Valsecchi, Irene

Working Paper
A Role for Instructions

Nota di Lavoro, No. 62.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Valsecchi, Irene (2005) : A Role for Instructions, Nota di Lavoro, No. 62.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74306

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A Role for Instructions

Irene Valsecchi

NOTA DI LAVORO 62.2005

MAY 2005

ETA – Economic Theory and Applications

Irene Valsecchi, Università degli Studi di Milano-Bicocca

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=717441

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
A Role for Instructions

Summary
The paper is concerned with instructions as a way of setting premises for subsequent decisions in models of teams à la Marschak-Radner, under information diversification. The paper suggests that instructions can bridge people’s differences in knowledge: they do not require mutual understanding between the sender and the receiver as other forms of communication do. In particular, the knowledge of both the team payoff function and the team organisation can be ordered according to hierarchical ranks. First, the paper shows the equivalence between commands and communication in Marschak and Radner (1972). Second, it derives the requirements in terms of knowledge of the members that follow from given structures of task assignment, information diversification and message flows. Hierarchical ranks are shown to correspond to different degrees of intelligibility of the members with respect to the team operations.

Keywords: Instructions, Hierarchy, Knowledge, Decentralisation

JEL Classification: D23, L23, M11

Address for correspondence:
Irene Valsecchi
Department of Statistics
Università degli Studi di Milano-Bicocca
Via Bicocca degli Arcimboldi 8
20126 Milano
Italy
E-mail: irene.valsecchi@unimib.it
1 Introduction

In working life, at same stage, it is everybody’s experience to receive orders, while it is somebody’s experience to issue instructions to subordinates. Nevertheless, organisation theories do not often provide a specific role for instructions.

Broadly speaking, instructions serve two different purposes. On one side, they can be the instrument for training on-the-job. On the other side, they transmit guidelines and premises for making subsequent decisions when tasks are interdependent. In the first case, instructions deal with problems of acquisition of knowledge. Instead, in the second case, instructions can bridge people’s differences in knowledge, without people reaching mutual understanding. Indeed, if the transmission of premises for making subsequent decisions implied mutual understanding between the sender and the receiver of those premises, instructions would just be another word for communication.
Instead, the term instructions conveys the idea of unquestioned guidelines in contrast with the act of exchange intrinsic to the term communication.

In the organisation literature the role of instructions is discussed equivalently under the heading of command and orders. Indeed, the above mentioned, particular notion of instructions is proposed by Simon (1991, p.31-32) who argues that:

Most often, the command takes the form of a result to be produced ... or a principle to be applied... or goal constraints....Only the end goal has been supplied by the command, not the method of reaching it....

Commands do not usually specify concrete actions but, instead, define some of the premises used in making decisions for which they are responsible...

We need to delegate within guidelines, which creates the problem of monitoring the observance of guidelines without recentralising what has just been delegated....

If authority is used to transmit premises for making decisions rather than commands for specific behaviors, then many different experts can contribute their knowledge to a single decision....

The present paper is specifically concerned with instructions as a way of setting premises for subsequent decisions when the knowledge of economic agents does not mutually overlap. In that case, the receiver of instructions will not be able to gain any information about the state of the world from the same instructions.

The starting point of the paper is the theory of teams of Marschak and Radner (1972), particularly suited to the analysis of informationally decentralised systems, i.e. organisations composed of solidaristic agents who are informed about different state variables relevant for the common decisional process. In particular, the paper considers teams with payoff functions that depend on both the actions of the team members and the state of the world. The building elements of the team organisation will be:

a) the assignment structure (which member performs which tasks),

b) the information structure (which member observes which parameters of the state of the world),

c) the message structure (which type and channels of communication exist among team members),

d) the competence structure (which member knows which relationships among the parameters of the state of the world)

e) the comprehension of the team members of the team environment (what a member knows about the other members’ tasks, information, messages and competence).

The knowledge of a member corresponds to his competence and comprehension.

The paper shows that in teams à la Marschak-Radner decentralisation, i.e. the dissemination of information among several decision makers, necessarily demands for a complete competence of all the team members about the relationships among the state variables, as well as a through awareness of “who does what in the light of which information” for every team member. The implicit burden of informationally decentralised systems on the members’ technical and organisational knowledge is shown to be so exhaustive to enable every member to derive the optimal decision rule for the entire
team. In other words, the elements d) and e) of the team organisation, implicit in the analysis of Marschak and Radner, need be particularly powerful in order to support decentralised systems. In particular, all the members must possess a precise knowledge of the entire organisational model, independently of the team size.

Moreover, the paper shows that the same requirements in terms of distribution of knowledge among members devoid instructions of any role distinct from communication in teams à la Marschak-Radner. Indeed, the members are shown to be able to decode messages to such an extent that optimal orders convey their own justification, as Geanakoplos and Milgrom (1991) suggest. Members follow orders not out of a sense of duty, but because the updating of beliefs induced by the commands makes to obey optimal.

The paper proceeds to consider a simple model of team production where members can transmit the values chosen for the action variables under their control. By tracing the flows of the messages, ranks can identify the ordered sequence of the decisions within the team. Given a message structure, the paper defines the necessary and sufficient requirements in terms of knowledge imposed by the derived hierarchical structure of messages. The paper shows that in informationally decentralised systems hierarchical ranks can correspond to different and ordered degree of intelligibility of the team operations. In other words, the knowledge of the members in different ranks are characterised by a sort of matryoshka property in a such a way that the knowledge of the sender of instructions must encompass the knowledge of the receivers. The result suggests that hierarchies can be an efficient way of dealing with the distributed knowledge of its members, along with the dissemination of information among the members.

In this sense, it may not only be cheaper for a central agent to make the collective decision and transmit it rather than retransmit all the information on which the decision is based, as Arrow (1974) suggests. But it may be useless as well for a central agent to transmit his information if the receivers cannot understand the significance of that information. Elite control can realise economies in the flows of information, as Arrow (1991) points out, but overall it can realise economies in the computational capabilities of the members of the organisation.

The paper shows that, under some conditions, the knowledge of the members within the same rank will have to increase as the diversification of information in the rank increases. Although the paper does not consider the costs of acquiring knowledge explicitly, a prediction of the paper is that flatter organisation are a consequence of the empowerment of their members.

The approach taken in the paper is sympathetic, although not analogous, to the analysis of Segal (2001), who shows that authority is the simplest communication allowing coordination in a complex environment. Some results of the paper are similar to those achieved by Garicano (2000), who shows that a knowledge-based hierarchy is a natural way to organize the acquisition of knowledge when matching problems with those who know how to solve them is costly. However, in Garicano ranks organize a process of search for problems that arise during the production process and that can be ordered by frequency or complexity. Instead, in the present paper ranks are always active and the knowledge of the organisational model is as much relevant as the expertise concerning the team payoff function. The idea of hierarchies as an order system of setting premises for further decisions is the distinctive mark of the present paper with
respect to the hierarchical models in which ranks combine sequential to parallel operations (for instance, Radner 1993). Finally, since the paper is concerned with the theory of teams, it is not related to delegation in principal-agent models like Aghion-Tirole (1997) (just to quote one of the many contributions on the subject).

The rest of the paper is organised as follows. Section 2 introduces the set-up of the basic team model to be analysed. Section 3 is concerned with Marschak and Radner’s results in order to a) determine the level of the members’ knowledge required by informationally decentralised systems, and b) show the equivalence between order and communication in that framework. Section 4 formalises the idea of an hierarchical systems as a joint mechanism of transmission of decisions from top to bottom and economies in the distribution of knowledge across team members. Section 5 concludes.

2 Set-Up

The following basic model of team production is derived from the theory of teams of Marschak and Radner (1972) to a great extent. The main departures from the original set-up will be highlighted in due course.

Let V be the finite set of K team action variables, with an element of V denoted by v_k; let a_k be the real value of the action variable v_k. For every v_k in V, the value a_k is an element of the feasible set A_k, and each team action is described by the values of a K-tuple $a = (a_1, ..., a_K)$, that belongs to A that is the set of feasible team actions (equal to the Cartesian product $X_i A_k$).

The team gross payoff function, denoted by ω, depends on both the team action and the state of the world. In particular, let X be the set of the states of the world, represented by points in a K-dimensional space of variables. In such a way, each state of the world is described by the values of a K-tuple $x = (x_1, ..., x_K)$ where x_k is the real-valued outcome of the parameter labelled s_k, with S equal to $\cup_k s_k$.

Assumption 1:

a) The team gross payoff function $\omega (x, a)$ is represented by

$$\omega (x, a) = - \sum_{k=1}^{K} x_k a_k - \sum_{k,z=1}^{K} g_{kz}(x) a_k a_z$$

(1)

b) The matrix $[g_{kz}(x)]$ is positive definite for every x, $g_{kk}(x) = 1$ for every k, with $k = 1, ..., K$, and $g_{kz}(x) = -q$ for every $k \neq z$.

c) There exists a unique prior joint density function of $(x_1, ..., x_K)$, denoted by $f(x_1, ..., x_K)$. It is a multi-normal density function with $E(x_k) = 0$, $E(x_k^2) = 1$.

From Assumption 1 a), for every state of the world the team payoff is a quadratic function of the action variables, while q is a measure of the interaction between action variables. From Assumption 1 b), attention is confined to the cases where there exists a maximum payoff for every fixed state of the world x.

Let I be the finite set of L team members, with an element of I denoted by i and $K \geq L \geq 2$. A team member is a unit of ”action and understanding”, i.e. he will take action on the basis of his data and knowledge.
Although not explicitly present in Marschak and Radner, in order to define the relationship between action variables and team members, let a team assignment structure \(\delta \) be a partition of \(V \) into \(L \) subsets collecting the action variables controlled by each team member. In particular:

Assumption 2 the assignment function of the \(i \)th member, denoted by \(\delta_i \), is the profile \((\delta_{i1}, \ldots, \delta_{iK}) \) such that \(\delta_{ik} = 1 \) if the \(i \)th member controls the value of the action variable \(v_k \), while \(\delta_{ik} = 0 \) if the \(i \)th member does not control the value of the action variable \(v_k \), with \(k = 1, \ldots, K \). The team assignment structure is the matrix \(\delta = [\delta_{ik}] \), with \(\sum_i \delta_{ik} = 1 \) for every \(k \), \(i = 1, \ldots, L \) and \(k = 1, \ldots, K \).

From Assumption 2, there is no opportunity of joint responsibility among members for the same action variable. Let \(D_i \) be the subset of action variables controlled by the \(i \)th member, i.e.:

\[
D_i = \{ v_k \in V \mid \delta_{ik} = 1 \} \tag{2}
\]

Given Assumption 2 and (2), \(D_i \cap D_j = \emptyset \) \(\forall i \neq j \), and \(\bigcup_{i=1}^{L} D_i = V \). Hence a team assignment structure will induce a function \(\rho : V \rightarrow I \) such that for every \(v_k \) in \(V \) there exists exactly one \(i \) in \(I \) equal to \(\rho(v_k) \).

The \(i \)th member will choose his action profile \(a_i \) on the basis of his understanding, i.e. his data and knowledge. Data and knowledge will be defined in four steps.

First step: the \(i \)th member will choose his action profile \(a_i \) on the basis of the available information about the state of the world \(x \).

Assumption 3 the information function of the \(i \)th member, denoted by \(\eta_i \), is the profile \((\eta_{i1}, \ldots, \eta_{iK}) \) such that \(\eta_{ik} = 1 \) if the \(i \)th member is informed of the value \(x_k \), at the time of choosing \(a_i \); while \(\eta_{ik} = 0 \) if the \(i \)th member is not informed of the value \(x_k \), with \(k = 1, \ldots, K \). The team information structure is the matrix \(\eta = [\eta_{ik}] \) with \(i = 1, \ldots, L \) and \(k = 1, \ldots, K \).

Given \(\eta \), let \(S_i \) be the set of parameters the member \(i \) is informed about, and let \(x_i \) be the corresponding profile of outcomes, i.e.:

\[
S_i = \{ s_k \in S \mid \eta_{ik} = 1 \} \tag{3}
\]

\[
x_i = (x_k)_{s_k \in S_i}
\]

Let an informational structure be called decentralised when there are two members, \(i \) and \(j \), at least such that \(S_i \nsubseteq S_j \) and \(S_j \nsubseteq S_i \) from (3).

Since the focus of the paper will be on informationally decentralised organisations, given Assumption 1 and (3), in order to rule out the cases of either null or complete data, it will be assumed that, given:

\[
I_\emptyset = \{ i \in I \mid S_i = \emptyset \}
\]

\[
I_\Omega = \{ i \in I \mid S_i = S \}
\]

1Consequently the set \(D_i \) of action variables controlled by the \(i \)th member is the subset of \(V \) having image \(i \) under \(\rho \).
the team information structure η is such that both \(I_0 \) and \(I_Ω \) are proper subsets of \(I \).

Actually Marschak and Radner consider cases of null data under the heading of routine procedures that yield the lowest gross expected team payoff (with no information costs), in contrast to the case of complete data generating the highest gross expected team payoff.

Second step: the \(i \)th member will choose his action profile \(a_i \) given the message eventually received by other team members about the team action \(a \).

Assumption 4 the message function of the \(i \)th member, denoted by \(τ_i \), is the profile \((τ_{i1}, ..., τ_{iK})\) such that \(τ_{ik} = 1 \) if the \(i \)th member receives a signal \(c_{ik} \) relevant for the value \(a_k \), at the time of choosing \(a_i \); while \(τ_{ik} = 0 \) if the \(i \)th member receives no signal \(c_{ik} \) relevant for the value \(a_k \), with \(k = 1, ..., K \). The team message structure is the matrix \(τ = [τ_{ik}] \) with \(i = 1, ...L \) and \(k = 1, ..., K \).

Let a team message structure \(τ \) be called null when \(\sum_ι τ_{ik} = 0 \) for every \(k, k = 1, ..., K \).

Given \(τ \), let \(V_i \) be the set of action variables the member \(i \) receives a message about, and let \(t_i \) be the corresponding profile of signals, i.e.:

\[
V_i = \{v_k \in V \mid τ_{ik} = 1\} \tag{4}
\]
\[
t_i = (c_{ik})_{v_k \in V_i}
\]

The information \(x_i \) available to the \(i \)th member in (3), coupled with the message \(t_i \) eventually received from other members in (4), constitute the data \(d_i \) available to the \(i \)th member. Marschak and Radner do not consider message structures according to Assumption 4 explicitly, because in their basic set-up the team information structure already embodies the outcomes of previous communication. They do, however, provide examples of messages with and without errors in communication.

Third step: the \(i \)th member will choose his action profile \(a_i \) given his own competence about the relationships across the state variables. The competence of a member is a measure of his expertise concerning the team payoff function. In particular:

Definition 1 given a subset \(\bar{S} \) of \(S \), the \(i \)th member will be competent about \(\bar{S} \) if he knows the density function \(\int_{\bar{S}} \cdots \int_{\bar{S}} \int f(x_1, ..., x_K) \, dx_1 \cdots dx_K \)

Assumption 5 : the competence function of the \(i \)th member, denoted by \(ϕ_i \), is the profile \((ϕ_{i1}, ..., ϕ_{iK})\) such that \(ϕ_{ik} = 1 \) if the \(i \)th member is competent about a subset of \(S \) containing \(s_k \); while \(ϕ_{ik} = 0 \) if the \(i \)th member is not competent about any subset of \(S \) containing \(s_k \), with \(k = 1, ..., K \). The team competence structure is the matrix \(ϕ = [ϕ_{ik}] \) with \(i = 1, ...L \) and \(k = 1, ..., K \).

Given \(ϕ \), let \(Q_i \) be the greatest subset of parameters the \(i \)th member is competent about, and let \(q_i \) be the corresponding profile of outcomes, i.e.:
\[Q_i = \{ s_k \mid \varphi_{ik} = 1 \} \]
\[q_i = (x_k)_{s_k \in Q_i} \]

From Assumption 5 and (5), it follows that every \(i \)th member knows the density function \(f_i(q_i) \) with:
\[
f_i(q_i) = \int_{S|Q_i} \cdots \int f(x_1, \ldots, x_K) \, dx_1 \ldots dx_K
\]

Moreover, every \(i \)th member can compute the marginal density function for all the subsets of \(Q_i \). If \(Q_j \subset Q_i \),
\[
f_j(q_j) = \int_{Q_i \setminus Q_j} f_i(q_i) \, dq_i.
\]

Fourth step: the \(i \)th member will choose his action profile \(a_i \) on the basis of his comprehension of the team environment in terms of assignment, information, message and competence structure. In a word, the \(i \)th member’s comprehension stands for what the \(i \)th member knows about which tasks other members perform on the basis of which data and competence.

Given an operator \(\lambda_j \), let \(I_{\lambda i} \) be the subset of \(I \) collecting all the team members whose operator \(\lambda_j \) is known to the \(i \)th member. Consequently, say that:

a) the \(i \)th member’s reduced assignment structure is the matrix \(\delta_{ri} = [\delta_{jk}] \) with \(j \in I_{\delta i} \) and \(k = 1, \ldots, K \)

b) the \(i \)th member’s reduced information structure is the matrix \(\eta_{ri} = [\eta_{jk}] \) with \(j \in I_{\eta i} \) and \(k = 1, \ldots, K \)

c) the \(i \)th member’s reduced message structure is the matrix \(\tau_{ri} = [\tau_{jk}] \) with \(j \in I_{\tau i} \) and \(k = 1, \ldots, K \)

d) the \(i \)th member’s reduced competence structure is the matrix \(\varphi_{ri} = [\varphi_{jk}] \) with \(j \in I_{\varphi i} \) and \(k = 1, \ldots, K \).

The \(i \)th member’s comprehension is the profile \(h_i = (\delta_{ri}, \eta_{ri}, \tau_{ri}, \varphi_{ri}) \). It will be assumed that every member is aware of his own tasks, data and competence, i.e. \(i \in I_{\lambda i} \) with \(\lambda = \delta, \eta, \tau, \varphi \) for every \(i \in I \).

The competence of the \(i \)th member, coupled with his comprehension of the team environment, constitutes the knowledge \(u_i \) of the \(i \)th member. In Marschak and Radner neither members’ competence nor comprehension are mentioned in that it is assumed that team members are homogenous under all respects with just the exception of information diversification.

Let the \(i \)th member’s knowledge be called complete when both his competence is complete (i.e. \(Q_i = S \)), and his comprehension is complete (i.e. \(h_i = (\delta, \eta, \tau, \varphi) \)).

The data \(d_i \) available to the \(i \)th member, together with his knowledge \(u_i \), constitute the \(i \)th member’s understanding.

Assumption 6 the team members share a common interest in the maximization of the team payoff function in (1). Every \(i \)th member chooses all the elements of his action profile \(a_i \) simultaneously, given his understanding.

2Marschak (1955, p.128) defines teams in the following way:

We define a team as a group of persons each of whom takes decisions about something different but who receive a common reward as the joint result of all those decisions.
From Assumption 6, the ith member will choose his action profile given his data and understanding. Hence, given the ith member’s understanding, his action profiles for all possible data will be the range of some profile of decision functions, one decision function $\alpha_k(d_i | u_i)$ for every v_k in D_i, with $a_k = \alpha_k(d_i | u_i)$. The resulting K-tuple of decision functions, denoted by $\alpha = (\alpha_1, ..., \alpha_K)$, will be called a team decision rule.

The purposes of the present paper are a) to analyse the distribution of knowledge in informationally decentralised systems, and b) to specify a self-contained model of organisation that does not need the intervention of any outside party, beyond the team members themselves. Accordingly, let an organisational model be called viable in the following sense:

Definition 2 given δ, η and τ, an organisational model will be said viable if:
- the competence of the members yields a well defined optimal (i.e. payoff maximising) team decision rule
- the knowledge of the members allows each of them to compute and adopt the relevant component of the team optimal decision rule.

3 Team production à la Marschak-Radner

In the theory of teams by Marschak and Radner (1972), the image of the enterprise is that of a computer to be programmed to respond to specific information inputs. Essentially, the team problem is to choose simultaneously the team information structure and the team decision rule that will yield the highest expected team payoff, taking account of information and decision costs.

In particular, Radner (1987, p.9) emphasises that:

The theory of teams ... is concerned with the efficient use of information in an informationally decentralized organization....The focus is on 1) the incomplete dissemination of information among the several decision makers (informationally decentralized), 2) the characteristics of decision functions that are optimal, given that informational decentralization, and 3) the comparison of alternative (decentralized) information structures, under the assumption that each one will be used efficiently.

Under Assumption 1, complete competence of every member and no messages exchanged between the members, Radner (1962) shows that the components of the unique Bayes team decision function are linear in the information variables. A team decision function is called person-by person satisfactory if it cannot be improved by changing the decision function of any one member in the team. Moreover, as Marschak and Radner (1972) prove, every optimal team decision rule is person-by person satisfactory, and the converse is true in this case, although not generally, because the payoff function is differentiable and concave in the action variables.

In particular, in a decentralised system each member decides in the light of his information, all however according to a decision rule agreed upon in advance (Radner (1959)). Specifically, Radner (1962, p.862) argues the following:
Suppose the decision functions of all but one member are fixed; then, the problem facing that one member becomes a one-person Bayesian problem, for the actions of the other members can then be considered as part of "the state of the world", and he can therefore apply Bayes' rule.

Hence, each member maximises his expected team payoff function deriving a person-by-person satisfactory decision rule, knowing the decision rules of all the other members. It is the knowledge of the other members’ decision rules that allows the ith member to take the other members’ actions as random variables with known probability distribution in informationally decentralized systems. However, given the set-up of Marschak and Radner, the members’ knowledge is sufficiently comprehensive to allow every member to derive the entire optimal team decision rule. Indeed, if each member knows the decision rules of all the other members, then the comprehension of every member is complete. Moreover, given that all members decide according to a decision rule agreed upon in advance, both the members’ knowledge and Assumptions 1 and 6 are common knowledge. Under those circumstances, the following can be proved.

Proposition 1 given a null message structure and complete competence of every member, every ith member will choose his optimal decision rule if and only if the following conditions are met:

a) the knowledge of every member is complete
b) the members’ knowledge and Assumptions 1 and 6 are common knowledge.

Proof. Given δ, the team information structure can be represented also by the per-action information matrix $\eta_K = [\eta_{kz}]$, with action variables along the rows and parameters along the columns ($k = 1,...K$ and $z = 1,...,K$), where $\eta_{kz} = 1$ ($= 0$) if the member $\rho (v_k)$ is (is not) informed of the value x_z, at the time of choosing $a_{\rho(v_k)}$. It follows that $\eta_{kz} = \eta_{pz}$ for every $\rho (v_k) = \rho (v_p)$.

Given η_K, let S_{v_k} be the set of parameters the member in charge of v_k is informed about, and let x_{v_k} be the corresponding profile of outcomes. Given the union of S_{v_k} and S_{v_p}, let x_{v_k,v_p} be the corresponding profile of outcomes. Consequently:

$$S_{v_k} = \{ s_z \in S \mid \eta_{kz} = 1 \}$$

$$x_{v_k} = (x_z)_{s_z \in S_{v_k}}$$

$$x_{v_k,v_p} = (x_z)_{s_z \in S_{v_k} \cup S_{v_p}}$$

Given complete comprehension of every member, every member knows that:

$$a_k = \alpha_k (x_{v_k}) \quad \forall v_k \in V.$$ \hspace{1cm} (6)

Given common knowledge of Assumption 1, every member knows that all members
know that from (1) the expected team gross payoff function is the following one:

\[
E[\omega(x, \alpha)] = \sum_{k=1}^{K} \int_{S_{x_k} \cup S_{x_k}} x_k \alpha_k(x_{v_k}) f(x_{v_k}, x_{v_k}) \, dx_{v_k} + \]

\[
- \sum_{k=1}^{K} \int_{S_{x_k}} x_k \alpha_k^2(x_{v_k}) f(x_{v_k}) \, dx_{v_k} + \]

\[
+ 2q \sum_{k, z \neq k} \int_{S_{x_k} \cup S_{x_z}} \alpha_k(x_{v_k}) \alpha_z(x_{v_z}) f(x_{v_k}, x_{v_z}) \, dx_{v_k} dx_{v_z} \]

Given common knowledge of the members’ knowledge and of Assumption 6, every member knows that all members know that the optimal \(\hat{\alpha} \) are the solution of the following system of \(K \) FOC:

\[
- \int_{S_{x_k}} x_k f(x_{v_k}) \, dx_{v_k} - 2\alpha_k(x_{v_k}) f(x_{v_k}) + \]

\[
+ 2q \sum_{z \neq k, S_{x_k} = S_{x_z}} \alpha_z(x_{v_k}) f(x_{v_k}) + \]

\[
+ 2q \sum_{z \neq k, S_{x_k} \neq S_{x_z}} \int_{S_{x_z} - S_{x_k}} \alpha_z(x_{v_z}) f(x_{v_k}, x_{v_z}) \, dx_{v_z} - \]

\[
= 0 \quad \forall x \in X \]

i.e.:

\[
\frac{\partial E[\omega | x_{v_k}]}{\partial \alpha_k} = 0 \quad \forall x \in X \quad \forall x \in X \]

If some members’ comprehension were not complete with respect to the assignment or the information structure, those members could not proceed from (6) to (7) for every \(v_k \) in \(V \), and compute their optimal decision rule.

If some members’ comprehension were not complete with respect to the competence structure, those members could not solve the system in (9) for every \(v_k \) in \(V \).

If condition b) were not satisfied, the ith member could not be certain of the jth member’s decision rule.

Hence, since there exists a unique team optimal action rule for each information structure, the same pre-requisites that allow each member to work out his individual optimal decision rule will enable him to compute the decision rule of every other member.

Proposition 1 helps understanding the demanding burden on the members’ competence and comprehension that remains implicit in the analysis of organisational behaviour under informationally diversified structures. The dissemination of information among several decision makers is supplemented by a sort of coordination mechanism hidden in the brain of team members. Savings on information costs, realised through
diversification, are to compared with the cost of teaching all members the entire assignment and information structures, besides having all members to master complete competence. Indeed, either team members are the real decision makers and then they need knowledge to support a well defined expected payoff function, or they are automata able to perform constrained optimisations and the real deus-ex-machina, the organiser, is left unidentified. I will return to this point later in the next section.

In Marschak and Radner, since members’ intelligibility is such that the other members’ actions can be considered as part of the state of the world, all the messages received by the i\(^{th}\) member can influence his action just because they convey information. In this sense, there is no role for instructions distinct from communication between members: the i\(^{th}\) member will always be able to infer from the j\(^{th}\) member’s instructions the set of data on which those instructions are based, and, consequently, he will adopt the received instructions as his own action rule. If anything is transmitted in teams à la Marschak-Radner, it is just communicated set of data, with or without noise.

This particular issue is explained effectively by Geanakoplos and Milgrom (1991, p.211) who argue that:

Under traditional models of rational decision-making, a key part of the specification is that a rational decision maker can adopt any decision strategy that depends only on what he knows. In these models, an optimal team strategy will have each manager maximizing the expected payoff of the organization, given the information he has acquired and the signals he has received when he makes his decision.... From the point of view of manager i, the decisions made by others in the organization are random variables because their are functions of their information. Equally, from the manager’s point of view, the signals he receives are observed random variables because they are functions of the information of those sending the signals... (It is assumed that) i can costlessly and instantaneously infer the significance of the signals communicated to him by other managers....(I)n an optimal team strategy there is no role for instructions from any manager to any other. That is, at an optimum, a superior may communicate information to his subordinate but he never limits the set of actions that the subordinate may undertake, nor does he directly set the objective the subordinate pursues... When communication consists of orders,... then the manager can infer from the orders themselves that it is optimal to obey: optimal orders convey their own justification. When managers are not perfectly adept at interpreting communications, there can be a separate role for instructions limiting the manager’s choice set.

Marschak and Radner provide examples of ”complete command”: orders are sent from the j\(^{th}\) member to the i\(^{th}\) member, given \(S_i \subseteq S_j\). In fact, their assumption according to which the member receiving the order is not allowed to make any adjustments\(^3\) is redundant. Indeed, the following can be proved:

\(^3\)Marschak-Radner (1972, p.288): ”theirs not to reason why; theirs but to do or die”.

11
Given members \(i\) and \(j\), let \(m_{ij}\) be the difference between the cardinality of \(S_j\) and \(S_i\) in (3), and let \(n_i\) be the cardinality of \(D_i\) in (2), i.e.:

\[
m_{ij} = \sharp S_j - \sharp S_i \quad \text{given} \quad S_i \subset S_j
\]

\[
n_i = \sharp D_i
\]

Proposition 2 given complete knowledge of every member and common knowledge of the members’ knowledge and of Assumptions 1 and 6, provided that the team message structure is such that the \(i\)th member receives a message from the \(j\)th member made of as many distinct items as \(\min\{m_{ij}, n_i\}\) in (10), then the team will behave as if the \(i\)th member had observed \(S_j\).

Proof. The expected team gross payoff function is increasing in \(S_i\).

Suppose that \(m_{ij} \leq n_i\). Communications from member \(j\) to member \(i\), made of \(m_{ij}\) distinct items, such that member \(i\) can induce the profile \((x_z)_{z \in (S_j - S_i)}\), will be both feasible and optimal.

Suppose that \(m_{ij} > n_i\). There does not exist any communication from member \(j\) to member \(i\), made of \(n_i\) distinct items, such that member \(i\) can induce the profile \((x_z)_{z \in (S_j - S_i)}\).

If member \(j\) could choose all the action variables in \((D_i \cup D_j)\), the optimal \(\tilde{\alpha}\) would result from the solution of the system in (8). Given \(D_i\), re-number member \(i\)’s action variables in such a way that \(a_i = (a_{i1}, ..., a_{in_i})\). The optimal action profile would be such that:

\[
\begin{bmatrix}
-2 & 2q & 2q \\
2q & -2 & 2q \\
2q & 2q & -2 \\
\end{bmatrix}
\begin{bmatrix}
\tilde{a}_{i1} \\
\tilde{a}_{i2} \\
\tilde{a}_{in_i} \\
\end{bmatrix}
=
\begin{bmatrix}
E \left[x_{i1} - 2q \sum_{v_k \notin D_i} \tilde{\alpha}_k \left(x_{p(v_k)} \right) \middle| x_j \right] \\
E \left[x_{i2} - 2q \sum_{v_k \notin D_i} \tilde{\alpha}_k \left(x_{p(v_k)} \right) \middle| x_j \right] \\
E \left[x_{in_i} - 2q \sum_{v_k \notin D_i} \tilde{\alpha}_k \left(x_{p(v_k)} \right) \middle| x_j \right] \\
\end{bmatrix}
\]

with:

\[
\tilde{\alpha}_{ik} = E \left[g_k (x) \mid x_j \right] = \tilde{\alpha}_{ik} (x_j)
\]

Consider a message \(t_i = (\tilde{a}_{i1}, ..., \tilde{a}_{in_i})\) where \(\tilde{a}_{ik} = \tilde{\alpha}_{ik} (x_j)\). Knowing the action rules of the \(-i\) members, \(t_i\) and \(x_i\), member \(i\)’s action profile will result from the solution of the following system:

\[
\begin{bmatrix}
-2 & 2q & 2q \\
2q & -2 & 2q \\
2q & 2q & -2 \\
\end{bmatrix}
\begin{bmatrix}
a_{i1} \\
a_{i2} \\
a_{in_i} \\
\end{bmatrix}
=
\begin{bmatrix}
E \left[x_{i1} - 2q \sum_{v_k \notin D_i} \tilde{\alpha}_k \left(x_{p(v_k)} \right) \mid t_i, x_i \right] \\
E \left[x_{i2} - 2q \sum_{v_k \notin D_i} \tilde{\alpha}_k \left(x_{p(v_k)} \right) \mid t_i, x_i \right] \\
E \left[x_{in_i} - 2q \sum_{v_k \notin D_i} \tilde{\alpha}_k \left(x_{p(v_k)} \right) \mid t_i, x_i \right] \\
\end{bmatrix}
\]
with:

\[a_{ik} = E[g_k(x) \mid t_i, x_i] = E[g_k(x) \mid x_j] = \bar{a}_{ik} \]

Proposition 2 shows that in teams à la Marschak-Radner optimal orders carry their own justifications because they are an efficient conveyor of information. Hence, optimal orders are obeyed not out of a sense of loyalty or duty induced by a common payoff function, but because they perfectly fit in a framework in which the member receiving the instructions can decode them, apply Bayes’ rule and return to play games against nature.

Example 1

\[\delta = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \eta = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

\[\tau = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \varphi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \]

Given \(S_2 \subset S_1 \), suppose that member 1 sends a message, in the form of his advised value for action 3 (i.e. \(\bar{a}_3 \)), to member 2, who is in charge of the action variable 3.

Given \((x_1, x_2) \), if member 2 were to adopt \(a_3 = \bar{a}_3 \), then member 1 would choose:

\[a_1 = \beta_{11} x_1 + \beta_{12} x_2 \]
\[a_2 = \beta_{21} x_1 + \beta_{22} x_2 \]
\[\bar{a}_3 = \beta_{31} x_1 + \beta_{32} x_2 \]

where:

\[\beta_{11} = -\frac{(1 - q) + q A_3}{2(1 + q)(1 - 2q)} \]
\[\beta_{12} = -\frac{q + q B_3}{2(1 + q)(1 - 2q)} \]
\[\beta_{21} = -\frac{q + q A_3}{2(1 + q)(1 - 2q)} \]
\[\beta_{22} = -\frac{(1 - q) + q B_3}{2(1 + q)(1 - 2q)} \]
\[\beta_{31} = -\frac{A_3}{2} + q (\beta_{11} + \beta_{21}) \]
\[\beta_{32} = -\frac{B_3}{2} + q (\beta_{12} + \beta_{22}) \]
\[E[x_3 \mid x_1, x_2] = A_3 x_1 + B_3 x_2 \]

Given \(\bar{a}_3 \), then member 2, knowing (11) and (12), would choose:

\[a_3 = E\left[-\frac{x_3}{2} + q (\alpha_1 (x_1, x_2) + \alpha_2 (x_1, x_2)) \mid \bar{a}_3 \right] = \]
\[\frac{\beta_{31} M_1 + \beta_{32} M_2}{2 (\beta_{31}^2 + 2r_{12} \beta_{31} \beta_{32} + \beta_{32}^2)} \cdot \bar{a}_3 = \bar{a}_3 \]
where:

\[
M_1 = -r_{13} + 2q(\beta_{11} + \beta_{21}) + 2qr_{12}(\beta_{12} + \beta_{22}) \\
M_2 = -r_{23} + 2qr_{12}(\beta_{11} + \beta_{21}) + 2q(\beta_{12} + \beta_{22}) \\
r_{mn} = \text{cov}(x_m, x_n)
\]

A further example of the equivalence between command and communication in Marschak and Radner is provided in the Appendix under Example 3.

4 Ignorance and Hierarchy

¿From Proposition 2, in teams à la Marschak-Radner, instructions can take the form of an advice from the \(j\)th member to the \(i\)th member concerning the \(i\)th member’s action variables, when the information of the \(j\)th member is finer than that of the \(i\)th member.

Hence, what role can instructions play when information is disseminated among members? Moreover, is there any way for having a rational decision maker adopt decision strategies that do not depend only on what he alone knows? Indeed, as Marschak and Radner (1972, p. 312-313) note themselves:

The lowliest subordinate, even one’s horse or a simple automaton, is left a margin of decision to exploit information that is more easily available to the subordinate than to the boss, and to relieve the latter’s tasks from trivia.

Moreover, to the example of complete command Marschak and Radner add an example of partial command or delegation.

Possibly, the common use of the word knowledge conceals some misunderstanding. Indeed the term knowledge is used for both the act of being informed about the realized outcomes of some variables (either by means of direct observation or by means of communication) and the act of understanding the relationships between the variables generating the data themselves, besides a thorough comprehension of the team organisation.

The approach taken in this paper is to start from Simon’s intuition, according to which instructions define some of the premises used in making subsequent decisions. Indeed, received premises are the easiest way to formalise the idea that instructions allow the \(i\)th member’s choice to take account of something he does not understand. In that case, the \(i\)th member’s decision strategy can depend on what other members, apart from the \(i\)th member himself, know.

In order to analyse a simple setting, suppose that all messages concern some values of the action variables under the control of the sender, i.e.:

Assumption 7 the team message structure \(\tau\) is such that \(\tau_{ik} = 1\) if the \(i\)th member is informed of the fixed value \(a_k\), at the time of choosing \(a_i\); while \(\tau_{ik} = 0\) if the \(i\)th member is not informed of the fixed value \(a_k\), with \(v_k \notin D_i\).
Under Assumption 7, \(\tau_{ik} = 0 \) for every \(v_k \in D_i \), while \(c_{ik} = a_k \). The message \(t_i \) received by the \(i \)th member is the profile of values of the action variables the \(i \)th member is informed about. Moreover, given Assumption 6, if \(\tau_{ik} = 1 \) for some \(v_k \in D_j \), then \(\tau_{jz} = 0 \) for every \(v_z \in D_i \).

Since every member chooses his action profile once for all, a message structure satisfying Assumption 7 implies an ordered sequence of decisions that can be traced back in the following way.

Let \(V_{ij} \) be the subset of action variables in (4) the values of which are controlled by the \(j \)th member and communicated to the \(i \)th member. Let \(I_{i0} \) be the subset of members who command action variables the \(i \)th member is informed about. Consequently:

\[
V_{ij} = \{ v_k \in V_i \mid \delta_{jk} = 1 \}
\]

\[
I_{i0} = \{ j \in I \mid V_{ij} \neq \emptyset \}
\]

Hence, \(V_i = \bigcup_{j \in I} V_{ij} \). The members in \(I_{i0} \) can always be grouped into two disjoint subsets, \(A_{io} \) and \(B_{io} \) such that:

\[
A_{io} = \{ j \in I_{i0} \mid V_{ij} = D_j \}
\]

\[
B_{io} = I_{i0} \setminus A_{io}
\]

In order to avoid tiresome definitions and notation, in what follows it will always be assumed that \(\bigcup_{m=1}^{\hat{m}} M_m = \emptyset \) if \(\hat{m} < 1 \).

Ranks, defined in the following way, can represent the sequence of decisions induced by the message structure.

Definition 3 rank 1, denoted by \(I_1 \), is the subset of members who are informed of no action variable. Rank \(n \), denoted by \(I_n \), is the subset of members who are informed of action variables under the command only of members of rank less than \(n \), with one member of rank \((n-1)\) at least and \(n \geq 2 \). Hence given (13):

\[
I_1 = \{ i \in I \mid I_{i0} = \emptyset \}
\]

\[
I_n = \left\{ i \in I \mid I_{i0} \not\subseteq \bigcup_{m=1}^{n-2} I_m, I_{i0} \subseteq \bigcup_{m=1}^{n-1} I_m, n \geq 2 \right\}
\]

In (15), since \(V \) and \(I \) are finite, \(I_1 \neq \emptyset \). Moreover, there will exist a number \(\hat{n} \geq 0 \) such that:

\[
\bigcup_{m=1}^{\hat{n}-1} I_m \subset I = \bigcup_{m=1}^{\hat{n}} I_m
\]

By construction, \(\forall i \in I \), there will be a unique number \(n_i \), with \(1 \leq n_i \leq \hat{n} \), such that \(i \in I_{n_i} \). If \(n_i = n_j \), with \(i, j \in I \) and \(i \neq j \), then \(V_{ij} = V_{ji} = \emptyset \). If \(n_i < n_j \), \(V_{ij} = \emptyset \).

\[\text{If anyone of } V_i, V_{ij} \text{ and } I_{i0} \text{ is empty, so are the other two. From Assumption (7), } V_{ii} = \emptyset \text{. If } V_{ij} \neq \emptyset, \text{ then } V_{ji} = \emptyset \text{. Alternatively, if } j \in I_{i0}, \text{ then } i \notin I_{j0} \text{.} \]
Let $I_{<n}$ and $I_{>n}$ be respectively the subset of members with rank lower or higher than n. Consequently:

$$I_{<n} = \bigcup_{m=1}^{n-1} I_m$$

$$I_{>n} = \bigcup_{m=n+1}^{\tilde{n}} I_m$$

Definition 4 the state space of the ith member of rank n_i, denoted by S_{i,n_i}, is the set of parameters known to the ith member (given η_i) or belonging to the state space of members of rank lower than n_i who control action variables the ith member is informed about. The message space of the ith member of rank n_i, denoted by V_{i,n_i}, is the set of action variables communicated to the ith member (given τ_i) or belonging to the message space of members of rank lower than n_i who control action variables the ith member is informed about, i.e.:

$$S_{i,n_i} = S_i \bigcup \left[\bigcup_{m=1}^{n_i-1} \left(\bigcup_{j \in (I_{i0} \cap I_m)} S_{j,m} \right) \right]$$

$$V_{i,n_i} = V_i \bigcup \left[\bigcup_{m=1}^{n_i-1} \left(\bigcup_{j \in (I_{i0} \cap I_m)} V_{j,m} \right) \right]$$ (18)

From (18) let \hat{x}_i be the profile of outcomes in the state space of the ith member. Let \tilde{S}_i be the set of state spaces of the members other than i that are included in the state space of the ith member. Let \tilde{x}_i be the profile of outcomes in \tilde{S}_i.

$$\hat{x}_i = (x_k)_{s_k \in S_{i,n_i}}$$

$$\tilde{S}_i = \{ S_{j,n_j} \mid j \in I_{i0} \}$$

$$\tilde{x}_i = (x_k)_{s_k \in \tilde{S}_i}$$

Hence:

$$\alpha_k = \alpha_k \left(x_{\rho(v_k)}, \tau_{\rho(v_k)} \left(\tilde{x}_{\rho(v_k)} \right) \right)$$ (19)

From (18) let \tilde{V}_i be the set of action variables that belong to the message space of the ith member but are not observed by the ith member. Let I_{i1} be the subset of members who command over the action variables in \tilde{V}_i. Consequently:

$$\tilde{V}_i = V_{i,n_i} \setminus V_i$$

$$I_{i1} = \left\{ j \in I \mid D_j \bigcap \tilde{V}_i \neq \emptyset \right\}$$ (20)

Given (20), for every member j in I_{i0}, $V_{j,n_j} \subseteq V_{i,n_i}$ and $(I_{j0} \cup I_{j1}) \subseteq (I_{i0} \cup I_{i1})$.
\[\hat{A}_{i0} = \{ j \in A_{i0} \mid I_{j0} \cup I_{j1} \subseteq A_{i0} \} \] (21)

\[\hat{A}_{i0} = A_{i0} \setminus \hat{A}_{i0} \]

From (21) \(\hat{A}_{i0} \) is the subset of members who command over action variables that are all observed by the \(i \)th member and who have a message space either empty or made of action variables observed by the \(i \)th member. If the \(i \)th member belongs to rank \(I_n \), from (17) \(A_{i0} \subseteq I_{<n} \). Let \(I_{i0} \) be the subset of members who belong to \(\bigcap_{z \in I \setminus A_{i0}} \hat{A}_{z0} \). Consequently:

\[\hat{I}_{i0} = \left\{ j \in \hat{A}_{i0} \mid j \in \bigcap_{z \in I \setminus \hat{A}_{i0}} \hat{A}_{z0} \right\} \] (22)

Given (22), if the \(i \)th member belongs to rank \(I_n, I_{>(n-1)} \subseteq I \setminus \hat{I}_{i0} \).

The members in \((I \setminus \hat{I}_{i0}) \) can always be grouped into two disjoint subsets, \(M_{i1} \) and \(M_{i2} \), such that \(M_{i2} \) is the greatest subset, possibly empty, of members receiving complete messages from members in \(M_{i1} \), i.e.:

\[I \setminus \hat{I}_{i0} = M_{i1} \cup M_{i2} \] (23)

\[M_{i2} = \left\{ j \in (I \setminus \hat{I}_{i0}) \mid \bigcup_{z \in M_{i1}} D_z \subset V_j \right\} \]

\[M_{i2} = \bigcup \tilde{M}_{i2} \]

\[M_{i1} = I \setminus \left(\hat{I}_{i0} \cup M_{i2} \right) \]

Given message structures satisfying Assumption 7, the following Proposition determines the conditions (necessary and sufficient) related to the distribution of knowledge that make an organisational model viable.

Proposition 3 under Assumption 7, the knowledge of members making an organisational model viable is such that for every member \(i \):

1) for every \(j \in M_{i2} \) in (23):

\[I_{\lambda j} \subseteq I_{\lambda i} \text{ with } \lambda = \delta, \eta, \tau, \phi \] (24)

\[\bigcup_{j \in M_{i2}} Q_j \subseteq Q_i \]

\[\bigcup_{j \in M_{i2}} S_j - \bigcup_{j \in M_{i2}} Q_j \subseteq S_i \cup Q_i \]

2) for every \(j \in M_{i1} \):

\[M_{i1} \cup M_{i2} \subseteq I_{\lambda j} = I_{\lambda i} \text{ with } \lambda = \delta, \eta, \tau, \phi \] (25)

\[Q_i = Q_j \]

\[\bigcup_{j \in (M_{i1}\setminus i)} S_j \subseteq S_i \cup Q_i \]

3) conditions 1) and 2) are common knowledge for every \(i \in M_{i1} \)
Proof. In the Appendix. ■

Proposition 3 identifies the requirements in terms of knowledge that have to be satisfied in an informationally diversified system in order to enable members to compute their own optimal action rule.

Complete competence may be superfluous for all members if some state variables never enter the members’ decision rules. The following Lemma shows under which conditions some unobserved state variables are redundant in the competence set of team members.

Lemma 1 If $S_i = \emptyset$ for some $i \in I_1$, the knowledge of members making an organizational model viable will be such that for every member $j \in I$:

$$Q_j \subseteq S \setminus \bar{S} \text{ with } \bar{S} = \{s_k \mid v_k \in D_i \lor s_k \notin S_j \forall j \in I\}$$

As well as state variables, so messages may be unnecessary if they neither convey information nor make the computational problem of the receiver easier. The following Lemma defines the sufficient conditions for messages to be redundant.

Lemma 2 if $S_j \subseteq S_i$ and $V_j \subseteq V_i$, the knowledge of members required by viability will be the same in all organisational models with either $j \in I_{i_0} \setminus \hat{I}_{i_0}$ or $j \notin I_{i_0}$.

From Proposition 3, ranks can have a somewhat new and significant function in realising economies of scale in the use of knowledge. Indeed, the following Lemma shows that the knowledge of members in progressive ranks need be nested.

Lemma 3 $Q_{\hat{n}} \subseteq Q_{(\hat{n}-1)} \subseteq Q_{(\hat{n}-2)} \subseteq \ldots \subseteq Q_1$

$I_{\lambda\hat{n}} \subseteq I_{\lambda(\hat{n}-1)} \subseteq I_{\lambda(\hat{n}-2)} \subseteq \ldots \subseteq I_{\lambda 1}$ with $\lambda = \delta, \eta, \tau, \varphi$

In this context, ranks correspond to different and ordered degree of intelligibility of the team operations. Alike principal-agents models, ranks are not the elements of an unproductive and sterile architecture directed to monitor the monitors of a unique rank of productive agents. Alike Garicano (2000), all members in all ranks are always active and the knowledge of the organisational model is itself as much relevant as the knowledge of the production technology. Alike models of parallel and sequential operations (Radner 1993), ranks are not a level of aggregation in the basic, identical and repeated, computational task, but suggest a diversified management ability.

As a matter of fact, there are circumstances in which the potential function of ranks gets wasted. The following Lemma defines the sufficient conditions under which every team members’ competence and knowledge need be complete.

Lemma 4 If for some ith member in $I_{\hat{n}}$ there exists some jth member in I_1 belonging to $I \setminus \hat{I}_{i_0}$, then all viable organizational models will require that:

$$Q_{\hat{n}} = Q_{(\hat{n}-1)} = Q_{(\hat{n}-2)} = \ldots = Q_1$$

$I_{\lambda m} = I$ for every $m \in I$ with $\lambda = \delta, \eta, \tau, \varphi$

In contrast with Lemma 4, the following Lemma shows the conditions that need be satisfied in order to minimize the distribution of knowledge among team members.
Lemma 5 the minimum knowledge of members making an organisational model viable is such that for every ith member in I_n and for every n:

$$ I_{<n} = I_{i0} $$

$$ I_{>(n-1)} = I_{\lambda i} \quad \text{with} \quad \lambda = \delta, \eta, \tau, \varphi $$

$$ Q_i = Q_n = \bigcup_{m \in I_n} \left\{ \bigcup_{j \in I_n \setminus i} S_j - S_m \right\} \cup \left\{ \bigcup_{j \in I_{(n+1)}} S_j - Q_{(n+1)} - S_m \right\} $$

with the conditions in (26) common knowledge for every ith member in I_n.

The following Lemma considers the case of symmetric information within the same rank. In particular:

Lemma 6 under the conditions of Lemma 5, if $S_i = S_j = S_n$ for every i,j in I_n and for every n, the minimum knowledge of members making an organisational model viable will be such that for every n:

$$ Q_n = S_{n+1} - S_n $$

Hence, the greater is the information diversification within the same rank, the higher will be the requirements in terms of knowledge. Moreover, as long as every rank defines the premises for the decisions of the next rank, an organisational model will not plan jumps of more than one step in the communication ladder among different ranks. Finally, if the costs of enlarging members’ competence decrease, there will jointly follow both a reduction in the number of ranks and the empowerment of the lower ranks.

Example 2 Suppose that:

$$ \delta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \eta = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} $$

$I_{\lambda 1} = I$, $I_{\lambda 2} = \{2,3\}$, $I_{\lambda 1} = \{3\}$ with $\lambda = \delta, \eta, \tau, \varphi$

Hence:

$$ E[\omega \mid d_3, u_3] = -x_3 \alpha_3 - a_1^2 - a_2^2 - \alpha_3^2 + 2q (a_1 \alpha_3 + a_1 a_2 + a_2 \alpha_3) $$

$$ \frac{\partial E[\omega \mid d_3, u_3]}{\partial \alpha_3} = 0 $$

$$ \alpha_3 (d_3 \mid u_3) = - \frac{1}{2} x_3 + q (a_1 + a_2) $$
Now compare the previous results with an analogous case of a team à la Marschak-Radner. In particular, suppose that:

\[
\frac{\partial E}{\partial \alpha_2} \left[\omega \mid d_2, u_2 \right] = 0
\]

\[
\alpha_2 (d_2 \mid u_2) = -\frac{1 + qr_{23}}{2(1-q^2)} x_2 + \frac{q}{1-q} \alpha_1
\]

\[
E \left[\omega \mid d_1, u_1 \right] = -x_1 \alpha_1 - \alpha_1^2 +
\]

\[
+ E \left[-\alpha_2 (d_2 \mid u_2) [x_2 + \alpha_2 (d_2 \mid u_2) - 2q\alpha_1 - 2q\alpha_3 (d_3 \mid u_3)] \mid d_1, u_1 \right] +
\]

\[
E \left[-\alpha_3 (d_3 \mid u_3) x_3 + \alpha_3 (d_3 \mid u_3) - 2q\alpha_1 \mid d_1, u_1 \right]
\]

with \(\alpha_2 (d_2 \mid u_2)\) from (29), and

\[
\alpha_3 (d_3 \mid u_3) = -\frac{1}{2} x_3 - \frac{q (1 + qr_{23})}{2(1-q^2)} x_2 + \frac{q}{1-q} \alpha_1
\]

from (28)

\[
\frac{\partial E}{\partial \alpha_1} \left[\omega \mid d_1, u_1 \right] = 0
\]

\[
\alpha_1 (d_1 \mid u_1) = -\frac{(1-q) + q (r_{12} + r_{13})}{2(1+q)(1-2q)} x_1
\]

Now compare the previous results with an analogous case of a team à la Marschak-Radner. In particular, suppose that:

\[
\delta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad \phi = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad I_{\lambda_i} = I
\]

(31)

with \(i = 1, 2, 3\) and \(\lambda = \delta, \eta, \tau, \varphi\)

Given (31), the following systems are equivalent:

\[
\begin{align*}
a) \quad \eta & = 0 \quad \tau = 1 \quad 0 \\
& 0 \quad 0 \quad 1 \quad 1 \quad 1
\end{align*}
\]

\[
b) \quad \eta = 1 \quad 1 \quad 0 \quad \tau = 0 \quad 0 \\
& 1 \quad 1 \quad 1 \quad 0 \quad 0
\]

Hence consider system b). It follows that:

\[
\frac{\partial E}{\partial \alpha_1} \left[\omega \mid d_1, u_1 \right] = -x_1 - 2\alpha_1 + 2q E \left[\alpha_2 (d_2 \mid u_2) + q\alpha_3 (d_3 \mid u_3) \mid d_1, u_1 \right] = 0
\]

\[
\frac{\partial E}{\partial \alpha_2} \left[\omega \mid d_2, u_2 \right] = -x_2 - 2\alpha_2 + 2q \alpha_1 (d_1 \mid u_1) + 2q E \left[\alpha_3 (d_3 \mid u_3) \mid d_2, u_2 \right] = 0
\]

\[
\frac{\partial E}{\partial \alpha_3} \left[\omega \mid d_3, u_3 \right] = -x_3 - 2\alpha_3 + 2q [\alpha_1 (d_1 \mid u_1) + \alpha_2 (d_1 \mid u_1)] = 0
\]
\begin{align*}
\alpha_1 (d_1 \mid u_1) &= -\frac{(1-q) + q(r_{12} + r_{13})}{2(1+q)(1-2q)} x_1 \\
\alpha_2 (d_2 \mid u_2) &= -\frac{1}{2(1-q^2)} x_2 + \frac{q}{1-q} a_1 - \frac{q}{2(1-q^2)} E[x_3 \mid x_1, x_2] \\
\alpha_3 (d_3 \mid u_3) &= \alpha_3 (d_3 \mid u_3) = -\frac{1}{2} x_3 + q (\alpha_1 + \alpha_2)
\end{align*}

If \(x_2 \) is sufficient to \(x_1 \) with respect to \(x_3 \), so that \(r_{13} = r_{12} r_{23} \), the optimal action rules in (32) are the same that follow from (28) – (30). In this event the net expected payoff of the organisational system in (27) will never be lower and will possibly be higher than that of the organisational system in (31).

5 Conclusions

The paper is concerned with the endowment of knowledge that agents in a simple team model must possess in order to have optimal interdependent actions, notwithstanding decentralised information.

In particular, if some members can transmit the values chosen for their action variables to other members, hierarchical ranks can be interpreted as ordered degrees of intelligibility of the team operations among the team members. The paper suggests that instructions can be thought of as a similar type of message: they are a way of setting premises for subsequent decisions when the knowledge of the agents does not mutually overlap.

Some assumptions of the model presented in the paper could be relaxed. For instance, the team payoff function is quadratic in the action variables, and there is no garbling in the transmitted instructions. In particular, the portrait of hierarchies, suggested by the paper, could be conducive to models in which superiors act in the quality of "experts" for their subordinates.

To sum up, the paper suggests that, along with the dissemination of information among several decision makers, the control, i.e. the understanding, of the team operations can be diversified as well among team members. Flatter organisations demand higher knowledge of their members. In this sense, the boundaries between economies in the transmission of information and economies in the use of knowledge get blurred.

6 Appendix

Example 3 Consider the following example of the role of command in Marschak-Radner, in a slightly modified set-up. In particular, suppose that:

1) there are only two final action variables, \(a_1 \) and \(a_2 \), with \(a_i \in \{-1, 1\} \) \(\forall i \)

2) the team payoff function is \(\omega (x, a) \) with

\[\omega (x, a) = x_1 a_1 + x_2 a_2 - qa_1 a_2 \quad q \geq 0 \]

where \(x_1 \) and \(x_2 \) are random variables, statistically independent, each having a continuous distribution symmetric around zero \(E(x_i) = 0 \).
Consider the case of members working in series, i.e.:

\[\eta_1 = (x_1, x_2) \Rightarrow (a_1, a_2) \]
\[\eta_2 = (a_1, a_2) \]

According to (33) member 1 observes \((x_1, x_2)\), computes \((a_1, a_2)\) and sends a corresponding command to member 2 who simply follows orders.

Let \(B_{ij}\) represent the set of possible alternative messages that can be sent directly from element \(i\) to element \(j\), where \(i = 0, 1, 2\) \((0\text{-nature, } 1\text{-member 1, } 2\text{-member 2})\).

In the present case:

\[B_{01} = \text{space of pairs of real numbers} - \text{complete information} \]
\[B_{12} = \{(1, 1), (-1, 1), (1, -1), (-1, -1)\} \]
\[B_{20} = B_{12} - \text{complete command} \]
\[B_{10} = B_{02} = \emptyset \]

Marschak and Radner show that in (33) the optimal pair of action \((\tilde{a}_1, \tilde{a}_2)\) is given by:

\[\tilde{a}(x) = \begin{cases} (1, 1) \\ (-1, 1) \\ (1, -1) \\ (-1, -1) \end{cases} \begin{cases} x_1 + x_2 - q \\ -x_1 + x_2 + q \\ x_1 - x_2 + q \\ -x_1 - x_2 - q \end{cases} \text{is the largest} \]

It follows that:

\[
E[\omega(x, a)] = 2 \int_q x_1dF_1(x_1) + 2 \int_{x_2=-q}^q \int_{x_1=x_2}^{x_2} x_1dF_1(x_1)dF_2(x_2) + \\
+ 2 \int_q x_2dF_2(x_2) + 2 \int_{x_1=-q}^q \int_{x_2=x_1}^{x_2} x_2dF_2(x_2)dF_1(x_1) + \\
- q [4F_1(-q)F_2(-q) - 1].
\]

In the current example it is particularly evident that “optimal orders convey their own justification” in Marschak-Radner. Indeed, the team would achieve the same expected payoff if member 1 just sent a message \(\gamma(x)\), and not an order, to member 2.

Consider the following case:

\[\eta_1 = (x_1, x_2) \Rightarrow \gamma(x) \]
\[\eta_2 = \gamma(x) \Rightarrow (a_1, a_2) \]

\[B_{01} = \text{space of pairs of real numbers} - \text{complete information} \]
\[B_{12} = \{(1, 1), (2, 1), (3, 1), (4, 1)\} \]
\[B_{20} = \{(1, 1), (-1, 1), (1, -1), (-1, -1)\} \]
\[B_{10} = B_{02} = \emptyset \]

Proposition 4 in (35) the expected team payoff will be the same as in (34) provided \(\gamma(x)\) satisfies:

| \(\text{pr} [\gamma(x) = X | s_1] = A \) | \(B\) | \(C\) | \(D\) |
|-----|-----|-----|-----|
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |

22
where $X \in \{A, B, C, D\}$, $A \in \{1, 2, 3, 4\}$, $B \in \{A^c\}$, $C \in \{(A \cup B)^c\}$, $D \in \{(A \cup B \cup C)^c\}$

Proof. In the current example, the relevant set of the states of nature is $S = \{s_1, s_2, s_3, s_4\}$, where:

$s_1 : \{x_1, x_2 \mid x_i \geq q \ \forall i\}$

$s_2 : \{\{x_1, x_2 \mid x_1 \leq -q \ , x_2 \leq -q\} \}$

$s_3 : \{\{x_1, x_2 \mid -q < x_1 \leq q \ , x_2 \geq x_1\} \}$

$s_4 : \{x_1, x_2 \mid x_i \leq -q \ \forall i\}$

under the following prior distribution:

$$pr (s_1) = \int_{x_1=q}^{x_1=-q} \int_{x_2=q}^{x_2=-q} dF_1 (x_1) dF_2 (x_2)$$

$$pr (s_2) = \int_{x_1=-q}^{x_1=q} \int_{x_2=-q}^{x_2=q} dF_1 (x_1) dF_2 (x_2) + \int_{x_1=-q}^{x_1=q} \int_{x_2=x_1}^{x_2=q} dF_1 (x_1) dF_2 (x_2)$$

$$pr (s_3) = \int_{x_1=q}^{x_1=-q} \int_{x_2=q}^{x_2=q} dF_1 (x_1) dF_2 (x_2) + \int_{x_1=-q}^{x_1=q} \int_{x_2=x_1}^{x_2=q} dF_1 (x_1) dF_2 (x_2) = pr (s_2)$$

$$pr (s_4) = \int_{x_1=-q}^{x_1=q} \int_{x_2=-q}^{x_2=-q} dF_1 (x_1) dF_2 (x_2) = pr (s_1)$$

Member 2’s action rule is given by:

$$(\bar{a}_1, \bar{a}_2 \mid \gamma (x)) = \begin{cases} (1, 1) \\ (-1, 1) \\ (1, -1) \\ (-1, -1) \end{cases}$$

according as $\begin{cases} E [x_1 + x_2 - q \mid \gamma (x)] \\ E [-x_1 + x_2 + q \mid \gamma (x)] \\ E [x_1 - x_2 + q \mid \gamma (x)] \\ E [-x_1 - x_2 - q \mid \gamma (x)] \end{cases}$

is the largest where:

$$E [x_1 + x_2 - q \mid \gamma (x)] = -E [-x_1 - x_2 - q \mid \gamma (x)] =$$

$$= \{\{1 - F_2 (q)\} \int_{x_1=q}^{x_1=x_1} x_1 dF_1 (x_1) + [1 - F_1 (q)] \int_{x_2=q}^{x_2=x_2} x_2 dF_2 (x_2)\}$$

$$[pr (s_1 \mid \gamma (x)) \ - pr (s_4 \mid \gamma (x))] / pr (\gamma (x)) +$$

$$+ \{\{1 - F_1 (q)\} \int_{x_2=q}^{x_2=x_2} x_2 dF_2 (x_2) + \int_{x_2=q}^{x_2=q} \mu_2 F_1 (x_2) dF_2 (x_2)\}$$

$$[pr (s_2 \mid \gamma (x)) \ - pr (s_3 \mid \gamma (x))] / pr (\gamma (x)) +$$

$$+ \{\{1 - F_2 (q)\} \int_{x_1=q}^{x_1=x_1} x_1 dF_1 (x_1) + [1 - F_1 (q)] \int_{x_2=q}^{x_2=x_2} \mu_1 F_2 (x_1) dF_1 (x_1)\}$$

$$[pr (s_3 \mid \gamma (x)) \ - pr (s_2 \mid \gamma (x))] / pr (\gamma (x)) - q$$

$$E [\bar{a}_1, \bar{a}_2 \mid \gamma (x)] =$$

$$= \{\{1 - F_1 (q)\} \int_{x_2=q}^{x_2=x_2} x_2 dF_2 (x_2)\} [pr (s_1 \mid \gamma (x)) \ - pr (s_4 \mid \gamma (x))] / pr (\gamma (x)) +$$

$$+ \{\{1 - F_1 (q)\} \int_{x_2=q}^{x_2=x_2} x_2 dF_2 (x_2) + [1 - F_2 (q)] \int_{x_1=q}^{x_1=x_1} x_1 dF_1 (x_1) + \int_{x_1=q}^{x_1=q} \mu_1 F_2 (x_1) dF_1 (x_1)\}$$

$$[pr (s_2 \mid \gamma (x)) \ - pr (s_3 \mid \gamma (x))] / pr (\gamma (x)) + q$$
$$E[x_1 - x_2 - q \mid \gamma(x)] =$$

$$= \left\{ \left[1 - F_2(q) \right] \int_{x_1=q} x_1 dF_1(x_1) \right\} \left[pr(s_1 \mid \gamma(x)) - pr(s_4 \mid \gamma(x)) \right] / pr(\gamma(x)) +$$

$$+ \left\{ \left[1 - F_1(q) \right] \int_{x_2=q} x_2 dF_2(x_2) + \int_{x_2=q} x_2 F_1(x_2) dF_2(x_2) \right\} \left[pr(s_2 \mid \gamma(x)) - pr(s_3 \mid \gamma(x)) \right] / pr(\gamma(x)) +$$

$$+ q$$

Suppose that, given s_i, member 1 sends a message $\gamma(x) \in \{1, 2, 3, 4\}$ to member 2 according to the following conditional distribution:

<table>
<thead>
<tr>
<th>s_1</th>
<th>β_{11}</th>
<th>β_{12}</th>
<th>β_{13}</th>
<th>β_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_2</td>
<td>β_{21}</td>
<td>β_{22}</td>
<td>β_{23}</td>
<td>β_{24}</td>
</tr>
<tr>
<td>s_3</td>
<td>β_{31}</td>
<td>β_{32}</td>
<td>β_{33}</td>
<td>β_{34}</td>
</tr>
<tr>
<td>s_4</td>
<td>β_{41}</td>
<td>β_{42}</td>
<td>β_{43}</td>
<td>β_{44}</td>
</tr>
</tbody>
</table>

with $\sum_{j=1}^{4} \beta_{ij} = 1$

Given s_i,

$$E[\omega \mid s_i] = \beta_{i1} \omega [\bar{a}_1, \bar{a}_2 \mid 1] + \beta_{i2} \omega [\bar{a}_1, \bar{a}_2 \mid 2] +$$

$$+ \beta_{i3} \omega [\bar{a}_1, \bar{a}_2 \mid 3] + \beta_{i4} \omega [\bar{a}_1, \bar{a}_2 \mid 4]$$

The maximisation of the payoff function requires that:

$$(\bar{a}_1, \bar{a}_2 \mid 1) \neq (\bar{a}_1, \bar{a}_2 \mid 2) \neq (\bar{a}_1, \bar{a}_2 \mid 3) \neq (\bar{a}_1, \bar{a}_2 \mid 4) \quad (36)$$

A sufficient condition for (36) is:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>$\varepsilon + m$</td>
<td>ζ</td>
<td>ζ</td>
</tr>
<tr>
<td>s_2</td>
<td>θ</td>
<td>$\iota + n$</td>
<td>ι</td>
</tr>
<tr>
<td>s_3</td>
<td>θ</td>
<td>ι</td>
<td>$\iota + n$</td>
</tr>
<tr>
<td>s_4</td>
<td>ε</td>
<td>ζ</td>
<td>ζ</td>
</tr>
</tbody>
</table>

where $A \in \{1, 2, 3, 4\}$, $B \in \{A^c\}$, $C \in \{A \cup B\}$, $D \in \{(A \cup B \cup C)^c\}$, provided:

$$m > q / E[\mu_i \mid A] \forall i, \quad 2\varepsilon + 2\zeta + m = 2\theta + 2\iota + n = 1$$

It follows that:

$$E[\omega \mid s_1] = -2\varepsilon q + m (\mu_1 + \mu_2 - q) + 2\zeta q$$
$$E[\omega \mid s_2] = -2\varepsilon \theta q + n (-\mu_1 + \mu_2 + q) + 2i q$$
$$E[\omega \mid s_3] = -2\theta q + n (\mu_3 - \mu_2 + q) + 2i q$$
$$E[\omega \mid s_4] = -2\varepsilon q + m (-\mu_1 - \mu_2 - q) + 2\zeta q$$

Hence, if $\varepsilon = \zeta = \theta = \iota = 0$ and $n = m = 1$, the resulting expected team payoff will be the same as in (34). ■

Proof of Proposition 3
From (17), (22) and (23), given \(i \in I_n \):

\[
\begin{align*}
I_{> (n-1)} & \subseteq I \setminus \hat{I}_0 \\
I_n & \subseteq M_{i_1} \\
(I_{(n+1)} \subseteq M_{i_1}) & \land (I_{(n+1)} \subseteq M_{i_2}) \\
(I_{(n-1)} \subseteq \hat{I}_0) & \land (I_{(n-1)} \in M_{i_1})
\end{align*}
\]

Given \(\delta, \eta, \tau \), (19) and (16), the optimal action rule of the \(i \)th member in \(I_n \) will result from the solution of:

\[
\frac{\partial E[\omega | d_i]}{\partial a_k} = (38)
\]

\[
= E \left[-x_k + 2q \sum_{j \in I \setminus A_{i_0}} \sum_{v_z \notin D_j \setminus V_{j_i}} \alpha_z (x_j, t_j (\tilde{x}_j)) | d_i \right] + \\
- 2a_k + 2q \sum_{z \neq k: v_z \in D_i} a_z + \\
+ 2q \sum_{v_z \in D_i} c_{iz} = 0 \quad \forall v_k \in D_i
\]

The solution of (38) depends on the optimal action rules of all members in \(I \setminus A_{i_0} \) from (14). Since some members in \(I \setminus A_{i_0} \) may transmit messages to members in \(A_{i_0} \), the solution of (38) will depend on the optimal action rules of all members in \(I \setminus A_{i_0} \) from (21). Moreover, some members in \(I \setminus A_{i_0} \) may receive incomplete messages from members in \(A_{i_0} \). Hence the solution of (38) will be jointly determined with the solution of:

\[
\frac{\partial E[\omega | d_j]}{\partial a_k} = 0 \quad \forall v_k \in V_j, \ j \in I \setminus (I_{i_0} \cup i)
\]

From (22), since \(E \left[\alpha_k (x_{\rho(v_k)}, t_{\rho(v_k)}) | d_j \right] = c_{jk} = a_k \) for every \(v_k \in \cup_{z \in I_{i_0}} D_z \), for every \(j \) in \(I \setminus I_{i_0} \), the subsystem made of the equations in (38) and (39) has \(m \) unknowns, where \(m = \bar{\delta} (V \setminus \cup_{z \in I_{i_0}} D_z) \).

The \(i \)th member can solve the subsystem made of the equations in (38) and (39) only if for every \(j \in I \setminus (I_{i_0} \cup i) \):

\[
\begin{align*}
\lambda = \delta, \eta, \tau, \varphi \\
I_{\lambda_j} & \subseteq I_{\lambda_i} \\
Q_j & \subseteq Q_i \\
\cup_j S_j & \subseteq S_i \cup Q_i
\end{align*}
\]

Given \(i \in I_n \), by construction, the subsystem made of the equations in (38) and (39) is the same that needs be solved by all members in \(j \in I \setminus (I_{i_0} \cup i) \). Hence, given
\(i \in \hat{I}_n \) and \(Q_i \) satisfying (40) denoted by \(Q_{\hat{n}} \), the solution of the subsystem made of the equations in (38) and (39) will require that for every \(j \in I \setminus I_{i_0} \):

\[
M_{i_1} \subseteq I_{\lambda j} = I_{\lambda \hat{n}} \quad \text{with} \quad \lambda = \delta, \eta, \tau, \varphi \\
Q_j = Q_{\hat{n}} \\
\bigcup_{m \in I \setminus (I_{i_0} \cup i)} S_m \subseteq S_j \cup Q_{\hat{n}}
\]

that satisfies the conditions in (25), since \(M_{i_2} = \emptyset \) from (37).

Now consider the \(i \)th member in \(I_{(\hat{n} - 1)} \). From (23), \(M_{i_1} \cap I_{\hat{n}} = \emptyset \). Hence, either \(M_{i_2} \) is empty or \(M_{i_2} \) is equal to \(I_{\hat{n}} \).

In the first case, the \(i \)th member belongs to \(I \setminus I_{j_0} \) for every \(j \) in \(I_{\hat{n}} \), and the conditions in (41) need be applied. In particular, \(Q_{(\hat{n} - 1)} = Q_{\hat{n}} \).

In the second case, the system of equations:

\[
\frac{\partial E}{\partial \omega} \left[x_{\rho(v_k)}, t_{\rho(v_k)} \right] = 0 \quad \forall v_k \in V \setminus \bigcup_{z \in I_{i_0}} D_z
\]

contains the set of equations:

\[
\frac{\partial E}{\partial \omega} \left[x_{\rho(v_k)}, t_{\rho(v_k)} \right] = 0 \quad \forall v_k \in \bigcup_{z \in I_{\hat{n}}} D_z
\]

For all combinations of data and knowledge of members in \(I_{\hat{n}} \) satisfying (41)(hence sufficient to provide a well defined solution to (43)), that same solution can be worked out by the \(i \)th member in \(M_{i_1} \) provided:

\[
\forall j \in I_{\hat{n}} : \\
I_{\lambda \hat{n}} \subseteq I_{\lambda j} \quad \text{with} \quad \lambda = \delta, \eta, \tau, \varphi \\
Q_{\hat{n}} \subseteq Q_i \\
\bigcup_{j \in I_{\hat{n}}} S_j - Q_{\hat{n}} \subseteq S_i \cup Q_i
\]

Given \(i \in I_{(\hat{n} - 1)} \), by construction, the system made of equation in (42) is the same that needs be solved by all members in \(j \in (M_{i_1} \setminus i) \). Hence, given \(i \in I_{(\hat{n} - 1)} \) and \(Q_i \) satisfying (44) denoted by \(Q_{(\hat{n} - 1)} \), the solution of the system made of the equations in (42) will require that for every \(j \in M_{i_1} \):

\[
M_{i_1} \cup M_{i_2} \subseteq I_{\lambda j} = I_{\lambda (\hat{n} - 1)} \quad \text{with} \quad \lambda = \delta, \eta, \tau, \varphi \\
Q_{\hat{n}} \subseteq Q_j = Q_{(\hat{n} - 1)} \\
\bigcup_{m \in I_{\hat{n}}} S_m - Q_{\hat{n}} \subseteq S_j \cup Q_{(\hat{n} - 1)} \\
\bigcup_{m \in M_{i_1} \setminus j} S_m \subseteq S_j \cup Q_{(\hat{n} - 1)}
\]

Now consider the \(i \)th member in \(I_{(\hat{n} - 2)} \). From (23), \(M_{i_1} \cap I_{\hat{n}} = \emptyset \). Hence, either \(M_{i_2} \) is empty or \(M_{i_2} \) contains \(I_{\hat{n}} \).
In the first case, the \textit{ith} member belongs to \(I \setminus \hat{I}_j\) for every \(j\) in \(I_n\), and the conditions in (41) need be applied. In particular, \(Q_{(n-2)} = Q_{(\hat{n} - 1)} = Q_{\hat{n}}\).

In the second case, \(M_{I_2}\) is either equal to \(I_{\hat{n}}\) or to \(I_{>(\hat{n} - 2)}\). If \(M_{I_2}\) is equal to \(I_{\hat{n}}\), the \textit{ith} member belongs to \(I \setminus \hat{I}_j\) for every \(j\) in \((\hat{n}-1)\), and the conditions in (45) need be applied. In particular, \(Q_{(n-2)} = Q_{(\hat{n}-1)}\).

If \(M_{I_2}\) is equal to \(I_{>(\hat{n}-2)}\), the system of equations in (42) contains the set of equations:

\[
\frac{\partial E}{\partial z} \left[\omega \mid x_{\rho(v_k)}, t_{\rho(v_k)} \right] = 0 \quad \forall v_k \in \cup_{\zeta \in I_{>(\hat{n}-2)}} D_\zeta \tag{46}
\]

For all combinations of data and knowledge of members in \(I_{>(\hat{n}-2)}\) satisfying (41) and/or (45)(hence sufficient to provide a well defined solution to (46)), that same solution can be worked out by the \textit{ith} member in \(M_{I_1}\) provided:

\[
\forall j \in I_{(\hat{n}-1)}:\nonumber \\
I_{(\hat{n}-1)} \subseteq I_{\lambda_i} \quad \text{with} \quad \lambda = \delta, \eta, \tau, \varphi \\
Q_{(\hat{n}-1)} \subseteq Q_i \\
\cup_{j \in I_{(\hat{n}-1)}} S_j = Q_{(\hat{n}-1)} \subseteq S_i \cup Q_i
\]

Given \(i \in I_{(\hat{n}-2)}\), by construction, the system made of the equations in (42) is the same that needs be solved by all members in \(j \in (M_{I_1} \setminus i)\). Hence, given \(i \in I_{(\hat{n}-1)}\) and \(Q_i\) satisfying (47) denoted by \(Q_{(\hat{n}-2)}\), the solution of the system made of the equations in (42) will require that for every \(j \in M_{I_1}\):

\[
M_{I_1} \cup M_{I_2} \subseteq I_{\lambda_j} = I_{\lambda(\hat{n}-2)} \quad \text{with} \quad \lambda = \delta, \eta, \tau, \varphi \\
Q_{(\hat{n}-1)} \subseteq Q_j = Q_{(\hat{n}-2)} \\
\cup_{m \in I_{(\hat{n}-1)}} S_m = Q_{\hat{n}} \subseteq S_j \cup Q_{(\hat{n}-2)} \\
\left(\bigcup_{m \in M_{I_1} \setminus j} S_m \subseteq S_j \cup Q_{(\hat{n}-2)}\right)
\]

By induction, the proof follows for every \(I_n\) with \(1 \leq n < \hat{n}\).

Suppose that for \(i\) in \(I_n\), with \(1 < n < \hat{n}\), the conditions in (24) and (25) are satisfied. Consider \(j\) in \(I_{(n-1)}\). From (37), either a) \(I_{(n-1)} \in M_{I_1}\) or b) \(I_{(n-1)} \subseteq \hat{I}_{\hat{0}}\).

If a), then \(I \setminus \hat{I}_{\hat{0}} = I \setminus I_{\hat{0}}\) and \(M_{I_1} = M_{J_1}\), and the conditions in (24) and (25) are satisfied for \(j\) as well.

If b), \(I_{>(n-1)} \subseteq M_{I_2}\), hence the system of equations:

\[
\frac{\partial E}{\partial z} \left[\omega \mid x_{\rho(v_k)}, t_{\rho(v_k)} \right] = 0 \quad \forall v_k \in V \setminus \cup_{z \in I_{\hat{0}}} D_z \tag{48}
\]

contains the set of equations:

\[
\frac{\partial E}{\partial z} \left[\omega \mid x_{\rho(v_k)}, t_{\rho(v_k)} \right] = 0 \quad \forall v_k \in \cup_{z \in I_{>(n-1)}} D_z \tag{49}
\]
For all combinations of data and knowledge of members in \(I_{(n-1)} \) satisfying (24) and (25) (hence sufficient to provide a well defined solution to (49)), that same solution can be worked out by the \(j \)th member in \(M_{j1} \) provided:

\[
\forall j \in I_n : \\
I_{\lambda n} \subseteq I_{\lambda j} \quad \text{with} \quad \lambda = \delta, \eta, \tau, \varphi \\
Q_n \subseteq Q_j \\
\cup_{m \in I_n} S_m - Q_n \subseteq S_j \cup Q_j
\]

Given \(j \in I_{(n-1)} \), by construction, the system made of equation in (48) is the same that needs be solved by all members in \((M_{j1} \setminus j)\). Hence, given \(z \in I_{(n-1)} \) and \(Q_j \) satisfying (50) denoted by \(Q_{(n-1)} \), the solution of the system made of the equations in (48) will require that for every \(z \in M_{j1} \):

\[
M_{j1} \cup M_{j2} \subseteq I_{\lambda z} = I_{\lambda(n-1)} \quad \text{with} \quad \lambda = \delta, \eta, \tau, \varphi \\
Q_n \subseteq Q_z = Q_{(n-1)} \\
\cup_{m \in I_n} S_m - Q_n \subseteq S_z \cup Q_{(n-1)} \\
\bigcup_{m \in M_{j1} \setminus z} S_m \subseteq S_z \cup Q_{(n-1)}
\]

The conditions in (51) are analogous to those in (25). □

7 References

28

Segal I., 2001, *Communication Complexity and Coordination by Authority*, working paper

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries
ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries
PRA 3.2004 Adolfo DI CARLUCCHIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy
ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms
PRA 8.2004 Wolfgang AUSSENNEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market
PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets
PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values
PRA 13.2004 Maarten C.W. JANSEN (lxv): Auctions as Coordination Devices
PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers
PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination
CCMP 16.2004 Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions
CCMP 17.2004 Slim Ben YOUSSEF: Climate and the Destination Choice of German Tourists
NRM 18.2004 Angela ANTOCI, Simone BORGHESI and Paolo RUSSU (lxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics
NRM 21.2004 Jacqueline M. HAMILTON (lxvi): Climate and the Destination Choice of German Tourists
NRM 23.2004 Pius ODUNGA and Henk FOLMER (lxvi): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya
NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach
NRM 27.2004 Raúl Hernández MARTÍN (lxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada's Boreal Mixedwood Forest
KTHC 30.2004 Linda CHAIB (lxviii): Do Privatizations Boost Household Shareholding? Evidence from Italy
KTHC 31.2004 Off White Auctions: A Study of the Exposure Problem in Multi-Unit Auctions
KTHC 32.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
KTHC 33.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers
KTHC 34.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob DELLINK and Ekko van IERLAND</td>
<td>Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment</td>
<td>74</td>
</tr>
<tr>
<td>Rosella LEVAGGI and Michele MORETTO</td>
<td>Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach</td>
<td>75</td>
</tr>
<tr>
<td>Salvador BARBERA and Matthew O. JACKSON (lxx)</td>
<td>On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union</td>
<td>76</td>
</tr>
<tr>
<td>Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMÉRA and Fernando VEGA-REDONDO (lx):</td>
<td>Optimal Information Transmission in Organizations: Search and Congestion</td>
<td>77</td>
</tr>
<tr>
<td>Francis BLOCH and Armando GOMES (lx):</td>
<td>Contracting with Externalities and Outside Options</td>
<td>78</td>
</tr>
<tr>
<td>Rabah AMIR, Effrosyni DIAMANToudi and Licin XUE (lx):</td>
<td>Merger Performance under Uncertain Efficiency Gains</td>
<td>79</td>
</tr>
<tr>
<td>Francis BLOCH and Matthew O. JACKSON (lx):</td>
<td>The Formation of Networks with Transfers among Players</td>
<td>80</td>
</tr>
<tr>
<td>Daniel DIERMEIER, Hílya ERASLAN and Antonio MERLO (lx):</td>
<td>Bicameralism and Government Formation</td>
<td>81</td>
</tr>
<tr>
<td>Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lx):</td>
<td>Potential Maximization and Coalition Government Formation</td>
<td>82</td>
</tr>
<tr>
<td>Kfir ELIAZ, Debaj RAY and Ronny RAZIN (lx):</td>
<td>Group Decision-Making in the Shadow of Disagreement</td>
<td>83</td>
</tr>
<tr>
<td>Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lx):</td>
<td>Economics: An Emerging Small World?</td>
<td>84</td>
</tr>
<tr>
<td>Finn R. FØRSUND and Michael HOEL</td>
<td>Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power</td>
<td>85</td>
</tr>
<tr>
<td>Elissaios PAPYRAKIS and Reyer GERLAGH</td>
<td>Natural Resources, Investment and Long-Term Income</td>
<td>86</td>
</tr>
<tr>
<td>Marzio GALEOTTI and Claudia KEMPERT</td>
<td>Interactions between Climate and Trade Policies: A Survey</td>
<td>87</td>
</tr>
<tr>
<td>A. MARKANDYA, S. PEDROSO and D. STREMIKIENE</td>
<td>Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?</td>
<td>88</td>
</tr>
<tr>
<td>Rolf GOLOMBEK and Michael HOEL</td>
<td>Climate Agreements and Technology Policy</td>
<td>89</td>
</tr>
<tr>
<td>Sergei IZMALKOV (lx):</td>
<td>Multi-Unit Open Ascending Price Efficient Auction</td>
<td>90</td>
</tr>
<tr>
<td>Gianmarco I.P. OTTAVIANO and Giovanni PERI</td>
<td>Cities and Cultures</td>
<td>91</td>
</tr>
<tr>
<td>Massimo DEL GAITTO</td>
<td>Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus devolution</td>
<td>92</td>
</tr>
<tr>
<td>Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON</td>
<td>Equilibrium with a Market of Permits</td>
<td>93</td>
</tr>
<tr>
<td>Bob van der ZWAAN and Reyer GERLAGH</td>
<td>Climate Uncertainty and the Necessity to Transform Global Energy Supply</td>
<td>94</td>
</tr>
<tr>
<td>Francesco BOSIELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL</td>
<td>Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise</td>
<td>95</td>
</tr>
<tr>
<td>Gustavo BERGANTIÑOS and Juan J. VIDAL-PUGA</td>
<td>Defining Rules in Cost Spanning Tree Problems Through the Canonical Form</td>
<td>96</td>
</tr>
<tr>
<td>Siddhartha BANDYOPADHYAY and Mandar OAK</td>
<td>Party Formation and Coalitional Bargaining in a Model of Proportional Representation</td>
<td>97</td>
</tr>
<tr>
<td>Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA</td>
<td>The Impact of Surplus Sharing on the Stability of International Climate Agreements</td>
<td>98</td>
</tr>
<tr>
<td>Chiara M. TRAVISI and Peter NIJKAMP</td>
<td>Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents</td>
<td>99</td>
</tr>
<tr>
<td>Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIJKAMP:</td>
<td>A Meta-Analysis of the Willingness to Pay for Reduced Pesticide Risk Exposure</td>
<td>100</td>
</tr>
<tr>
<td>Valentino BOSETTI and David TOMBERLIN</td>
<td>Real Options Analysis of Fishing Fleet Dynamics: A Test</td>
<td>101</td>
</tr>
<tr>
<td>Alessandra GORIA e Gretel GAMBARELLI</td>
<td>Economic Evaluation of Climate Change Impacts and Adaptability in Italy</td>
<td>102</td>
</tr>
<tr>
<td>Massimo FLORIO and Mara GRASSENI</td>
<td>The Missing Shock: The Macroeconomic Impact of British Privatisation</td>
<td>103</td>
</tr>
<tr>
<td>John BENNETT, Saul ESTRIN, James MAW and Giovanni URGA</td>
<td>Privatisation Methods and Economic Growth in Transition Economies</td>
<td>104</td>
</tr>
<tr>
<td>Kira BÖRNER</td>
<td>The Political Economy of Privatization: Why Do Governments Want Reforms?</td>
<td>105</td>
</tr>
<tr>
<td>Pehr-Johan NORBACK and Lars PERSSON</td>
<td>Privatization and Restructuring in Concentrated Markets</td>
<td>106</td>
</tr>
<tr>
<td>Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo</td>
<td>Evidence from a Three-Country Contingent Valuation Study</td>
<td>107</td>
</tr>
<tr>
<td>Valentina BOSETTI and David TOMBERLIN</td>
<td>Real Options Analysis of Fishing Fleet Dynamics: A Test</td>
<td>108</td>
</tr>
<tr>
<td>Chiara M. TRAVISI and Peter NIJKAMP</td>
<td>Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents</td>
<td>109</td>
</tr>
<tr>
<td>Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo</td>
<td>Evidence from a Three-Country Contingent Valuation Study</td>
<td>110</td>
</tr>
<tr>
<td>Valeria PAPPONETTI and Dino PINELLI</td>
<td>Scientific Advice to Public Policy-Making</td>
<td>111</td>
</tr>
<tr>
<td>Paulo A.L. NUNES and Laura ONOFRI</td>
<td>The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications</td>
<td>112</td>
</tr>
<tr>
<td>Patrick CAYRANE</td>
<td>Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?</td>
<td>113</td>
</tr>
<tr>
<td>Valeria COSTANTINI and Francesco GRACCEVA</td>
<td>Oil Security, Short- and Long-Term Policies</td>
<td>114</td>
</tr>
</tbody>
</table>
IEM 116.2004 Valeria COSTANTINI and Francesco GRACCEVA: Social Costs of Energy Disruptions
IEM 117.2004 Christian EGENHOFER, Kyriakos GIALOGLIOU, Giacomo LUCIANI, Maroessa BOOTS, Martin SCHEEPERS
IEM 118.2004 Valeria COSTANTINI, Francesco GRACCEVA, Anil MARKANDYA and Giorgio VICINI: Market-Based Options
IEM 120.2004 David FISK: Transport Energy Security. The Unseen Risk?
IEM 121.2004 Giacomo LUCIANI: Security of Supply for Natural Gas Markets. What is it and What is it not?
IEM 122.2004 L.J. de VRIES and R.A. HAKVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets
KTHC 123.2004 Roberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open
NRM 124.2004 Economy
NRM 125.2004 Carlo GIUPPONI, Jaroslaw MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water
NRM 126.2004 Resources Management: A DDS Tool and a Pilot Study Application
NRM 127.2004 Margaretha BREIL, Anita FASSIO, Carlo GIUPPONI and Paolo ROSATO: Evaluation of Urban Improvement
ETA 129.2004 Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric
ETA 130.2004 Information: The Differential Tax Revisited
ETA 131.2004 Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta VALDI, Valentina MARIN and Francesca
ETA 132.2004 PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach
PRA 133.2004 Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence
PRA 134.2004 from Poland and the Czech Republic
CCMP 135.2004 Roberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open
CCMP 136.2004 Economy
NRM 137.2004 Maria BERRITTELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium
NRM 138.2004 Analysis of Climate Change Impacts on Tourism
NRM 139.2004 Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy
Savings
SIEV 140.2004 Eliasos PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth
PRA 141.2004 Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization
SIEV 142.2004 Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A
SIEV 143.2004 Latent-Class Approach Based on Intensity of Participation
SIEV 144.2004 Riccardo SCARPA Kenneth G. WILLS and Melinda ACUTT: Comparing Individual-Specific Benefit Estimates
SIEV 145.2004 for Public Goods: Finite Versus Continuous Mixing in Logit Models
IEM 146.2004 Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited
ETA 147.2004 Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma
SIEV 148.2004 Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys
CCMP 149.2004 Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The
CCMP 150.2004 Influence of World Energy Prices
ETA 151.2004 Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an
ETA 152.2004 Environmental Taxation Game
CCMP 154.2004 Elvastos PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth
NRM 155.2004 Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A
PRA 156.2004 Real Option Analysis
PRA 157.2004 Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incomplete Contracts
PRA 158.2004 Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealed Bid Auctions: Theory
PRA 159.2004 and Evidence from Timber Auctions
PRA 161.2004 Roberto BURGUEU (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More
PRA 162.2004 Simple Economics
PRA 164.2004 Information and Strategic Behavior in the Government of Canada Securities Auctions
PRA 165.2004 Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUQUET (lxxi): How to Win Twice at an Auction. On
PRA 166.2004 the Incidence of Commissions in Auction Markets
PRA 168.2004 Auctions
PRA 169.2004 John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
PRA 170.2004 Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-
PRA 171.2004 Price Sealed-Bid Auctions
PRA 172.2004 François DEGEORGE, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why
PRA 173.2004 Bookbuilding is Dominating Auctions
CCMP 174.2004 Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification. Internal Institution and
CCMP 175.2004 Pressure Groups in the Kyoto Protocol’s Adoption Process
CCMP 176.2004 Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate
CCMP 177.2004 Policy Analysis? A Robustness Exercise with the FEEM-RICE Model
PRA 178.2004 Alejandro M. MANIELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue
PRA 179.2004 Maximization and the Multiple-Good Monopoly
ETA 180.2004 Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism
ETA 181.2004 in Stabilization Policies?
CTN 182.2004 Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with
CTN 183.2004 Externalities
CCMP 184.2004 Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1.2005 Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change
CCMP 2.2005 Qiang WU and Paolo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China
CCMP 3.2005 Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level
CCMP 4.2005 Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice
ETA 5.2005 Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?
CCMP 9.2005 Angelo ANTOCCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model
NRM 11.2005 Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate
PRCG 14.2005 Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure
CSRM 15.2005 Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry
KTHC 16.2005 Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence
KTHC 17.2005 Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms
KTHC 18.2005 Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer
KTHC 19.2005 Mombert HOPPE: Technology Transfer Through Trade
PRCG 20.2005 Roberto RODON: Platform Competition with Endogenous Multithoming
CCMP 21.2005 Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes
CTN 23.2005 Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria
CTN 25.2005 Somdeh LAHIRI: The Core of Directed Network Problems with Quotas
NRM 27.2005 Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities
CCMP 28.2005 Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information
NRM 29.2005 Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations
CCMP 30.2005 Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism
NRM 31.2005 Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies
NRM 32.2005 Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility
CCMP 33.2005 Joseph HUBER: Key Environmental Innovations
CTN 34.2005 Antoni CALFO-ARMENGOL and Rahmi İLKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation
CTN 35.2005 Francesco FERI (lxxii): Network Formation with Endogenous Decay
CTN 36.2005 Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
Alessandra CASELLA and Nobuyuki HANAKI (lxxii): Information Channels in Labor Markets. On the Resilience of Referral Hiring
Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated Games
Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): The Egalitarian Sharing Rule in Provision of Public Projects
Francesco FERI: Stochastic Stability in Network with Decay
Aart de ZEEUW (lxxii): Dynamic Effects on the Stability of International Environmental Agreements
C. Martijn van der HEIDE, Jeroen C.J.M. van den BERGH, Elko C. van IERLAND and Paulo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands
Carla VIEIRA and Ana Paula SERRA: Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms
Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice
Michael FINUS and Bianca RUNDSHAGEN: Participation in International Environmental Agreements: The Role of Timing and Regulation
Lorenzo PELLEGRINI and Reyer GERLAGH: Are EU Environmental Policies Too Demanding for New Members States?
Matteo MANERA: Modeling Factor Demands with SEM and VAR: An Empirical Comparison
Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in International Environmental Agreements
Valeria GATTAI: From the Theory of the Firm to FDI and Internalisation: A Survey
Alireza NAGHAVI: Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the Doha Proposal
Margaretha BREIL, Greltel GAMBARELLI and Paulo A.L.D. NUNES: Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach
Alessandra del BOCA, Marzio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA: Investment and Time to Plan: A Comparison of Structures vs. Equipment in a Panel of Italian Firms
Gernot KLEPPER and Sonja PETERSON: Emissions Trading, CDM, JI, and More — The Climate Strategy of the EU
Maia DAVID and Bernard SINCLAIR-DESGAGNÉ: Environmental Regulation and the Eco-Industry
Alain-Désiré NIMUBONA and Bernard SINCLAIR-DESGAGNÉ: The Pigouvian Tax Rule in the Presence of an Eco-Industry
Helmut KARL, Antje MÖLLER, Ximena MATUS, Edgar GRANDE and Robert KAISER: Environmental Innovations: Institutional Impacts on Co-operations for Sustainable Development
Dimitra VOUVAKI and Anastasios XEPAPADEAS (lxxiii): Criteria for Assessing Sustainable Development: Theoretical Issues and Empirical Evidence for the Case of Greece
Andreas LÖSCHEL and Dirk T.G. RÜBBELKE: Impure Public Goods and Technological Interdependencies
Christoph A. SCHALTEGGER and Benno TORGLER: Trust and Fiscal Performance: A Panel Analysis with Swiss Data
Irene VALSECCHI: A Role for Instructions
This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications” organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Rome, September 25-27, 2003

This paper has been presented at the 4th BioEcon Workshop on “Economic Analysis of Policies for Biodiversity Conservation” organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003

This paper has been presented at the international conference on “Tourism and Sustainable Economic Development – Macro and Micro Economic Issues” jointly organised by CIRE NoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003

This paper was presented at the ENIGIME Workshop on “Governance and Policies in Multicultural Cities”, Rome, June 5-6, 2003

This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference “The Future of Climate Policy”, Cagliari, Italy, 27-28 March 2003

This paper was presented at the 9th Coalition Theory Workshop on "Collective Decisions and Institutional Design" organised by the Universitat Autònoma de Barcelona and held in Barcelona, Spain, January 30-31, 2004

This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by Fondazione Eni Enrico Mattei and Consip and sponsored by the EU, Rome, September 23-25, 2004

This paper was presented at the 10th Coalition Theory Network Workshop held in Paris, France on 28-29 January 2005 and organised by EUREQua.

This paper was presented at the 2nd Workshop on "Inclusive Wealth and Accounting Prices" held in Trieste, Italy on 13-15 April 2005 and organised by the Ecological and Environmental Economics - EEE Programme, a joint three-year programme of ICTP - The Abdus Salam International Centre for Theoretical Physics, FEEM - Fondazione Eni Enrico Mattei, and The Beijer International Institute of Ecological Economics.
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>