Hedenus, Fredrik; Azar, Christian; Lindgren, Kristian

Working Paper
Induced Technological Change in a Limited Foresight Optimization Model

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 125.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Hedenus, Fredrik; Azar, Christian; Lindgren, Kristian (2005) : Induced Technological Change in a Limited Foresight Optimization Model, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 125.2005

This Version is available at:
http://hdl.handle.net/10419/74294

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Induced Technological Change in a Limited Foresight Optimization Model
Fredrik Hedenus, Christian Azar and Kristian Lindgren

NOTA DI LAVORO 125.2005

OCTOBER 2005
CCMP – Climate Change Modelling and Policy

Fredrik Hedenus, Christian Azar and Kristian Lindgren, Physical Resource Theory, Chalmers University

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=841145

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
This paper is one of a series published by FEEM on the theme of innovation modeling in the context of the challenge of stabilising atmospheric concentrations of greenhouse gases, as part of the Innovation Modeling Comparison Project. This is an international project launched and overseen by the Steering Committee of the informal International Programme on the Economics of Atmospheric Stabilisation. The broad aim of the collaboration is to advance understanding of the economic issues surrounding atmospheric stabilisation, and the specific aims of the IMCP are to provide insights into the "state of the art" and implications of endogenous modeling of technical change in global energy-environment models when applied to various levels of atmospheric stabilisation.

Members of the Steering Committee provided review comments on earlier drafts and the paper has been forwarded to external review, the final results will be published as a Special Issue of the Energy Journal. The papers have all been encouraged to draw on a common baseline (the "Common Poles-Image baseline") and to report results in comparable formats, so as to facilitate intercomparison of the different modeling results. All the results and judgements expressed here remain the responsibility of the authors.

The work presented in this paper was supported by the Swedish Energy Agency (STEM), the Swedish Agency for Innovation Systems (Vinnova) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS). FEEM fund the working papers series, and seed money for the coordination work of the Innovation Modeling Comparison Project was provided by UK Department of Environment, Food and Rural Affairs and the German Ministry of Environment.

The authors would also like to thank Björn Nyqvist for implementing limited foresight into the GET model, and Tobias Persson, Maria Grahn, Martin Persson and Daniel Johansson for valuable information and suggestions.
Induced Technological Change in a Limited Foresight Optimization Model

Summary
The threat of global warming calls for a major transformation of the energy system the coming century. Modeling technological change is an important factor in energy systems modeling. Technological change may be treated as induced by climate policy or as exogenous. We investigate the importance of induced technological change (ITC) in GET-LFL, an iterative optimization model with limited foresight that includes learning-by-doing. Scenarios for stabilization of atmospheric CO2 concentrations at 400, 450, 500 and 550 ppm are studied. We find that the introduction of ITC reduces the total net present value of the abatement cost over this century by 3-9% compared to a case where technological learning is exogenous. Technology specific polices which force the introduction of fuel cell cars and solar PV in combination with ITC reduce the costs further by 4-7% and lead to significantly different technological solutions in different sectors, primarily in the transport sector.

Keywords: Energy system model, Limited foresight, Climate policy, Endogenous learning, Technological lock-in

JEL Classification: O33

Address for correspondence:
Fredrik Hedenus
Physical Resource Theory
Chalmers University
412 96 Göteborg
Sweden
Phone: +46317723453
Fax: +46317723150
E-mail: hedenus@fy.chalmers.se
1. Introduction

Anthropogenic emissions of greenhouse gases have raised the annual average global surface temperatures (Houghton et al 2001). The energy system is the single most important source of net carbon dioxide emissions. Thus, in order to prevent further anthropogenically induced climate change, the energy system must be transformed to a system with significantly lower carbon emissions. Energy systems models have been used in order to identify cost-effective carbon abatement strategies, as well as to estimate costs of stabilizing the atmospheric carbon concentration (Azar et al, 2003, Manne & Richels, 1997).
One crucial issue in energy systems models have been how to deal with technological change. Traditionally models have assumed exogenous learning over time for technologies (Azar & Dowlatabadi, 1999). More recent models have, however, started to use learning-curves in order to endogenise technological learning (Mattsson & Wene, 1996; Barreto, 2001; Seebregts et al, 2000). This is particular important for emerging technologies e.g. solar PV, fuel cell and wind. Under such modelling approaches, accumulative installed capacities rather than time itself lead lower costs. Some models have also implemented two-factor learning curves, including also learning from R&D (Bahn and Kypreos, 2002). Endogenous learning in optimisation models, however, causes some computational problems since the optimization problem becomes non-convex. It is for that reason not possible to guarantee a global optimal solution. Therefore Mixed Integer Programming (MIP) is often used, which amounts to a linear approximation of the model. This guarantees global optimality at the expense of increased computation time (Bahn and Kypreos, 2002).

Most energy system models optimize under perfect foresight. Some recent models have started to elaborate with iterative limited foresight (Martinsen, et al, 2004, Nyqvist, 2005). These models do not find the optimal energy system from a social planner’s perspective, but they are better suited at simulating market behaviour.

In this paper, we use a model called Global Energy Transition – Limited Foresight with Learning (GET-LFL) in which we combine an optimisation approach based on limited foresight and learning-by-doing. This kind of modelling allows the problem to remain convex, and it has a relatively short computation time.

The aim is to compare the effect of introducing induced technological change (ITC) in an energy system model. However, comparing the changes in abatement costs due to ITC is not a well-defined task. Several types of comparisons can be made. One approach would be to compare an ITC model with a model with technology costs fixed at their year 2000 values. Such an approach would result in lower costs for a model with ITC. Another approach would be to compare a model with ITC with a model with exogenous learning, i.e., where the costs of various technologies drop over time. Under this approach is it unclear whether ITC would lead to lower costs or not. For instance, in the case with exogenous learning, one may assume that the cost
drops to very low levels and this could imply that the approach with exogenous learning would lead to lower costs to meet the climate target.

In this paper we compare an ITC case with a case without ITC, in which the cost of different technologies are determined by the endogenous learning generated in a baseline scenario (without the carbon constraint).

The aim of the paper is to:

- Investigate the effect of the assumption of induced technological change on abatement strategies, carbon price and abatement costs for scenarios in which the atmospheric concentration of CO₂ is stabilised at 400, 450, 500 and 550 ppm.
- Study the impact of technology specific policies, i.e., policies directed at developing a specific technology (e.g., a subsidy to wind energy).

The paper is structured as follows: in section 2 we describe the model, especially details concerning how learning-by-doing and iterative limited foresight optimization are implemented. In section 3, our results are presented and discussed and in section 4 conclusions are given.

2. Model description
The basic parameter values and structure in the model are based on the GET model (Azar et al, 2003, 2005). GET is a globally aggregated model that has three end-use sectors, electricity, transportation, and heat (which includes low and high temperature heat for the residential, service, agricultural, and industrial sectors). Primary energy supply sources include coal, oil, natural gas, nuclear power, hydro, biomass, wind- and solar energy (that can be converted into heat, electricity and hydrogen). Conversion plants may convert the primary energy supplies into secondary energy carriers (e.g., hydrogen, synthetic fuels, electricity, natural gas for vehicles and gasoline/diesel). The transportation sector is divided into aviation, ships, trains, cars and trucks and considers explicitly the costs for vehicles and fuel infrastructure.
Carbon capture and storage is an abatement technology in the model that can be used on both fossil fuels and biomass. There are efficiency losses as well as increased capital costs for carbon capture technologies, and an additional cost for transport and storage of the captured CO₂. The cost of transporting and storing CO₂ from biomass is assumed to be twice as high due to smaller scale typically associated with carbon capture from biomass (Azar et al, 2005). The total storage capacity is assumed to be 600 Gton C. Nuclear power, another potential abatement technology, is in the scenarios presented here constrained to the present electricity production due to the political controversy surrounding this technology.

In GET-LFL some important features are changed from the original GET model. The most important one is that the model is an iterative limited foresight model, rather than a perfect foresight model (this feature was introduced by Nyqvist, 2005). Further learning-by-doing and end-use demand is elastic. The price elasticity of energy demand in the transportation sector and electricity sector is set to 0.3, whereas the elasticity in the heat sector is assumed to be 0.4. In the model global GDP and energy demand is based on the CPI baseline (Vuuren et al, 2003), whereas fossil fuels reserves are based on Rogner (1997). A discount rate of 5%/year is used throughout the period.

2.1 Learning-by-doing

Learning-by-doing is introduced in the model for both the cost of energy capital and vehicles, and the efficiency of conversion technologies. The costs are reduced by the progress rate for every doubling of cumulative installed capacity (Arrow, 1962; Barreto, 2001). In the absence of investments, costs remain constant.

However, we have assumed an exogenous and exponential decline in the cost for fuel cell cars as well as solar PV. In the year 2100 the costs have declined by 60-70%. This cost development is a proxy for further research and development that we assume will take place regardless of whether there is any climate policy in place or not.

There are great uncertainties about future learning rates for technologies. In this paper we base our estimates of learning rates on (Riahi, 2004; McDonald and
Schrattenholzer, 2001; Kram el al, 2002). We assume the progress rates to be around 5% for mature technologies, such as power production from fossil fuels, and between 10% and 15% for more immature technologies such as carbon capture, wind power, fuel cells and solar PV. Each technology is assumed to have an initial investment cost in the year 2000, and a floor investment cost below which the cost cannot drop. The ratio between the initial and floor investment costs depends on technology, it is around 0.8 for semi-mature technologies such as combined heat and power plants, and around 0.2 for immature technologies such as solar PV.

Further, technological clusters are included in the model in order to model spillover of learning between different technologies, which may give rise to for instance co-evolution of technologies. Five different clusters are included: gasification of biomass and coal (used for production of hydrogen, synthetic fuels as well as electricity), carbon capture technologies that may be used with fossil fuels and biomass in combination with electricity or hydrogen production, synthetic fuels production from biomass, coal and gas, hydrogen production from fossil fuels and biomass, and finally, combined heat and power production. Learning is assumed to partially diffuse between different technologies within the clusters. This is simulated through spillover factors, a factor of 0.5 means that investing 1 kW in say coal gasification leads to the same drop in the cost of biomass gasification (per kW) as investing 0.5 kW in biomass gasification. Spillover factors are set to 0.5 between different fuels (e.g. spillover from coal gasification to biomass gasification), and 0.8 for the same cluster using the same fuel but for different kinds of production (e.g. carbon capture from hydrogen production to carbon capture from electricity production).

2.2 Limited foresight
GET-LFE is based on iterative optimization with limited foresight, (for details see Nyqvist, 2005). Each time period, t, the model maximises the sum of consumer’s and producer’s surplus for the next thirty years (when energy demand is fixed the model minimises future energy systems costs). The costs for the different technologies are static, i.e., equal to the cost level in the beginning of the period. The decisions for the first period t are then saved. The next time period, $t+1$, a new optimization is made thirty years ahead. In this period, the costs of different technologies have probably dropped because of learning by doing in previous period.
The model does not foresee potential cost reductions due to learning the coming periods, neither are scarcity rents generated for the whole period, as they are in perfect foresight models. In GET-LFL scarcity rents on fossil fuels only arise if the “planned“ extraction pathway would lead to depletion of the limited resource over the next 30 years.

The model aims to simulate a market with complete spillover of know-how between companies and with a long-term emission target set from policy makers. In this setting companies would not invest in immature more expensive technologies since in a perfect market (according to standard theory) investments are made according to the marginal costs of production. And the full spillover of learning between companies implies that there are no benefits of investing in a more expensive technology in order to reduce costs in the future. However, companies in the real world may foresee some cost reductions, and therefore invest in technologies even though they are not presently profitable. Thus, these interactions are much more complex than modelled here (see e.g. Grubler, 1999).

Further our model is not detailed enough to consider niche markets, e.g., PV may already at present be cost-effective in certain off grid applications (pocket calculators, in space, far from the electricity grid, etc). Such niche markets offer the potential for learning by doing, and there might thus be more learning in the real world than what our model suggests even in the baseline scenario.

2.3 Scenarios and cases
For each stabilization scenario the emissions are bound to a trajectory resulting in an atmospheric concentration of 400, 450, 500 and 550 ppm CO₂ by the year 2100. The emission trajectories, shown in Figure 1, do not allow overshoots, except for the 400 ppm scenario (where the atmospheric concentration peaks in 2060 at 415 ppm). The emissions due to land use changes are also exogenously set using a combination of data from the CPI baseline (Vuuren et al, 2003) and the B2 SRES scenario (Nakicenovic, 2000).
The baseline scenario, without any carbon constraint, is run with endogenous learning. Thereafter, all stabilization scenarios are run in two different ways, one with Induced Technological Change (ITC) and one without Induced Technological Change (no-ITC). The investment costs in the no-ITC case are fixed to follow the cost profiles generated in the baseline scenario. In the ITC case, the emission cap induces investments (in abatement technologies), which causes cost reductions through learning-by-doing.

Figure 1. Exogenously set emissions trajectories for each stabilization scenario. The baseline trajectory is generated in a model run without carbon constraint.

3. Result

3.1 The baseline scenario vs. ITC stabilization scenarios

The main abatement option used in all stabilization scenarios are biomass, wind, oil and natural gas instead of coal, a reduction of the energy demand and carbon capture and storage from both coal and biomass (see figure 2). In the baseline scenario (no carbon abatement), oil-based fuels are replaced by synthetic fuels produced from coal around 2050, whereas oil-based fuels are used in the transport sector during an even longer time period in the stabilization scenario. This latter, rather paradoxical result, can be explained by the fact that the costs of synthetic fuels from coal is lower than gasoline from non-conventional oil, whereas the opposite holds for a world with sufficiently high carbon taxes.

More stringent carbon constraints generate higher energy prices which reduce energy demand. The demand is reduced by 30-35% from 2060 and onwards in all scenarios. The reason for the small difference in energy use between the different scenarios is
that the same abatement technology is most often used on the margin at regardless of scenario.

Figure 2a
Figure 2b

Figure 2. The primary energy supply in the baseline scenario (2a) and in the 450 ppm stabilization scenario with ITC (2b).

3.2 Comparing ITC and no-ITC cases

Here, we compare the stabilization scenarios with ITC and without ITC (no-ITC). The deviation between the ITC and no-ITC cases for different energy sources is typical less than 5% in all scenarios. However, larger deviations occur for short periods of time for certain energy suppliers, up to 15% in the 500 and 550 ppm scenarios, and up to 20% in the 400 and 450 ppm scenarios.

In the 400 and 450 ppm scenario the ITC case mainly affect the marginal costs of carbon after 2070. In the 450 ppm scenarios the difference between the marginal carbon cost in the ITC case and the no-ITC is around 100 USD/ton C, as seen in figure 3, and around 200-300 USD/ton C for the 400 ppm scenario. The cut in the marginal cost curve in 2090 is due to that the emission trajectory is levelling out in 2090, and then again becomes slightly steeper. In the 500 and 550 ppm scenario, there is a difference of around 100 USD/ton between the ITC and no-ITC cases for both scenarios from 2080 and onwards.

Figure 3 Carbon price in the 450 and 550 ppm scenario, with ITC and without ITC.
The aggregated discounted welfare (sum of consumer’s and producer’s surplus) loss due to carbon abatement ranges from 10 TUSD in the 400 ppm scenario to 2 TUSD in the 550 ppm scenario. The welfare benefit of ITC compared to no-ITC lies in the range of 3-9% depending on scenario.

3.3 Explanation of the low impact of ITC

There are two main explanations for the small differences between the ITC and the no-ITC cases, these are (i) spill-over of knowledge between technologies and (ii) large potential of fossil fuel abatement technologies.

First, there is spillover within technological clusters. Therefore, investments in, for instance, gasification of coal, leads to learning that is useful when biomass is gasified (a process that is also of importance for carbon capture). In the baseline scenario, fossil fuels dominate the energy supply. This leads to improvements of technologies that use fossil fuels, and as a result of spill-over of learning, there is also some improvement of biomass and fossil fuel with carbon capture and storage in the baseline scenario.

Second, in the mitigation scenarios, natural gas instead of coal, biomass and carbon capture and storage from fossil fuels and biomass dominate the changes in the energy supply. These technologies are the same technologies that gain learning also in the baseline scenario. More advanced technologies such as fuel cell technologies and hydrogen production from solar, which do not gain learning in the baseline scenario, are not even used in the 400 ppm stabilization scenario until after the year 2100. These two observations explain why the impact of ITC on the welfare cost of carbon abatement is modest (in our modelling approach in the base case runs).

3.4 ITC and technology specific policies

In the previous experiment an emission cap induced investments in the energy system and thereby learning. However, in the real world, investments in more advanced technologies are not only triggered by carbon abatement policies, but also by government policies that support specific technologies. For instance, few expect that private companies will make investments in grid-connected PV only as a result of
expectations that there will be a stringent climate policy in place by the year 2030. We here study a case (ITC tech) where technological change is induced by the emission cap as well as of technology specific policies. We define technology specific policies as policies that are primarily aimed at supporting the commercialisation of immature but promising technologies. Such policies include e.g. feed-in tariffs, green certificate and directed subsidies etc.

We prescribe that at least 0.2% (200,000 cars) of the total car stock in 2040 consists of hydrogen fuel cell cars and as many natural gas cars with internal combustion engine in the year 2040. We also prescribe that 0.2% (40 GWp, installed capacity) of the global electricity demand is supplied by solar PV. After 2040, there is no prescribed level for any of these technologies.

By forcing the technologies to enter the market, the costs for these individual technologies are reduced by roughly 60% in only a decade. The impact of technology specific policies is largest in the transport sector, where hydrogen powered fuel cell cars take a significant market share from 2060 and onward in the 400 and 450 ppm scenarios. Also solar PV enters the market in all scenarios, but wind and solar PV together never exceed the limit of 30% of the electricity demand due to the intermittent nature of solar and wind power. Hydrogen production from solar is not a cost-effective option in our scenarios until after the year 2100.

Figure 5a. Transportation fuels 450 ppm ITC tech

Figure 5b. Transportation fuels 450 ppm no-ITC

Figure 5. Transportation fuels in the 450 ppm scenario in the case with ITC and technology specific policies (ITC tech) (5a) and without ITC (no-ITC)(5b).

The marginal cost of carbon is reduced significantly in the technology specific policy case. The carbon price in the 400 ppm scenario ITC tech case is around 900 USD
lower than in the no-ITC case in 2100 (a reduction by 80%). In the 450 ppm scenario
the difference is 300-400 USD/ton C as seen in figure 6, whereas 550 ppm scenarios
remain fairly unaffected. It is, however, worth noting that the difference in carbon
prices is small until 2070, even though the policy is introduced in 2040. This stems
from the fact that the advanced technologies are not cost-effective until around 2070
despite their rapid learning rates.

![Figure 6. Carbon price of carbon in the 450 and 550 ppm scenario, in the no-ITC and
ITC tech cases.](image)

Technology specific policies reduce the costs of carbon abatement compared to both
the ITC and no-ITC cases in all scenarios. The reduction of welfare losses ranges
from 6 to 16% depending on scenario, see table 1. Since the changes between all
cases mainly occur after 2070, the benefit in welfare is discounted to a large extent,
which partly explains the fairly small differences in abatement costs.

This modelling exercise also demonstrates the risk for technology lock-in in models
with endogenous learning and limited foresight. In the absence of perfect foresight (as
is the case in reality!), the market will pick the technologies that happen to be the
most competitive without considering the fact that certain technologies can be
expected to improve much faster than others, but only if they are given sufficiently
large markets which enable learning by doing.
Table 1. Abatement welfare loss in the ITC and ITC with technology policy relative to the without ITC case

<table>
<thead>
<tr>
<th></th>
<th>Abatement cost</th>
<th>Cost relative to no-ITC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no-ITC (TUSD)</td>
<td>ITC (%)</td>
</tr>
<tr>
<td>400 ppm</td>
<td>9.7</td>
<td>93</td>
</tr>
<tr>
<td>450 ppm</td>
<td>5.4</td>
<td>91</td>
</tr>
<tr>
<td>500 ppm</td>
<td>2.7</td>
<td>97</td>
</tr>
<tr>
<td>550 ppm</td>
<td>1.8</td>
<td>97</td>
</tr>
</tbody>
</table>

3.5 Sensitivity analysis

The abatement technologies chosen in the stabilization scenarios as well as total abatement costs are dependent on various choices of parameters. However, for most parameters the relative difference between the ITC and no-ITC case remain fairly constant. In this section we elaborate with parameters that tend to increase the relative importance of ITC.

Assuming that the gas reserves are halved compared to the base case runs, that the availability of carbon storage sites is halved and disregarding spillover within technological clusters, ITC reduces the total abatement cost by around 15% compared to the no-ITC case for all stabilization scenarios. This confirms the argument put forward in section 3.3.

The floor costs set a limit on how much the costs for a specific technology may decrease due to learning. Therefore, even though there are more extensive investments in abatement technologies in the stabilization scenarios, there is a rather small difference in costs for many important abatement technologies between the ITC case and the baseline (and thereby the no-ITC case as well). Assuming that the costs of technologies may decrease below the floor costs therefore increase the effect of ITC. The total abatement cost is reduced by 15-20% in the ITC case compared to the no-ITC case for the 400 and 450 ppm scenarios. The difference is even larger for the 500 and 550 ppm scenarios, around 30-35%.
Still, even if the total abatement cost may be sensitive for some parameters, the mitigation strategy is not. The primary energy supply does not alter significantly between the ITC and no-ITC cases in the sensitivity analysis. What may cause major changes in the energy system is technology specific policies.

4 Conclusion and discussion
We have analysed the impact of introducing induced technological change in an energy systems model called GET-LFL, which is an optimization model with limited foresight.

Our main results may be summarized as

- The introduction of induced technological change (ITC) leads to a reduction of the overall cost to meet the climate target by 3-9% compared to a case without ITC (no-ITC).

- The introduction of ITC does not lead to any major changes in the energy supply in our model compared to our case without ITC (in general the difference in the energy supply mix remain below 5%).

- ITC in combination with technology specific policies alters the transport energy supply system significantly in the 400 and 450 ppm scenarios after 2070, and reduces the total abatement cost by 12-16% compared to the no-ITC cases.

It is important to note that the cost reductions reported above depend heavily on assumptions that were made for the no ITC scenario. Thus, our results should not be interpreted as if technological change is not particularly important to meet stringent climate targets. Clearly, a radical transformation of the energy system is needed if we are to achieve perhaps a 90% reduction in emissions compared to baseline by the end of the century.

The key reason why ITC does not seem to play an important role in reducing costs to meet the climate targets in this paper is that there is quite some learning in the base
case and the assumption that this learning reduces the abatement cost in the no-ITC case.

This way of defining the technological development in the no-ITC case is just one out of many ways. An alternative way would have been to make comparisons with a scenario without any technological development at all. Under such an assumption, ITC would have emerged from the modelling exercise as extremely important. It may not even be possible to reach a 450 ppm scenario with currently existing technologies. Alternatively, one could have compared the ITC case with a case with exogenous rapid learning. In this case, ITC could have turned out to be more costly.

One of the more important insights demonstrated in our modelling approach is that endogenous learning may lead to path dependencies. Such phenomena are difficult to obtain in models with perfect foresight. We show that by introducing technology specific policies in the form of a forced introduction of fuel cells and solar PV. This turns out to quite radically alter the transport sector. The reason for this is that the mandatory use of fuel cell reduces the cost of this technology so that it becomes the most cost-effective option in the transport sector. Thus without technology specific polices the energy system is locked into a cost ineffective state. This highlights the importance of not only relying on general price instruments when developing climate policies. Rather, technology specific polices, such as subsidies, green certificates and feed-in tariffs, therefore seem to be an important complement to higher carbon prices (Sandén and Azar, 2005)
References

up energy models for Germany model structure and model results”. Systems Analysis and technology Evaluation (STE). Preprint 20/2004
Our Note of Labor are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (lxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

CCMP 16.2004 Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

NRM 18.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 20.2004 Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists

NRM 22.2004 Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (lxvii): Tourism, Trade and Domestic Welfare

NRM 24.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 25.2004 Raúl Hernández MARTÍN (lxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

SRM 27.2004 Raul Hernández MARTIN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports

NRM 30.2004 Trond BJORNDAHL, Phoebe KOUNDOURI and Sean PASCOE (lxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

Franca ECKERT COEN and Claudio ROSSI (lxviii): Foreigners, Immigrants, Host Cities: The Policies of Multi-Ethnicity in Rome. Reading Governance in a Local Context

Kiflemariam HAMDE (lxviii): Mind in Africa, Body in Europe: The Struggle for Maintaining and Transforming Cultural Identity - A Note from the Experience of Eritrean Immigrants in Stockholm

Andrea BIGANO and Stef PROOST: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Timo GOESCHL and Tun LIN: Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Ingo BRÄUER and Rainer MARGGRAF: Property Rights Conservation and Development: An Axiomatic Approach

Micheal FINUS (lxvii): International Cooperation to Resolve International Pollution Problems

Francesco CRESP: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Ekin BIROL, Ágnes GYÖVÁI and Melinda SMALE (lxvii): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Sergio CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects

Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Ingo BRÄUER and Rainer MARGGRAF: Property Rights Conservation and Development: An Axiomatic Approach

Timo GOESCHL and Tun LIN: Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance

Koen SMEKENS and Bob VAN DER ZWAAN: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management

Timo GOESCHL and Danilo CAMARGO IGLIORI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon

Barbara BÜCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol

Elibiaso PAPYRAKIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.

Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ: Consering Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis

E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands

Gianmits VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings

Anastasios XEPAPADEAS and Constadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Michael FINUS: Modesty Pays: Sometimes!

Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALLEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margherita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.2004</td>
<td>Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment</td>
</tr>
<tr>
<td>75.2004</td>
<td>Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach</td>
</tr>
<tr>
<td>77.2004</td>
<td>Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lx): Optimal Information Transmission in Organizations: Search and Congestion</td>
</tr>
<tr>
<td>78.2004</td>
<td>Francis BLOCH and Armando GOMES (lx): Contracting with Externalities and Outside Options</td>
</tr>
<tr>
<td>79.2004</td>
<td>Rabah AMIR, Efsuny DIAMANTOUDI and Licin XUE (lx): Merger Performance under Uncertain Efficiency Gains</td>
</tr>
<tr>
<td>80.2004</td>
<td>Francis BLOCH and Matthew O. JACKSON (lx): The Formation of Networks with Transfers among Players</td>
</tr>
<tr>
<td>81.2004</td>
<td>Daniel DIERMJEIER, Hülya ERASLAN and Antonio MERLO (lx): Biocameralism and Government Formation</td>
</tr>
<tr>
<td>82.2004</td>
<td>Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lx): Potential Maximization and Coalition Government Formation</td>
</tr>
<tr>
<td>83.2004</td>
<td>Kfir ELIAZ, Droraj RAY and Ronny RAZIN (lx): Group Decision-Making in the Shadow of Disagreement</td>
</tr>
<tr>
<td>84.2004</td>
<td>Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lx): Economics: An Emerging Small World?</td>
</tr>
<tr>
<td>85.2004</td>
<td>Edward CARTWRIGHT (lx): Learning to Play Approximate Nash Equilibria in Games with Many Players</td>
</tr>
<tr>
<td>86.2004</td>
<td>Finn R. FØRSEND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power</td>
</tr>
<tr>
<td>87.2004</td>
<td>Elissiasos PAPYRAKIS and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income</td>
</tr>
<tr>
<td>89.2004</td>
<td>A. MARKANDYA, S. PEDROSO and D. STREIMIKIENE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?</td>
</tr>
<tr>
<td>90.2004</td>
<td>Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy</td>
</tr>
<tr>
<td>91.2004</td>
<td>Sergei IZMALKOV (lx): Multi-Unit Open Ascending Price Efficient Auction</td>
</tr>
<tr>
<td>92.2004</td>
<td>Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures</td>
</tr>
<tr>
<td>93.2004</td>
<td>Massimo DEL GAITTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus devolution</td>
</tr>
<tr>
<td>94.2004</td>
<td>Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits</td>
</tr>
<tr>
<td>95.2004</td>
<td>Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply</td>
</tr>
<tr>
<td>96.2004</td>
<td>Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise</td>
</tr>
<tr>
<td>97.2004</td>
<td>Gustavo BERGANTÍNOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems through the Canonical Form</td>
</tr>
<tr>
<td>98.2004</td>
<td>Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation</td>
</tr>
<tr>
<td>99.2004</td>
<td>Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements</td>
</tr>
<tr>
<td>100.2004</td>
<td>Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents</td>
</tr>
<tr>
<td>102.2004</td>
<td>Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test</td>
</tr>
<tr>
<td>103.2004</td>
<td>Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy</td>
</tr>
<tr>
<td>106.2004</td>
<td>Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?</td>
</tr>
<tr>
<td>107.2004</td>
<td>Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets</td>
</tr>
<tr>
<td>108.2004</td>
<td>Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo MAINARDI: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective</td>
</tr>
<tr>
<td>109.2004</td>
<td>Someb LAHIRE: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results</td>
</tr>
<tr>
<td>110.2004</td>
<td>Giuseppe DI VITA: Natural Resources Dynamics: Another Look</td>
</tr>
<tr>
<td>111.2004</td>
<td>Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study</td>
</tr>
<tr>
<td>112.2004</td>
<td>Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making</td>
</tr>
<tr>
<td>113.2004</td>
<td>Paolo A.L.D. NUNES and Laura ONOFRI: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications</td>
</tr>
<tr>
<td>114.2004</td>
<td>Patrick CAYRAD: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?</td>
</tr>
<tr>
<td>115.2004</td>
<td>Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies</td>
</tr>
</tbody>
</table>
Auctions
Price Sealed-Bid Auctions
the Incidence of Commissions in Auction Markets
Maximization and the Multiple-Good Monopoly
Roberto BURGUET

Externalities
in Stabilization Policies?
Bookbuilding is Dominating Auctions
Real Option Analysis
Economic

Latent-Class Approach Based on Intensity of Participation
Savings
Analysis of Climate Change Impacts on Tourism
Economy

CCMP 138.2004
ZhongXiang ZHANG:
The World Bank’s Prototype Carbon Fund and China

CCMP 139.2004
Chiara D’ALPAOS and Michele MORETTO:
The Value of Flexibility in the Italian Water Service Sector: A

CCMP 130.2004
Maria BERRITTELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium
Analysis of Climate Change Impacts on Tourism

CCMP 127.2004

CCMP 128.2004
Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy
Savings

NRM 129.2004
Elisavor PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth

PRA 130.2004
Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys

PRA 131.2004
Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The
Influence of World Energy Prices

PRA 132.2004
Riccardo SCARPA Kenneth G. WILLIS and Melinda ACUTT: Comparing Individual-Specific Benefit Estimates
for Public Goods: Finite Versus Continuous Mixing in Logit Models

PRA 133.2004
Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited

EТА 134.2004
Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma

SIEV 135.2004
Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys

SIEV 136.2004
Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The
Influence of World Energy Prices

ETA 137.2004
Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an
Environmental Taxation Game

CCMP 138.2004
ZhongXiang ZHANG: The World Bank’s Prototype Carbon Fund and China

CCMP 139.2004
Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy

NRM 140.2004
Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A

PRA 141.2004
Patrick BAJARI, Stephanie HOUGHTON and Steven ŠEVČIK (lxxi): Bidding for Incomplete Contracts

PRA 142.2004
Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealed Bid Auctions: Theory
and Evidence from Timber Auctions

PRA 143.2004
David GOLDREICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions

PRA 144.2004
Roberto BURGUET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More
Simple Economics

PRA 145.2004
Ali HORTACSU and Samita SAREEN (lxxi): Order Flow and the Formation of Dealer Bids: An Analysis of
Information and Strategic Behavior in the Government of Canada Securities Auctions

PRA 146.2004
Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUGUET (lxxi): How to Win Twice at an Auction. On
the Incidence of Commissions in Auction Markets

PRA 147.2004
Claudio MEZZETTI, Aleksandar PEKEˇC and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price
Auctions

PRA 148.2004
John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions

PRA 149.2004
Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-
Price Sealed-Bid Auctions

PRA 150.2004
François DEGEORGE, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why
Bookbuilding is Dominating Auctions

CCMP 151.2004
Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification. Internal Institution and
Pressure Groups in the Kyoto Protocol’s Adoption Process

CCMP 152.2004
Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate
Policy Analysis? A Robustness Exercise with the FEEM-RICE Model

PRA 153.2004
Alejandro M. MANELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue
Maximization and the Multiple-Good Monopoly

ETA 154.2004
Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism in
Stabilization Policies?

CTN 155.2004
Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with
Externalities

CCMP 156.2004
Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
CCMP 157.2004	Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?
ETA 159.2004	William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling
KTHC 160.2004	Alberto PETRUCCHI: On the Incidence of a Tax on Pure Rent with Infinite Horizons
IEM 161.2004	Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRÍGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1.2005	Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change
CCMP 2.2005	Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China
CCMP 3.2005	Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level
CCMP 4.2005	Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice
ETA 5.2005	Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?
ETA 8.2005	Lorenzo PELLEGRINI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption Democracy and Environmental Policy
CCMP 9.2005	Angelo ANTOCCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model
CTN 10.2005	Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers
NRM 11.2005	Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate
PRCG 14.2005	Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure
CSRM 15.2005	Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian Leather Footwear Industry
KTHC 16.2005	Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence
KTHC 17.2005	Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms
KTHC 18.2005	Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer
KTHC 19.2005	Mombert HOPPE: Technology Transfer Through Trade
PRCG 20.2005	Roberto ROSON: Platform Competition with Endogenous Multithoming
CCMP 21.2005	Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes
CTN 23.2005	Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria
SIEV 26.2005	Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities
NRM 27.2005	Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information
NRM 29.2005	Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism
NRM 30.2005	Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies
NRM 31.2005	Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility
NRM 32.2005	Joseph HUBER: Key Environmental Innovations
CCMP 33.2005	Antonio CALVÓ-ARMENGOL and Rahimi ILKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation
CTN 34.2005	Francesco FERI (lxxii): Network Formation with Endogenous Decay
CTN 35.2005	Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
Alessandra CASELLA and Nobuyuki HANAKI (lxxii): Information Channels in Labor Markets, On the Resilience of Referral Hiring
Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated Games
Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): The Egalitarian Sharing in Provision of Public Projects
Francesco FERI, Stochastic Stability in Network with Decay
Aart de ZEEUW (lxxii): Dynamic Effects on the Stability of International Environmental Agreements
C. Martijn van der HEIDE, Jeroen C.J.M. van den BERGH, Ekkos C. van IERLAND and Paulo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands
Carlo VIEIRA and Ana Paula SERBA: Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms
Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice
Michael FINUS and Bianca RUNDHAGEN: Participation in International Environmental Agreements: The Role of Timing and Regulation
Lorenzo PELLEGRINI and Reyer GERLAGH: Are EU Environmental Policies Too Demanding for New Members States?
Matteo MANERA: Modeling Factor Demands with SEM and VAR: An Empirical Comparison
Ana MAULEON, José SEMPERE-MONERRIS and Vincent J. VANNEVELBOSCH (lxxii): A Characterization of Stochastically Stable Networks
Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in Among Unionized Firms
Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the DoHa Proposal
Margaretha BREIL, Greet GAMBARELLI and Paulo A.L.D. NUNES: Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach
Alessandra della BOCA, Marzio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA: Investment and Time to Plan: A Comparison of Structures vs. Equipment in a Panel of Italian Firms
Gernot KLEPPER and Sonja PETERSON: Emissions Trading, CDM, JI, and More – The Climate Strategy of the EU
Maia DAVID and Bernard SINCLAIR-DESIGNEn: Environmental Regulation and the Eco-Industry
Alireza NAGHAVI: Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the Doha Proposal
Margaretha BREIL, Greet GAMBARELLI and Paulo A.L.D. NUNES: Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach
Anna MAULEON, José SEMPERE-MONERRIS and Vincent J. VANNEVELBOSCH (lxxii): A Characterization of Stochastically Stable Networks
Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in Among Unionized Firms
Valeria GATTAI: From the Theory of the Firm to FDI and Internationalisation: A Survey
Alessandra CASELLA and Nobuyuki HANAKI (lxxii): Information Channels in Labor Markets, On the Resilience of Referral Hiring
Helmut KARL, Antje MÖLLER, Ximena MATUS, Edgar GRANDE and Robert KAISER: Environmental Innovations: Institutional Impacts on Co-operations for Sustainable Development
Dimitra VOUVAKI and Anastasios XEPAPADEAS (lxxii): Criteria for Assessing Sustainable Development: Theoretical Issues and Empirical Evidence for the Case of Greece
Andreas LÖSCHEL and Dirk T.G. RÜBBELKE: Impure Public Goods and Technological Interdependencies
Christoph A. SCHALTEGGER and Benno TORGLER: Trust and Fiscal Performance: A Panel Analysis with Swiss Data
Irene VALSECCHI: A Role for Instructions
Valentina BOSETTI and Gianni LOCATELLI: A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks
Arianna T. de BLAEIJ, Paulo A.L.D. NUNES and Jeroen C.J.M. van den BERGH: Modeling ‘No-choice’ Responses in Attribute Based Valuation Surveys
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Applications of Negotiation Theory to Water Issues
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Advances in Negotiation Theory: Bargaining, Coalitions and Fairness
Sandra WALLMAN (lxxiv): Network Capital and Social Trust: Pre-Conditions for ‘Good’ Diversity?
Asimina CHRISTOFOROU (lxxiv): On the Determinants of Social Capital in Greece Compared to Countries of the European Union
Eric M. USLANER (lxxiv): Varieties of Trust
Grazzialette BERTOCCI and Chiara STROZZI (lxxv): Citizenship Laws and International Migration in Historical Perspective
Elisbeth van HYLCKAMA VLJEG (lxxv): Accommodating Differences
Renato SANSa and Ercole SORI (lxxv): Governance of Diversity Between Social Dynamics and Conflicts in Multicultural Cities. A Selected Survey on Historical Bibliography
Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship

Umberto CHERUBINI and Matteo MANERA: Hunting the Living Dead A “Peso Problem” in Corporate Liabilities Data

Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITTHAGEN (lxxvi): Local and Global Interactions in an Evolutionary Resource Game

Joëlle NOAILLY, Cees A. WITTHAGEN and Jeroen C.J.M. van den BERGH (lxxvi): Spatial Evolution of Social Norms in a Common-Pool Resource Game

Maximiliano MAZZANTO and Roberto ROZOLI: Economic Instruments and Induced Innovation: The Case of End-of-Life Vehicles European Policies

Anna LASUT: Creative Thinking and Modelling for the Decision Support in Water Management

Valentina BOSETTI and Barbara BUCHNER: Using Data Envelopment Analysis to Assess the Relative Efficiency of Different Climate Policy Portfolios

IEM 85.2005

Rosella LEVAGGI, Michele MORETTO and Vincenzo REBBA: Quality and Investment Decisions in Hospital Care when Physicians are Devoted Workers

Valentina BOSETTI and Laurent GILOTTE: Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?

Vincenzo REFRERA: Value Through Diversity: Microfinance and Islamic Finance and Global Banking

A. MARKANDYA and S. PEDROSO: How Substitutable is Natural Capital?

Valentina BOSETTI and Laurent GILOTTE: Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?

Francesco BOSELLO and Jian ZHANG: Assessing Climate Change Impacts: Agriculture

Alejandro CAPARROS, Jean-Christophe PEREAU and Tarik TAZDAIT: Bargaining with Non-Monolithic Players

Rob DELLINK, Michael FINUS and Niels OLJEMAN: Coalition Formation under Uncertainty: The Stability of an International Climate Agreement

Valeria COSTANTINI, Riccardo CRESCENZI, Fabrizio De FILIPPIS, and Luca SALVATICI: Bargaining in the Agricultural Negotiations of the Doha Round: Similarity of Interests or Strategic Choices? An Empirical Assessment

Alessandro COLONNI and Matteo MANERA: Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries

Chiara M. TRAVISI and Roberto CAMAGNI: Learning and Salience

IEM 100.2005

Michele BERNASCONI and Matteo GALIZZI: Coordination in Networks Formation: Experimental Evidence on Learning and Salience

KTHC 102.2005

Michele MORETTO and Sergio VERGALLI: Migration Dynamics

Antonio MUSOLESI and Mario NOSVELLI: Water Consumption and Long-Run Urban Development: The Case of Milan

Benno TORGLER and Maria A. GARCIA-YALIÑAS: Attitudes Towards Preventing Environmental Damage

Alberto LONGO and Anna ALBERINI: What are the Effects of Contamination Risks on Commercial and Industrial Properties? Evidence from Baltimore, Maryland

Anna ALBERINI and Aline CHIABAI: Was It Something I At? Implementation of the FDA Seafood HACCP Program

Anna ALBERINI, Erik LICHTENBERG, Dominic MANCINI, and Gregmar I. GALINATO: The Value of Cultural Heritage Sites in Armenia: Evidence from a Travel Cost Method Study

Gilles LAFFORGUE and Walid OUESLATI: Optimal Soil Management and Environmental Policy
Martin D. SMITH and Larry B. CROWDER (lxxvi): Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary

Dan HOLLAND and Kurt SCHNIER (lxxvi): Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

John NELLIS: The Evolution of Enterprise Reform in Africa: From State-owned Enterprises to Private Participation in Infrastructure — and Back?

Bernardo BORTOLOTTI: Italy’s Privatization Process and Its Implications for China

Anna ALBERINI, Marcella VERONESI and Joseph C. COOPER: Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys

Federico ECHENIQUE and Mehmet B. YENMEZ: A Solution to Matching with Preferences over Colleagues

Valeria GATTAI and Corrado MOLTENI: Dissipation of Knowledge and the Boundaries of the Multinational Enterprise

Valeria GATTAI: Firm’s Intangible Assets and Multinational Activity: Joint-Venture Versus FDI

Socrates KYPREOS: A MERGE Model with Endogenous Technological Change and the Cost of Carbon Stabilization

Fuminori SANO, Keigo AKIMOTO, Takashi HOMMA and Toshimasa TOMODA: Analysis of Technological Portfolios for CO₂ stabilizations and Effects of Technological Changes

Fredrik HEDENUS, Christian AZAR and Kristian LINDGREN: Induced Technological Change in a Limited Foresight Optimization Model
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>