Nosvelli, Mario; Musolesi, Antonio

Working Paper

Water Consumption and Long-Run Urban Development: The Case of Milan

Nota di Lavoro, No. 109.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Nosvelli, Mario; Musolesi, Antonio (2005) : Water Consumption and Long-Run Urban Development: The Case of Milan, Nota di Lavoro, No. 109.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74289

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Water Consumption and Long-Run Urban Development: The Case of Milan
Antonio Musolesi and Mario Nosvelli
NOTA DI LAVORO 109.2005

SEPTEMBER 2005
NRM – Natural Resources Management

Antonio Musolesi and Mario Nosvelli, CERIS – DSE, CNR (National Research Council)

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=812988

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Water Consumption and Long-Run Urban Development: The Case of Milan

Summary
Analyses of long run consumption series are rare in literature. We study the evolution of water consumption in Milan in the twentieth century. The objective is twofold: on one side, the univariate analysis tries both to assess the impact of relevant socio-economic and environmental changes on water consumption in Milan and verify if consumers have deeply rooted consumption habits. On the other side, the multivariate analysis is used to identify the socio-economic factors that are relevant in explaining consumption evolution. Results indicate both that water users have well entrenched consumption habits and that population, climate and economic structure behave more similarly, in Euclidean terms, to water consumption than to other economic and social variables.

Keywords: Urban consumption, Long-run, Development, Environmental changes

JEL Classification: Q25, R1, C22, C19

Address for correspondence:
Mario Nosvelli
CERIS – DSE
CNR
Via Bassini, 15
20133 Milano
Italy
Phone: +39 2 23699514
Fax : +39 2 23699530
E-mail: m.nosvelli@ceris.cnr.it
1. Introduction

Historically Milan could count on a great abundance of water thanks both to a large number of private wells and to a dense network of canals – that dates back to Leonardo da Vinci contribution – drawing water from the Adda and Ticino rivers (Lapini, 2004). This huge availability of water delayed the waterworks building relatively to other European cities, which created water distribution lines as early as the eighteenth century.

Starting with its foundation in 1889, the progressive development of waterworks should be considered as one of the most important urbanisation works, since it illustrates the economic and social growth of Milan following the European development of the twentieth century (Lapini, 2004).

We analyse the evolution of water consumption in the city of Milan from 1889 to 2001. The objective is twofold: on one side, the univariate analysis tries both to assess the impact of relevant socio-economic and environmental changes on water consumption in Milan and verify if consumers have deeply rooted consumption habits. On the other side, the multivariate analysis is used to identify the socio-economic factors that are relevant in explaining consumption evolution.

Although the literature investigated massively water demand (Dalhuisen et al., 1999; Arbuès Garcia et al.; 2000; Nauges and Thomas, 2000), the
analyses of long consumption series are rare. Martínez Espiñeira (2001), for instance, estimates a water consumption function in the usual cointegrating framework. In our context, however, giving that the series spreads over different social and economic phases of urban development, the estimation of a cointegrating relationship may produce misleading results because it imposes the stability over time of the estimated coefficients.

Nevertheless, water consumption may be considered, at least in a long run perspective, as an indicator of urban transformation which is, more than other environmental variables, strictly connected to socio-economic and cultural factors that are at the root of long run urban changes (Nyong and Kanaroglu, 1999).

Consequently, instead of estimating a water demand function with the aim of measuring consumption elasticities, we use multivariate statistics tools in order to capture simple similarities - in Euclidean terms - between water consumption and the above mentioned factors of urban modifications.

Another original aspect of this paper concerns some of the peculiarities of the city of Milan: on one hand, it is the second largest city in Italy – with almost two million inhabitants - and it is generally considered the most important and dynamic Italian city from an economic point of view; on the other hand, some socio-economic and environmental profiles of the city -- productive structure evolution, demographic trends, climatic changes, water management-- are shared with many European cities. Hence, despite Milan’s
peculiarities, some results and policy implications presented in this analysis could be extended to other European cities.

The structure of the paper is as follows. Section 2 analyses the development of water consumption in Milan over the course of a 113-year period using the intervention model methodology. Section 3 focuses on the similarities existing between water consumption and some socio-economic variables connected with long-run urban evolution. Section 4 sheds light on the policy implications suggested by the analysis that we carried out. Section 5 presents some final remarks on the main results achieved and on future research objectives.

2 A century of water consumption in Milan

The main goal of this section is to analyse water consumption over the period 1889-2001 within an ARIMA framework. In detail, we apply the Box and Tiao (1975) intervention models methodology which tests the null hypothesis that a postulated event causes a change in a social process measured by a time series.

In this framework we can take into account both the different phases of urban evolution and the role of habits in water consumption which can be captured by the auto-regressive component of the ARIMA model.
2.1 Evolution of water consumption: identification of significant changes in urban development

Data on water consumption has been collected by the *Acquedotto del Comune di Milano*\(^1\) – municipal waterworks - since 1889, the year of the foundation of the first waterworks in the city. The waterworks building marked the beginning of a new era for Milan, fostered by a cultural movement which pushed for the architectonic renewal and the introduction of up to date facilities (Isenburg, 2000).

The plot of total and per capita daily average water consumption (in litres) is depicted in Figure 1. Total consumption rises uniformly until the sixties, although the effect of the second world war appears clearly. Starting from the seventies, however, it begins a constant decline that lasts until the present.

In this paper, however, we primarily focus our attention on per capita consumption. Daily per capita water consumption increased until the sixties, when it stabilised around 500 litres. In the 112 years considered, it thus increased over 400-fold, showing the exceptional development of waterworks capacity that occurred in the twentieth century.

\(^1\) In 2003 the Milanese waterworks was privatised when it was purchased by Metropolitana Milanese.
The evolution of per capita consumption, obviously, is not stable over the entire period; rather, it shows different phases. The objective of this section is the identification of the events that could have modified the consumption series, whose impact will be measured in the following section through the intervention models analysis.

Some relevant events can be attributed to demand side factors. In particular, in the two years period 1923-24, a dramatic population change occurred. This was due to a territorial expansion of the Milan municipality, which
incorporated 10 neighbouring small towns. Moreover, world wars produced dramatic changes in the normal evolution of consumption. Finally, an important demand side factor is represented by the change in the productive structure: the strong industrialisation process that occurred after the second world war and the tertiarisation process that started from the sixties can be considered as potential factors for change.

On the supply side, crucial events can be mostly attributed to modifications of the water systems’ structure and management.

The early sixties represent the beginning of pollution problems in the Milan water system. This led to the closure of 37 out of 55 wells in 1963. In the mid seventies (1974) a further discovery of serious water pollution was coupled with the lowering of the water table due to its over-exploitation (Motta, 1989, Colombo et al., 1996). Milan waterworks solved the problems related to pollution at the beginning of the eighties.

2.2 The univariate analysis of water consumption through an intervention model

In this section we try to understand, through the intervention model methodology, both if the events postulated in the previous section have really modified water consumption evolution and if consumption habits exist.
A viable intervention model can be built in three phases. The first phase of model building includes the following steps: determination of the order of integration of the series, identification of orders of auto-regressive and moving average parameters of the noise component, and addiction of the exogenous impact component. In the second phase, identified parameters of the full model are estimated. The third phase consists of the diagnostic checking of the estimated residuals forms. If diagnostic checks show that residuals are white noise, then the identified model can be used to produce forecasts. The procedures used in model building are discussed below.

Before identifying the model, a preliminary statistical analysis is conducted, in order to detect possible data nonstationarity. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests - with linear trend for the series in level (CMOYL) and without trend for the differentiated series (DCMOYL) - provide evidence of a unit root for water consumption, i.e. the coefficient associated to the first auto-regressive component equals to one. This clearly indicates that water consumption is a highly persistent series, or in other words, that habits play a central role in consumption evolution.

Table 1: Integration tests

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADF</th>
<th>PP</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOYL</td>
<td>-0.82(0,961)</td>
<td>-0.66(0.973)</td>
<td>1</td>
</tr>
<tr>
<td>DCMOYL</td>
<td>-9.26(<0.0001)</td>
<td>-10.23(<0.0001)</td>
<td>0</td>
</tr>
</tbody>
</table>

In brackets the p-value relatively to the non stationarity null hypothesis.
It is well known that structural breaks in the deterministic components of the stochastic process tend to bias both ADF and PP tests towards the unit root null hypothesis. For this reason, for example, Perron (1997) proposes both innovative and additive type outlier tests of a I(1) null hypothesis against a I(0) alternative with a single break that occurred at an unknown point in time.

The presence of multiples breaks suggests another strategy. We apply here the ADF and PP tests to the sub-samples corresponding to the modifications of the slope: 1889-21, 1925-44, 1945-62 and 1963-2001. The non reported results confirm the presence of a unit roots for the water consumption. Hence, we will identify and estimate a first-order integrated ARIMA model.

The basic idea underlining the identification process is that changes that occurred in the series may produce biased estimates of the ACF and PACF. In order to avoid this problem, if sufficient data are available, the noise component can be identified using data referring to the period preceding the first intervention. After this step, the impact components, which are assumed to be caused by events that are known a priori, can be added to the model on the basis of two characteristics: onset and duration.

In our application, however, data concerning the period preceding the first intervention – namely the first world war - are not sufficient to identify the noise component. Indeed, the underling hypothesis of this identification
methodology, i.e. that the noise component of the series is the same before and after the intervention, seems difficult to confirm over a century-long time series.

We thus follow an alternative way to build the model: namely, we apply a general-to-specific procedure to the entire sample. The initial model contains both a fairly general noise component and an intervention component. The final model is obtained through the exclusion from the initial model of non significant impacts using the “backward” algorithm.

The slow decrease of the auto correlation function (ACF) and the partial auto correlation function (PAFC), estimated from the differentiated series, seem to point out that the series has a quite long memory (Figures 2 and 3).
However, as stated above, the changes occurred during the twentieth century could have overwhelmed the ACF and PACF.

In order to build the model, we start from an ARIMA(4,1,4) - which can be a reasonable point of departure - and we add the intervention components corresponding to the postulated events which may have modified consumption evolution. The initial model is as follows:

\[
Y_t = \sum_{j=1}^{6} I_{jt} + N_t
\]

where \(Y_t \) denotes per capita water consumption, the \(I_{jt} \) are the intervention components which are deterministic functions of time and \(N_t \) is the ARIMA(4,1,4):

\[
(1 - B)N_t = c + \frac{1 - \theta_1 B - \theta_2 B^2 - \theta_3 B^3 - \theta_4 B^4}{1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3 - \phi_4 B^4} Z_t
\]

where \(B \) is the backward shift operator such that \(B^i X_t = X_{t-i} \), the \(\phi \)s and the \(\theta \)s are respectively the auto-regressive and the moving-average coefficients while \(Z_t \sim iid(0, \sigma_Z^2) \) is a white noise process. The exogenous inputs which enter in the intervention component are presented below.
The world wars and 1923-24 population shock – The world wars and the population change occurred in 1923-24 are assumed to provide abrupt impacts on per capita water consumption. Therefore the corresponding inputs are:

\[I_{t1} = a_1 P_{t}^{15-18} \]

with \[P_{t}^{15-18} = \begin{cases} 1, & \text{if } 1915 \leq t \leq 1918 \\ 0, & \text{otherwise} \end{cases} \]

\[I_{t2} = a_2 P_{t}^{23-24} \]

with \[P_{t}^{23-24} = \begin{cases} 1, & \text{if } 1923 \leq t \leq 1924 \\ 0, & \text{otherwise} \end{cases} \]

\[I_{t3} = a_3 P_{t}^{40-45} \]

with \[P_{t}^{40-45} = \begin{cases} 1, & \text{if } 1940 \leq t \leq 1945 \\ 0, & \text{otherwise} \end{cases} \]

The parameters \(a_1, a_2 \) and \(a_3 \) measure the magnitude of the average impacts in the three period considered.

The industrialisation/economic growth after 1945 - The strong industrialisation process which took place after the second world war was coupled with an high economic growth. These phenomena should gradually modify per capita consumption. This is given by:
The magnitude of the impact that occurred in 1946 is given by a_4 and δ_4 is the rate of increase in the impact after 1946. Here we impose $\delta=1$, i.e. that the corresponding input variable is a simple ramp function.

\[I_{4t} = \frac{a_4}{1-\delta_4 B} S_{4t}^{046} \]

with $S_{4t}^{046} = \begin{cases} 1, & \text{if } t \geq 1946 \\ 0, & \text{otherwise} \end{cases}$

The beginning of pollution/tertiarisation of the early sixties - The early sixties represent the beginning of both pollution problems in the Milan water system (wells closure in 1963) and strong de-industrialisation. As it is impossible to distinguish the single effects of these different phenomena, our impact assessment model assumes all these as one intervention. Indeed, like the industrialisation process, the impact is assumed to be gradual:

\[I_{5t} = \frac{a_5}{1-\delta_5 B} S_{5t}^{063} \]

with $S_{5t}^{063} = \begin{cases} 1, & \text{if } t \geq 1963 \\ 0, & \text{otherwise} \end{cases}$
The 1974 pollution shock – As underlined by Motta (1989), the effect of pollution in 1974 was abrupt and non-persistent. We thus utilise the following input:

\[I_{6t} = \frac{\alpha_6}{1 - \delta_6 B} P_{74}^{t} \]

with \(P_{74}^{t} = \begin{cases} 1, & \text{if } t = 1974 \\ 0, & \text{otherwise} \end{cases} \)

The parameter \(\alpha_6 \) represents the magnitude of the 1974 impact, while \(\delta_6 \) is the rate of decay of the effect of pulse input. If \(\delta_6 \) is close to 1, the impact is slowly decaying in successive time periods, while if \(\delta_6 \) is close to 0, the impact is rapidly decaying to 0 after few time periods.

In the final model, in Table 2, the noise component is an ARIMA(0,1,0) and the intervention component of the model consists of four parts: 1923-24 population impact, post second world war impact, post 1963 wells closure impact and 1974 high pollution impact. The estimated parameters using the Maximum Likelihood Method are reported in Table 2.

Results suggest that the impacts related to the world wars (I_1 and I_3) are not significant, while those that occurred after the second world war are only significant at a 10% level.

All other impacts considered are highly significant. The rate of decay of the effect of 1974 high pollution (\(\delta_6 \)) is estimated at 0.86 which indicates that
the impact is quite slowly decaying in the following years. Diagnostics indicates that residuals are not different from white noise.

Table 2: Maximum Likelihood estimation of the intervention model

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate</th>
<th>Standard error</th>
<th>t-statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_2</td>
<td>-12.73</td>
<td>5.57</td>
<td>-2.28</td>
</tr>
<tr>
<td>α_3</td>
<td>6.14</td>
<td>3.48</td>
<td>1.76</td>
</tr>
<tr>
<td>α_4</td>
<td>-12.57</td>
<td>3.68</td>
<td>-3.41</td>
</tr>
<tr>
<td>α_5</td>
<td>-27.85</td>
<td>12.62</td>
<td>-2.20</td>
</tr>
<tr>
<td>δ_4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_6</td>
<td>0.86</td>
<td>0.31</td>
<td>2.74</td>
</tr>
</tbody>
</table>

The high R^2 (0.96) proves that the estimated intervention model fit the data very well. In the final step of the analysis, we use the intervention model to produce forecasts (Figure 4). The forecasted values are almost constant and
present a very slowly decreasing trend, going from 522 litres in 2001 to 516 litres in 2015. This result is coherent with the idea that per-capita consumption has reached a sort of equilibrium level and therefore water users have well established consumption habits.

Figure 4: Forecast for per-capita water consumption

Legend:
- Plus = real values
- Stars = fitted values
- Sketched line = forecasted values
- Continuous lines = 95% confidence interval
3. Water consumption and urban evolution: in search of similarities

In this section we firstly investigate Milan’s long term trends through the analysis of those socio economic factors that the literature identifies as relevant for water consumption understanding. Secondly, we try to find out, through the application of cluster analysis, if these socio-economic variables show statistical similarities with water consumption.

3.1 Long term evolution trends: population, productive structure, rainfall and price of water

Demographic trends - In 1889, Milan’s population was 386.211 (Comune di Milano, 2003); in the following 112 years considered here, the peak was achieved in 1973 when Milan’s population reached 1.743.427. In the following decades a continuous decline brought Milan’s population down to 1.256.211 people in 2001, confirming the general de-urbanisation trend that has been under way in Italy since the 1970’s.

Some demographic changes can be ascribed to specific shocks in natural balances: the world wars, the baby boom of the early sixties and the following strong reduction of the birth rate registered since the early seventies until the end of the nineties.
Migration balance, as it happened in many European cities, strongly influenced demographic trends. In particular, with a certain degree of simplification, four different migration waves can be distinguished. The first wave of immigration corresponds to flows from southern Italian regions, which increased population in the thirties. The second wave is the relevant increase of immigrants registered during the post-war industrialisation that occurred during the fifties and the sixties. The third wave is the negative migration balance registered between the mid seventies and the mid nineties, due both to de-industrialisation and to the diffusion of tertiary activities in the downtown area. The final wave corresponds to the beginning of a new immigration flow, mostly due to foreign immigration, and started in the late nineties.

A final a relevant demographic phenomenon is the growing age of resident population, because increasing living cost – especially with regards to housing – accompanied the increasing difficulty for younger generations to move to Milan. In 1999, Milan’s ageing index – the number of people older than 65 over the number of people younger than 14 - was about 1.6 times higher than the Italian average.

To conclude, these long term demographic trends are very relevant given their potential impact on overall water consumption, as the literature shows (Renzetti, 2002, Arbués Garcia et al., 2001).
The evolution of productive structure - This brief section outlines the most crucial evidences on the dynamics of manufacturing and services in Milan (ISTAT, 2001).

Manufacturing shows a quite constant increase until the sixties, the decade in which Milan reaches a top position as an industrial pole. However, the 1960’s also marked the beginning of an upsurge in the tertiary sector, a trend which is still ongoing. These years also saw the emergence of a new leadership for Milan, which became the landmark city in Italy for lots of tertiary sector activities, namely: fashion, finance and banking, university and research.

The evolution of economic structure deeply influenced water consumption since industrial water accounts for about a quarter of total water use in industrialised countries (Dupont and Renzetti, 2001). Moreover, the impact of technological innovations in reducing water demanded by “thirsty” industrial processes should also be taken into account.

In terms of firm size, the service sector is far more fragmented than the manufacturing sector, since the average service sector firm has less than five employees while the average manufacturing sector firm has less than seven (ISTAT, 2004). Small family-owned firms are still prevalent, especially in retail trade activities, and often waterworks data on their water consumption is lumped with data on household water consumption.
Rainfall since 1889 - As most literature suggests, annual rainfall should be carefully considered since it represents an important key factor in explaining water consumption variations (Arbuès Garcia et. al, 2001). Our data measures the annual millimetres of Milan rainfall collected by Osservatorio Metereologico di Milano Duomo (2002).

These figures show the typical evolution of long rainfall data series: a very high yearly variability in a substantially stable trend during the 113 years considered. In fact, the majority of yearly precipitation falls inside the layer defined by a lower boundary of 800 millimetres and an upper boundary of 1200 millimetres. Climatic anomalies emerge particularly in three years with very low (420 millimetres in 1920) or very high (1587 millimetres in 1950, 1583 in 1958) precipitation levels. These rainfall outliers account for very few cases in our long-run data set.

Water tariff and income – Since its waterworks foundation, Milan’s water price plan has always featured an increasing block tariffs model. We concentrate our analysis on the lower level tariffs, which are applied to water consumption level up to 350 litres per day. This tariff accounts for a significant share of total consumption – more than 40%. Municipal waterworks statistics on tariffs goes back to 1914, allowing the examination of a sufficiently long time series.
In Milan, like in all Italian municipalities, water tariffs have always been controlled by a government committee and primarily set according to social goals. Hence, for a long time water tariffs have been low and stable.

In the last twenty years increases in water tariffs became much more frequent than in the past. Nowadays, the tariff block we are considering is 0.09 euro for each cubic meter of water consumed.

The development of tariffs - in real terms – during the twentieth century highlights two further points. The first point is connected to the fact that tariffs reached their maximum level during the mid 1930’s. The second point refers to the fact that the three years around the end of II world war exhibit the sharpest tariff rises: in 1945 +32%, in 1947 +90% and in 1948 +90%. The interpretation of this evidence seems to suggests that the second world war marks a real divide for the water system. From a pre-war condition of stable tariffs and poor water network coverage, we move to a sensible growth in both tariffs and network coverage after the worldwide conflict. This last phenomenon could be ascribed to the economic recovery and to the rapid redevelopment of urban infrastructures that took place in Milan in the post-war era.

Starting from 1994 – with the so called Galli Law - municipal waterworks operates as a private firm in the water distribution market. The real effects of privatisation on price dynamics and working efficiency could be discussed only in the future.
In terms of income, data availability only allows us to analyse income evolution through the proxy of per capita value added in real terms since 1951. After a tremendous growth lasting almost two decades, Milan shows a decreasing income starting in the ‘70s. However, Milan has always been one of the top ranked Italian cities in terms of income, and per capita income is consistently much higher than the national average\(^2\).

3.2 Similarities among water consumption and socio-economic factors

In order to find similarities among water consumption and socio-economic variables, we apply cluster analysis. By using this technique, borrowed from multivariate statistics, we partition the entire set of variables, using the euclidean distance, so that relatively homogeneous groups of variables can be formed. The groups, or “clusters”, obtained with this method should be highly homogeneous internally - members are similar to one another - and highly heterogeneous externally - members are not similar to members of other clusters.

Obviously, we will focus our attention particularly on the specific cluster which includes water.

A preliminary step of the analysis is the standardisation of values since variables in the data set are measured by different scales. Therefore, our raw

\(^2\) To give an example, in 1999 the average per capita value added in nominal euro was 28.116 in Milan and 17.841 in Italy (Istituto Tagliacarne, 2003).
data is converted to standardised values with zero mean and unitary standard deviation.

We apply the single linkage algorithm, but we use also other algorithms generally adopted by this technique – complete linkage and average linkage – in order to control results stability. Distance coefficients suggest that the three cluster result should be chosen, since other solutions can produce less efficient clusters with a resulting loss of significance.

Table 3: Cluster membership results. Single linkage algorithm

<table>
<thead>
<tr>
<th>Variables</th>
<th>Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per capita average daily water consumption</td>
<td>1</td>
</tr>
<tr>
<td>Population</td>
<td>1</td>
</tr>
<tr>
<td>Rainfall (millimeters)</td>
<td>1</td>
</tr>
<tr>
<td>Service firm</td>
<td>1</td>
</tr>
<tr>
<td>Service employee</td>
<td>1</td>
</tr>
<tr>
<td>Natural balance</td>
<td>2</td>
</tr>
<tr>
<td>Migratory balance</td>
<td>2</td>
</tr>
<tr>
<td>Per capita value added (real term)</td>
<td>2</td>
</tr>
<tr>
<td>Manufacturing firm</td>
<td>2</td>
</tr>
<tr>
<td>Manufacturing employee</td>
<td>2</td>
</tr>
<tr>
<td>Water tariff in real terms</td>
<td>3</td>
</tr>
</tbody>
</table>

The cluster analysis results, illustrated in Table 3, show that clear similarities emerge among water consumption and some socio-economic
variables - population, rainfall and service data - in the years considered. In other words, water consumption can give some insights on long term evolution of some crucial factors for urban development, such as: population, weather, some aspects of the economic structural change through the evolution of tertiary sector. This last issue can be explained by the fact that tertiary firms’ water demand exhibits some characteristics which are comparable with those of households demand. Both the scarce water utilisation in its production processes and the small size of firms, place service sector water consumption patterns closer to those of households rather than to those of the manufacturing sector. This first cluster, in synthesis, shows how these factors evolved homogeneously.

A second cluster put together the evolution of economic variables related to manufacturing and value added with demographic variables associated to population flows. This group of variables seems to indicate that, in recent Milan’s history, structural change due to manufacturing exhibits a co-evolution with changes in birth rates and/or in migration flows. In other words, this reveals that relevant population variations happened alongside periods of manufacturing transformations as in the sixties, for example. This cluster basically tells a story of urban development where economic variables are prevalent and their evolution is also reflected by demographic flows.

3 Here we consider the interval 1951-2001 because data on value added start from 1951.
A third cluster isolates the variable relative to water tariff. Its progress through the decades has been subject to political control and, for this reason, it cannot be associated with other economic or social variables considered in this article. This cluster confirms that water price “tells its own story”, without any strong interaction with other structural characters of urban evolution.

4. Policy implications

Policy implications, deriving from our analysis, raise some relevant issues with regards to urban water policy implementation. These deeply-rooted habits, highlighted by the intervention model suggest that policy makers should look to the long-run as their policy horizon. The consolidated level of per capita consumption - at least for the last thirty years - seems to indicate that any policy intervention should be calibrated on an sufficiently extended time span.

Cluster analysis results seem to imply that changes in tariffs could have a weak impact on water consumption. This is consistent with the fact that water has been always distributed within a public monopoly regime in which price has been determined regardless of economic considerations. Since water is perceived as an unbounded and low-price resource, suitable policy instruments should be adopted both on demand and on supply side.
On demand side, policy makers could launch information campaigns on water use to increase consumers awareness of problems linked to water provision. Such policies could be able to modify water consumption because they should impact consumption habits directly at least in the long-term.

On the supply side, future interventions should mainly rely on two issues: diversification of water quality and technical innovations in water supply. The former involves subsidies for the replacement of all water using capital, both for households – washing machines, dishwaters, toilets, showers – and for communities – swimming pools and lawn sprinklers (Arbuès Garcia et al., 2001; Nauges and Thomas, 2003). The latter entails the chance to invest in diversification of the quality of water, supplying fresh water for drinking consumption and low-quality water for other uses (Dalhuisen et al., 1999).

This seems to be very relevant, particularly for municipal water consumption, where a sizeable quantity of water is used for outdoor needs, like irrigation for public gardens or streets washing.

Finally, our results highlight the need for constant monitoring of some specific issues underlying water consumption: demographic, environmental and tertiary sector changes. Gathering and connecting long term statistics on these topics should be at the heart of an ordinary control of water consumption evolution exerted by municipalities.
5. Concluding remarks

In this paper we both provide an assessment on relevant changes in Milan’s water consumption over the course of a 113-year period and try to find out similarities between water consumption and other socio-economic factors. A fundamental result of the univariate analysis refers to the presence of well entrenched water consumption habits, which are stable over long periods and presumably derive from the common idea that water is a low price and abundant good.

Multivariate analysis indicates that water consumption presents strong similarities with demographic, environmental, and tertiary sector evolution. Some of these variables were decisive in determining crucial modifications in the water consumption. Indeed, the application of intervention models confirms that some demographic and pollution shocks were decisive to determine shifts in water consumption evolution.

From all these outcomes, we derived different policy proposals suited both to intervene on the persistency of consumption habits and to control future development of water utilisation.

In our view, given the existence of shared trends in many European cities, the policy recommendations obtained could be probably extended to other large urban areas.
Bibliography

http://www.storiadimilano.it/citta/milanotecnica/acqua/acquedotto.htm

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENREUG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (lxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

CCMP 16.2004 Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF: Cross-Country Ethical Dilemmas in Business: A Descriptive Framework

NRM 20.2004 Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists

NRM 22.2004 Pius ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 23.2004 Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (lxvii): Tourism, Trade and Domestic Welfare

NRM 25.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 26.2004 Raúl Hernández MARTÍN (lxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

CSRM 27.2004 NICOLETA FERRO: Cross-Country Ethical Dilemmas in Business: A Descriptive Framework

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org
An Application to the Recreational Value of Forests in WTI Oil Forward and Futures Returns
Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
Heterogeneous Agents
Implications
Environmental Programs: An Evolutionary Approach
Possibilities of the Contingent Valuation Method
E.C.M. RUIJGROK
Netherlands
Resources on Smallholder Farms in Hungary: Institutional Analysis
Technology-based Climate Protocol
Analysis of Extractive Reserves in the Brazilian Amazon
Analysis to Evaluate Environmentally Conscious Tourism Management
Effects on Energy Scenarios
Regulatory Choices
(lxvi): Biodiversity Conservation on Private Lands: Information Problems and
Timo GOESCHL and Tun LIN
Renaturated Streams
Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in
Mortality Risk Reductions: Does Latency Matter?
Theory
Francesco RICCI
Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the
Stability in Hedonic Games
Gernot KLEPPER and Sonja PETERSON:
Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
Information on Private Environmental Benefits
An Axiomatic Approach
(lxvi): Protection of Rare Crop Genotypes: An Axiomatic Approach
E.C.M. RUIJGROK and E.E.M. NILLESEN
(lxvi):
Reducing Acidification: The Benefits of Increased Nature Quality. Investigating the
(lxvi):
Notes on the Determinants of Innovation: A Multi-Perspective Analysis
(lxvi):
Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
John MBERU (lxvi): Wildlife Conservation and Management in Kenya: Towards a Co-management Approach
Ekin BIROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects
(lxvi):
Optimal Disease Eradication
Scott BARRETT and Michael HOEL: Optimal Disease Eradication
(lxvi):
The Socio-Economic Value of Natural Riverbanks in the
Wildlife Conservation and Management in Kenya: Towards a Co-management Approach
(lxvi):
Bioprospection: From the Economics of Contracts to Reflexive Governance
Koen REHDANZ and David MADDISON: The Amenity Value of Climate to German Households
(lxvi): The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
(lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios
Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
Timo GOESCHL and Danilo CAMARGO IGLIORI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon
Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
Elisasios PAPYRAKIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.
Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands
Giannis VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
Anastasios XEPAPADEAS and Constadina PASSA: The Amenity Value of Climate to German Households
Understanding the Determinants of Literature Review: A Multivariate Analysis
The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?
(lxvi):
Price Competition with Information Disparities in a Vertically Differentiated Duopoly
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Rob DELLINK and Ekko van IERLAND</td>
<td>Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Rosella LEVAGGI and Michele MORETTO</td>
<td>Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Salvador BARBERA and Matthew O. JACKSON (lxx)</td>
<td>On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMÉRA and Fernando VEGA-REDONDO (lxx)</td>
<td>Optimal Information Transmission in Organizations: Search and Congestion</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Francis BLOCH and Armando GOMES (lxx)</td>
<td>Contracting with Externalities and Outside Options</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Rabah AMIR, Efraynn DIAMANTOUDI and Lican XUE (lxx)</td>
<td>Merger Performance under Uncertain Efficiency Gains</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Francis BLOCH and Matthew O. JACKSON (lxx)</td>
<td>The Formation of Networks with Transfers among Players</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Daniel DIEMEIER, Häßera ERASLAN and Antonio MERLO (lxx)</td>
<td>Bicamura and Government Formation</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Rod GARRETT, James E. PARCO, Cheng-ZHONG QIN and Annon RAPOPORT (lxx)</td>
<td>Potential Maximization and Coalition Government Formation</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx)</td>
<td>Group Decision-Making in the Shadow of Disagreement</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx)</td>
<td>Economics: An Emerging Small World?</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Edward CARTWRIGHT (lxx)</td>
<td>Learning to Play Approximate Nash Equilibria in Games with Many Players</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Finn R. FØRUSD and Michael HOEL</td>
<td>Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Elistasios PAPYRAKIS and Reyer GERLAGH</td>
<td>Natural Resources, Investment and Long-Term Income</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Marzio GALEOTTI and Claudia KEMPFERT</td>
<td>Interactions between Climate and Trade Policies: A Survey</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>A. MARKANDYA, S. PEDROSO and D. STREMIEKIEN</td>
<td>Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Rolf GOLUMBEK and Michael HOEL</td>
<td>Climate Agreements and Technology Policy</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Sergei IZMALKOV (lxx)</td>
<td>Multi-Unit Open Ascending Price Efficient Auction</td>
<td></td>
</tr>
<tr>
<td>92.04</td>
<td>Gianmarco I.P. OTTAVIANO and Giovanni PERI</td>
<td>Cities and Cultures</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Massimo DEL GAITTO</td>
<td>Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities. Centralisation versus devolution</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON</td>
<td>Equilibrium with a Market of Permits</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Bob van der ZWAAN and Reyer GERLAGH</td>
<td>Climate Uncertainty and the Necessity to Transform Global Energy Supply</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL</td>
<td>Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Gustavo BERGANTINOS and Juan J. VIDAL-PUGA</td>
<td>Defining Rules in Cost Spanning Tree Problems Through the Canonical Form</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Siddhartha BANDYOPADHYAY and Mandar OAK</td>
<td>Party Formation and Coalitional Bargaining in a Model of Proportional Representation</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA</td>
<td>The Impact of Surplus Sharing on the Stability of International Climate Agreements</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Chiara M. TRAVISI and Peter NIJKAMP</td>
<td>Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIJKAMP</td>
<td>A Meta-Analysis of the Willingness to Pay for Reductions in Pesticide Risk Exposure</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Valentina BOSETTI and David TOMBERLIN</td>
<td>Real Options Analysis of Fishing Fleet Dynamics: A Test</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Alessandra GORIA e Gretel GAMBARELLI</td>
<td>Economic Evaluation of Climate Change Impacts and Adaptability in Italy</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>John BENNETT, Saul ESTRIN, James MAW and Giovanni URGRA</td>
<td>Privatisation Methods and Economic Growth in Transition Economies</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Kira BÖRNER</td>
<td>The Political Economy of Privatization: Why Do Governments Want Reforms?</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Pehr-Johan NORBACK and Lars PERSSON</td>
<td>Privatization and Restructuring in Concentrated Markets</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Angela GRANZOTTO, Fabia PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo</td>
<td>Evidence from a Three-Country Contingent Valuation Study</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Valentini BOSETTI and David TOMBERLIN</td>
<td>Real Options Analysis of Fishing Fleet Dynamics: A Test</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Alessandra GORIA e Gretel GAMBARELLI</td>
<td>Economic Evaluation of Climate Change Impacts and Adaptability in Italy</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Somdeb LAHIR</td>
<td>The Cooperative Theory of Two Sided Matching Problems: A re-examination of some Results</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Giuseppe DI VITA</td>
<td>Natural Resources Dynamics: Another Look</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Anna ALBERINA, Alistair Hunt and Anil MARKANDYA</td>
<td>Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Valeria PAPPONETTI and Dino PINELLI</td>
<td>Scientific Advice to Public Policy-Making</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Paulo A.D. NUNES and Laura ONOFRI</td>
<td>The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Patrick CAYRADE</td>
<td>Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Valeria COSTANTINI and Francesco GRACCEVA</td>
<td>Oil Security. Short- and Long-Term Policies</td>
<td></td>
</tr>
</tbody>
</table>
IEM 116.2004 Valeria COSTANTINI and Francesco GRACCEVA: Social Costs of Energy Disruptions
Christian EGENHOFER, Kyriakos GIALOGLOU, Giacomo LUCIANI, Maroiska BOOTS, Martin SCHEEPERS,
IEM 119.2004 Giacomo LUCIANI: Security of Supply for Natural Gas Markets. What is it and What is it not?
IEM 120.2004 L.J. de VRIES and R.A. HAKVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets
KTHC 121.2004 Alberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open Economy
NRM 122.2004 Carlo GIUPPONI, Jaroslav MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application
ETA 124.2004 Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited
NRM 125.2004 Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta VALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach
PRA 126.2004 Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic
CCMP 127.2004 Maria BERRITTELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism
NRM 129.2004 Eliasios PAPYRakis and Reyer GERLAGH: Natural Resources, Innovation, and Growth
PRA 130.2004 Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization
IEM 133.2004 Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited
ETA 134.2004 Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma
SIEV 135.2004 Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys
ETA 137.2004 Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game
CCMP 139.2004 Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy
NRM 140.2004 Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis
PRA 141.2004 Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incompete Contracts
PRA 143.2004 David GOLDBREICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions
PRA 144.2004 Roberto BURGuet (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economics
PRA 147.2004 Claudio MEZZETTI, Aleksandar PEKE and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price Auctions
PRA 148.2004 John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
PRA 149.2004 Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions
PRA 150.2004 François DEGEORGE, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why Bookbuilding is Dominating Auctions
CCMP 151.2004 Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification. Internal Institution and Pressure Groups in the Kyoto Protocol’s Adoption Process
CCMP 152.2004 Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model
PRA 153.2004 Alejandro M. MANELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue Maximization and the Multiple-Good Monopoly
ETA 154.2004 Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism in Stabilization Policies?
CTN 155.2004 Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with Externalities
CCMP 156.2004 Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
Stéphane HALLEGATTE and Mombert HOPPE: Spatial Analysis: Development of Descriptive and Normative Network Formation Games.

Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

Alberto PETRUCCI: On the Incidence of a Tax on Pure Rent with Infinite Horizons

Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRIGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change.

Lorenzo PELLEGRINI and Reyner GERLAUGH: An Empirical Contribution to the Debate on Corruption.

Angelo ANTOCCI: Democracy and Environmental Policy.

Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate.

Carla MASSIDDA: Regional and Sub-Global Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes.

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Key Environmental Innovations.

Joseph HUBER: Key Environmental Innovations.

Chiara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure.

Francesco FERI, Maria Angeles GARCIA-VALÍNÁS and Massimiliano MAZZANTI: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change.

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Start-up Entry Strategies: Employer vs. Nonemployer firms.

Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: The Effect of Climate Change and Extreme Weather Events on Tourism.

Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria.

Sondheb LAHIRE: The Core of Directed Network Problems with Quotas.

Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: The Effect of Climate Change and Extreme Weather Events on Tourism.

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility.

Francesco FERI (lxxii): Network Formation with Endogenous Decay.

Frank H. PAGE, Jr. and Myrna H. WOODERS: Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games.
Alessandra CASELLA and Nobuyuki HANAKI: Information Channels in Labor Markets. On the Resilience of Referral Hiring

Matthew O. JACKSON and Alison WATTS: Social Games: Matching and the Play of Finitely Repeated Games

Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER: The Egalitarian Sharing in Provision of Public Projects

Francesco FERI: Stochastic Stability in Network with Decay

Aart de ZEEUW: Dynamic Effects on the Stability of International Environmental Agreements

C. Martijn van der HEIDE, Jeroen C.J.M. van den BERGH, Ekkos C. van IERLAND and Paulo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands

Carla VIEIRA and Ana Paula SERRA: Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms

Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice

Michael FINUS and Bianca RUNDHAGEN: Participation in International Environmental Agreements: The Role of Timing and Regulation

Lorenzo PELLEGRINI and Reyer GERLAGH: Are EU Environmental Policies Too Demanding for New Members States?

Matteo MANERA: Modeling Factor Demands with SEM and VAR: An Empirical Comparison

Olivier TERCIUEUX and Vincent VANNETELBOSCH: A Characterization of Stochastically Stable Networks

Ana MÁULEON, José SEMPERE-MONERRIS and Vincent J. VANNETELBOSCH: R&D Networks Among Unionized Firms

Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in International Environmental Agreements

Valeria GATTAI: From the Theory of the Firm to FDI and Internationalisation: A Survey

Alireza NAGHAVI: Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the Doha Proposal

Margaretha BREIL, Greetel GAMBARELLI and Paulo A.L.D. NUNES: Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach

Alessandra del BOCA, Marzio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA: Investment and Time to Plan: A Comparison of Structures vs. Equipment in a Panel of Italian Firms

Gernot KLEPPER and Sonja PETERSON: From the Theory of the Firm to FDI and Internalisation: A Survey

Aldo COLOMBO: Criteria for Assessing Sustainable Innovations: Institutional Impacts on Co-operations for Sustainable Development

Dimitra VOUVAKI and Anastasios XEPAPADEAS: Development: Theoretical Issues and Empirical Evidence for the Case of Greece

Andreas LÖSCHEL and Dirk T.G. RÜBBELKE: Impure Public Goods and Technological Interdependencies

Christoph A. SCHALTEGGER and Benno TORGLER: Trust and Fiscal Performance: A Panel Analysis with Swiss Data

Irene VALSECCHI: A Role for Instructions

Valentina BOSETTI and Gianni LOCATELLI: A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks

Anna ALBERINI, Valentina ZANATTA and Paulo A.L.D. NUNES: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice

Arianne T. de BLAEIJ, Paulo A.L.D. NUNES and Jeroen C.J.M. van den BERGH: Modeling ‘No-choice’ Responses in Attribute Based Valuation Surveys

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Applications of Negotiation Theory to Water Issues

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Advances in Negotiation Theory: Bargaining, Coalitions and Fairness

Sandra WALLMAN: Network Capital and Social Trust: Pre-Conditions for ‘Good’ Diversity?

Asimina CHRISTOFOROU: On the Determinants of Social Capital in Greece Compared to Countries of the European Union

Eric M. USLANER (lixxv): Varieties of Trust

Grazzella BERTOCCHI and Chiara STROZZI: A Role for Instructions

Albrecht van HYLCKAMA VLIJG (lixxv): Accommodating Differences

Renato SANS and Ercole SORI (lixxv): Governance of Diversity Between Social Dynamics and Conflicts in Multicultural Cities. A Selected Survey on Historical Bibliography

Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship

Umberto CHERUBINI and Matteo MANERA: Hunting the Living Dead A “Peso Problem” in Corporate Liabilities Data

Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITHAGEN (lxxvi): Local and Global Interactions in an End-of-Life Vehicles Resource Game

Massimiliano MAZZANTI and Roberto ZOBOLI: Economic Instruments and Induced Innovation: The Case of End-of-Life Vehicles European Policies

Anna LASUT: Creative Thinking and Modelling for the Decision Support in Water Management

Valentina BOSETTI and Barbara BUCHNER: Using Data Envelopment Analysis to Assess the Relative Efficiency of Different Climate Policy Portfolios

Gabriela CAINELLI, Susanna MANCINI and Massimiliano MAZZANTI: Social Capital, R&D and Industrial Districts

Valentina BOSETTI and Laurent GILOTTE: Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?

Sabrina AUCI and Leonardo BECCETTI: The Stability of the Adjusted and Unadjusted Environmental Kuznets Curve

Francesco BOSELLO and Jian ZHANG: Assessing Climate Change Impacts: Agriculture

Alejandro CAPARRÓS, Jean-Christophe PEREAU and Tarik TAZDAI: Bargaining with Non-Monolithic Players

Valeria COSTANTINI, Riccardo CRESCENZI, Fabrizio De FILIPPIS, and Luca SALVATI: Bargaining Coalitions in the Agricultural Negotiations of the Doha Round: Similarity of Interests or Strategic Choices? An Empirical Assessment

Giliola FREY and Matteo MANERA: Econometric Models of Asymmetric Price Transmission

Alessandro COLOGNI and Matteo MANERA: Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries

Chiara M. TRAVISI and Roberto CAMAGNI: Sustainability of Urban Sprawl: Environmental-Economic Indicators for the Analysis of Mobility Impact in Italy

Livingstone S. LUBOOBI and Joseph Y.T. MUGISHA: HIV/AIDS Pandemic in Africa: Trends and Challenges

Anna ALBERINI, Erik LICHTENBERG, Dominic MANCINI, and Gregmar I. GALINATO: Was It Something I Ate? Implementation of the FDA Seafood HACCP Program

Anna ALBERINI and Aline CHIABAI: Urban Environmental Health and Sensitive Populations: How Much are the Italians Willing to Pay to Reduce Their Risks?

Michele BERNASCONI and Matteo GALIZZI: Coordination in Networks Formation: Experimental Evidence on Learning and Salience

Michele MORETTO and Sergio VERGALLI: Migration Dynamics

Antonio MUSOLESI and Mario NOSVELLI: Water Consumption and Long-Run Urban Development: The Case of Milan
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>