Cortés_Jiménez, Isabel; Pulina, Manuela

Working Paper
A further step into the ELGH and TLGH for Spain and Italy

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 118.2006

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Cortés_Jiménez, Isabel; Pulina, Manuela (2006) : A further step into the ELGH and TLGH for Spain and Italy, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 118.2006

This Version is available at:
http://hdl.handle.net/10419/74300

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A further step into the ELGH and TLGH for Spain and Italy
Isabel Cortés-Jiménez and Manuela Pulina

NOTA DI LAVORO 118.2006

SEPTEMBER 2006

NRM – Natural Resources Management

Isabel Cortés-Jiménez, Regional Quantitative Analysis Research Group (AQR) – IREA, Department of Econometrics, Statistics and Spanish Economy Universitat de Barcelona
Manuela Pulina, Centre for North South Economic Research (CRENoS), Department of Economics, D.E.I.R. Università di Sassari

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=932509

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
A further step into the ELGH and TLGH for Spain and Italy

Summary
Nowadays many developing countries focus on economic policies for promoting international tourism and exports expansion as a potential source of economic growth of the country. However, the understanding of the relationship between exports and economic growth is still ongoing. When treating the relationship between tourism and economic growth, considering tourism as a non-traditional export few studies have been published to date. This paper has the objective to assess if exports and tourism have really promoted growth by means of the export-led growth hypothesis (ELGH) and the tourism-led growth hypothesis (TLGH). The cases under analysis are Spain and Italy, two of the most important countries worldwide regarding the expansion of tourism. Cointegration techniques and the multivariate Granger causality test are applied. Results reveal that exports cause economic growth in the long-term for both countries, whilst only for Spain tourism appears as a factor which influences economic growth in the long-run.

Keywords: Economic Growth, Exports, Tourism, Cointegration, Multivariate Granger Causality, Spain, Italy

JEL Classification: L83, C32, O49

The authors thank Marco Vannini and Robert Young for their helpful comments and the ISTAT office of Cagliari for their technical support. Isabel Cortés-Jiménez acknowledges the financial support of the Department of Universities, the Research and Information Society from the Government of Catalonia and the European Social Funding. Manuela Pulina acknowledges the financial support of the Department of Economics (D.E.I.R.), Sassari University, within the PRIN Project – MIUR 2004 “Strumenti Economici per il Turismo Sostenibile”.

Address for correspondence:
Isabel Cortés Jiménez
Department of Econometrics
Statistics and Spanish Economy
Universitat de Barcelona
Avda Diagonal, 690 Torre 4
08034 Barcelona
Spain
Phone: +34 934024319
Fax: +34 934021821
E-mail: icortes@ub.edu
I. INTRODUCTION

The export-led growth hypothesis (ELGH) postulates that the economic growth of countries can be generated not only by increasing the amount of labour and capital within the economy, but also by expanding exports. Actually, exports are generally supposed to contribute positively to economic growth through different means: facilitating the exploitation of economies of scale (Helpman and Krugman, 1985), relieving the foreign exchange constraint (McKinnon, 1964), enhancing efficiency through increased competition (Krueger, 1980), and promoting the diffusion of technical knowledge (Grossmand and Helpman, 1991). The ELGH has been widely analysed in the literature\(^1\) and although there is a widely held belief that exports promote economic growth at a theoretical level, empirically evidence is rather mixed\(^2\). Due to this fact, even today there is a keen interest in these issues especially for developing countries. Recent empirical articles (Panas and Vamvoukas (2002) for Greece, Abual-Foul (2004) for Jordan, Al Mamun and Nath (2005) for Bangladesh and Awokuse (2005a,b) for Japan and Korea, respectively) analyse the causality between exports and economic growth in a bivariate context. Only a few studies employ a multivariate framework; amongst others Islam (1998) and Ghirmay \textit{et al.} (2001).

Directly derived from the ELGH, the tourism-led growth hypothesis (TLGH) has recently appeared in the literature. Balaguer and Cantavella-Jordà (2002) were the first authors to mention this concept. Since then increasing attention has been paid to this issue. Taking into account that international tourism can be considered firstly as a non-

\(^1\) Giles and Williams (2000) provide a comprehensive survey over seventy time series studies.

\(^2\) For instance, Marin (1992) supports the hypothesis of export-led economic growth in developed countries such as United States, Japan, United Kingdom and Germany whilst Shan and Sun (1998) demonstrate a bidirectional causality between exports and economic growth in China.
traditional export since it implies a source of receipts\(^3\) and, secondly, international tourism has experienced such a huge increase that nowadays it is being considered as a potential strategic factor to development and economic growth, it seems straightforward to understand the derivation of the TLGH from the ELGH. To date, only empirical papers can be found and there is a clear lack of theoretical literature about TLGH. In this context, several researchers are interested in demonstrating that tourism can be considered as a main factor of economic growth for developing countries. The current papers on this issue are Balaguer and Cantavella-Jordà (2002) for Spain, Dritsakis (2004) for Greece, Gunduz and Hatemi-J (2005) for Turkey, Oh (2005) for Korea and Kim et al. (2006) for Taiwan. Analogously to ELGH, these authors analyse the possible causal relationship between tourism and economic growth in a bivariate context; however, not all of them find evidence of the long-run causality from tourism to economic growth. Therefore, whether tourism growth actually causes the economic growth or, alternatively, economic expansion strongly contribute to tourism growth is a question not well answered at this moment in time.

Amongst the empirical studies on the ELGH and the TLGH hypotheses, we have found an interesting paper by Durbarry (2004). This author mixes both the hypotheses since he uses a production function where the economic growth is explained by physical capital, human capital and exports. The latter variable is included into the model in a disaggregated manner and international tourism is one of the items. This empirical work focuses on the economy of Mauritius.

\(^3\) International tourism implies consumption *in situ*, the consumers are who must move rather than the product as happens with exports.
The present paper attempts to go a step further in the ELGH and TLGH. The main objectives of this work are to assess whether the ELGH and the TLGH employed in a multivariate context are valid for two developed countries, namely Spain and Italy.

The main contributions of the present research can be found in the following: the estimated model, the applied methodology and the variables included in the model. Data on exports and GDP, and on international tourism receipts and GDP are employed aimed to analyse the causal interrelationship amongst the variables of interest. Based on Durbarr (2004), a standard production function is estimated including exports as a factor to economic growth when evaluating the ELGH, and international tourism receipts as a further possible factor which influences economic growth when studying the TLGH. In addition to this, and expanding Durbarry’s (2004) study, the present paper also investigates the short-run and long-run relationships and Granger causality using a multivariate Granger test.

Regarding previous research on this field for the Italian case, it is worth mentioning that Federici and Marconi (2002) paper is the unique research found. In their work, the ELGH for the Italian economy (1960-98) is tested through a Vector Autoregression (VAR) model with four macroeconomic variables: an index of the GDP of the rest of the world; the Italian real exchange rate; Italian real exports; and the Italian real GDP providing empirical support for the hypothesis. As far as TLGH is concerned, no articles have been found.

With respect to Spain, the papers of Balaguer and Cantavella-Jordà (2002, 2004) support the TLGH and the ELGH, respectively. However, these two works test if international tourism receipts (1975-1997, quarterly data) and exports (1961-2000, annual data) Granger causes GDP, including an exchange rate and the applied test is a
simple Granger test where the error correction term is not considered. According to Granger (1988), the conventional causality tests are valid only if the original time series do not cointegrate. If they do, an error correction model should be used by including the relevant error correction term in the model to check for causality. Therefore, the paper of Balaguer and Cantavella-Jordá while a starting point for later research on TLGH, however, we cannot draw conclusive results from this empirical work. In the present study we avoid this econometric problem by applying appropriate tests in each case.

In this study, firstly, three hypotheses are examined referring the ELGH in Spain and Italy, separately: (a) the ELGH; (b) the economic-driven exports growth hypothesis; (c) the two-way causal hypothesis which combines (a) and (b), where the Granger-causality between exports and economic growth may run in one or both directions. Secondly, regarding TLGH other three hypotheses are evaluated for Spain and Italy, separately: (d) the TLGH; (e) the economic-driven tourism growth hypothesis; (f) the two-way Granger-causal hypothesis which combines (d) and (e), where the causality between tourism and economic growth may run in one or both directions.

Recognition of the existence of a Granger-causal relationship between international tourism/exports and economic growth will have important implications for the development of different tourism marketing/external trade and policy decisions. If a unidirectional Granger-causality from tourism growth to economic expansion is found, then tourism-led economic growth is practical. If results show the opposite causality, then the economic development may be necessary for the expansion of the tourism industry/exports sector. Next, if the causative process is bidirectional, and tourism growth/exports expansion and economic growth have a reciprocal causal relationship, then a push in both areas would be beneficial. Finally, if there is no Granger-causality relation between tourism growth/exports increase and economic development, then
strategies oriented to promote tourism sector/external sector may not be as effective as expected.

This study seeks to go a step further both in the export-led growth hypothesis and in the tourism-led growth hypothesis by testing cointegration, constructing a multivariate VAR model based on a standard production function of economic growth and, lastly, attempting to capture the short-run and long-run effects of the different variables for the Spanish and the Italian economies.

The paper is organised as follows. The previous section gives a brief review of the most important issues on the ELGH and the TLGH, and the objectives of the present research are highlighted. The next section describes the Italian and the Spanish economies and their evolution to provide a general overview on these cases studies. Section 3 describes the data, methodology and results from this empirical analysis. Finally, Section 4 presents the concluding discussion and further comments.

II. SPAIN AND ITALY: A GENERAL OVERVIEW

There is no doubting the importance of tourism for Spain and Italy during the last several decades. Nowadays Spain and Italy are the most important countries in the Mediterranean area regarding international tourism. What is more, in 2005 they ranked second and fourth in the classification of the top ten tourism destinations worldwide as regard to international tourism receipts (UNWTO). The aim of this section is to provide a general overview of the characteristics of the Spanish and the Italian economies. Table 1 provides relevant economic data for these two countries from 1960 to date.
Spain is a widely referenced success case regarding the expansion of tourism and how to take advantage of this activity to develop economic performance. It has been argued that the source of foreign currency receipts generated by tourism during the sixties and the seventies financed the imports of produced goods which were necessary to carry out the industrialisation process (Sinclair and Bote Gómez, 1996). Thus, the international tourism expansion in Spain played a relevant role for becoming a developed country.

From Table 1, it can be observed how Spain passes from a developing economy to a developed one. It is worth remarking that exports and international tourism have been significantly more and more important in each period.

Nowadays Italy is a developed country with an important exports and tourism sector as shown in Table 1. Comparing briefly Spain and Italy, it is worth mentioning that Italy has had a bigger exports sector whilst Spain has experienced the highest numbers regarding international tourism. As regards 2003 data, Spain had 27.9% of GDP corresponding to exports of goods and services whereas for Italy it was of 25.4%. When dealing with tourism data, we find that in 2004 Spain had 36376 million euros of international tourism receipts whereas Italy had 28665. It seems clear that Spain continues growing whilst Italy seems to depict a stable pattern.

Thus they offer two potentially valuable cases of study. Due to their economic characteristics and evolution during the last decades, Spain and Italy are suitable countries to assess the ELGH and TLGH.
III. MODEL, METHODOLOGY AND RESULTS

As explained previously, following Ukpolo (1994), Ghatak et al. (1995) and Durbarry (2004), we adopt a production function framework that is compatible with the ‘new’ growth theory, where one has the following functions: $Y = f (X, K, H)$ and $Y = f (T, K, H)$. The data are annual Spanish and Italian series on real per capita Gross Domestic Product (Y), exports (X), international tourism receipts (T), physical capital (K), human capital (H). For Spain the sample period is available from 1964 to 2000; for Italy the sample period is from 1954 to 2000. Data definitions and sources are listed in the appendix.

Expressing the previous mentioned functions in a linear logarithmic regression form, the multivariate relationships are investigated:

$$LY_t = \psi_0 + \psi_1 LX_t + \psi_2 LK_t + \psi_3 LH_t + u_t$$ (1)

$$LY_t = \omega_0 + \omega_1 LT_t + \omega_2 LK_t + \omega_3 LH_t + v_t$$ (2)

The ELGH will be assessed through expression (1) and the TLGH will be investigated through expression (2).

The methodology employed to investigate the relationship amongst on the one hand, growth, exports, physical capital and human capital and, on the other hand, growth, international tourism, physical capital and human capital, consists of three steps. The first step is to test the order of integration of the natural logarithm of all the variables. Table 2 gives the results of the augmented Dickey-Fuller (ADF) and standard Phillips-Perron (PP) test statistics. These tests are used to detect the presence of a unit root for the individual time series and their first differences. Each of the series appears to be

4 Plots of the all series expressed in natural logarithm are also shown in Figures 1 and 2.
integrated of order \(I(1) \) in the level form but \(I(0) \) in first differences (Engle and Granger, 1987). The PP test is consistent with ADF test.

Given the unit root results, the second step is to use the VAR approach that Johansen (1988) and Johansen and Juselius (1990) employed to investigate the cointegrating properties of a system. The joint \(F \)-test and the AIC, SC and HQ Information Criteria\(^5\) are used to select the number of lags required in each case to assure white-noise residuals; thus, the chosen lag length is accordingly either one or two (Oh and Lee, 2004). The cointegration test results are presented in Table 3. Models 1 and 3 are VARs employing growth, exports, physical capital and human capital for Spain and Italy, respectively. Models 2 and 4 are VARs employing growth, international tourism receipts, physical capital and human capital for Spain and Italy, respectively. A single significant cointegrating vector is identified using the maximum eigenvalue and trace statistic in all cases\(^6\). Hence, we conclude that all variables are cointegrated, and causally related in each model. It is worthwhile noticing that in the cointegrating vector (Table 3, Model 1) a long-run negative relationship is detected between exports and economic growth. However, the coefficient for \(LX \) is not statistically significant; the same conclusion can be reached for \(LH \). In Model 2, \(LK \) negatively effects economic growth, nevertheless, the coefficient turns out to be statistically insignificant. A mix result is reached for \(LH \), though showing a statistically significant coefficient at the 5% level, it presents a negative sign. For the Italian case (see Models 3 and 4), \(LH \) negatively influences economic growth, however, in both the cases, the coefficient is not statistically significant\(^7\).

\(^{5}\) Akaike, Schwartz and Hannan-Quinn Information criteria, respectively.
\(^{6}\) In Model 2 only the trace statistics detects a cointegrating vector (see Table 3).
\(^{7}\) It is worthwhile pointing out that in the majority of empirical studies that employ the VEC framework, authors do not report the outcome from the long run analysis obtained using the cointegrating vector.
The third step is to carry out a multivariate Granger causality test (Granger, 1969; Granger et al., 1998) augmented with the error-correction mechanism (ECT) as derived from the cointegration relationship, as given in equations (3)-(6).

\[\Delta Y_t = \alpha_1 + \sum_{i=1}^{p} \beta_i \Delta Y_{t-i} + \sum_{i=1}^{p} \gamma_i \Delta X_{t-i} + \sum_{i=1}^{p} \delta_i \Delta Z_{t-i} + \sum_{i=1}^{p} \theta_i \Delta V_{t-i} + \eta_1 \text{ECT}_{t-1} + \varepsilon_t \] (3)

\[\Delta X_t = \alpha_2 + \sum_{i=1}^{p} \sigma_i \Delta Y_{t-i} + \sum_{i=1}^{p} \phi_i \Delta X_{t-i} + \sum_{i=1}^{p} \rho_i \Delta Z_{t-i} + \sum_{i=1}^{p} \lambda_i \Delta V_{t-i} + \eta_2 \text{ECT}_{t-1} + \mu_t \] (4)

\[\Delta Z_t = \alpha_3 + \sum_{i=1}^{p} \omega_i \Delta Y_{t-i} + \sum_{i=1}^{p} \zeta_i \Delta X_{t-i} + \sum_{i=1}^{p} \chi_i \Delta Z_{t-i} + \sum_{i=1}^{p} \xi_i \Delta V_{t-i} + \eta_3 \text{ECT}_{t-1} + \nu_t \] (5)

\[\Delta V_t = \alpha_4 + \sum_{i=1}^{p} \theta_i \Delta Y_{t-i} + \sum_{i=1}^{p} \upsilon_i \Delta X_{t-i} + \sum_{i=1}^{p} \kappa_i \Delta Z_{t-i} + \sum_{i=1}^{p} \pi_i \Delta V_{t-i} + \eta_4 \text{ECT}_{t-1} + \tau_t \] (6)

The \(t \)-statistics on ECT indicates the existence of long-run Granger-causality, whereas the significance of \(F \)-statistics indicates the presence of short-run Granger-causality. These tests are provided in Table 4. First, as regards the long-run, in equation (2), if \(\eta_1 \) is statistically different from zero, the null hypothesis can be rejected, and one concludes that the variables \(X, Z \) and \(V \) Granger cause the variable \(Y \). In equation (3) if \(\eta_2 \) is statistically different from zero, one concludes that the independent variables \(Y, Z \) and \(V \) Granger cause \(X \). In equation (4), if \(\eta_3 \) is statistically different from zero, one infers the variables \(Y, X \) and \(V \) Granger cause the variable \(Z \). Finally, in equation (5), if \(\eta_4 \) is statistically different from zero, one infers the variables \(Y, X \) and \(Z \) Granger causes the variable \(V \). Second, referring to the short-run, in equation 2, for example, if \(\gamma_i \) is jointly statistically different from zero, and the null hypothesis cannot be accepted, one finds that \(X \) Granger causes \(Y \). Results are provided in Tables 4 and 5 for Spain and Italy, respectively.
From the first equation the t-statistics, shown in Table 4 for Model 1, indicates that the coefficient of the cointegrating vector is statistically significant at the 1% level, thus a long-run causal relationship exists running from exports (LX) to GDP (LY). A further result is the existence of a long-run Granger causality running from LK and LH to LY. The results from the second equation also show a bidirectional relationship since LY Granger causes LX in the long-run. Additionally, a short-run relationship is found running from LY to LX. In the last equation, once again there is evidence of a long-run Granger causality running from LY to LH as well as a short-run Granger causality running from LY, LX and LK to LH. For Model 2 there is a bidirectional long-run Granger causality between LY and LT as well as a short-run relationship from LT to LY. Furthermore, in the long-term LK and LH Granger cause LY. Finally, LY Granger causes LH in the short-run as shown in the last equation.

For the Italian case, the results are shown in Table 5. Model 3 shows a bidirectional long-run Granger causality relationship between LY and LX. Regarding short-run relationships, LX and LH Granger cause LY, respectively (first equation). In the third equation, a long-run relationship exists running from LY, LX and LH to LK and in the short-term there is also a strong causal relationship from LY, LX, LH to LK. Model 4 shows a unidirectional long-run causal relationship from LT to LY; in the short-run LH Granger causes LY. From the third and forth equation, all the explanatory variables on the right hand side of the equation Granger causes LK and LH, respectively, in the long-run.
IV. DISCUSSIONS AND CONCLUSIONS

The main objective of this study is to test if the export-led growth and the tourism-led growth hypotheses hold for Spain and Italy, respectively. The existence of these relationships have been analysed using a cointegration framework. Inspired by Durbarr (2004) paper, instead of analysing only the relationship between exports and GDP and international tourism receipts and GDP, one uses two separate production functions of economic growth where physical capital, human capital are also included. The results of the tests for cointegration indicate that: both exports \(LX\) and tourist receipts \(LT\), employed in two separate systems, and economic growth \(LY\), physical capital \(LK\) and human capital \(LH\) are cointegrated, implying that a long-run relationship exists amongst these variables in each of the model.

The multivariate Granger causality results from the VEC (Vector Error Correction) analysis highlight key findings. The evidence suggests that the ELGH hypothesis is confirmed both for Spain and Italy. Specifically, one finds a long-run bidirectional causality from economic growth to exports for both of the countries. In the short-run, economic growth Granger causes exports in the Spanish case, whereas exports Granger cause economic growth in the Italian case.

In the long-run the TLGH is confirmed both for Spain and Italy as one concludes that a bidirectional relationship exists between economic growth and international tourism expansion in the Spanish case and a unidirectional Granger-causality exists in the Italian case, running from international tourism to GDP. Moreover, only for Spain in the short-run evidence appears that tourist activity Granger causes economic growth.
The multivariate Granger causality gives more insight on the relationships amongst all the other variables included in each of the production functions. As far as Spain is concerned, all factors appear as a cause of economic growth in the long-run; hence, tourism is not the essential sector but a complementary sector to take into account in the strategic and promotion policies adopted by governments and policy makers.

In the Italian case, taking into consideration the ELGH hypothesis as presented in Model 3, exports and physical capital appear to be strong Granger-causal factors for the economic growth. Moreover, in Model 4, tourism leads to GDP growth; and, physical capital and human capital cause economic growth in the long-run. Hence, overall, there is empirical evidence that suggests that policies to promote trade expansion, tourism activity, physical and human capital will increase growth.

As Oh (2005) remarks it is commonly believed that tourism has contributed positively to economic growth as exports have strongly triggered economic expansion. Following most of the ELGH papers, here we find evidence that supports the export-led growth hypothesis for both Spain and Italy. Nevertheless, TLGH is also confirmed for Spain and Italy. One must take into account that the present research employs a production function where physical and human capital are also included in a multivariate framework, instead of using only exports and GDP and international tourism receipts and GDP. Therefore, this paper can be regarded as an expansion of the existing empirical works.
REFERENCES

Figure 1 Natural Logarithm of the Economic Series (Spain: 1964 - 2000)

Figure 2 Natural Logarithm of the Economic Series (Italy: 1954 - 2000)
Table 1. Economic features of Spain and Italy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real GDP per capita</td>
<td>1107</td>
<td>2729</td>
<td>6446</td>
<td>12525</td>
<td>19037</td>
</tr>
<tr>
<td>GDP growth (annual %)</td>
<td>11.8(*)</td>
<td>4.2</td>
<td>2.2</td>
<td>3.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Labor force</td>
<td>11.7</td>
<td>12.7</td>
<td>13.9</td>
<td>15.7</td>
<td>17.8</td>
</tr>
<tr>
<td>Investment Share of Real GDP</td>
<td>22.6</td>
<td>30.2</td>
<td>25.8</td>
<td>27.4</td>
<td>25.5</td>
</tr>
<tr>
<td>Exports of goods and services (% of GDP)</td>
<td>8.4</td>
<td>12.6</td>
<td>14.8</td>
<td>16.3</td>
<td>30.1</td>
</tr>
<tr>
<td>International Tourism Receipts</td>
<td>107</td>
<td>707</td>
<td>3003</td>
<td>11390</td>
<td>33750</td>
</tr>
<tr>
<td>ITALY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real GDP per capita</td>
<td>1620</td>
<td>3417</td>
<td>8413</td>
<td>16817</td>
<td>22876</td>
</tr>
<tr>
<td>GDP growth (annual %)</td>
<td>8.21(*)</td>
<td>6.10</td>
<td>3.48</td>
<td>1.97</td>
<td>3.03</td>
</tr>
<tr>
<td>Labor force</td>
<td>20.8</td>
<td>21.1</td>
<td>22.6</td>
<td>24.4</td>
<td>25.5</td>
</tr>
<tr>
<td>Investment Share of Real GDP</td>
<td>37.2</td>
<td>32.2</td>
<td>28.9</td>
<td>23.6</td>
<td>21.7</td>
</tr>
<tr>
<td>Exports of goods and services (% of GDP)</td>
<td>12.7</td>
<td>16.1</td>
<td>21.6</td>
<td>19.7</td>
<td>28.3</td>
</tr>
<tr>
<td>International Tourism Receipts</td>
<td>207</td>
<td>529</td>
<td>3633</td>
<td>12216</td>
<td>29919</td>
</tr>
</tbody>
</table>

Notes: (1) * this number corresponds to 1961; (2) labor force data is measured in million people; (3) the source for international tourism receipts for Spain is INE and for Italy is ISTAT, these data are measured in million euros; (4) the source of the rest of the data is World Development Indicators (2004).
Table 2. Unit root tests

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADF</th>
<th>Lags</th>
<th>PP</th>
<th>lags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain
LY</td>
<td>-0.51</td>
<td>0</td>
<td>-1.49</td>
<td>0</td>
</tr>
<tr>
<td>ΔLY</td>
<td>-6.47***</td>
<td>0</td>
<td>-3.50**</td>
<td>7</td>
</tr>
<tr>
<td>LK</td>
<td>-2.45</td>
<td>1</td>
<td>-1.83</td>
<td>0</td>
</tr>
<tr>
<td>ΔLK</td>
<td>-4.01**</td>
<td>0</td>
<td>-3.77**</td>
<td>5</td>
</tr>
<tr>
<td>LH</td>
<td>-0.73</td>
<td>1</td>
<td>0.21</td>
<td>2</td>
</tr>
<tr>
<td>ΔLH</td>
<td>-4.20**</td>
<td>4</td>
<td>-4.72***</td>
<td>9</td>
</tr>
<tr>
<td>LX</td>
<td>-0.39</td>
<td>0</td>
<td>-0.53</td>
<td>2</td>
</tr>
<tr>
<td>ΔLX</td>
<td>-5.69***</td>
<td>0</td>
<td>-5.68***</td>
<td>2</td>
</tr>
<tr>
<td>LT</td>
<td>-1.89</td>
<td>1</td>
<td>-1.07</td>
<td>0</td>
</tr>
<tr>
<td>ΔLT</td>
<td>-3.94**</td>
<td>1</td>
<td>-3.70**</td>
<td>5</td>
</tr>
<tr>
<td>Italy
LY</td>
<td>-2.38</td>
<td>1</td>
<td>-1.75</td>
<td>2</td>
</tr>
<tr>
<td>ΔLY</td>
<td>-3.80**</td>
<td>0</td>
<td>-4.81***</td>
<td>2</td>
</tr>
<tr>
<td>LK</td>
<td>-1.66</td>
<td>0</td>
<td>-1.81</td>
<td>2</td>
</tr>
<tr>
<td>ΔLK</td>
<td>-6.15***</td>
<td>0</td>
<td>-6.15***</td>
<td>1</td>
</tr>
<tr>
<td>LH</td>
<td>-0.73</td>
<td>1</td>
<td>0.18</td>
<td>4</td>
</tr>
<tr>
<td>ΔLH</td>
<td>-6.53***</td>
<td>4</td>
<td>-3.17*</td>
<td>3</td>
</tr>
<tr>
<td>LX</td>
<td>-0.15</td>
<td>0</td>
<td>-0.63</td>
<td>4</td>
</tr>
<tr>
<td>ΔLX</td>
<td>-4.65***</td>
<td>0</td>
<td>-5.20***</td>
<td>2</td>
</tr>
<tr>
<td>LT</td>
<td>-2.21</td>
<td>2</td>
<td>-2.15</td>
<td>2</td>
</tr>
<tr>
<td>ΔLT</td>
<td>-4.78***</td>
<td>0</td>
<td>-5.47***</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: (1) MacKinnon critical values for rejection of hypothesis of a unit root. (2) *** and ** indicate significance at the 1% and 5% levels, respectively. (3) Δ denotes the first-difference operator. (4) Number of lags set to the first statistically significant lag, testing downwards; number of lags in the ADF test is set upon AIC criterion and PP test upon Newey-West bandwidth. (5) Constant and trend are included in all cases.
Table 3. Tests for cointegration using the Johansen procedure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Y = f (X, K, H)</td>
<td>Model 2: Y = f (T, K, H)</td>
<td>Model 3: Y = f (X, K, H)</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>r=0</td>
<td>r=0</td>
</tr>
<tr>
<td>λ max test</td>
<td>38.28***</td>
<td>28.94</td>
</tr>
<tr>
<td>Trace test</td>
<td>74.70***</td>
<td>70.70***</td>
</tr>
<tr>
<td>Cointegration equation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LY = -0.67LX + 3.18LK - 0.15LH – 4.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-0.82) (3.23) (-0.09) (-3.82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3: Y = f (X, K, H)</td>
<td>Model 4: Y = f (T, K, H)</td>
<td></td>
</tr>
<tr>
<td>Hypothesis</td>
<td>r=0</td>
<td>r=0</td>
</tr>
<tr>
<td>λ max test</td>
<td>34.40***</td>
<td>28.84**</td>
</tr>
<tr>
<td>Trace test</td>
<td>73.27***</td>
<td>60.08**</td>
</tr>
<tr>
<td>Cointegration equation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LY = 0.05LX + 0.34LK – 0.17LH + 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.09) (2.14) (-1.22) (6.02)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Numbers in parenthesis are t-test, (2) **, *** denote that a test statistics at the 5% and 1 % levels of significance, respectively.
Table 4. Spain: Granger causality results based on vector error-correction model

<table>
<thead>
<tr>
<th>Model 1. $Y = f (X, K, H)$</th>
<th>F-test</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔY</td>
<td>ΔX</td>
</tr>
<tr>
<td>ΔY</td>
<td>-</td>
<td>0.26</td>
</tr>
<tr>
<td>ΔX</td>
<td>2.86*</td>
<td>-</td>
</tr>
<tr>
<td>ΔK</td>
<td>0.86</td>
<td>0.70</td>
</tr>
<tr>
<td>ΔH</td>
<td>7.85***</td>
<td>8.58***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model 2. $Y = f (T, K, H)$</th>
<th>F-test</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔY</td>
<td>ΔT</td>
</tr>
<tr>
<td>ΔY</td>
<td>-</td>
<td>2.92*</td>
</tr>
<tr>
<td>ΔT</td>
<td>0.50</td>
<td>-</td>
</tr>
<tr>
<td>ΔK</td>
<td>1.66</td>
<td>2.22</td>
</tr>
<tr>
<td>ΔH</td>
<td>2.51*</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Note: (1) ***, ** and * indicate that a test statistics is significant at the 1%, 5% and 10% levels of significance, respectively.

Table 5. Italy: Granger causality results based on vector error-correction model

<table>
<thead>
<tr>
<th>Model 3. $Y = f (X, K, H)$</th>
<th>F-test</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔY</td>
<td>ΔX</td>
</tr>
<tr>
<td>ΔY</td>
<td>-</td>
<td>11.49***</td>
</tr>
<tr>
<td>ΔX</td>
<td>2.24</td>
<td>-</td>
</tr>
<tr>
<td>ΔK</td>
<td>4.73***</td>
<td>7.72***</td>
</tr>
<tr>
<td>ΔH</td>
<td>0.15</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model 4. $Y = f (T, K, H)$</th>
<th>F-test</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔY</td>
<td>ΔT</td>
</tr>
<tr>
<td>ΔY</td>
<td>-</td>
<td>0.84</td>
</tr>
<tr>
<td>ΔT</td>
<td>2.51</td>
<td>-</td>
</tr>
<tr>
<td>ΔK</td>
<td>1.38</td>
<td>2.66</td>
</tr>
<tr>
<td>ΔH</td>
<td>0.15</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Note: (1) ***, ** and * indicate that a test statistics is significant at the 1%, 5% and 10% levels of significance, respectively.
APPENDIX

Data description and sources

Common sources for Spain and Italy (million euros)

- Real Gross Domestic Product per capita \((Y)\) was taken from the Penn World Table 6.1.
- Investment share of \(Y\) and it was taken from the Penn World Table 6.1. The variable physical capital was built calculating investment data.
- Population data from the Penn World Table 6.1.

For Spain:

- Active population with secondary level of education, this serie was taken from IVIE (Instituto Valenciano de Investigaciones Económicas). The human capital indicator was built dividing the mentioned serie by total population.
- Total exports and international tourism receipts data from INE (Instituto Nacional de Estadística)

For Italy:

- Population with secondary level of education. This serie was taken from the ISTAT (Istituto Nazionale di Statistica). The human capital indicator is the mentioned data divided by total population.
- Total exports and international tourism receipts from ISTAT.
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org
http://agecon.lib.umn.edu

NOTE DI LAVORO PUBLISHED IN 2006

SIEV 1.2006 Anna ALBERINI: Determinants and Effects on Property Values of Participation in Voluntary Cleanup Programs: The Case of Colorado
CCMP 2.2006 Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control
CCMP 3.2006 Roberto ROSON: Introducing Imperfect Competition in CGE Models: Technical Aspects and Implications
KTHC 4.2006 Sergio VERGALLO: The Role of Community in Migration Dynamics
SIEV 5.2006 Fabio GRAZI, Jeroen C.J.M. van den BERGH and Piet RIETVELD: Modeling Spatial Sustainability: Spatial Welfare Economics versus Ecological Footprint
PRCG 7.2006 Michele MORETTO and Paola VALBONESE: Firm Regulation and Profit-Sharing: A Real Option Approach
SIEV 8.2006 Anna ALBERINI and Aline CHIABAI: Discount Rates in Risk v. Money and Money v. Money Tradeoffs
CTN 9.2006 Jon X. EGUIA: United We Vote
CTN 10.2006 Shao CHIN SUNG and Dinko DIMITRO: A Taxonomy of Myopic Stability Concepts for Hedonic Games
NRM 11.2006 Fabio CERINA (lxxviii): Tourism Specialization and Sustainability: A Long-Run Policy Analysis
NRM 12.2006 Valentina BOSETTI, Mariaeser CASSINELLI and Alessandro LANZA (lxxviii): Benchmarking in Tourism Destination, Keeping in Mind the Sustainable Paradigm
CCMP 13.2006 Jens HORBACH: Determinants of Environmental Innovation – New Evidence from German Panel Data Sources
KTHC 14.2006 Fabio SABATINI: Social Capital, Public Spending and the Quality of Economic Development: The Case of Italy
CSRIR 16.2006 Giuseppe DI VITA: Corruption, Exogenous Changes in Incentives and Deterrence
CCMP 20.2006 Massimiliano MAZZANTI and Roberto ZOBOLI: Examining the Factors Influencing Environmental Innovations
CCMP 22.2006 Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve
NRM 23.2006 Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time?
CCMP 28.2006 Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions
IEM 29.2006 Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries
KTHC 30.2006 Fabio SABATINI: Social Capital and Labour Productivity in Italy
ETA 31.2006 Andrea GALLICE (lxxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret
IEM 32.2006 Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy
NRM 33.2006 Rinaldo BRAU and Davide CAO (lxxviii): Uncovering the Macrostructure of Tourists’ Preferences: A Choice Experiment Analysis of Tourism Demand to Sardinia
CTN 34.2006 Parkash CHANDER and Henry TULKENS: Cooperation, Stability and Self-Enforcement in International Environmental Agreements: A Conceptual Discussion
IEM 35.2006 Valeria COSTANTINI and Salvatore MONNI: Environment, Human Development and Economic Growth

Alvaro CALZADILLA, Francesco PAULI and Roberto ROSON: Climate Change and Extreme Events: An Assessment of Economic Implications.

Elena FASpALANOVA (lxxx): Cultural Diversity: Determining the Memory of a Controversial Social Event.

Ugo GASpARINO, Barbara DEL CORPO and Dino PINELLI (lxxx): Perceived Diversity of Complex Environmental Systems: Multidimensional Measurement and Synthetic Indicators.

Aleksandra HAUKE (lxxx): Impact of Cultural Differences on Knowledge Transfer in British, Hungarian and Polish Enterprises.

Gianmarco I.P. OTTAVIANO and Giovanni PERI (lxxx): Rethinking the Gains from Immigration: Theory and Evidence from the U.S.

Monica BARNI (lxxx): From Statistical to Geolinguistic Data: Mapping and Measuring Linguistic Diversity.

Lucia TAJOLI and Lucia DE BENEDICTIS (lxxx): Economic Integration and Similarity in Trade Structures.

Suzanna CHAN (lxxx): “God’s Little Acre” and “Belfast Chinatown”: Diversity and Ethnic Place Identity in Belfast.

Diana PekOVA (lxxx): Cultural Diversity in People’s Attitudes and Perceptions.

John J. BETANCUR (lxxx): From Outsiders to On-Paper Equals to Cultural Curiosities? The Trajectory of Diversity in the USA.

Emilio GREGORI (lxxx): Indicators of Migrants’ Socio-Professional Integration.

Sara VERTOMMEN and Albert MARTENS (lxxx): Ethnic Minorities Rewarded: Ethnostratification on the Wage Market in Belgium.

Nicola GENOVESE and Maria Grazia LA SPADA (lxxx): Diversity and Pluralism: An Economist’s View.

Carla BAGNA (lxxx): Italian Schools and New Linguistic Minorities: Nationality Vs. Plurilingualism. Which Ways and Methodologies for Mapping these Contexts?

Yedran OMANOVIC (lxxx): Understanding “Diversity in Organizations” Paradigmatically and Methodologically.

Eric M. USLANER (lxxx): Does Diversity Drive Down Trust?

Paola MOTA SANTOS and Joao BORGES DE SOUSA (lxxx): Visibility & Invisibility of Communities in Urban Systems.

Rinaldo BRAU and Matteo LIPPI BRUNI: Eliciting the Demand for Long Term Care Coverage: A Discrete Choice Modelling Analysis.

Dinko DIMITROW and Claus-JOCHEN HAAKE: Coalition Formation in Simple Games: The Semistrict Core.

Sylvain BEAL and Nicolas QUEROU: Bounded Rationality and Repeated Network Formation.

Sophie BADE, Guillaume HAERINGER and Ludovic RENO: Bilateral Commitment.

Rudolf BERGHAMMeR, Agnieszka RUSINOWSKA and Harrie de SWART: Applications of Relations and Graphs to Coalition Formation.

Paolo PIN: Eight Degrees of Separation.

Roland AMANN and Thomas GALL: How (not) to Choose Peers in Studying Groups.
Choose an Extremist Position? The Impact of Attitudinal Factors in Scope Tests

Donatella CALABI
Raphäel SOUBEYRAN
Vincent M. OTTO, Andreas LÖSCHEL and John REILLY

Carmine GUERRIERO
Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate Change on Domestic and International Tourism: A Simulation Study

KTHC
87.2006
Fabio SABATINI: Educational Qualification, Work Status and Entrepreneurship in Italy an Exploratory Analysis

CCMP
88.2006

Philippe TULKENS and Henry TULKENS: The White House and The Kyoto Protocol: Double Standards on Uncertainties and Their Consequences

SIEV
90.2006
Andrea M. LEITER and Gerald J. PRUCKNER: Proportionality of Willingness to Pay to Small Risk Changes – The Impact of Attitudinal Factors in Scope Tests

PRCG
91.2006
Raphaël SOUBEYRAN: When Inertia Generates Political Cycles

CCMP
92.2006
Alireza NAGHavi: Can R&D-Inducing Green Tariffs Replace International Environmental Regulations?

CCMP
93.2006
Xavier PAUTREL: Reconsidering The Impact of Environment on Long-Run Growth When Pollution Influences Health and Agents Have Finite-Lifetime

CCMP
94.2006
Corrado Di MARIA and Edwin van der WERF: Carbon Leakage Revisited: Unilateral Climate Policy with Directed Technical Change

CCMP
95.2006
Paulo A.L.D. NUNES and Chiara M. TRAVISI: Comparing Tax and Tax Reallocations Payments in Financing Rail Noise Abatement Programs: Results from a CE valuation study in Italy

CCMP
96.2006
Tino KUOMANEN and Mika KORTELAINEN: Valuing Environmental Factors in Cost-Benefit Analysis Using Data Envelopment Analysis

KTHC
97.2006
Dermot LEAHY and Alireza NAGHAVI: Intellectual Property Rights and Entry into a Foreign Market: FDI vs. Joint Ventures

CCMP
98.2006
Inmaculada MARTÍNEZ-ZARZOSO, Aurelia BENCHEA-MORANCHO and Rafael MORALES LAGE: The Impact of Population on CO2 Emissions: Evidence from European Countries

PRCG
99.2006
Alberto CAVALIERE and Simona SCABROSETTI: Privatization and Efficiency: From Principals and Agents to Political Economy

NRM
100.2006
Khaled ABU-ZEID and Sameh AFIFI: Multi-Sectoral Uses of Water & Approaches to DSS in Water Management in the NOSTRUM Partner Countries of the Mediterranean

NRM
101.2006
Carlo GIUPPO, Jaroslav MYSAK and Jacopo CRIMI: Participatory Approach in Decision Making Processes for Water Resources Management in the Mediterranean Basin

KTHC
102.2006
Kerstin RONNEBERGER, Maria BERRITELLA, Francesco BOSELLO and Richard S.J. TOL: Klima@Gtan: Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling Experiment

KTHC
103.2006
Avner BEN-NER, Brian P. MCCALL, Massoud STEPHANE, and Hua WANG: Identity and Self-Other Differentiation in Work and Giving Behaviors: Experimental Evidence

SIEV
104.2006
Aline CHIABAI and Paolo A.L.D. NUNES: Economic Valuation of Oceanographic Forecasting Services: A Cost-Benefit Exercise

NRM
105.2006
Paola MINOIA and Anna BRUSAROSCO: Water Infrastructures Facing Sustainable Development Challenges: Integrated Evaluation of Impacts of Dams on Regional Development in Morocco

PRCG
106.2006

CCMP
107.2006
Richard S.J. TOL, Stephen W. PACALA and Robert SOCOLOW: Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the Usa

NRM
108.2006
Carles MANERA and Jaume GARAU TABERNER: The Recent Evolution and Impact of Tourism in the Mediterranean: The Case of Island Regions, 1990-2002

PRCG
109.2006
Carime GUERRIERO: Dependent Controllers and Regulation Policies: Theory and Evidence

KTHC
110.2006
John FOOT (xxx): Mapping Diversity in Milan, Historical Approaches to Urban Immigration

KTHC
111.2006
Donatella CALABI: Foreigners and the City: An Historiographical Exploration for the Early Modern Period

IEM
112.2006
Andrea BIGANO, Francesco BOSELLO and Giuseppe MARANO: Energy Demand and Temperature: A Dynamic Panel Analysis

SIEV
113.2006
Anna ALBERINI, Stefania TONIN, Margherita TURYANI and Aline CHIABAI: Paying for Permanence: Public Preferences for Contaminated Site Cleanup

CCMP
114.2006
Vivekananda MUKHERJEE and Dirk T.G. RÜBBELKE: Global Climate Change, Technology Transfer and Trade with Complete Specialization

NRM
115.2006
Clive LIPCHIN: A Future for the Dead Sea Basin: Water Culture among Israelis, Palestinians and Jordanians

CCMP
116.2006
Barbara BUCHNER, Carlo CARRARO and A. Denny ELLERMAN: The Allocation of European Union Allowances: Lessons, Unifying Themes and General Principles

CCMP
117.2006
Richard S.J. TOL: Carbon Dioxide Emission Scenarios for the Usa
(lxxviii) This paper was presented at the Second International Conference on "Tourism and Sustainable Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005.

(lxxix) This paper was presented at the International Workshop on "Economic Theory and Experimental Economics" jointly organised by SET (Center for advanced Studies in Economic Theory, University of Milano-Bicocca) and Fondazione Eni Enrico Mattei, Italy, Milan, 20-23 November 2005. The Workshop was co-sponsored by CISEPS (Center for Interdisciplinary Studies in Economics and Social Sciences, University of Milan-Bicocca).

(lxxx) This paper was presented at the First EURODIV Conference “Understanding diversity: Mapping and measuring”, held in Milan on 26-27 January 2006 and supported by the Marie Curie Series of Conferences “Cultural Diversity in Europe: a Series of Conferences.”

2006 SERIES

- **CCMP**
 Climate Change Modelling and Policy (Editor: Marzio Galeotti)

- **SIEV**
 Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)

- **NRM**
 Natural Resources Management (Editor: Carlo Giupponi)

- **KTHC**
 Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)

- **IEM**
 International Energy Markets (Editor: Matteo Manera)

- **CSRM**
 Corporate Social Responsibility and Sustainable Management (Editor: Giulio Sapelli)

- **PRCG**
 Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)

- **ETA**
 Economic Theory and Applications (Editor: Carlo Carraro)

- **CTN**
 Coalition Theory Network