides a very flexible data structure which allows for variables with

different scopes, i.e. local, group-specific and global types, as well as arrays and

matrices of arbitrary dimensions.

3.5.1 Internal Data Representation

The BoXS uses a so-called HashMap-object to store all data generated by each

experiment as it provides a very flexible way of data storage. A map in com-

puter science is a general data structure which can store an arbitrary number

of key-value pairs. The HashMap-class, as provided by the Java programming

language, provides a very efficient implementation of such a map by generating

hash codes for each key in order to reduce the time required to access stored

data.

The keys used in this map are the variable names, which are stored as

a string, and the corresponding values are arbitrary objects. In the current

version these objects are either strings or double precision numbers. In future

versions this might be used to store more complex objects like lists or images.

3.5.2 Local, Group and Global Variables

In order to ensure that all data is stored unambiguously, a variable name needs to

be transformed and resolved internally before a variable is stored. The variable

name payoff, for example, would be problematic as it would be unclear to

which subject the payoff belongs. In order to avoid this, each variable name

6See http://download.oracle.com/docs/cd/E17476 01/javase/1.4.2/

docs/api/java/util/Random.html.

27

(Suppose there is one group (1) with two subjects (S1 and S2) in roles A and B.)
Assignment for ... Program Line Internal Representation
... current subject var=5 S1.var=5
... subject A in current group A.var=5 S1.var=5
... subject B in current group B.var=5 S2.var=5
... subject B in current group 1 1.B.var=5 S2.var=5
... all subjects in current group *.var=5 S1.var=5, S2.var=5
... all subjects in group 1 1.*.var=5 S1.var=5, S2.var=5
... all subjects in all groups *.*.var=5 S1.var=5, S2.var=5

Table 1: Local, group and global variable examples.

(Suppose there is one group (1) with two subjects (S1 and S2) in roles A and B.)
Program Line Internal Representation

specific index var[3]=5 S1.var[3]=5
calculated index var[1+2]=5 S1.var[3]=5
string index var[”A”]=5 S1.var[A]=5
string index hello[”german”]=”Willkommen...” S1.hello[german]=...
variable index var[experimentround]=5 S1.var[3]=5
variable index var[role]=5 S1.var[A]=5
3-dimensional var[1][2][3]=5 S1.var[1][2][3]=5

Table 2: Array and matrix examples.

is internally prefixed by the respective subject’s username , which is always

unique7 for each experiment8.

If no specific prefix is specified by the experimenter, a variable is treated as a

local variable which means that it only applies to the current subject. Therefore

the line payoff=5 only sets the current subject’s payoff to 5. In order to change

another players variables or to do group-specific or global9 changes a prefix has

to be used. This allows the experimenter to create pseudo-global variables and

share variables among subjects. Table 1 shows some examples how this can be

done in the BoXSPL.

3.5.3 Arrays and Matrices

The BoXSPL allows arrays and matrices of arbitrary dimension to be stored.

Table 2 shows some examples of what can be done with this.

The reason why the BoXS is so flexible with respect to arrays is that they are

7The server always ensures that the usernames of the subjects are unique. If several subjects
login with the same username, they are renamed internally by adding the suffix <number>.

8In the first versions of the BoXS, variable names stored in the format of
group.role.varname. This turned out to be problematic, however, as the re-matching of
subjects would lead to all variables getting mixed up.

9Note that this so-called global level is specific to the current realm. Cross-realm commu-
nication is not possible for obvious security reasons.

28

not stored as arrays internally. They are stored in the very same HashMap where

all data is stored. The array indices are evaluated at runtime and appended to

the variable name. In effect, a one-dimensional array with a length of 5 is stored

like 5 separate simple variables.

Arrays do not need to be defined ahead of time and their dimensions can

be arbitrarily changed at runtime. Furthermore both number and string indices

are allowed, which is very useful in some situations.

3.5.4 Automatically Generated Variables

The BoXS automatically creates several variables during the execution of an

experiment. While some of these variables are only required for the internal

execution process, some variables may be interesting for experimenters. Most

automatically generated variables are prefixed with “ ” in order to avoid confu-

sion.

• linenum: The number of the line in the program which is currently being

executed (usually a wait-command).

• finished: 1 if the experiment has finished for this subject, 0 otherwise.

• continue<linenumber>: 1 if the subject has clicked successfully on the

wait-button specified in the given line, 0 otherwise.

• clientdisplaytime<linenumber>: The exact time10 at which a stage

was displayed on the respective subject’s screen. This may be useful for

experimenters in order to synchronise the BoXS to other devices based on

the time. The line number specifies the wait-command which triggered

the stage in question.

• inputhistory <varname>: This variable stores every input made by the

subjects. This allows the experimenter to learn about the decision process

10In milliseconds since January 1, 1970, 00:00:00 GMT, see:
http://download.oracle.com/docs/cd/E17476 01/javase/1.4.2/

docs/api/java/util/Date.html.

29

and possible choice revisions, as well as the response times. The data is

stored as a comma-separated string where each action is formatted as

<time>.<input> and where time is the number of milliseconds since the

current stage was displayed on the subject’s screen and input is the value

entered by the subject at that time. This feature can be disabled using

the disableInputHistory()-command if the data is not required.

3.6 Displaying Information and User Input

An experiment software needs to enable the experimenter to both present in-

structions or questions on the subjects’ screens as well as receive their input. In

the BoXSPL several commands are available to achieve this.

Each command is processed on the server by evaluating variables and solv-

ing calculations and distributed to the clients where it triggers the creation of

a corresponding graphical components like a text boxes or a buttons. After

creating all components for a screen they are, by default, vertically aligned and

displayed. In general the BoXS client tries to recycle components and realise

each stage with as few changes as required in order to increase the performance

and reduce possible flicker effects in experiments where the information to be

displayed changes frequently, for example in market experiments.

In case the components do not fit the screen’s height, a vertical scrollbar is

displayed, which allows the subjects to view components which do not fit on the

screen. Horizontal scrollbars are not shown.

3.6.1 Displaying Text and Graphics

For displaying instructions, graphics and other types of data the BoXSPL pro-

vides the display-command. The display-command, as well as several other

commands, supports the Hyper-Text Mark-up Language (HTML) and provides

a great amount of flexibility.

The HTML format, which is also used for website programming, is both

popular, flexible and relatively easy to learn. Besides simple text, HTML allows

30

(a) Formulas (b) Charts

Figure 10: More examples using the display-command.

Since the BoXS is usually run over the internet, several kinds of services

which are available on the internet can be used within an experiment to gain

access to additional functionality. In the example program shown in figure 10

this is used to include a mathematical formula, which is generated from TEX-

code using a Google service, as well as a chart based on data generated in an

experiment and visualised using the Google Chart API11.

3.6.2 Videos

The BoXSPL also includes an experimental video-command which can be used

to include video and audio files into an experiment. In order to use it the

experimenter needs to provide a video or audio file in a format that is compatible

to the Java Media Framework (JMF)12. Using the JMF has the advantage of

true platform-compatibility but unfortunately also introduces some restrictions.

First, using the video-command requires the subject clients to be able to

access the Java Media Framework, which has to be specified when starting the

clients and can slow down the starting process significantly. Second, the video

and audio codecs supported by the JMF are not very satisfying as they only

support relatively dated and inefficient compression algorithms, which leads

to poor video quality, a big transfer size or both. Third, the default Java

11See http://code.google.com/intl/de-DE/apis/chart/.
12See http://java.sun.com/javase/technologies/

desktop/media/jmf/2.1.1/formats.html.

32

security settings are very strict and forbid applets to access local videos which

requires the the experimenter to edit the Java security settings on each subjects’

computer13.

For the above reasons the video-command is to be considered experimental

at this stage and its use is generally discouraged. Moving pictures without sound

can be easily achieved using animated GIFs in the display-command.

Unfortunately the basic problems regarding the JMF is not likely to be

solved in the near future. However, as the HTML format is currently being

expanded to include video, it is likely that future versions of Java may deliver

a less complicated way to use videos.

3.6.3 Subject Input

The current version the BoXSPL provides four commands for requesting sub-

ject input, that is the inputString- and inputNumber-commands for string

and numerical input, as well as the choice- and a checkbox-commands for

selections. These commands create appropriate graphical components on the

subject’s screen and send every input made by a subject to the server where it

is processed. A list of all available input commands as well as documentation

on their usage is provided in the appendix.

3.6.4 Waiting and Assertions

When executing an experiment the BoXS continues until it encounters a wait-

command. When a wait-command is encountered all previous statements in

the program are executed and displayed to the subject, as well as a ’continue’-

button. The experiment execution is then halted until the subject enters the

required information of the respective stage and clicks on the ’continue’-button.

The assert-command can be used to specify additional restrictions, for example

a maximum value for an input variable.

Besides the wait-command the BoXSPL includes a waitTime-command,

13For instructions on how to do this see the online documentation of the video-command.

33

which waits for a specific time, a waitForExperimenter-command, which waits

until the experimenter clicks on a button and a waitForPlayers-command,

which waits until all subjects of a subject group have clicked on their respective

’continue’-buttons.

3.7 Matching

Matching is the process by which an experiment system assigns subjects to

groups and gives them roles which are unique for each group. In an economic

trust game, for example, the subjects would be partitioned into groups of two

where each group designates one subject as the ’investor’ and the other subject

as the ’trustee’.

The most basic matching type which is provided by the BoXS is the man-

ual matching (matchManual(username,group,role)), which allows the exper-

imenter to precisely specify a group and a role for each subject. While this

approach allows for the most customisation, it becomes increasingly messy and

impractical as the number of subjects in an experiment increases.

The second and most common matching type is the alphabetical matching

(matchAll(roles)), which sorts the subjects based on their user names and

assigns them in alphabetic order. The experimenter only needs to specify the

names of the roles and the BoXS automatically creates as many groups as

possible. Note that the subjects are always assigned to the same groups if

they are rematched using the same command.

Some experiment designs require a so-called stranger matching which ensures

that subjects are matched to random subjects in subsequent parts of the exper-

iment. The so-called perfect stranger matching furthermore requires that a sub-

ject is never matched into a group which contains a previous ’group-mate’. The

BoXS provides the matchStranger(roles)- and the matchPerfectStranger(roles)-

commands to execute these types of matching.

A perfect stranger matching requires a surprisingly high amount of calcu-

lation in order to determine the matching order which guarantees the most

34

possible matches. Due to this computational complexity the BoXS uses match-

ing tables, which drastically reduces the time required for the matching but

restricts the matching to combinations which have been pre-calculated. A list

of all pre-calculated perfect stranger matches is provided in section A.6.2 in the

appendix of this chapter.

The matching specified by any of the above matching commands is preserved

until the matchClear()-command is called. Afterwards a new matching can be

started.

If no matching is specified by the experimenter, the BoXS by default assigns

all subjects into groups with one player each.

4 Design and Implementation

This section describes the technical aspects of the Bonn Experiment System

(BoXS). In the first part of this section I discuss basic decisions made in de-

signing the Bonn Experiment System, that is the choices of the programming

language, the network architecture and the communication protocol. The fol-

lowing sections describe how both the server and the client of the BoXS have

been designed and how they work internally.

4.1 Programming Language

The task of a programming language is to allow human programmers to write

computer programs which can then be translated (compiled) to a native for-

mat which is executable by computers. Today several hundred programming

languages exist, each designed to satisfy certain needs, for example high perfor-

mance, platform independence or the support of complex scientific functions14.

The most popular and mature programming languages which are used for

application programming at the time of writing this chapter are C++, Visual

14See Wikipedia entry for “Programming Language”:
http://en.wikipedia.org/w/index.php?

title=Programming language&oldid=371608777

35

Basic and Java.

C++, first designed in 1979 by Bjarne Stroustrup, is probably the most

widely used programming language for applications and video games today.

Program code written in C++ can be compiled for most platforms and usually

performs very well. However, the program code has to be specifically compiled

into native code and distributed for every target platform. For example, a

program compiled for Microsoft Windows can not be executed under Linux or

MacOS, or even on some other Windows versions.

Visual Basic is developed by Microsoft and is designed to be easier to use

than C++. At the same time it is the most restrictive programming language as

programs developed using it are restricted to the Microsoft Windows operating

system and can not be used on other platforms.

Java, which was first published by Sun in 1995 is based on the “Write Once,

Run Anywhere”-philosophy, which allows the programmer to write and compile

a program once and execute it on every platform. In order to make this work

Java programs are not compiled to native code but to an intermediate byte code.

This byte code is then executed by the so-called Java Virtual Machine, which

is available for almost all platforms. Today Java is very popular, especially

for internet applications, and the Java Virtual Machine, which is required for

executing Java applications, is pre-installed on most computers and can be

installed for free otherwise.

One common misconception about Java is that it is slower than other lan-

guages because of the additional translation process required during the pro-

gram execution. While this criticism was justified for early Java versions, the

modern Java Virtual Machines have become much faster and perform just-in-

time-compilation, which means that the parts of the program which are most

important for its performance are automatically compiled into native code at

runtime15.

15See Wikipedia entry for ’Java’:
http://en.wikipedia.org/w/index.php?

title=Java (programming language)&oldid=372353698

36

The BoXS uses Java as the programming language for both the server and

the clients in order to ensure full cross-platform compatibility, even within the

same experiment. This has the advantage that it allows the BoXS to be used

in internet environments. It also allows laboratories using the BoXS to freely

choose the operating system for its computers, for example allowing the use

of open operating systems like Linux, which may be used to reduce the costs

required to set-up and administrate the laboratory computers.

4.2 Network Architecture

There are two approaches to design a network architecture. The client-server

approach designates one central server computer to which all so-called clients

connect. If clients want to share information in this architecture, they have to

send it to the server, which then processes and/or distributes it to the appropri-

ate receivers. The peer-to-peer approach tries to minimise the role of the server

and emphasises direct connections between different clients. It has become very

popular for file sharing as it provides a high bandwidth and reduces the need for

powerful and costly servers. In general, the peer-to-peer approach does allow a

higher bandwidth as well as a slightly lower latency.

The BoXS uses a client-server architecture for reasons similar to the ones

described in ?. First of all, the need for a server in an experiment system is

hard to eliminate as subject registration, the matching of the subjects, the dis-

tribution of the experiment programs and the collection of the resulting data are

intrinsically central processes and are best implemented using a server. While

it would be possible to add peer-to-peer elements to the network architecture,

the slight advantages in speed would probably not justify the resulting increases

in complexity and effort. High bandwidth is not an important requirement for

most experiments and the latency is usually low enough in the client-server

approach to be hardly noticeable both in local networks and over the internet.

Basically the network structure resembles that of z-Tree with one exception.

While the z-Tree program (as opposed to the z-Leaf) includes the server as well

37

as the experimenters’ user interface, the two roles are separated in the BoXS.

The BoXS server, which is described below, can therefore be executed either

on the experimenters’ computer or on a separate computer, for example on the

official server.

4.3 Communication Protocol

The internet and most local networks support two major communication pro-

tocols. The Transmission Control Protocol (TCP) and its extension TCP/IP

are widely used for most internet applications like web browsing and sending

emails. It provides a high degree of reliability and guarantees the arrival of

the transmitted data packages between sender and receiver in the right order.

The disadvantage of TCP/IP is that it incurs a significant latency, especially if

packages become corrupted or delayed16. The User Datagram Protocol (UDP),

as opposed to the TCP, does not guarantee the correct order or even the correct

arrival of data packages. Instead it provides a fast transmission speed and a low

latency. The UDP is widely used for real-time applications like live audio or

video streams and online games. The reasoning for this is that for a game or a

voice transmission a missing package may not be perceived as bad as a constant

lag which would result in a delayed playback17.

Java supports both TCP and UDP sockets and connections. As communi-

cation based on the UDP protocol does not guarantee the correct arrival of sent

packages, the programmer using it has to provide additional algorithms to ac-

count for cases in which packages were transmitted erroneously. Packages would

have to be checked on arrival, unordered packages would have to be sorted and

missing packages would have to be requested and sent again. As the correct and

robust implementation of these functions is both tedious and non-trivial, using

the TCP protocol was the obvious choice for the BoXS. Besides convenience,

16See Wikipedia entry for ’Transmission Control Protocol (TCP)’:
http://en.wikipedia.org/w/index.php?

title=Transmission Control Protocol&oldid=371744160
17See Wikipedia entry for ’User Datagram Protocol (UDP)’:

http://en.wikipedia.org/w/index.php?

title=User Datagram Protocol&oldid=372018803

38

it is questionable if programming a secure data connection based on UDP can

improve upon the corresponding mechanisms which are already implemented in

the TCP.

The Bonn Experiment System uses two connections between the server and

each client. While one connection for each client would be sufficient for both

directions in principle, experience in developing the BoXS has shown that both

performance, stability and latency of the connections can be improved by using

separate connections for both directions as they allow for asynchronous data

transmission.

4.4 The Server

The main task of the server is to keep track of all its connected clients, to en-

sure the correct transmission of data within the system and recover connections

in case of connection issues. Additionally the server has to parse and execute

experiment programs, correctly match and assign subjects to the correct exper-

iment sessions and provide a way for experimenters to control and manage their

experiments.

One key feature of the BoXS is that it provides official servers which can be

accessed over the internet and eliminate the need for experimenters to run and

administrate their own server. In order to make this possible and attractive the

server has to meet particularly strong requirements concerning robustness and

security.

4.4.1 Server Robustness

In order to ensure the highest robustness possible, I decided to implement the

BoXS as a highly multi-threaded architecture. A thread in programming is

a part of a process which can be executed separately18. Programs can create

several threads which are then ’forked’ and executed independent from each

18See Wikipedia entry for ’Thread (computer science)’:
http://en.wikipedia.org/w/index.php?

title=Thread %28computer science%29&oldid=371822693

39

other and at the same time.

One major advantage of using threads is that the crash of one thread does

not necessarily affect the other threads. Furthermore multi-threaded programs

take advantage of modern computer processors, which possess multiple processor

cores and have the potential to run much faster as a result. The downside of

multi-threading is that it requires a lot of sophisticated programming techniques

to ensure that the threads are synchronised correctly and do not disturb each

other or incur non-deterministic behaviour.

In the case of the BoXS server the main process’s only task is to wait for and

accept incoming connection attempts from clients. After a client connects suc-

cessfully, all subsequent communication is handled by a communication thread

which is immediately forked and started. Additional threads are forked for each

experiment and each subjects’ role in an experiment. Therefore the malfunc-

tioning of one thread can effect neither the vital functions of the server nor the

execution of other experiments.

In order to ensure that the resources of the server are shared evenly across the

different experiments, several mechanisms are in place to detect and interrupt

programs which get trapped in an infinite loop and consume too much processing

power as a result.

So far the server program has proven to be very reliable. It should be noted,

however, that no severe stress tests have been done to date. If many experiments

with high levels of interaction were to run at the same time, the speed of the

server might decrease and the available memory might get depleted. For such

experiments the use of a separate server is recommended.

4.4.2 Connection Robustness

One worrying thought might be that subjects or even the experimenter tem-

porarily lose their internet connection during an experiment. While the mecha-

nisms described in the previous section already ensure that this does not affect

the remaining subjects, the thought of the subjects’ data being lost is not pleas-

40

ing.

The BoXS offers the possibility to reconnect both subjects and experimenters

who lost their connection and resume the experiment at almost the exact same

position where they left. In order to do this, the BoXS suspends and stores each

client session which gets interrupted during an experiment for up to 24 hours.

When a client tries to connect to the BoXS and provides realm and subject

ids which match those of a suspended session, the session gets reassigned to

the client and resumed. The server then ensures that the reconnected subjects’

clients are updated by sending them the most recent experiment state.

4.4.3 Security

Both experiment designs and experiment results contain a lot confidential data

both from the experimenter and from the subjects. This is especially important

for the BoXS as it a) uses the internet as its medium, b) several experimenters

work on the same server at the same time and c) the subjects use the same

software client as the experimenter.

The first mechanism implemented to ensure that this data cannot be accessed

by unauthorized persons is the so-called realm id, which is a string or a number

specified by the experimenter at the beginning of the experiment. This exact

realm id has to be entered on every other computer which is intended to enter

the experiment. This ensures that the subjects and experimenters as well as the

corresponding data of different experiments do not get mixed up.

The second mechanism is an experimenter password which can be specified

by the experimenter and ensures that only the experimenter creating the realm

or someone entrusted with the password can access the subjects’ clients and

their data.

Limitations

While these two mechanisms provide sufficient security for most environments,

experimenters should be aware that no extensive security checks were done on

41

object. While being executed, the ServerClientThread-object waits for and

processes data sent by the client as it arrives, for example input generated by

the subject or an experimenter’s program.

Whenever an experiment is started by an experimenter, a Session-object is

created which contains both the experiment program as a string as well as a

variable space in which all data generated by the experiment is stored. The

Session-object also contains the matching methods which create Group-objects

and fill them with available subjects based on a specified matching rule.

4.5 The Client

The client is the software which runs on both the experimenters’ and the sub-

jects’ computers and is designed to provide an easily usable interface for both

experimenters and subjects. For experimenters it must provide the means to

write, execute and supervise an experiment, as well as the possibility to receive

and store data generated by an experiment. For subjects it must graphically

display the current stage of the experiment, as specified by its experimenter’s

program, as well as receive and transmit the user input generated by the subject

to the server, where it is processed. Note that both the experimenter and the

subject clients are reliant on their connection to the server to fulfil their task.

4.5.1 Implementation as Java Applet

As one aim of this project is to make the system as universal and flexible as

possible, the client software is implemented using the Java Programming Lan-

guage, more specifically as a Java Applet. As previously described, the Java

Programming Language allows the generation of program code which can be

run on every operating system and every platform. Figure 12 shows the same

client running in different environments and on different operating systems.

An applet is a program which can be executed within a web browser without

prior installation. Java is the most common choice for programming applets and

is supported by most internet browsers and used by many web sites to provide

43

(a) Desktop PC, Ubuntu Linux

(b) Netbook, Windows

(c) MacBook, MacOS

Figure 12: The BoXS client.

44

4.5.2 Internal Implementation

Figure 13 displays an UML diagram of the client classes. The main class for the

clients is the ClientApplet-class, an object of which is created for every BoXS

client applet that is started. Alternatively it is possible to start the BoXS as an

independent program without a surrounding internet browser by executing the

ClientFrame’s main()-function. In this case a window is created which contains

a ClientApplet-object and behaves like an applet otherwise.

The ClientApplet-object manages both the internal behaviour of the client as

well as its graphical representation. When started it tries to connect to the BoXS

server and either displays an experimenter’s graphical user interface, as specified

by the ExperimenterPanel-class, or a subject’s user interface, depending on the

login data. The ClientApplet also creates a ClientConnection-object which is the

client analogue to the ServerClientThread and handles the connection between

the client and the server.

The diagram also shows the objects used for the server-client communication

in both directions. The SubjectInfo-object contains information about a sub-

ject’s identity and its current status. The ServerSideValid-object is sent by the

server to signal whether the input made by a subject is valid. An ErrorMessage-

object contains information on the line and the description of an error which

was detected while parsing or executing a program. The ServerCommand is the

only object sent from a client to the server and is used to start or cancel an

experiment as well as to submit values entered by a subject.

5 Limitations and Future Development

I have received a lot of feedback and was able to implement most of the proposed

features and improve many aspects of the Bonn Experiment System based on

it. While I highly appreciate this feedback, I am unfortunately not able to

19At the time of writing this chapter, most web browsers designed for desktop PCs and
notebooks already support Java. While this is not necessarily true for mobile devices yet, it is
very likely that full Java support arrives within the next few years as both the computational
power of these devices as well as their operating systems are quickly advancing.

46

implement all proposals made.

5.1 Feature Selection

The obvious reason is that every additional feature and every change requires

a significant amount of time and effort to implement, document and test. Es-

pecially the latter should not be underestimated as even a slight change can

have widespread effects which are often hard to anticipate. In order to decide

whether a certain feature is implemented, I try to estimate the likely number of

affected users (Is every experimenter affected or only a very small subset?), the

severity of the lack of the feature (Does it make some experiment designs infea-

sible or is it merely an inconvenience?) as well as the expected implementation

effort (Is it done in two hours or two weeks?).

Another reason why I am hesitant to implement some proposals is that every

new feature adds to the overall complexity of the system. One of the major

advantages of the Bonn Experiment System is that it allows a large number

of experiments while requiring the experimenter only to learn a small set of

commands. The more buttons, commands and tweaking possibilities a system

has, the harder and more intimidating it might become.

5.2 Future Development

Obviously it is hard to predict how the development of the BoXS advances in

the future. I am dedicated to get the current version error free and intend to

continue developing it in the future. If I will no longer be able to support and

maintain the BoXS any further, I will try to find a way to ensure possible further

development, either by publishing the software as open source or by handing

it over to another researcher or programmer willing to take care of its future

development.

47

5.3 Limitations

There are several features which were already requested and have made it to

the wish list for future versions.

• Functions: Currently it is not possible for experimenters to create user-

defined functions and procedures. While this is not very relevant for short

experiments, the lack of user-defined functions can lead to unnecessarily

long and messy programs in some cases, for example if the randomisation

of stages is required.

• External devices: At the moment the BoXS offers no possibility to connect

external devices like for example medical devices and input devices like

joysticks.

• Delay: A slight lag exists between the execution of the program on a server

and the point in time when it is displayed on the subjects’ screens. While

this lag is usually sufficiently small for non-time-critical experiments, it

may be of importance for some experiments.

6 Conclusion

The Bonn Experiment System provides a novel and attractive way of designing

and conducting laboratory and internet experiments. The possibilities to easily

set-up and run experiments over the internet, to include web based content as

well as advanced features like the measurement of response times allow for many

new and exciting experiment designs and environments.

The possibility to execute the BoXS client applets without prior installa-

tion eases the set-up in lab environments and allows for experiments which use

existing infrastructure outside labs, including the subjects’ computers. True

cross-platform compatibility provides freedom of choice and possible support

for mobile devices in the future.

48

The programming language BoXSPL is easy to use and easy to learn. The

small number of commands as well as the available online documentations, tuto-

rials and sample programs make the learning process easy for novice users and

provide rich possibilities for advanced users. Several experiments have been

conducted using the BoXS and the feedback received from the experimenters

was very positive.

One exciting and unexpected example for how the BoXS expands the space

of experiment possibilities was provided by a kind professor who wrote me about

how he used the BoXS in his lecture to teach about experimental methods by

programming ad-hoc experiments together with his students who could partic-

ipate using their laptops.

49

A List of all Functions in the BoXS Program-

ming Language

A.1 Basic Operations and Calculations

A.1.1 Basic Calculus

The BoXS compiler correctly evaluates +,-,/,* and the modulus (%). It also
correctly derives the priority from brackets as required.

A.1.2 More Calculus and Trigonometric Functions

The BoXS can calculate the natural logarithm (log), as well as the exponential
function (exp), sine (sin), cosine (cos) and tangent (tan). It also provides the
functions round, round1 and round2 to round a number to 0, 1 or 2 decimals.

A.1.3 Boolean Algebra

The BoXS can check for equality (==), inequality (!=) and compare (<,>,<=,>=).
It knows the logic operations AND (&&) and OR (||).

50

Notes

• The BoXS internally uses the number 0 as false while the number 1 is
treated as true.

A.1.4 Random Number Generation

Currently uniformly and normally distributed random numbers are supported.

Notes

• The random numbers are different for each subject. If they are supposed
to be the same, they can be assigned to global variables.

• The numbers are generated using the internal Java random number gen-
erator, which is based on a linear congruential generator and produces
pseudo-random numbers.

A.2 Program Flow Control

A.2.1 if(expression) { ... }

Tests if the expression is fulfilled (i.e. not equal to zero) and executes the code
in brackets only if the expression is met.

Parameters

expression The expression which must be fulfilled.

Notes

• Note that each curly bracket needs to be in a single line of code.

51

A.2.2 while(expression) { ... }

The while-command executes a part of your program repeatedly for as long
as a given expression is fulfilled (i.e. not equal to zero). Compared to the
for-command it is slightly more versatile.

Parameters

expression The expression which must be fulfilled for the loop
to be continued.

Notes

• Note that each curly bracket needs to be in a single line of code.

• In order to avoid infinite loops, execution is aborted when too many rep-
etitions occur. An error message is given in this case.

A.2.3 for(initialization; condition; iteration) { ... }

The for-command executes a part of your program repeatedly for as long as a
given expression is fulfilled. Compared to the while-command it is usually more
compact and easier to use.

Parameters

initialization Initialization code which is executed before the loop.
Usually this is used to initialize a counting variable.

52

condition The expression which must be fulfilled for the loop
to be continued. Usually this is used to check if
the counting value exceeds the number of desired
repetitions.

iteration Code which is executed after each repetition. Usu-
ally this is used to increase the counting variable.

Notes

• Note that each curly bracket needs to be in a single line of code.

• In order to avoid infinite loops, execution is aborted when too many rep-
etitions occur. An error message is given in this case.

A.3 Displaying Text and Graphics

A.3.1 display([message])

The display-command shows a message on the subject’s screen. Due to its
support of HTML commands it is very versatile and can be used to display
most types of information.

Parameters

message The message to be displayed. The message can be
both a constant string or a variable which is evalu-
ated on the server.

53

Notes

• This command supports full HTML-syntax for formatting the output if
required. You can also use CSS formatting.

• You can include local and remote images (including animated GIFs). You
can also use internet services like e.g. Google Charts to include additional
functionality to your programs.

• Text is scaled to fit the resolution of the client screen. Images are not
scaled, however.

A.4 Waiting

A.4.1 wait([message],[messageafterclick])

The wait-command creates a button on each subject’s display. The experiment
does not continue for the subject until the button is pressed. If the current
subject screen requires the subject to do something, for example enter a number,
the button is disabled until she does so.

Parameters

message The message to be displayed on the button. If no
parameter is given, a standard message is displayed
(Continue).

messageafterclick The message to be displayed after the subject
clicked on the button. If no parameter is given, a
standard message is displayed (Please wait for the
experiment to continue).

54

Notes

• The button is only enabled (i.e. ’clickable’) when all assertions are fulfilled
and all required input elements are filled out.

• The wait-command is subject specific. When a subject clicks on the wait
button, the experiment continues for this subject even if the other subjects
have not finished yet.

A.4.2 waitForPlayers([message],[messageafterclick])

The waitForPlayers-command is similar to the wait-Command. The difference
is that the experiment only continues after this command when all subjects of
the a subject’s group have pressed the button. This command can be used
to synchronise groups of subjects before experiment parts which require each
subject to have reached a certain point in the program.

Parameters

See wait.

A.4.3 waitTime(time)

The waitTime-command halts the execution of the program for the specified
time.

Parameters

time The time the program waits in milliseconds (!).

Notes

• No button or message is displayed for the subjects which would indicate
that the experiment is waiting for a certain time. You might want to point
this out in the instructions in order to avoid confusion.

A.4.4 waitForExperimenter()

Sometimes the experimenter needs the experiment to wait until he has done
something, for example until she has explained the next stage to the subjects.
The waitForExperimenter-command halts the execution of the experiment for all
subjects until the experimenter presses the ’Ready’-button on the experimenter’s
client.

Notes

• No button or message is displayed for the subjects which would indicate
that the experiment is waiting for the experimenter. You might want to
point this out in the instructions in order to avoid confusion.

55

A.5 User Input

A.5.1 inputString(variablename)

Displays a text-field in which the subject can enter a value. This value is stored
in a variable with the specified name. The user can type in all characters,
including numbers and foreign characters.

Parameters

variablename The name of the variable in which the result is
stored.

Notes

• The default text is an empty string. If you want to specify a default,
assign a value to the variable before the inputString-command.

• If you want this command to be non-compulsive, which means that the
subject can continue without entering something, you can use the inputStringNC-
command. The syntax is equivalent.

A.5.2 inputNumber(variablename)

Displays a text-field in which the subject can enter a numeric value. This value
is stored in a variable with the specified name. The BoXS enforces the entered
text to be a natural or real number.

Parameters

variablename The name of the variable in which the result is
stored.

Notes

• The default text is an empty string. If you want to specify a default,
assign a value to the variable before the inputNumber-command.

• If the text entered is not a number the text-field is highlighted and the
subject cannot continue until a correct value is entered.

• Both real and integer numbers can be entered.

56

• If you want this command to be non-compulsive, which means that the
subject can continue without entering something, you can use the inputNumberNC-
command. The syntax is equivalent.

A.5.3 choice(varname,values)

The choice-command displays a group of radio buttons. The user can only select
one option at a time. When the user selects a value, it is stored in a variable
with the specified name.

Parameters

variablename The name of the variable in which the result is
stored.

values A comma-separated list of strings or numbers.

Notes

• By default no option is selected. If you want to specify a default, assign a
value to the variable before the choice-command.

• In some cases it is nice to have the experiment system automatically ran-
domize the order of the choice options. The choiceRandomize(...)-function
fulfils this role and allows for randomization without additional program-
ming.

• If you want this command to be non-compulsive, which means that the
subject can continue without entering something, you can use the choiceNC-
command or the choiceRandomizeNC-command. The syntax is equivalent.

A.5.4 checkbox(varname,description)

The check-command displays a single checkbox along with the specified descrip-
tion. The user can select the checkbox or leave it unchecked. When the user
selects the checkbox, the value 1 is stored in a variable with the specified name.

Parameters

variablename The name of the variable in which the result is
stored.

57

description The description shown alongside the checkbox.

Notes

• By default no option is selected. If you want to specify a default, assign a
value to the variable before the choice-command.

• A checkbox is always non-compulsive.

A.5.5 assert(expression)

The assert-command restricts the subject’s possibilities when she is faced with
input fields. Using the assert-command any amount of assertions on the vari-
ables can be added.

Parameters

expression The assertion. The assertion can reference other
variables.

Notes

• If an assertion is violated by user input, the user cannot continue until she
chooses a valid input.

• You can impose multiple assertions on one variable. In this case user input
is only allowed if it satisfies all assertions.

• The assert-command requires a wait/waitForPlayers- or button-command
to have an effect.

58

• The assert-command does not give specific feedback to the subject on
why she cannot continue when an assertion is violated. Therefore the
assumptions should be made clear and communicated to the subject in
the experiment instructions and/or the experiment program itself.

A.5.6 style(text)

While the default style is sufficiently attractive for most experiments, experi-
menters might run into situations where they need more control over how things
are formatted. The style-command allows to specify a style in the cascading style
sheet (CSS) format which is automatically applied to all following commands.
This style can specify every format aspect ranging from font name and size up to
color, transparency effects, borders etc.. It is particularly useful for the display
commands but also effects buttons etc.

Parameters

text The desired style which can be specified in the CSS
format.

Example

59

Notes

• A lot of information on how to create cascading style sheets is available
on the internet.

A.5.7 manualLayout()

By default all components are arranged vertically by the BoXS (automatic lay-
out). When this is not sufficient, the manualLayout-command can be used to
specify the exact position of each component. While this is sort of cumbersome,
it allows for a great amount of freedom in designing the visual appearance of an
experiment.

In order to do this, the first line of a screen needs to be manualLayout()
in order to disable the automatic layout. Afterwards, display and every input
command take 4 additional parameters which specify the horizontal and vertical
position as well as the width and the height of the respective component.

Example

Notes

• The four additional parameters must be supplied. Otherwise the compo-
nent in question is not displayed.

• The origin of the coordinate system (0,0) is the top left edge of the client

60

applet.

• The manualLayout command is only effective for one screen. If the next
screen should follow a manual layout as well the command needs to be
repeated on that screen. Otherwise the BoXS defaults to automatic layout.

A.5.8 Non-compulsory Input

In some cases it is required to have input components which are non-compulsory,
i.e. the subject should be allowed to proceed even if she did not fill out a
component. An example for this would be a text field for an email address or a
comment, which is optional. In order to allow for this, the BoXS includes non-
compulsory versions of all input commands. These non-compulsory commands
have the same syntax as the usual commands and end with the letters ’NC’:

• inputStringNC(...)

• inputNumberNC(...)

• choiceNC(...)

• choiceRandomizeNC(...)

A.5.9 Default values

It is possible to specify default values for all input components. In order to
so this one can simply assign a value to the variable in question before the
corresponding input component is created. For example:

name="Bob"

inputString(name)

wait()

A.6 Matching

Matching is the process by which the subjects are assigned to groups and roles.
You can use automatic matching, including (perfect) stranger matching, as well
as manual matching.

Notes

• Implicit matching: You do not need to specify matching information. If
you specify no matching information, every subject is automatically allo-
cated to a separate group and receives the role ”A”, which is sufficient for
experiments which require no interaction among the subjects.

A.6.1 matchAll(roles)

The matchAll-command distributes the subjects in alphabetical order of their
username to the desired groups/roles.

61

Parameters

roles A comma-separated list of all roles.

Notes

• The role names can be letters (A,B,C) or arbitrary strings (investor,
trustee).

A.6.2 matchPerfectStranger(roles)

The matchPerfectStranger-command distributes the subjects to the desired groups/roles
in a way that ensures that no subject are matched to the same subject again.

Parameters

roles A comma-separated list of all roles.

Notes

• Perfect stranger matching is an extremely computationally expensive op-
eration. Therefore the system uses pre-calculated tables. Use the following
table to figure out how many matches you can achieve given subject- and
rolecount.

62

• You can only do perfect stranger matching until all possible matches are
use. If you try doing more matches, an error is thrown.

• Use the command matchHistoryClear to reset the perfect stranger match-
ing algorithm.

• The role names can be letters (A,B,C) or arbitrary strings (investor,
trustee).

A.6.3 matchStranger(roles)

The matchStranger-command distributes the subjects randomly to the desired
groups/roles.

Parameters

roles A comma-separated list of all roles.

Notes

• The role names can be letters (A,B,C) or arbitrary strings (investor,
trustee).

A.6.4 matchManual(username,group,role)

By using the matchManual-command you can manually specify how the subjects
are to be matched. Each command matches exactly one subject. The first
argument is the username of the subject which shall be assigned, the second
and third argument are group and role.

63

Parameters

username The username of the subject which shall be
matched.

group The desired group.

role The desired role.

Notes

• The role names can be letters (A,B,C) or arbitrary strings (investor,
trustee).

• Important: In the most recent version of the BoXS username, group
and role can be variables which vastly expands the possibilities of the
matchManual-command. This implies that the corresponding values must

be contained in quotation marks. For example:

matchManual("S1","1","A")

A.6.5 matchDone()

If you want to change the matching at some point in the experiment, use the
matchDone()-command. The experiment halts until all subjects have reached
this point.

64

B Example BoXS Programs

B.1 Questionnaire

This example demonstrates how to implement a simple questionnaire.

B.2 Public Good Game

The public good game, as implemented in this example, is a game in which
4 players can contribute a part of their initial endowment to a group project
which benefits everyone. Has a special feature it uses the Google Chart API in
order to graphically display the distribution of the contributions.

65

B.3 Chat Client

The chat client implemented in this example allows two subjects to send mes-
sages to each other.

66

B.4 Dutch Auction

In a Dutch auction two subjects watch the price of a good decrease over time
and can buy it at the current price by clicking on the corresponding button.

67

B.5 Localization

Sometimes an experiment has to work in different languages at the same time.
This example shows an easy way to implement such a feature.

B.6 Real Effort Task

In this tedious real effort task subjects have to count the number of ones in a
table of digits.

68

