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Abstract
The classical cobweb theorem is extended to include production lags and price forecasts. Price
forecasting based on a longer period has a stabilizing effect on prices. Longer production lags
do not necessarily lead to unstable prices; very long lags lead to cycles of constant amplitude.
The classical cobweb requires elasticity of demand to be greater than that of supply; this is not
necessarily the case in a more general setting. Random shocks are also considered.

JEL  C02  C62  E32
Keywords

Authors
Daniel Dufresne, Centre for Actuarial Studies, University of Melbourne, Australia
Felisa Vázquez-Abad,  Department of Computer Science, Hunter College, CUNY, New
York, NY, USA, felisav@hunter.cuny.edu

Citation  Daniel Dufresne and Felisa Vázquez-Abad (2013). Cobweb Theorems with Production Lags
and Price Forecasting. Economics: The Open-Access, Open-Assessment E-Journal, Vol. 7, 2013-23. http://
dx.doi.org/10.5018/economics-ejournal.ja.2013-23

http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5018/economics-ejournal.ja.2013-23


conomics: The Open-Access, Open-Assessment E-Journal

1 Introduction

“But surely the cob-web cycle is an oversimplification of reality” (Samuelson, 1973,
p.4). Many other famous and less famous economists must have expressed the
same opinion over the past decades. We propose to bring the cobweb model at
least a little closer to reality by introducing production lags and price forecasts
into it. The way equilibrium is reached in a theoretical model should then be
better understood. In particular, we ask whether production lags cause instability
of prices, and whether the classical condition for a cobweb to lead to equilibrium
(that elasticity of demand be greater than elasticity of supply) still holds in a more
general model.1

There is a considerable literature on business or economic cycles. The cobweb
theorem has a long history, see Ezekiel (1938). We follow Chapter 2 of van Doorn
(1975) in stating its classical form. The following assumptions are made:

(A1) supply depends only on the price forecast;

(A2) actual market price adjusts to demand, so as to eliminate excess demand
instantaneously in the trading period;

(A3) price forecast equals most recent observed price, and

(A4) there are no inventories, and neither buyers nor sellers have an incentive to
speculate.

Let Pt be the market price for a unit of commodity at time t. The quantity
demanded at period t is given by

Qd
t = a0−a1Pt = D(Pt),

while the quantity supplied is

Qs
t = b0 +b1P̂t = S(P̂t),

1 We take the demand elasticity to be a positive (absolute) value.
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where P̂t is the price forecast (the result of forecasting at time t−1). The conditions
a1,b1 > 0 ensure that quantity demanded decreases and quantity supplied increases
as functions of price. The assumptions stated above mean that

D(Pt) = S(P̂t) and P̂t = Pt−1.

Making the substitutions, it is seen that the price sequence follows

Pt =−
b1

a1
Pt−1 +

a0−b0

a1
. (1)

In the classical cobweb model the solution to (1) is then

Pt = (P0−P∗)
(
−b1

a1

)t

+P∗, (2)

where P∗ is the equilibrium solution to (1), that is,

P∗ =−b1

a1
P∗+

a0−b0

a1
.

The sequence defined in (2) converges to P∗ if and only if b1 < a1. In words,
the condition for convergence is that minus the slope of demand as a function of
price be larger than the slope of supply as a funtion of price. Usually, economic
modelling assumes that the market is initially in equilibrium at P∗, and that an
exogenous disturbance results in P0 6= P∗. An important question is whether such
disturbances persist or die out; this can be answered by studying the conditions for
convergence of Pt to P∗.

We have in mind the prices of metals, for instance copper, which have greatly
fluctuated and shown some appearance of cycles over time. An important aspect of
mining is the lag between the time the decision to increase or decrease production
is made and the time the decision actually takes effect in the market. It takes
several years for a planned new mine to start producing, and this has made some
believe that the lags themselves may be a main cause of price fluctuations. In this
paper, we study models that include production lags as well as price forecasting,
the latter based on current and past prices. Stability means that prices converge to
an equilibrium as time passes. Random disturbances will also be included; in those
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models “stability” will mean that prices have a limit probability distribution (in
other words that the price process has a stationary limit).

Stability is not synonymous with absence of fluctuations, but it is a property
of markets in which price fluctuations tend to dampen over time. By varying the
parameters, one can get an idea of what may generate fluctuations. Is it production
lags? Is it how prices are forecast? We look at those questions in the following
sections.

Given prices Pt ,Pt−1, . . . , let P̂t+` be the price forecast used by producers to
establish production at time t +`. (A more explicit notation would be P̂t,t+`, but we
will use the simpler P̂t+`, as the lag ` will be fixed.) The classical cobweb theorem
has a lag of one time unit.

The market clearing condition is now

D(Pt+`) = S(P̂t+`). (3)

This leads us to study the dynamical system

Pt+` = D−1 ◦S(P̂t+`). (4)

Important questions are: under what conditions this recursion has an equilibrium
point, and if so whether Pt converges to it when t→ ∞. Once again, such conver-
gence does not exclude fluctuations, but it does say that perturbations are damped
by the system over time.

The classical description of the cobweb theorem (as stated above) assumes that
the supply and demand functions are linear. We will assume that the demand and
supply functions are respectively

D(p) = p−d , S(p) = ps , d,s > 0. (5)

One advantage of these functions is that price and production always re-
main positive, while using linear functions may lead to negative prices (see (2)).
Tractability is achieved by using the logarithm of prices, as will be shown below. It
will be seen that a very important quantity is the ratio of the elasticities of supply
and demand, which we denote c = s/d.

Let ` ∈ {1,2, . . .} be the production lag. We retain assumptions A1, A2 and
A4, but replace (A3) with
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(A3′) the price forecast P̂t+` is a weighted geometric average of (Pt−m, . . . ,Pt) for
some m ∈ {0,1,2, . . .}.

(N.B. In the sequel “`” will always stand for lag, and “m” for memory.)
This means

log P̂t+` =
m

∑
j=0

α j logPt− j,

where the weights α j add up to 1. Letting πt = logPt , π̂t = log P̂t , the log price
forecast is given by

π̂t+` =
m

∑
j=0

α j πt− j , where
m

∑
j=0

α j = 1. (6)

A moving average model has all weights non-negative. Several forecasting schemes
have been identified in the literature, though always for ` = 1 (see Turnovsky,
1968, for a brief description). Static expectations refers to π̂t+1 = πt , or m = 0;
extrapolative expectations means m = 1 and α0 > 1, as

α0πt +α1πt−1 = πt +(α01)πt +(1−α0)πt−1 = πt +(α0−1)(πt −πt−1).

Adaptive expectations refers to

π̂t = λπ̂t−1 +(1−λ )πt .

This is the limit case when m→ ∞ and αm is proportional to λ m, as we explain in
Subsection 2.7. We call this exponential smoothing. Note that all these schemes
are applied to log prices, this is what makes the model tractable.

Van Doorn attributes to Hicks the use of the logarithm of the price rather than
the price itself, in the context of a one-lag model or one with “distributed lags”, but
the study of such systems is not carried out mathematically in van Doorn (1975).

Muth (1961) introduces the concept of rational expectations for the price
forecast. The model involves random errors statistical fitting of past data. A similar
approach is that of Smyth (1973), who uses a “random” belief in the forecast,
assuming that a fraction of suppliers follow one forecast and the rest use current
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prices. Both methods could be applied to the case of production lags, but with
considerably increased complexity. We carry out the analysis for the deterministic
model and then study the effects of random perturbations separately.

Under (5), the market clearing equation (3) reads

Pt+` = (P̂t+`)
−s/d . (7)

From (6) the sequence πt satisfies

πt+` =−c
m

∑
j=0

α jπt− j , c = s/d. (8)

Since c∑ j α j > 0, the unique equilibrium point is π∗ = 0 or, equivalently, P∗ = 1.
The solution πt of (8) has the general form (see Goldberg, 1986)

πt =
`+m

∑
j=1

b j xt
j,

where (x1, . . . ,x`+m) are the zeroes of the characteristic polynomial

h`,m(x) = x`+m + c
m

∑
j=0

α jxm− j. (9)

The constants b j; j = 1, . . . , `+m may be found from the initial conditions for πt .

Definition 1. The system (8) is said to be stable if limt→∞ πt = π∗ = 0, given any
initial conditions. Otherwise it is unstable.

If the characteristic polynomial (9) has complex zeroes then πt has oscillatory
components, which means that the sequence may fluctuate around π∗ even though
it eventually converges to it. This will happen frequently in our examples.The
magnitude of the zeroes will determine whether the system is stable or not; if all
the zeroes of the characteristic polynomial have norm (modulus) strictly less than
one then the system is stable; if at least one zero has norm greater than or equal to
one then the system is unstable. If the zero or zeroes with largest norm have norm
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precisely equal to 1 then there will be oscillations with constant amplitude, at least
for some initial conditions.

The classical form of the cobweb model has `= 1, m = 0, and linear supply
and demand functions. In our setting, the cobweb model with ` = 1 and m = 0
becomes

Pt = (P̂t)
−s/d = (Pt−1)

−s/d ,

which gives

πt =−
( s

d

)
πt−1 =

(
− s

d

)t
π0.

In the classical cobweb model the market is stable if, and only if, s < d; in
other words, stability occurs if and only if, the elasticity of supply is smaller than
the elasticity of demand. When this is the case, πt → π∗ = 0. This necessary and
sufficient condition for stability, s < d, is remarkably simple and easy to interpret.
We will see that when lags and price forecasts are introduced the conditions for
stablility are no longer so simple.

Chiarella (1988) studies a system where expected prices follow adaptive expec-
tations, when the demand curve is linear, while the supply curve is non-linear (with
a single point of inflexion, convex to the left, and concave to the right, “a fairly
general non-linear S-shaped supply function”, (Chiarella, 1988, p.383). The paper
shows that the system is either (1) stable, (2) unstable but cyclical, or (3) chaotic.
These are very interesting results, but we follow a different route.

A referee alerted us to a paper we were previously unaware of, Chiarella and
He (2004). That paper studies the cobweb model from a slightly different point of
view (in particular, the supply curve is a specific S-shaped function), but Rouché’s
Theorem is also used, and their Theorems 4.1-4.2-4.3 bear some resemblance with
some of our results. Anyone interested in studying the dynamics cobweb models
should compare that paper with ours. In both cases the limit behaviour of solutions
of difference equations need to be analysed. We try to take complex variable theory
as far as it can go, while Chiarella and He (2004) also uses bifurcation theory. That
paper also gives references not in our list.

The paper is organised as follows. Section 2 studies the deterministic models
in some detail, mostly numerically, although some simple results are proved
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mathematically. This section avoids the generality of Section 3 but focuses instead
on experiments that lead to interesting patterns and related questions, which will
be studied more deeply in subsequent sections.

In Section 3 we derive general results on deterministic models trying to answer
the questions raised in Section 2. The models are represented by linear difference
equations; stability is determined by the roots of the characteristic polynomial
(9) of those difference equations. An important tool is Rouché’s Theorem, stated
below. Our results seem to contradict the view that production lags, by themselves,
cause instabilities.

In Section 4 we incorporate randomness into (8), in the form of additive
and multiplicative noise. This leads to the question of stability of products of
random matrices, a topic that so far belonged more in physical chaos theory than
in economics.

Notation. The set of complex numbers (or “complex plane”) is denoted C. The
norm (or modulus, or absolute value) of z = x+ iy (x,y real) is |z|=

√
x2 + y2, its

conjugate is z = x− iy. The circle with centre z and radius ρ in C is denoted Cz,ρ ;
the open disk (or “ball”) with centre z and radius ρ is denoted Bz,ρ ; the closed disk
is denoted Bz,ρ .

We will use Rouché’s Theorem from complex analysis: if φ ,ψ are analytic
on and inside a closed contour L, and |φ(z)|> |ψ(z)| for z ∈ L, then φ and φ +ψ

have the same number of zeroes inside L. Here is a first application: whatever
the averaging period m and the delay `, there will be instability if the ratio of
elasticities c = s/d is large enough.

Theorem 1. Let `≥ 1, m≥ 0. There exists 0 < c0 < ∞ such that for all c≥ c0 the
system defined by (8) is unstable.

Proof. Let

g(z) =
m

∑
j=0

α jzm− j,

and thus h`,m(z) = z`+m + cg(z). We show that at least one zero of

z`+m

c
+g(z)

www.economics-ejournal.org 8
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is outside C0,ρ , for some ρ ≥ 1. There exists ρ ≥ 1 such that |g(z)| ≥ ε > 0 for all
z ∈C0,ρ . Therefore

|g(z)| > |z|
`+m

c
on C0,ρ for all c large enough. Apply Rouché’s theorem with φ(z) = g(z) and
ψ(z) = z`+m/c. Then φ(z)+ψ(z) has the same number of zeroes inside C0,ρ as
g(z), that is, at most m. That leaves at least ` zeroes on or outside C0,ρ , implying
instability.

Remark. A superficially more general version of our model would have supply
and demand functions

D(p) = kd p−d , S(p) = ks ps , d,s > 0. (10)

Consider the change of variables

p = τ p̃, τ =

(
kd

ks

) 1
d+s

, D(p) = σD̃(p̃), S(p) = σ S̃(p̃),σ = k
s

d+s
d k

d
d+s
s ; (11)

this is a change of currency together with a change of units. It can be verified that

D̃(p̃) = p̃−d , S̃(p̃) = p̃s.

There is thus no greater generality in (10) than in (5).

2 Deterministic Models: Numerical Examples

In this section we present numerical experiments that illustrate the influence of the
parameters α , c, ` and m on stability. The patterns observed here will motivate
the more general (and mathematical) analysis in Section 3. In all the examples we
choose erratic initial conditions πt = (−10)t sin(1/(t +3)), t = 0, . . . , `+m.

Figure 1 shows the price πt as a function of time t, when c = 1.7,m = 5,
α = (.2, .2, .2, .2, .1, .1), and the delay ` takes one of the values `= 2,3,4. Notice
that c = 1.7 yields instabilities with `= 1 (this is the classical cobweb theorem).

www.economics-ejournal.org 9
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However, for `= 2 the system is stable, for `= 3 it is nearly periodic with constant
amplitude, and for ` = 4 it is unstable. For larger lags ` ≥ 5 we also observed
instability. (N.B. there is an important comment on this example at the end of
Subsection 3.2.)

10 20 30 40 50 60 70

0.85

0.90

0.95

1.00

1.05

1.10

1.15

(a) `= 2

10 20 30 40 50 60 70

1.0

1.2

1.4

1.6

(b) `= 3
10 20 30 40 50 60 70

0.8

1.0

1.2

1.4

1.6

1.8

(c) `= 4

Figure 1: Log prices over time. As the lag ` increases, behaviour goes from stable to unstable.

Figure 2 shows the effect of the forecasting period m on price behaviour, for
c = 1.7 and `= 3. The first plot shows the log price πt for m = 1,α = (.7, .3) (the
price itself soon reaches values larger than 106). The next plot is the behaviour
of πt when m = 5 (α = (.2, .2, .2, .2, .1, .1)) and the last one when m = 7 (α =
(.2, .1, .1, .1, .1, .1, .1, .1)). These plots hint at a stabilising effect of increasing m,
and are consistent with other experiments we made.

10 20 30 40 50 60 70

-10 000

-5000

5000

10 000

(a) m = 1

10 20 30 40 50 60 70

1.0

1.2

1.4

1.6

(b) m = 5
10 20 30 40 50 60 70

1.0

1.1

1.2

(c) m = 7

Figure 2: Log prices over time. As m increases, behaviour changes from unstable to stable.

In Figure 3 the parameter c is varied, while ` = 3, m = 7 and α =
(.2, .1, .1, .1, .1, .1, .1, .1). There is apparent stability, except that for the largest
value of c there are oscillations of more or less constant amplitude. The last plot,
where c = 3.8 shows nearly cyclical behaviour. Other experiments (not shown)
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with larger values of c caused prices to diverge. Recall that in the classical cobweb
stability occurs only if c < 1.

10 20 30 40 50 60 70

1.0

1.1

1.2

(a) c = 1.7

10 20 30 40 50 60 70

1.0

1.2

1.4

1.6

(b) c = 3.0
10 20 30 40 50 60 70

0.8

1.0

1.2

1.4

1.6

1.8

(c) c = 3.8

Figure 3: Log prices over time. As c increases, behavior changes from stable to unstable.

The rest of this section presents detailed discussions of particular cases, that
sometimes show intriguing patterns which, to our knowledge, have not been noted
in the context of economic cycles.

2.1 The case m = 0

Suppose m = 0 and ` ∈ {1,2,3, . . .}. The log price sequence satisfies

πt+` =−cπt .

(Once again recall that the classical cobweb theorem has m = 0 and `= 1.) The
solution can be written as

πk`− j = (−c)k
π− j , k ∈ {1,2, . . .}, j ∈ {0, . . . , `−1}.

Here, there are ` price dynamics that work “in parallel”, i.e. they are not coupled.
Each initial condition π− j determines π`− j,π2`− j and so on. If 0 < c < 1 then there
are damped oscillations that tend to zero as k→ ∞. If c = 1 then oscillations of
same amplitude and period 2` persist endlessly, and if c > 1 then the log prices
alternate in sign but increase geometrically in size as time goes by. The role of the
ratio of elasticities is clear in this case.
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2.2 The case `= 1, m = 1

Theorem 2. Let `= m = 1. Then the sequence πt is stable if, and only if, 1−1/c <
α0 < 1/(2c)+1/2.

Proof. The solution πt of (8) is stable if, and only if, both zeroes of (9) have norm
less than 1. The characteristic polynomial (9) is

h1,1(x) = x2 + cα0x+ cα1 where α1 = 1−α0.

From Theorem 4.2 of Goldberg (1986), stability for this second order equation is
equivalent to the following three conditions holding simultaneously:

1+ cα0 + c(1−α0)> 0

1− cα0 + c(1−α0)> 0

1− c(1−α0)> 0.

Given that c > 0, these are in turn equivalent to 1−1/c < α0 < 1/(2c)+1/2.

Here the system is unstable for c ≥ 3, because the condition in Theorem 2
cannot then be satisfied. When `= 1,m = 0, the model is stable only when c < 1,
which says that the elasticity of demand is larger than the elasticity of supply. By
contrast, when m = `= 1 stability can be achieved for any c smaller than 3, which
means that the elasticity of supply only needs to be smaller than three times the
elasticity of demand. It is somewhat surprising that increasing the forecasting
period m from 0 to 1 has such a significant effect. Observe that the only α0
that produces stability for all c < 3 is 2/3. There is no obvious reason why it
should be α0 = 2/3 that makes this region largest; this corresponds to assigning
twice as much weight to the most recent price as the previous one. Note also
that if 0 < c < 1 then 1/(2c)+ 1/2 > 1, meaning that for those values of c the
sequence is stable in particular for α0 ∈ (1,1/(2c) + 1/2), which corresponds
to establishing the price forecast by extrapolating the two most recent prices.
For example, if c = 1/2, logPt = 1, logPt−1 = 0,α0 = 5/4 then the forecast is
log P̂t+1 = 5/4; the price sequence is stable in this case, even though a priori one
might think that extrapolating the most recent prices would be a destabilizing policy.
In the economics literature, the expression “extrapolative expectations” refers to

www.economics-ejournal.org 12
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forecasting based on the last two prices. This idea was first studied mathematically
in a macroeconomic model of inventories in Metzler (1973). Metzler studies a
somewhat different problem, but the algebra is similar to our case ` = 1,m =
1. (Metzler and others believed that extrapolation was a cause of instability.)
Turnovsky (1968) mentions the destabilizing effect of extrapolation (i.e. α0 > 1).
Extrapolative expectations is also called a “myopic” forecast by other authors, for
instance Wheaton (1999) claims that this is a cause of real estate price oscillations.

2.3 The cases m = 1, `≥ 2,α0 = 0 or 1

When m = 1 and ` ≥ 2, equation (8) cannot be solved exactly, except for the
two special cases α0 = 0 and α0 = 1, which are tractable. In the first case, the
characteristic polynomial is

h`,m(x) = x`+1 + c

which has zeroes x j with norm

|x j|= c1/(`+1), j = 1, . . . , `+1.

Hence the condition c < 1 is a necessary and sufficient condition for stability when
α0 = 0. In the case α0 = 1 the zeroes of the characteristic polynomial

h`,m(x) = x`+1 + cx

are 0 and x j = c
1
` e

2π( j−1)
` , j = 1, . . . , `, and once again c < 1 is a necessary and

sufficient condition for stability.

2.4 The cases m = 1, `≥ 2,α0 arbitrary

The graphs in Figure 4 show the region of stability for m = 1 and ` between 1 and
100, computed using Mathematica R©. The stability region is the set of (α0,c) that
lead to a stable price sequence; the curves on the graphs are the upper boundaries
of the stability regions. We have observed numerically that the stability region
shrinks to some limit set as ` increases, though the shape of the upper boundary is
different for even and odd values of `.

www.economics-ejournal.org 13
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{=1

{=3
{=5

limit
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(a) ` odd.

{=2

{=4
{=6

limit

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

(b) ` even.

Figure 4: Region of stability (area below each curve) if m = 1. α0 is shown horizontally, c vertically.

The stability region is largest when `= 1 (see discussion after Theorem 2); the
upper boundaries for `≥ 5 are indistinguishable from the limit when α0 is outside
(0,1). The limit as ` tends to infinity of the upper boundary of the stability region
coincides (as far as we can tell numerically) with the curve

c = (|α0|+ |1−α0|)−1

(solid line). We give a partial justification in Section 3.

2.5 The case 1 < m < ∞: equal weights α j

In our next numerical experiments the weights are equal, i.e. α j = 1/(m+1), j =
0, . . . ,m. Hence,

h`,m(x) = x`+m +
c

m+1

m

∑
j=0

xm− j. (12)
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Figure 5 plots the supremum of the values of c that preserve stability, that is, the
values of

c∗(`,m) = inf
(

c > 0
∣∣∣ max

j∈{1,...,m+`}
|x j(c)|= 1

)
,

where {x j(c)} are the zeroes of (12). The horizontal axis shows the values of
the averaging period m, and the four dotted lines correspond to `= 1,2,3,4. The
dotted lines visually appear to be linear functions of m, with a slope that decreases
as the lag ` increases. A closer look at the actual values of c∗(`,m) shows that for
fixed `= 2,3,4 the functions are not precisely linear in m, but for `= 1 the slope
is indeed constant.

2 4 6 8 10

2

4

6

8

10

Figure 5: Critical value of the ratio of elasticities c as a function of m. The top line corresponds to `= 1, the
ones below correspond to `= 2,3,4 (in that order).

We are able to prove that if ` = 1 then c∗(`,m) = m+ 1, see Theorem 6 in
Section 3.3.

Figure 6 shows the zeroes of the characteristic polynomial h`,m(x) in the
complex plane for m = 6 and various values of `. Each number “`” on a plot
represents the location of a zero of h`,m(x) (the circle is C0,1). It is seen that, at
least in those cases, the zeroes move towards the unit circle as ` increases, and,
furthermore, that the zeroes are approximately uniformly spread around the circle.
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Intuitively this means that the behaviour of prices tends to oscillations of constant
amplitude when ` increases. We now provide an incomplete justification for this.
The characteristic polynomial is

h`,m(z) = z`+m + cg(z), g(z) =
1

m+1

m

∑
j=0

zm− j.

Letting w = z`+m, this may be rewritten as H`,m(w) = w+ cg(w
1

`+m ).
We now use Rouché’s Theorem with φ(z) = cg(z),ψ(z) = z`+m and C =C0,ρ ,

for 0 < ρ < 1. The zeroes of φ are all on the unit circle, and thus |φ(z)| ≥ ε > 0
for z ∈ C0,ρ . Hence, for ` larger than some `0 the inequality |φ(z)| > |ψ(z)| is
verified for z ∈C0,ρ ; this implies that the zeroes of h`,m are all outside B0,ρ , for any
0 < ρ < 1. Now w

1
`+m → 1 as `→ ∞, and we are left with

lim
`→∞

H`,m(w) = w+ c.

Finally, reverting to w = z`+m then says that the zeroes of h`,m are, approximately,
the solutions of

z`+m = −c.

The zeroes are then approximately equal to

c
1

`+m ei 2π j
`+m , j = 1, . . . , `+m.

Although not rigorously derived, this yields good approximations of the arguments
of the zeroes of h`,m, but not always a good one for the norms of those zeroes. For
the latter it is better to rely on the fact that the norm of the product of the zeroes of
h`,m is |h`,m(0)|= c/(m+1), which yields the improved approximation(

c
m+1

) 1
`+m

ei 2π j
`+m , j = 1, . . . , `+m. (13)
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m = 6, c = 3

Figure 6: Zeroes of the characteristic polynomial h`,m(x) for different values of c, with m = 6, in
the complex plane. Each zero is indicated as “`”. The circle has centre 0 and radius 1.
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As an example, consider the first graph in Figure 6, with equals weights α j =
1/(m+1), c = .2 and m = 6. For `= 5 the exact zeroes are r jeiθ j , with

r1 = 0.694659, θ1 = 3.14159,

r2 = 0.688829, θ2 =−2.59503, r3 = 0.688829, θ3 = 2.59503,

r4 = 0.700281, θ4 =−2.03232, r5 = 0.700281, θ5 = 2.03232,

r6 = 0.716104, θ6 =−1.49399, r7 = 0.716104, θ7 = 1.49399,

r8 = 0.730140, θ8 =−0.92760, r9 = 0.730140, θ9 = 0.92760,

r10 = 0.804108, θ10 =−0.35203, r11 = 0.804108, θ11 = 0.35203,

while the approximations are reiθ j , where r = 0.723819 and the θ j are

3.14159, ±2.57039, ±1.9992, ±1.428, ±0.856798, ±0.285599.

If (13) were the true zeroes of h`,m then the solutions

πt = ∑
j=1

b jxt
j

would have period `+m. In the mining area, many believe that that the observed
price cycles correspond to the production lag `. We see that this is approximately
the case in our model, but only when m is small.

2.6 Geometric weights

Geometric weights are used in many forecasting models. A parameter 0 < λ < 1
is chosen and the weights α j follow the geometric progression

α j =
λ j(1−λ )

(1−λ m+1)
, j = 0, . . . ,m. (14)

Figure 7 shows plots of the critical boundary value c∗ as a function of λ for
different values of `,m. In all cases it appears that the stability region decreases to
c∗ = 1 as ` increases. The solid line is the function

c̃(λ ) def
=

(1+λ )(1−λ m+1)

(1−λ )(1+λ m+1)
,

which is the boundary for the stability region for `= 1 and even values of m, as we
will prove in Section 3.
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Figure 7: Stability regions for geometric weights are shown for different production lags `.
λ is shown horizontally and c∗ vertically.

www.economics-ejournal.org 19



conomics: The Open-Access, Open-Assessment E-Journal

2.7 Exponential smoothing

If 0 < λ < 1 and we formally let m→ ∞ in (14), we get

π̂t+` = (1−λ )
∞

∑
j=0

λ
j
πt− j.

Rewriting the same for π̂t+`−1 and eliminating πt−1,πt−2, . . . , we then find that

π̂t+` = λπ̂t+`−1 +(1−λ )πt .

This says that the forecast made at time t for the price at time t + ` is a weighted
average of last period’s forecast and the most recent price, using a fixed proportion
λ . This procedure is mentioned in van Doorn (1975, p.24); it is sometimes called
“exponential smoothing” or “adaptive expectations”. From (7), πt+` = −cπ̂t+`

and thus

πt+` = λπt+`−1− c(1−λ )πt . (15)

The case `= 1 is remarkably simple:

πt+1 = [(1+ c)λ − c]πt .

By setting
λ =

c
1+ c

=
s

d + s
,

one gets πt+1 = 0, i.e. there is convergence to the equilibrium price in just one time
step.

There is an explicit result when ` = 2, reminiscent of the case ` = 1,m = 1
(Theorem 2).

Theorem 3. If (15) holds with c > 0, then
(a) if `= 1, then the sequence πt is stable if, and only if, (c−1)/(c+1)< λ < 1;
(b) if `= 2, then the sequence πt is stable if, and only if, 1−1/c < λ < 1.
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Proof. For part (a), the condition is

−1 < (1+ c)λ − c < 1 or
c−1
c+1

< λ < 1.

For part (b), the zeroes of the characteristic polynomial

x2−λx+ c(1−λ )

have norm less than 1 if, and only if (Goldberg, 1986, p.172),

1+λ + c(1−λ )> 0, 1−λ + c(1−λ )> 0, 1− c(1−λ )> 0.

These are equivalent to 1−1/c < λ < 1.

When `> 2 the characteristic polynomial has degree three or more, and an exact
analysis of the roots does not appear feasible. Figure 8 shows the boundary of the
stability region as a function of λ . The solid lines are the functions (1+λ )/(1−λ )
and 1/(1−λ ), and coincide numerically with `= 1,2 respectively, as expected.

In all the experiments we made, for any c there is an interval I(c) = (λ ∗(c),1)
such that λ ∈ I(c) implies stability. We have not been able to prove mathematically
that this is always the case when `≥ 3.

2.8 Arbitrary weights

Figure 9 shows the locations of the zeroes in the complex plane in one case where
the weights α j are not equal: α = (0.1,0.6,0.2,0.1), c = 1. The characteristic
polynomial

h`,3(z) = z`+3 +0.2(0.1z3 +0.6z2 +0.2z+0.1) = z`+3 +0.2g(z)

has all its zeroes inside the unit circle C0,1 for all `. This is a simple consequence
of the reverse triangle inequality: if |z| ≥ 1 then

|h`,3(z)| ≥ |z`+3|−0.2|0.1z3 +0.6z2 +0.2z+0.1| ≥ |z|`+3−0.2|z|3.

The last expression cannot be zero if |z| ≥ 1, for any ` = 1,2, . . . . We note that
there are now `+1 zeroes spread in a circular fashion, getting closer to C0,1 as `
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Figure 8: Stability region for exponential smoothing. λ is shown horizontally and c∗ vertically.

increases, as there are `+ 3 zeroes in total and two zeroes that remain near the
two points −0.16±0.38i. It will be shown in Section 3 that inside the unit circle
the zeroes of h`,m have limits as ` tends to infinity, and that they are precisely the
zeroes of g(z) = ∑

m
j=0 α jzm− j that lie inside C0,1.

3 Deterministic Models: General Results

Let us recall from (3) that for a lag ` and an averaging period m+1, the market
clearing condition

P−d
t+` = P̂s

t+`,
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Figure 9: Zeroes of the characteristic polynomial h`,3(x) for non-equal weights, in the complex
plane. Each zero is indicated by the number “`”. The circle has centre 0 and radius 1.
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yields (8), that is

πt+` = − s
d

m

∑
j=0

α jπt− j.

Writing c = s/d as before, the characteristic polynomial (9) is

h`,m = x`+m + c
m

∑
j=0

α jxm− j,

and the solution of (8) is

πt =
`+m

∑
k=1

bk xt
k, (16)

where {xk} are the zeroes of the characteristic polynomial and {bk} are constants.
The long term behaviour of πt is determined by the x j with the maximum norm,
among those j such that b j 6= 0. Analytic expressions for the zeroes of polynomials
are not available for l +m > 2, but we will derive results that narrow down the
region where the zeroes are located.

Subsections 3.1 and 3.2 show that when the lag ` tends to infinity most of the
zeroes of the characteristic equation end up on the unit circle C0,1, with a finite
number of zeroes inside C0,1, and none outside C0,1. zeroes that lie on C0,1 imply
oscillations of constant amplitude for log prices. Subsection 3.3 studies the case
where the weights {α j} are constant or form a geometric progression.

3.1 General result on the location of the roots and stability

Theorem 4. (a) Suppose ρ ≥ 1. If c
m

∑
j=0
|α j| < ρ

` then the zeroes of h`,m are all

less than ρ in norm, i.e. |x j|< ρ . In particular, if

c
m

∑
j=0
|α j|< 1 (17)
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then the system is stable.

(b) Suppose ρ ≤ 1. If c
m

∑
j=0
|α j|< ρ

`+m then the zeroes of h`,m are all less than ρ

in norm.

Proof. Let ρ ≥ 1 and |z| ≥ ρ . Then, from the triangle inequality,

|h`,m(z)| ≥ |z|`+m− c
m

∑
j=0
|α j||z|m− j ≥ |z|`+m− c|z|m

m

∑
j=0
|α j|.

If c∑
m
j=0 |α j|< ρ` then the last expression is positive. The zeroes of h`,m must then

all be in C0,ρ .
If ρ ≤ 1 and |z| ≥ ρ then the result follows from

|h`,m(z)| ≥ |z|`+m− c
m

∑
j=0
|α j| ≥ |ρ|`+m− c

m

∑
j=0
|α j|.

Observe that (17) is sufficient for stability, but not necessary. For instance, in
the case m = 1 depicted in Figure 4 it is seen that when 0 < α0 < 1 the system is
stable for some c > 1 = α0 +α1.

Part (a) of the theorem implies that for any ρ > 1 and for ` greater than some `0,
the zeroes of the the characteristic polynomial are all inside C0,ρ . This means that
for systems that are unstable for some ` there are larger `’s such that the maximum
norm of the zeroes of the characteristic polynomial is close to 1; in other words, an
unstable system eventually becomes less unstable as ` increases.

As an application of Theorem 4, let us now return to the cases m = 1, `≥ 1,α0
arbitrary, that we looked at in Section 2 (cf. Figure 4).

Suppose ` is odd, and fix α0 ≥ 1. If we set c = (|α0|+ |1−α0|)−1 = 1/(2α0−
1) then a zero of h`,1(x) is x =−1, and the system is unstable. However, Theorem
4 says that if c < (|α0|+ |1−α0|)−1 then the system is stable. Hence, the stability
region for ` odd, α0 ≥ 1 consists of the points (α0,c) with c < (|α0|+ |1−α0|)−1.
The situation is similar when ` is even and α0 ≤ 0; then c = (|α0|+ |1−α0|)−1 =
1/(1−2α0) leads to a zero at x =−1 again, while Theorem 4 gives stability when
c < 1/(1− 2α0). Hence, the stability region for ` even, α0 ≤ 0 consists of the
points (α0,c) with c < (|α0|+ |1−α0|)−1.
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3.2 Limiting behaviour with increasing production lags

The next result shows that when the production lag ` increases without bound,
all the zeroes of the characteristic polynomial h`,m(x) are arbitrarily close to the
unit circle, with the possible exception of up to m zeroes inside the unit circle.
This means, loosely speaking, that longer production lags lead to oscillations of
constant amplitude, and not to oscillations of increasing amplitude. A system that
has oscillations of increasing amplitude will be made less unstable for production
lags that are long enough. This partly contradicts the view that long production
lags in themselves cause erratic price behaviour.

We will use the following classical result from Remmert (1991, p.261).

Theorem (Hurwitz) Let G be a non-empty connected open set in the complex
plane. Suppose φ ,φn,n ≥ 1 are analytic functions on G, and that φn converges
uniformly on compacts to φ in G. Let U be a bounded open set of G with U ⊂ G
such that f has no zero on ∂U. Then there is an index nU ∈ N such that for each
n≥ nU the functions φ and φn have the same number of zeroes in U.

Theorem 5. Define

g(z) =
m

∑
j=0

α jzm− j. (18)

If g has k zeroes inside the unit circle C0,1 label them r1, . . . ,rk. Let ρ1 ∈ (0,1)
be such that C0,ρ1 includes r1, . . . ,rk in its interior. Let ρ2 > 1. Then there exists
`0 < ∞ such that for any `≥ `0, h`,m(·) has exactly the same number of zeroes in
C0,ρ1 as gm and no zero outside C0,ρ2 . In addition, there are sequences r1,`, . . . ,rk,`
such that

• lim
`→∞

ri,` = ri, for each 1≤ i≤ k, and

• For every `≥ `0, h`,m(ri,`) = g(ri) = 0.

Proof. First, h`,m(z) converges uniformly on compact sets (in B0,1) to cg(z). Take
ρ1 as defined above, and apply Hurwitz’s Theorem with G =C0,ρ1 to obtain that
h`,m has the same number of zeroes as g inside C0,ρ1 for all `≥ `0. To obtain the
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limiting results for each of the zeroes, apply Hurwitz Theorem to a sequence of
balls around each zero ri with decreasing radius.

Second, for any ρ2 > 1 there is `1 such that

c
m

∑
j=0
|α j| ≤ ρ

`
2, `≥ `1,

and thus by part (a) of Theorem 4 all the zeroes of h`,m are inside C0,ρ2 when
`≥ `1.

Theorem 5 explains the behaviour illustrated in Figures 6 and 9, namely that
as ` increases, most or all the zeroes approach the boundary of the unit circle. It
does not, however, explain why the zeroes are placed nearly uniformly around the
circle for very large `. The difference between Figures 6 and 9 is that in the latter
the polynomial g(z) has zeroes inside the unit circle. As the theorem says, those
zeroes remain there in the limit.

This leads us to reconsider the first example in Section 2. There it appeared
that increasing ` led to instability (see Figure 1). When `= 4 (last plot) the largest
norm among the roots of the characteristic polynomial is 1.028, which explains the
increasing amplitude of the oscillations. However, with larger ` that largest norm
increases a bit more but then gradually decreases towards 1, for instance for `= 10
the largest norm is 1.038, for `= 20 it is 1.023, and for `= 40 it is 1.013.

3.3 Constant or geometric weights

Theorem 6. Consider the model for the log price (8) with constant weights. If
`= 1 then c∗(`,m) = m+1.

Proof. Write β = c/(m+1) and define

h̃(z) = (1− z)h1,m(z) = (1− z)zm+1 +β (1− zm+1).

The zeroes of h̃ are precisely those of h1,m together with the number 1. Any zero
of h̃ satisfies

zm+1(z−1+β ) = β . (19)
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First, consider the case β > 1, which is the same as c > m+1. Then the norm of
the left-hand side of (19) is

|zm+2 +(β −1)zm+1| ≤ |z|m+2 +(β −1)|z|m+1.

If |z|< 1, then this is no larger than |z|m+1β < β , which is a contradiction. Thus,
if c > m+1 then h1,m has no zero inside the unit circle, and the system is unstable.

Next, suppose β = 1, or c = m+1. Then (19) becomes zm+2 = 1, which has
m+2 zeroes, all of norm 1, and thus h1,m has all its zeroes on the unit circle; thus
c∗(`,m)≤ m+1.

Finally, suppose that 0 < β < 1 and that we restrict our search for zeroes to
|z|= 1 (i.e. to the unit circle). Then (19) implies

|z− (1−β )| = β ,

which has the unique solution z = 1 on the unit circle; it is readily checked that this
is not a zero of h1,m and we conclude that h1,m has no zero z with norm equal to 1.
If |z|> 1, we get

|z− (1−β )| = β

|z|m+1 ,

which has no solution because

|z− (1−β )| ≥ |z|− (1−β ) > β >
β

|z|m+1 .

Hence, if 0 < β < 1 then all the zeroes of h1,m are inside the unit circle; thus
c∗(`,m)≥ m+1 for any 0 < β < 1.

From all the above, we conclude that c∗(1,m) = m+1 for m≥ 0.

Theorem 7. Consider the price dynamics in (8) with geometric weights (14),
0 < λ < 1, and let `= 1. Then the system is stable if

0 < c < c̃(λ ) def
=

(1+λ )(1−λ m+1)

(1−λ )(1+λ m+1)
.

Hence, c̃(λ )≤ c∗.
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Proof. Define

σ(λ ) =
1−λ m+1

1−λ
c′ =

c
σ(λ )

. (20)

The characteristic polynomial is

h`,m(z) = z`+m + c′λ m
m

∑
j=0

(z/λ )m− j = z`+m + c′
(

zm+1−λ m+1

z−λ

)
. (21)

Let y = z/λ ; then the zeroes of h`,m(z) are in a one-to-one correspondence with
the zeroes of

y`+m +
c′

λ `

(
1− ym+1

1− y

)
. (22)

More specifically, the system (8) will be stable if, and only if, the zeroes of (22)
are in B1/λ . Multiply (22) by λ `(1− y) to get

h̃(y) def
= λ

`(1− y)y`+m + c′(1− ym+1)

=−λ
`y`+m+1 +

(
λ
`y`−1− c′

)
ym+1 + c′.

Except for y = 1, the zeroes of this polynomial are those of (22). Let

Φ(y) =−λ
`y`+m+1

Ψ(y) =
(

λ
`y`−1− c′

)
ym+1 + c′.

Let `= 1 and c < c̃(λ ). We will show that if |y|= 1/λ , then |Φ(y)|> |Ψ(y)| (see
below for the proof). Applying Rouché’s Theorem, this in turn will imply that all
the zeroes of h̃(y) are in B1/λ .

We need to show that if 0 < λ < 1, |y|= 1/λ and 0 < c < c̃(λ ), then

|c′+(λ − c′)ym+1|< λ
−m−1.

From the triangle inequality

|c′+(λ − c′)ym+1| ≤ c′+ |λ − c′| |ym+1|= c′+ |λ − c′|λ−m−1.
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If 0 < c′ < λ then

c′+ |λ − c′|λ−m−1 < λ
−m−1 ⇐⇒ λ

m+1c′+λ − c′ < 1

⇐⇒ (λ m+1−1)c′ < 1−λ ,

which is true for all 0 < λ < 1. If c′ ≥ λ then

c′+ |λ − c′|λ−m−1 < λ
−m−1 ⇐⇒ λ

m+1c′+ c′−λ < 1

⇐⇒ c′ <
1+λ

1+λ m+1

⇐⇒ c <
(1+λ )(1−λ m+1)

(1−λ )(1+λ m+1)
= c̃(λ ).

We note that the case of equal weights corresponds to λ = 1. The limit as
λ → 1 of c̃(λ ) is easily evaluated using l’Hospital’s rule, and this recovers the
bound m+1 of Theorem 6.

Theorem 8. If ` is odd and m even then c∗ ≤ c̃(λ ). If ` = 1 and m is even then
c∗ = c̃(λ ).

Proof. We show that for c = c̃(λ ), z = −1 is always a zero of h`,m(z) when ` is
odd and m even.

Replacing c with c̃(λ ) in (21)

h`,m(z) = z`+m +
1+λ

1+λ m+1

(
zm+1−λ m+1

z−λ

)
,

so that, evaluating at z =−1,

h`,m(−1) = (−1)`+m +
1+λ

1+λ m+1

(
(−1)m+1−λ m+1

−1−λ

)
=−1+1 = 0.

If `= 1 and m is even then the above and Theorem 7 imply that c∗ = c̃(λ ).
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4 Random Disturbances

Pryor and Solomon (2000) introduce randomness in observed prices in a cobweb
model, and then study the average length of a cycle. Samuelson (1973) imagines
that producers might adjust their production according to expected price, and talks
of introducing randomness in the price process, but does not develop those ideas.
Turnovsky (1968) studies stochastic stability for the cobweb model with linear
supply and demand functions and ` = 1, for forecast prices following either the
weighted average model with m = 1, or adaptive expectations. None of those
papers include production lags, as we do below.

In this section we introduce additive and multiplicative random disturbances in
the log price process; not surprisingly the additive ones are a relatively straight-
forward extension of the deterministic model studied above. Disturbances to the
supply function mean multiplicative errors, which lead to a rather more involved
analysis. There is a parallel with the approach used by Chiarella (1988), since we
end up computing Lyapunov exponents, which also relate to chaos. In both models
it is the variability of elasticity of supply that is the origin of chaotic behaviour; in
our model elasticity s changes randomly over time, while in Chiarella’s case there
a deterministic S-shaped supply curve.

The system (7) has demand and supply curves that are fixed through time.
We now introduce time-varying supply curves. We leave demand fixed, since in
the case of copper it appears that supply is much less predictable than demand.
In the words of Dunsby: “Much of the short-term volatility in prices resulting
from physical supply-demand imbalances (e.g., ignoring purely financial sources
of volatility) derives from supply shocks. Demand tends to grow more steadily”
(Dunsby et al., 2008, p.157). The reasons given by Dunsby include technology,
investment, wars, strikes, natural disasters, and declining yields.

Starting from (3),

D(Pt+`) = S(P̂t+`), (23)

we let D(p) = kd p−d as before, but write

St(p) = ks,t pst .

www.economics-ejournal.org 31



conomics: The Open-Access, Open-Assessment E-Journal

Next, we successively get

kd(Pt+`)
−d = ks,t+`

(
exp

m

∑
j=0

α j logPt− j

)st+`

Pt+` =

(
ks,t+`

kd

)− 1
d

exp

(
−st+`

d

m

∑
j=0

α j logPt− j

)

πt+` = −ct+`

m

∑
j=0

α jπt− j + εt+`, (24)

where
ct+` = st+`/d and εt+` = −1

d
ks,t+`

kd
.

In order to study the effect of varying supply, we let both ct and εt be random
(always assuming that ct > 0). To keep matters simple we assume that {(ct ,εt), t ≥
1} is a sequence of independent and identically distributed (i.i.d.) random vectors.
Our first task is to find the expectation of πt ; simply take expectations on both sides
of (24); if both Ect and Eεt exist, then the expectation of πt satisfies the recurrence

Eπt+` = −(Ect+`)
m

∑
j=0

α jπt− j +Eεt+`. (25)

This is the same system we studied before in the deterministic case. Although this
is not mandatory, in order to simplify the algebra we will make the same change of
units we made in Section 1, replacing the constants c,ks,s with Ect ,Eks,t ,Est in
(11). We then have, for the rest of this section,

Eεt = 0, Eπt+` = −(Ect+`)
m

∑
j=0

α jπt− j.

The expected value of εt is zero, and thus the equilibrium value of Eπt is also zero.
Convergence of the expected value of πt to zero does not imply that the

sequence πt has a limit distribution, or a finite variance, as t tends to infinity.
In this model we will say that the sequence πt is stable if it has a limit distribution
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as t tends to infinity, for any set of initial condtions π0,π−1, . . . ,πt−m−` (the latter
are not random).

When ct ≡ c is deterministic the sequence {πt} in (24) is an autoregressive
process of order `+m, and there are well-known conditions for its stability. Ob-
serve that regarding the distribution of (ct ,εt) we are assuming nothing besides
independence over time (ct and εt may be dependent). When ct is not deterministic
the process {πt} is called a random coefficient autoregressive process.

We will study the problem of stability from two different points of view. The
first one is the existence of the limit distribution, using results for the theory of
products of random matrices. The second one will assume that (ct ,εt) have finite
second moments, and we will look for conditions under which the second moment
of πt remains finite as t tends to infinity; this will also imply that the sequence has
a limit distribution.

Turnovsky (1968) uses a stochastic Lyapunov function to find sufficient (though
not necessary) conditions for convergence with probability one of Pt to some
value P∗. There are significant differences between his approach and ours. First,
Turnovsky needs the variance of the disturbances to tend to zero as the price
approaches P∗, while we let the disturbances have constant variance; second,
Turnovsky considers a more complex noise process, with correlation across time;
finally, Turnovsky was writing before the work of Kesten and others, especially
Vervaat, had become known. We find it counterintuitive to twist the model in the
way Turnovsky (1968) does to obtain convergence to a specific constant price;
rather, random shocks lead either to instability or to a limit distribution, naturally
excluding convergence to a specific price P∗,

4.1 Existence of a limit distribution under the weakest conditions

The more technical discussion below is best introduced by describing the simpler
case `= 1,m = 0:

πt+1 = −ct+1πt + εt+1.

(This is a random version of the classical cobweb model.) The existence and
properties of the limit distribution of πt in this case were studied in great detail by
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Vervaat (1979). Iterating the equation yields

πt = εt − ctεt−1 + ctct−1εt−2 + · · ·+(−1)tctct−1 · · ·c1π0.

In order to determine whether this sequence has a limit distribution, Vervaat first
reverses the order of the subscripts, which does not alter the probability distribution,
since the sequence {(ct ,εt)} is asumed i.i.d. More specifically, denoting equality

in distribution by “ d
=”,

πt
d
=

t

∑
n=1

(−1)n−1c1c2 · · ·cn−1εn +(−1)tc1c2 · · ·ctπ0. (26)

He then uses the n-th root test for series:

if limsup
n→∞

|an|
1
n < 1 then ∑

n≥1
|an| < ∞.

This is applied to the “time-reversed” series we just described:

if limsup
t→∞

|c1c2 · · ·ctεt |
1
t < 1 a.s. then ∑

t≥1
|c1c2 · · ·ctεt | < ∞ a.s..

(Here “a.s.” stands for “almost surely”, which means the same as “with probability
one”.) Next consider c1c2 · · ·ct and εt separately, recalling that ct > 0. Since

(c1c2 · · ·ct)
1
t = exp

(
1
t

t

∑
k=1

logck

)
,

it is then obvious that if E logc1 < 0 then, by the Law of Large Numbers,

lim
t→∞

1
t

t

∑
k=1

logck = E logc1 a.s.,

and thus

lim
t→∞

(c1c2 · · ·ct)
1
t = lim

t→∞
exp

(
1
t

t

∑
k=1

logck

)
< 1 a.s..
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If E log |ε1| is finite, then

lim
t→∞

1
t

t

∑
k=1

log |εk| → E log |ε1| a.s.,

and thus
lim
t→∞

log |εt |
1
t = 0 a.s..

Finally,
limsup

t→∞

|c1c2 · · ·ctεt |
1
t < 1 a.s.

under the assumptions E logc1 < 0, E log |ε1| < ∞, and thus the right-hand side
of (26) has a.s. a finite limit. Note that E log |c1|< 0 implies that c1c2 · · ·ct tends
to zero with probability one as t tends to infinity. The assumption regarding the
distribution of ε1 can be weakened by noting that values of |ε1| smaller than 1
cannot cause divergence of the sum, and so requiring E log+ |ε1|< ∞ is sufficient,
if log+ x = max(logx,0).

There are results of the same nature as the ones above in the more general case
where `≥ 1 and m≥ 0 are arbitrary in (24), but they are not as straighforward, even
though the randomness in the system is generated by the same pair (ct ,εt). The
process {πt} is in general not Markovian, and it is useful to obtain a Markovian
representation for it by defining

Xt = (πt , . . . ,πt−`−m+1)
T, Bt = (εt ,0, . . . ,0)T

At =

`−1︷ ︸︸ ︷

0 0 · · · 0
1 0

1

0

−ctα0 · · · −ctαm−1 −ctαm

0
. . .

1 0

 .

Here At is (`+m)× (`+m), and Bt ,Xt are (`+m)× 1. The first line of At has
`− 1 leading zeroes, followed by −cα0,−cα1, . . . ,−cαm, and a subdiagonal of
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1’s; the other elements of At are 0. The process {Xt} is defined recursively as

Xt = AtXt−1 +Bt , t = 1,2, . . . (27)

This process is Markovian, because the sequence {(At ,Bt)} is i.i.d.
The adaptive expectations model with random disturbances becomes

πt+` = λπt − ct+`(1−λ )πt + εt+`.

To obtain a Markovian representation, set

Xt = (πt , . . . ,πt−`+1)
T, Bt = (εt ,0, . . . ,0)T.

Then the matrix At has the form

At =

`−1︷ ︸︸ ︷
λ 0 · · · 0
1 0

1

0 1

−ct(1−λ )
0
0

0

 .

Here At is `× `, and Bt ,Xt are `× 1. The process {Xt} is defined recursively as
before, by (27).

We will use the Euclidian vector norm | · |e and a matrix norm ‖ · ‖ that is
compatible with it, in the sense that

|Mx|e ≤ ‖M‖ · |x|e (28)

(see Horn and Johnson, 1985, Chapter 5). The notation |A| refers to the matrix of
the absolute values of the elements of A.

We now consider system (27) in some generality, with At an N×N random
matrix (not necessarily of the form specified above). Conditions for the stability of
(27) cannot be obtained as simply as in the one-dimensional case. This is essentially
because the logarithm and exponential of matrices do not have the same properties
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as the corresponding functions of real numbers; in particular, for matrices M1 and
M2 it is generally not the case that

eM1+M2 = eM1eM2 .

In the one-dimensional case the condition E log |A1|< 0 implies that A1 · · ·An tends
to 0 geometrically; in (27) the corresponding condition is

γ({An}) = inf{1
nE log‖An · · ·A1‖,n ∈ N}< 0. (29)

This is called the top Lyapunov exponent of the matrices {A1,A2, . . .}. Some of
the results we will use go back to Furstenberg and Kesten (1960). It is known
(Kingman, 1973) that if {An,n≥ 1} is a stationary process and E log+ ‖A1‖< ∞,
then γ({An}) ∈ [−∞,∞), and, moreover,

γ ({An}) = lim
n→∞

1
n log‖An · · ·A1‖, n ∈ N.

Part (a) of the following theorem was proved in one dimension by Brandt (1986)
and extended to the vector case by Bougerol and Picard (1992). We have added
part (b) for clarity (it is proved in the same way as part (a)).

Theorem 9. (a) Let {(An,Bn),n ∈ Z} be a strictly stationary ergodic process
such that both E(log+ ‖A1‖) and E(log+ ‖B1‖) are finite. Suppose that the top
Lyapunov exponent γ defined by (29) is strictly negative. Then, for all n ∈ Z, the
series

Xn =
∞

∑
k=0

An · · ·An−k+1Bn−k

converges a.s., and the process {Xn,n∈Z} is the unique strictly stationary solution
of (27).
(b) Under the same conditions the process defined by (27) for t ≥ 1 has a finite
limit distribution as t → ∞, and this limit is the same irrespective of the initial
condition X0.

There is no general formula to compute γ({An}) given the distribution of {An}.
We will give some properties of the top Lyapunov exponent in the next subsection,
and then show numerical examples.
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4.2 Existence of a limit distribution under first and second moment condi-
tions

Sufficient conditions for stability will now be given in terms of the first and second
moments of (A1,B1). These are stronger conditions than the ones in Bougerol
and Picard (1992) (see Theorem 9), but they are easier to verify. We use results
from Conlisk (1974) that lead to sufficient conditions for stability of (27). See also
Nicholls and Quinn (1983) for similar results about a more general model. But
first we give some relationships between spectral radius and Lyapunov exponent.
The following results are required for our analysis; they may or may not have
been known previously, but we were unable to find proofs for all of them in the
literature.

The direct (or Kronecker) product A⊗B of matrices A = (ai j)m×n and B =
(bk`)p×q is the mp×nq matrixa11B · · · a1nB

...
. . .

...
am1B · · · amnB

 .

We also use the vec operation, which stacks the columns of a matrix one on top of
the other, the first column at the top. The main property of that operation is

vec(ABC) = (CT⊗A)vecB.

Theorem 10. (a) Suppose the i.i.d. matrices {An,n≥ 1} satisfy E‖A1‖< ∞. Then

γ({An}) ≤ γ({|An|}) ≤ logρ(E|A1|).

If A1 is deterministic then the second inequality is an equality.
(b) Suppose the matrices {An,n ≥ 1} are i.i.d. and have finite second moments.
Then

γ({An}) ≤ 1
2 logρ(E(A1⊗A1)).

When A1 is deterministic the two sides are equal.
(c) For arbitrary A1, if E(A1⊗A1) is finite then E(A1) is also finite, and moreover

ρ(E(A1))
2 ≤ ρ(E(A1⊗A1)). (30)
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Proof. The condition E‖A1‖ < ∞ implies that E|A1| is a finite matrix, because
|A1(i, j)| ≤ |A1e j|e ≤ ‖A1‖, where e j is the unit vector with 1 in the j-th position
and zeroes in the others; it also follows that E log+ ‖A1‖< ∞.

(a) Justification for the second inequality may be found in the proof of Theorem
2 of Kesten and Spitzer (1984, p.378), where non-negative An are considered. Turn
to the first inequality, γ({An})≤ γ({|An|}). It is known that An · · ·A1→ 0 if, and
only if, γ({An}) < 0 (Bougerol and Picard, 1992, Lemma 3.4). Assume that
g = γ({|An|}) ∈ R and define

Cn = e−g−δ An, n≥ 1,

for some δ > 0. Then
|Cn · · ·C1| ≤ |Cn| · · · |C1|

and

1
n

log‖|Cn| · · · |C1|‖ = −g−δ +
1
n

log‖|An| · · · |A1|‖ → −δ < 0,

which implies that Cn · · ·C1 tends to 0. Thus

0 > γ({Cn}) = −g−δ + γ({An}),

for any δ > 0, and it follows that γ({An})≤ g = γ({|An|}). There remains the case
γ({|An|}) =−∞; this is seen to be equivalent to

limsup
1
n

log‖|eMAn| · · · |eMA1|‖ < 0

for all M > 0. This plainly implies that the same holds if {|An|} is replaced with
{An}. (The last assertion follows from the fact that γ({|An|}) =−∞ is equivalent
to

limsup
n

1
n

log‖|An| · · · |A1|‖ < −M

for each M > 0, which is the same as

eMn|An| · · · |A1| → 0
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as n tends to infinity for all M > 0; this in turn implies

eMn|An · · ·A1| → 0,

which entails γ({An})<−M for all M > 0.)
(b) Fix any x ∈ RN , and let

Zn = An · · ·A1x.

Then Zn = AnZn−1 and, letting Vn = Evec(ZnZT
n ),

ZnZT
n−1 = AnZn−1ZT

n−1 =⇒ Vn = E(A1⊗A1)Vn−1.

If ρ(E(A1⊗A1)) < 1 then Vn tends to 0 at a geometric rate, i.e. for all n large
enough there is K < ∞ such that all the elements of Vn are smaller than or equal to
Kρn

1 , where ρ(E(A1⊗A1)< ρ1 < 1. Hence, for δ > 0

P(|Zn( j)|> δ ) ≤ EZn( j)2

δ 2 ≤
Kρn

1
δ 2 .

Apply the Borel-Cantelli lemma: if {En} is a sequence of events, then

∑
n
P(En) < ∞

implies that P(En infinitely often) = 0. Let

En = {|Zn( j)|> δ}.

Then ∑nPEn < ∞, implying that P(limsupn |Zn( j)|> δ ) = 0. We conclude that if
ρ(E(A1⊗A1)< 1 then Zn tends to zero a.s.. This holds for every x ∈RN , and thus
ρ(E(A1⊗A1)< 1 implies An · · ·A1 tends to 0, and in turn γ({An})< 0.

Consider an arbitrary i.i.d. sequence {An} with finite second moments, and
note that ρ(E((kA1)⊗ (kA1)) = k2ρ(E(A1⊗A1) for any k > 0. If δ > 0 and

kδ = e−δ [ρ(E(A1⊗A1)]
− 1

2 ,
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then ρ(E((kδ A1)⊗ (kδ A1)) = e−2δ , and thus γ({kδ An})< 0, implying that

γ({An}) < δ +
1
2

logρ(E(A1⊗A1))

for each δ > 0, and the inequality in part (b) follows. If A1 is deterministic then
γ = logρ(A1) =

1
2 logρ(E(A1⊗A1)), since ρ(A1⊗A1) = ρ(A1)

2.
(c) Among the elements of the matrix E(A1⊗A1) there is E(A1(i, j)2), and if

this is finite then EA1(i, j) is also finite.
In Conlisk (1974) there is a proof that if ρ(E(A1⊗A1))< 1, then ρ(E(A1))< 1

as well, from which we could derive (30). That proof is not very intuitive, however,
and we propose a more direct argument. Let x ∈ CN and {An} an i.i.d. sequence
of N×N matrices. For any complex Y it is elementary that E|Y |2 ≥ |EY |2. If
M = An · · ·A1 and Y = xTMx then

E|Y |2 = E(xTMxxTMTx)

= E[(xT⊗ xT)vec(MxxTMT)]

= (xT⊗ xT)E(M⊗M)vec(xxT).

Now, since (N1N2)⊗ (N1N2) = (N1⊗N1)(N2⊗N2),

E(M⊗M) = E[(An · · ·A1)⊗(An · · ·A1)] = E
n

∏
j=1

(An− j+1⊗An− j+1) = [E(A1⊗A1)]
n,

and thus

E|Y |2 =(xT⊗xT)[E(A1⊗A1)]
n vec(xxT) ≥ |EY |2 = |ExTMx|2 = |xT(EA1)

nx|2.

If x is a non-zero eigenvector of E(A1) and λ the corresponding eigenvalue, then

(xT⊗ xT)[E(A1⊗A1)]
n vec(xxT) ≥ |λ |2n|x|4e .

Divide both sides by σn > ρ(E(A1⊗A1))
n and then let n tend to infinity, to find

0 ≤ |λ |2/σ < 1, or |λ |2 < σ . This is true for all eigenvalues of EA1 and all
σ > ρ(E(A1⊗A1)), which gives ρ(E(A1))

2 < σ , and finishes the proof.
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Note that it is not always true that γ({An}) ≤ logρ(EA1) for matrices {An}
that have both positive and negative entries; this happens in the second numerical
example below.

Theorem 11. (a) If

ρ(E|A1|)< 1, E|B|e < ∞

then (27) is stable. Moreover, EXt is finite and satisfies

EXt = E(A1)EXt−1 +EBt . (31)

lim
t→∞

EXt = (I`+m,`+m−E(A1))
−1EB1 = 0. (32)

(b) (Conlisk, 1974) Suppose {(An,Bn)} are i.i.d. and have finite second moments.
Then a sufficient condition for the system (27) to be stable is

ρ(E(A1⊗A1)) < 1.

When this is the case, the first and second moments of Xt are finite, the first moments
satisfy (32) and second moments satisfy

vecE(XtXT
t ) = E(An⊗At) vecE(Xt−1XT

t−1)+ [E(Bt ⊗At)+

E(At ⊗Bt)]vecEXt−1 + vecE(BtBT
t )

lim
t→∞

vecE(XtXT
t ) = (I(`+m)2,(`+m)2−E(A1⊗A1))

−1 vecE(B1BT
1 ).

Part (b) of the theorem shows that the second-order conditions

logρ(E(A1⊗A1)) < 1, E|ε2
1 | < ∞,

ensure that Theorem 9 applies. Part (a) shows that the corresponding first-order
conditions have the same consequence.
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Figure 10: Top Lyapunov exponent estimation: a stable system.

4.3 Numerical Experiments

In this section we will show plots of

γn =
1
n

log‖An · · ·A1‖

as n grows. This process is used to estimate the Lyapunov exponent γ({An}). In
all our experiments, we used simulation techniques for variance reduction and
numerical stability methods in order to increase accuracy of the estimation. We
devised statistical tests in order to determine the stopping criterion and we used
asymptotic normality in order to produce statistical confidence intervals. The
variables ct are i.i.d. and have a scaled beta distribution. The distribution has
bounded support, and it is relatively easy to generate in simulations. The details of
the numerical methodology are beyond the scope of this paper and will be reported
elsewhere.

Figure 10 shows a realization of the estimation process {γn} for a stable system.
Here ct is a scaled Beta(2,5) distribution over the interval (0,7); its mean is 2 and
its variance is 1.25. The other parameters are shown. In this case, the deterministic
system driven by E(At) has a negative spectral radius (i.e. the “average” process
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(25) is stable). The bound 1
2 logρ(E(At ⊗At)) is also indicated. The confidence

interval for the estimate shows that it is likely that γ̂ < logρ(E(At)).
The Lyapunov exponent and stability of the system do not depend on the

particular zero-mean i.i.d. sequence {εt} (provided it has finite mean). Figure 11
shows a realization of the log price sequence

πt+` = −ct+`

m

∑
j=0

α jπt− j + εt+`, ε ∼N (0,σ2)

for system in Figure 10. As would be expected, increasing σ2 has the effect of
increasing the variance of the log price (the two plots have different scales).

Our next experiment shows an unstable system. Figure 12 is a plot of the
estimator process γn. The parameters are shown on the right. In this case the
confidence interval indicates that γ̂ > logρ(E(At)). The distribution of ct is a
scaled Beta(2,5) over the interval (0,6.3), with variance 1.0125.

In unstable cases the price sequence behaves more erratically, as would be
expected.

5 Conclusion

We have formulated a more general version of the cobweb model, that includes
production lags and explicit forecasting of prices. Power demand and supply
functions, together with a focus on log prices, lead to more or less tractable
difference equations for log prices. The classical cobweb theorem is shown to have
extensions in those situations. Complex analysis helps to understand what happens
when parameters are changed. We have studied the effect of price forecasting
on stability; when the averaging period m is greater than one, stability requires
less stringent conditions on the elasticities than in the classical cobweb theorem.
Increasing the production lag ` may or may not lead to instability, but letting ` tend
to infinity leads to cycles of constant amplitude. The random case is expressed as a
bilinear model, and connects this problem with recent work on chaos (Lyapunov
exponent of random matrices). In the random case we have provided some results
and proofs that may be new.
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Figure 11: Log price sequence realizations for stable system.
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Figure 12: Top Lyapunov exponent estimation: an unstable system.

In the literature, some have suggested that production lags themselves are
the cause of fluctuating prices. For example, Philips (1957, p.276) mentions that
“. . . the regulation of a system can be improved if the lengths of the time delay
operating around the main control loop are reduced”. Sterman (2000, Chapter 20)
writes: “markets with negative feedbacks through which price seeks to equilibrate
supply and demand often involve long time delays which lead to oscillation”. Our
results do support this view, but maybe not in the way one might have expected, in
the sense that we do not find that longer lags necessarily lead to instability. What
we find is that as the lag ` increases the maximum of the norms of the roots xk
tends to one. This means oscillations of constant amplitude, whether the system is
stable or unstable for small production lags. Thus, longer lags eventually have a
stabilizing effect on unstable systems. This is the conclusion one draws from the
general results in Section 3.
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