Gerlagh, Reyer

Working Paper
The Value of ITC under Climate Stabilization

Nota di Lavoro, No. 126.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Gerlagh, Reyer (2005) : The Value of ITC under Climate Stabilization, Nota di Lavoro, No. 126.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74265

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The Value of ITC under Climate Stabilization
Reyer Gerlagh

NOTA DI LAVORO 126.2005

OCTOBER 2005
CCMP – Climate Change Modelling and Policy

Reyer Gerlagh, IVM/VU

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=846311

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
This paper is one of a series published by FEEM on the theme of innovation modeling in the context of the challenge of stabilising atmospheric concentrations of greenhouse gases, as part of the Innovation Modeling Comparison Project. This is an international project launched and overseen by the Steering Committee of the informal International Programme on the Economics of Atmospheric Stabilisation. The broad aim of the collaboration is to advance understanding of the economic issues surrounding atmospheric stabilisation, and the specific aims of the IMCP are to provide insights into the "state of the art" and implications of endogenous modeling of technical change in global energy-environment models when applied to various levels of atmospheric stabilisation.

Members of the Steering Committee provided review comments on earlier drafts and the paper has been forwarded to external review, the final results will be published as a Special Issue of the Energy Journal. The papers have all been encouraged to draw on a common baseline (the "Common Poles-Image baseline") and to report results in comparable formats, so as to facilitate intercomparison of the different modeling results. All the results and judgements expressed here remain the responsibility of the authors.

The work presented in this paper was supported by the Netherlands Organization for Scientific Research (NWO) under contract nr. 016.005.040. FEEM fund the working papers series, and seed money for the coordination work of the Innovation Modeling Comparison Project was provided by UK Department of Environment, Food and Rural Affairs and the German Ministry of Environment.

The author is grateful to Ottmar Edenhofer and Claudia Kemfert for organizing the IMCP (Innovation Modelling Comparison Project) workshop, 23th-24th February 2005, Berlin, where this paper was presented, and to the participants for their comments.
The Value of ITC under Climate Stabilization

Summary

We assess the effect of ITC in a global growth model, DEMETER-1CCS, with learning by doing where energy savings, an energy transition, and carbon capturing and sequestration (CCS) are the main options for emissions reductions. The model accounts for technology based on learning by doing embodied in capital installed in previous periods. We have run five scenarios, one baseline scenario in which climate change policy is assumed absent, and four stabilization scenarios in which atmospheric CO2 concentrations are stabilized at 550, 500, 450, and 400 ppmv. We find that the timing of emission reductions and the investment strategy is relatively independent of the endogeneity of technological change. The vintages structure of production is more important. But ITC reduces costs by about factor 2, though these benefits only materialize after some decades.

Keywords: Energy, Carbon taxes, Endogenous technological change, Niche markets

JEL Classification: Q43, Q54, Q55

Address for correspondence:
Reyer Gerlagh
IVM/VU
De Boelelaan 1087
1081 HV Amsterdam
The Netherlands
Phone: +31 20 44 49502
Fax: +31 20 44 49553
E-mail: reyer.gerlagh@ivm.vu.nl
1. Introduction

Until recently, most economic assessments of climate-change policies neglected policy’s effects on economic performance through technological development. This omission is not surprising, as there is a substantial gap in our understanding of the determinants for both the level and the direction of technological change. Though already in the 1960s there were a few studies that looked into the theory for technological change induced by prices changes in factors of demand (e.g. Kennedy 1964), the topic did not receive much attention until the 1990s. In these years, a stream of so-called endogenous-growth models were developed, describing cumulating knowledge as a major determinant of long-term economic growth (Aghion and Howitt 1992, Mankiw 1995). Following the macro-economic literature on aggregate growth, environmental economics started to apply the insights and to build theoretic models of innovation in relation to environmental policy (Gradus and Smulders 1993; Bovenberg and Smulders 1995, 1996; Verdier 1995; Beltratti 1997; Smulders 1999, Goulder and Mathai 2000; Smulders and de Nooij 2003, Nakada 2004). Subsequently, these insights are now applied to an increasing number of economic models that assess the interplay between energy use, climate change, climate policy and technological change (Carraro and Galeotti 1997, Goulder and Schneider 1999, Nordhaus 2002, Manne and Richels 2002, van der Zwaan et al. 2002, Gerlagh and van der Zwaan 2003, 2004, Buonanno et al. 2003, Popp 2004, Gerlagh 2004, Gerlagh et al. 2004, Gerlagh and Lise 2005). A common finding in these studies is that the inclusion of technical change in the analysis decreases the costs of emission reductions, but whether the cost reduction is substantial, compared to an analysis without induced technological change (ITC), remains subject of debate (Fischer and Morgenstern 2003, Goulder 2004). While some authors suggest that ITC substantially cuts the costs (Manne and Richels 2002, Gerlagh and van der Zwaan 2003), or even renders a double dividend possible (Carraro and Galeotti 1997), others are more pessimistic and claim that ITC will have a relatively small impact compared to the contribution of factor substitution for given technology (Goulder and Schneider 1999, Nordhaus 2002). This paper contributes to that literature, assessing the effect of ITC in a global growth model with learning by doing where energy savings, an energy transition, and carbon capturing and sequestration (CCS) are the main options for emissions reductions. We specifically assess the required investments portfolio in fossil fuel and non-carbon energy sources and in CCS to reach various stabilization targets, and its relation to enhanced learning.

The outlay of the paper is as follows. In Section 2, we present our model, DEMETER-1CCS. It is a growth model with learning by doing for fossil fuels, non-carbon energy, and it contains a
decarbonisation option through CCS, and a simple climate module. The model is an extension of the DEMETER model that has been used for various climate change policy analysis (van der Zwaan et al. 2002, Gerlagh and van der Zwaan 2003, 2004, Gerlagh et al. 2004). This section presents the primal equations. Welfare and profit functions, and first order conditions are given in the appendix. In Section 3, we briefly elaborate on the calibration issues. In Section 4, we present and discuss calculations for a benchmark and various stabilization scenarios. In Section 5, we conclude.

2. DEMETER-1CCS

The DEMETER model has been used in a few papers already (van der Zwaan et al., 2002, Gerlagh and van der Zwaan, 2003, Gerlagh and van der Zwaan 2004, Gerlagh et al. 2004). The model presented here extends the DEMETER-1 model with a description of carbon capturing and sequestration. The model has 30 distinct time periods of five years, each denoted by \(t = 1, \ldots, 30 \). The model distinguishes one representative consumer, three representative producers (also referred to as sectors), and a public agent that can set emission taxes to reduce carbon dioxide emissions. Producers are denoted by superscripts \(j = C, F, N \), for the producer of the final good or consumption good, the producer of energy based on fossil-fuel technology, and the producer of energy based on carbon-free technology. The final good is produced by sector \(j = C \), where output is denoted by \(Y_C \). The same good is used for consumption, investments \(I \) in all three sectors and for operating and maintenance \(M \) (as usually distinguished in energy models, cf. McDonald and Schrattenholzer, 2001) in both energy sectors \(j = F, N \) (1). We also distinguish a separate carbon capture and storage (CCS) activity for which investments and maintenance are required. We assume there is one representative consumer who maximizes welfare (18) subject to a budget constraint, and for the three sectors, we assume a representative producer who maximizes profits, which is equal to the net present value of the cash flows (19) and (20), subject to the production constraints (2)-(8), given below.

To describe production, DEMETER accounts for technology that is embodied in capital installed in previous periods. It therefore distinguishes between production that uses the vintages of previous periods, and production that uses the newest vintage for which the capital stock has been installed in the directly preceding period. The input and output variables, as well as prices, associated with the most recent vintages are denoted by tildes (\(\tilde{\cdot} \)). For every vintage, the production of the final good is based on a nested CES-function, using a capital-labour composite, \(\tilde{Z}_i \), and a composite measure for energy services, \(\tilde{E}_i \), as intermediates (2), where \(A_i^l \) and \(A_i^r \) are technology coefficients, and \(\gamma \) is the substitution elasticity between \(\tilde{Z}_i \) and \(\tilde{E}_i \). Notice that the
Lagrange variable for the profit maximization program is given between brackets. The capital-labour composite \tilde{Z}_t has fixed value share α for capital (3). Note that new capital is by definition equal to the investments of one period ahead, $\tilde{K}_t = I_{t-1}$. We model energy services \tilde{E}_t as consisting of a CES aggregate of energy produced by the sectors F and N (4), where σ is the elasticity of substitution between F and N.

One part of production employs the new vintage, the other part employs the old capital stock that carries over from the previous period. All flows, output, use of energy, labour, and the output of emissions are differentiated between the old and the new vintages. The input/output flow in period t is equal to the corresponding flow for the new vintage, plus the corresponding flow for the old capital stock of the previous period, times a depreciation factor $(1-\delta)$, (5), (6), (7), and (8).

\[
C_t + I_t^C + I_t^E + I_t^{CSS} + I_t^N + M_t^F + M_t^{CSS} + M_t^N = Y_t^C.
\]

\[
\tilde{Y}_t^C = \left((A_t^C \tilde{Z}_t)^{(r-1)/\gamma} + (A_t^E \tilde{E}_t)^{(r-1)/\gamma}\right)^{\gamma/(r-1)},
\]

\[
\tilde{Z}_t = (I_{t-1}^C)^{\alpha} (\tilde{L}_t)^{1-\alpha},
\]

\[
\tilde{E}_t = \left((\tilde{Y}_t^F)^{(\sigma-1)/\sigma} + (\tilde{Y}_t^N)^{(\sigma-1)/\sigma}\right) / \sigma,
\]

\[
Y_t^C = (1-\delta)Y_{t-1}^C + \tilde{Y}_t^C,
\]

\[
Y_t^j = (1-\delta)Y_{t-1}^j + \tilde{Y}_t^j,
\]

\[
L_t^j = (1-\delta)L_{t-1}^j + \tilde{L}_t^j,
\]

\[
Em_t = (1-\delta)Em_{t-1} + \tilde{Em}_t.
\]

Both energy producers, the fossil fuel sector $j=F$ and the non-fossil fuel sector $j=N$ are treated almost symmetrically. The only difference is in the costs and in the option for fossil-fuel energy producers to decarbonize through carbon capturing and storage. We first describe the production process for the non-fossil fuel sector. Production of energy, \tilde{Y}_t^j ($j=F,N$), requires investments I_{t-1}^j (in the previous period) and maintenance costs, M_{t-1}^j, see (6), (9), (10), (11), and (12). Each new vintage with output \tilde{Y}_t^j requires a certain effort, measured through the variable Q, which is proportional to investments (one period ahead) and maintenance costs (9), where the variable h_t^j is a measure of technology variable over time, and a^j and b^j measure the constant investment and maintenance share in production costs.

\[
Q_t^j = h_t^j \tilde{Y}_t^j,
\]

\[
I_{t-1}^j = Q_t^j / a^j,
\]

\[
\tilde{M}_t^j = Q_t^j / b^j,
\]

\[
M_{t-1}^j = (1-\delta)M_{t-1}^j + \tilde{M}_t^j.
\]
We assume that knowledge is a public good that is non-rival and non-exclusive. Thus firms will not internalize the positive spill-over effects from their investments in their prices. Hence, the productivity parameter h_t^j is treated as exogenous by the firms, and the individual firms are confronted with constant returns to scale. Profit maximization of (20) subject to (6), (9), (10), (11), and (12) gives zero profits. First order conditions are listed in the appendix.

Energy production based on fossil fuels can be confronted with a carbon tax levied on carbon dioxide emissions, and producers can choose to decarbonize energy through carbon capturing and sequestration (CCS). Carbon dioxide emissions, Em_t, are proportional to the carbon content of fossil fuels, denoted by ϵ_t^F, but part of emissions, $CCSR$, is captured through a carbon capturing and storage activity (13). The variable $CCSR$ can be understood as the carbon capturing and sequestration ratio. When convenient, we use the acronym CCS for the carbon capturing and storage activity, measured in metric tons of carbon, and $CCSR$ for the ratio of emissions prevented through this activity. The tildes on top of the variable denote that emission intensities are vintage specific. Alternatively, we can interpret the $CCSR$ variable in a broader perspective as a broad decarbonization measure, where ϵ_t^F is the carbon intensity of a benchmark fuel mix that is optimal without carbon tax, and $CCSR$ includes all activities that reduce carbon dioxide emissions, including fuel-switching options.

Similar to the production of energy described above, the carbon capturing and sequestration process is described through an effort variable Q_t^{CCS}, which is assumed a second order polynomial function of the share of carbon that is captured and sequestered:

$$\tilde{Em}_t = \epsilon_t^F (1 - CCSR) \tilde{Y}_t^F. \quad (\tilde{x}_t)$$

$$Q_t^{CCS} = h_t^{CCS} (CCSR_t + \frac{1}{2} \kappa CCSR_t^2) \epsilon_t^F \tilde{Y}_t^F, \quad (\varphi_{j,t}; j=CCS)$$

Investments and maintenance costs are described through the same equations as for the production process: (10), (11), and (12). The quadratic cost curve implies that the amount of carbon that is captured and not emitted is linear in the carbon tax.

Technological change

The DEMETER model incorporates various insights from the bottom-up literature that stress the importance of internalizing learning-by-doing effects in climate change analyses. Energy production costs decrease as the experience increases through the installation of new energy vintages. In this version of DEMETER, the endogenous modelling of learning by doing is limited to the energy sectors; we have not included learning effects for overall productivity and energy
efficiency. Thus, A_1^j and A_2^j as employed in (2) are exogenously determined by a benchmark (business as usual) growth path.

For energy production and CCS, the variable h_i^j measures the state of technology. More specific, it defines the costs of one unit of output Y_i^j as compared to potential long-term costs. For example, $h_i^j=2$ means that one unit of energy output of sector j costs twice as much investments and maintenance as compared to the situation in the far future when the learning effect has reached its maximum value.

To capture the process of gaining experience and a decreasing value of h_i^j, we introduce the variable X_t that represents experience; it counts accumulated installed new capacity (vintage) at the beginning of period t. For energy production, the new capacity is equal to the output of the new vintage (15). For carbon capturing and sequestration, the new capacity is the amount of emissions prevented (16). Furthermore, we use a scaling function that returns the value for h_i^j as dependent on cumulative experience at the beginning of the period, X_i^j (17). Our scaling function satisfies

$$
\frac{\partial h_i^j}{\partial X_i^j} \leq 0,
$$

that is, production costs decrease as experience increases, and we assume $h_i^j=1$ for $X_i^j \to \infty$ that is, production costs converge to a strictly positive floor price (minimum amount of input associated with maximum learning effect) given by the levels of a_i^j and b_i^j. Finally, we assume a constant learning rate for technologies at the beginning of the learning curve (that is, for small values of X_i), captured by the power d_i. This means that, initially, production costs decrease by a factor $2^{-d_i}(1-lr)$, where lr is the so-called learning rate, for every doubling of installed capacity. Such decreases have been observed empirically for a large range of different technologies (IEA/OECD, 2000).

$$
X_{i+1}^j = X_i^j + \bar{Y}_i^j. \quad \text{(15)}
$$

$$
X_{i+1}^{CCS} = X_i^{CCS} + CCSR_i \bar{Y}_i^F. \quad \text{(16)}
$$

$$
h_i^j = c_i^j(1-d_i^j)(X_i^j)^{-d_i} + 1, \quad \text{(17)}
$$

Climate change

Emissions are included in the model through equations (8) and (13). The carbon cycle and climate change dynamics are included by linking emissions to atmospheric, upper ocean, and lower ocean CO2 storage, and ocean and global average surface temperature, following the RICE model (Nordhaus and Boyer 2000).
3. Calibration and data for numerical analysis

For all parameters but for CCS, an extensive discussion on calibration issues can be found in earlier papers on the DEMETER 1 model (van der Zwaan et al., 2002, Gerlagh and van der Zwaan, 2003, Gerlagh and van der Zwaan 2004, Gerlagh et al. 2004). Here we confine ourselves to the parameters that affect CCS. CCS costs consist of three parts: capturing of carbon, that is the separation and compression, its transport, and its storage. For a fossil fuel fired electricity plant, capturing carbon makes the major share in total costs. For this process, only limited commercial experience is available and the cost ranges quoted in the literature are large, dependent on specific capture technology and the power plant in case. But the capture technology part in CCS systems is similar to more common technologies used for sulphur and nitrous oxides removal from flue gases. Worldwide, the costs of applying these technologies have decreased considerably over the past decades (Rubin et al., 2004a and 2004b) and learning rates for capital costs of 11% and 12% were found. We assume that CCS will follow the same route of technological progress, and we take a learning rate of 10%. As DEMETER does not distinguish between the capture and storage parts of CCS technologies, it is supposed that this 10% learning rate is applicable to the employment of CCS at large. Still, application of the learning rate requires an estimation of the initial level of cumulative experience and the initial costs per ton of carbon. To estimate initial cumulative experience, we consider existing carbon dioxide storage e.g. the Sleipner project (0.2-0.3 MtC/yr), in the Weyburn project (1-2 MtC/yr) and West Texas (5-10 MtC/yr), and assume that experience has cumulated to about 20 MtC/yr of CCS capacity installed.

In the first period, we assume that some CCS is economic feasible at costs of around 10 $/tC (avoided, that is, 3 $/tCO₂ avoided). This relatively low figure is justified by the assumption that, in some cases, CCS can increase the output of oil fields. At the high-cost end, it is assumed that if one nears the point of applying CCS to the use of all fossil fuel electricity generation, or about one third of total energy demand in primary energy equivalents, costs will be as high as 150 $/tC.² For the intermediate range, we assume that the amount of CCS applied is linear in the carbon tax. We note that these values imply that the application of a full-cost CCS system would typically add some 2-5 cent/kWh to the costs of electricity.

² The IPCC (Intergovernmental Panel on Climate Change, Working Group III), in an envisaged Special Report on Carbon Dioxide Capture and Storage, is currently in the process of assembling a comprehensive overview of CCS technologies, including an assessment of their prospective costs.
4. Simulation Results

In this section, we will report on the model results of the emission stabilisation scenarios and how they vary with and without endogenous technological change. The overall objective of this part is to analyse the impact of technological change on crucial economic variables like gross world product (GWP), consumption, and investment strategies, that is the composition of the portfolio of technologies subject to emission stabilisation scenarios. Due to limited space, we cannot elaborate on a full sensitivity analysis or parameter study. We refer to Gerlagh and van der Zwaan (2004) and Gerlagh et al. (2004) for a discussion on sensitivity of results with respect to various parameters, including the elasticity of substitution between the fossil fuel and non-carbon energy source and the learning rates.

We have run five scenarios, one baseline or ‘business as usual’ (BAU) scenario in which climate change policy is assumed absent, and four stabilization scenarios in which atmospheric CO₂ concentrations are stabilized at 550, 500, 450, and 400 ppmv (Figure 1). Given the inertia of the energy system, e.g. due to past investments in capital for fossil fuel production and fossil fuel combustion, even a very stringent climate change policy cannot let emissions drop to zero immediately. Even when emissions immediately fall (Figure 2), the inertia of the climate system makes it impossible not to overshoot the 400 ppmv target. Therefore, for the 400 ppmv scenario, we demanded the atmospheric stabilization target to be binding from 2100 onwards. Consequently, in the last decades of the 21st century, emissions fall short of the steady state level that is consistent with a stable 400 ppmv concentrations, and can increase somewhat from 2100 onwards. From Figure 2, we also notice that the timing of emission reductions is relatively independent of the endogeneity of technological change. It turns out that the vintages structure of production is more important from the timing perspective. One has to wait for new vintages of capital that are either less energy intensive or are based on carbon-poor energy sources before emissions can drop. Consequently, emission reductions are somewhat delayed. Also, as we know from the literature, the discount rate employed will have a certain effect on timing.

![Figure 1. Atmospheric CO₂ concentration](image1.png) ![Figure 2. Global CO₂ emissions](image2.png)
The model recognizes three basic mechanisms for emission reduction: energy savings, a transition towards renewables, and carbon capturing and sequestration of fossil fuels. The latter two options both contribute to a decarbonization of the energy system. Figure 3 compares energy savings and decarbonization of energy in one chart. The figure shows that, for the first decades (one marker per 20 years), both options are equally important. But over time, the curve bends to the left, signifying that energy decarbonization becomes a more important mechanism.

Figure 4 zooms in on the contribution of CCS on emission reductions; it portrays the annual amount of carbon captured and sequestered. After comparison of this figure with the emissions in Figure 2, we see that CCS substantially contributes to the emission reduction effort.

Figure 5 presents the costs of stabilization in terms of loss of Gross World Product (GWP) relative to the baseline scenario, while Figure 6 shows the costs in terms of loss of consumption. Comparing the two figures, an outstanding result is that consumption losses exceed GWP losses by about factor 2. The reason for this is that a stabilization policy substitutes investments for consumption (Figure 7). Carbon capturing and sequestration requires substantial investments (Figure 9), which counts as part of production so that it does not lead to a decrease in output, but it goes at the cost of consumption. Investments in fossil fuel energy supply decrease under a stabilization policy (Figure 8), but this is more than offset by increased investments in non-carbon energy sources (Figure 10). Not only are non-carbon energy sources more expensive than fossil fuels, but they also require a larger share of investments compared to maintenance costs.

Another conclusion we can draw from Figure 5 and Figure 6 is that, first, ITC reduces costs by about factor 2, but these benefits only materialize after some decades. The first twenty years, from 2000 to 2020, ITC has almost no effect on costs, but thereafter, the extra investments in CCS and non-carbon energy sources start to pay off, when they have contributed to an increase in knowledge, and consequently, to lower energy costs. By 2100, in all four stabilization scenarios,
under ITC, GWP is almost unaffected or is even increased compared to the baseline. In the two most-stringent stabilization scenarios, investments in technological change clearly start to pay off as consumption losses decrease during the second half of the 21st century.

When we specifically look at the implications of ITC on the investment strategy, we find limited effects only. Basically, investments in fossil fuels under ITC exceed the levels without ITC (Figure 8). The obvious reason is that ITC leads to an increase in costs of fossil fuels because of the foregone learning when the economy substitutes away from fossil fuels. On the other hand, because ITC reduces the costs of CCS and non-carbon energy sources, investments can slightly fall (Figure 9 and Figure 10). The changes brought about by ITC are, however, insubstantial compared to the significance of the stabilization target, especially in the first decades.
5. Conclusion

In this paper, we developed a global growth model with learning by doing for fossil fuel energy supply, non-fossil fuel energy supply, and CCS. We used the model to assess the implications of ITC on output, consumption, and investments. Basically, the results suggest that ITC does not affect too much the strategy to follow when we strive for climate stabilization. Whether or not technology adjusts, for carbon dioxide emissions to come down, we will have to save on energy first, and apply CCS to fossil fuels, and finally move away from fossil fuels to alternative energy sources. But the recognition of ITC drastically changes our view on the costs of such policies. When acknowledging that technologies adjust to policy’s demand through economic incentives, long-term costs of emission reductions can come down substantially. When we see climate stabilization as one part of a trajectory towards sustainable development, we can understand that such a transition is costly, but need not be a lasting burden.

Appendix. Further model conditions

Welfare maximization is given by (18), where W is total welfare, ρ is the pure time preference, and C_t / L_t is consumption per capita. Intertemporal profits are equal to intertemporal revenues, which, for the consumer good producer, consist of output Y_t^C, expenditures consist of investments, I_t^C (one period ahead), labour L_t at wage w_t, fossil-fuel energy Y_t^F at price μ_t^F, and carbon-free energy, Y_t^N at price μ_t^N (19). For the non-carbon energy producers, profits are equal to the value of output minus investments and maintenance costs (20). For the fossil fuel energy producer, the cash flows equation (20) is adjusted to account for additional costs of investments and maintenance for CCS, and for the carbon tax levied on emissions (21).
The Value of ITC under Climate Stabilization

Max \(W = \sum_{t=1}^{\infty} (1 + \rho)^{-t} L_t \ln(C_t / L_t) \), \((18) \)

Max \(\sum_{t=1}^{\infty} \beta_t^0 (Y_t^C - I_t^C - w_t L_t - \mu_t^F Y_t^F - \mu_t^N Y_t^N) \), \((19) \)

Max \(\sum_{t=1}^{\infty} \beta_t^N (\mu_t^N Y_t^N) - I_t^N - M_t^N \). \((20) \)

Max \(\sum_{t=1}^{\infty} \beta_t^F (\mu_t^F Y_t^F - I_t^F - M_t^F - I_t^{CSS} - M_t^{CSS} - \tau_t E_t F) \). \((21) \)

First order conditions

Welfare optimization gives the Ramsey rule as a first-order-condition for consumption, \((22) \), where \(\beta_t \) is the price deprecation factor from period \(t \) to \(t+1 \). Maximizing net profits \((19) \), subject to the constraints \((2)-(8) \) yields the following first order conditions for \(C \), \(j \), \(t \), \(L_t \), \(, \), \(E_t \), \(\beta \), \(\mu \), \(w \), \(\tau \), \(\theta \), \(\gamma \), \(\lambda \), \(\chi \), \(\sigma \): \(\beta_t = (C_t / L_t) / ((1 + \rho) (C_{t+1} / L_{t+1})) \). \((22) \)

\[\lambda_t = (1 - \delta) \beta_t \lambda_{t+1} + 1 \] \((Y_t^C) \), \((23) \)

\[\mu_t^j = (1 - \delta) \beta_t \mu_{t+1}^j + \mu_t^j \] \((Y_t^j, j=F,N) \), \((24) \)

\[\omega_t^j = (1 - \delta) \beta_t \omega_{t+1}^j + \omega_t^j \] \((L_t) \), \((25) \)

\[\tau_t = \tau_t - (1 - \delta) \beta_t \tau_{t+1} \] \((Em_t) \), \((26) \)

\[\theta_t = \theta_t / (A_t^j)^{(1-1/\gamma)} (Z_t / \bar{Y}_t^C)^{-1/\gamma} \] \((\bar{Z}_t) \), \((27) \)

\[1 = \beta_t \theta_{t+1} (\bar{Z}_{t+1} / \bar{I}_{t+1}^C) \] \((I_t^C) \), \((28) \)

\[\bar{w}_t \bar{L}_t = (1 - \alpha) \beta_t \bar{L}_{t+1} \] \((\bar{L}_t) \), \((29) \)

\[\bar{\lambda}_t = \bar{\lambda}_t / (A_t^j)^{(1-1/\gamma)} (\bar{E}_t / \bar{Y}_t^C)^{-1/\gamma} \] \((\bar{E}_t) \), \((30) \)

\[\bar{\mu}_t^j = \bar{\lambda}_t (\bar{Y}_t^j / \bar{E}_t)^{-1/\gamma} \] \((\bar{Y}_t^j ; j=F,N,F) \) \((31) \)

where the variables associated with the first order conditions are given between brackets, \(\bar{\lambda}_t \) is the shadow price for \(\bar{Y}_t^C \), that is the Lagrange variable for (5) which is the same as the Lagrange variable for (2), \(\bar{\mu}_t^j \) is the shadow price for \(\bar{Y}_t^j \), and the Lagrange variable for (6), \(\bar{w}_t \) is the shadow price for \(\bar{L}_t \), and the Lagrange variable for (7), \(\bar{\theta}_t \) is the shadow price for the labour/capital composite \(\bar{Z}_t \) and the Lagrange variable for (3), \(\bar{\lambda}_t \) is the shadow price for the energy composite \(\bar{E}_t \) and the Lagrange variable for (4).

The non-carbon energy producers maximize net profits (20) subject to (6), (9), (10), (11), and (12). Calculating the first order conditions for \(Y_t^j \), \(\bar{Y}_t^j \), \(Q_t^j \), \(M_t^j \), \(I_t^j \), \(1 \), and \(M_t^j \), we find (24) and
\[\mu_i^N = h_i^N \varphi_i^N, \quad (\tilde{Y}_i^N) \]
\[\varphi_i = \zeta_i + \eta_i, \quad (Q_i^j, i=F, N, CCS) \]
\[\tilde{\zeta}_i^j = b_i^j \eta_i, \quad (\tilde{M}_i^j, i=F, N, CCS) \]
\[1 = a_i^j \beta_i, \quad (I^j_{i-1}, i=F, N, CCS) \]
\[\tilde{\zeta}_i^j = (1-\delta)\beta_i \tilde{\zeta}_{i+1}^j + 1, \quad (M_i^j, i=F, N, CCS) \]

where \(\mu_i^j \) is the shadow price for \(Y_i^j \), and the Lagrange variable for (6), \(\varphi_i^j \) is the shadow price of \(Q_i^j \) and the Lagrange variable of (9), \(\zeta_i^j \) and \(\eta_i^j \) are the Lagrange variables of (10), and (11), and \(\tilde{\zeta}_i^j \) is the shadow price of \(\tilde{M}_i^j \).

The fossil fuel energy producers maximize net profits (21) subject to (6), (8), (9), (10), (11), (12), (13), and (14). Calculating the first order conditions for \(Y_i^j, Q_i^j, \tilde{M}_i^j, I^j_{i-1}, M_i^j, \tilde{Y}_i^j \), and \(CCSR_i \), we find (24) for \(j=F, (33), (34), (35), \) and (36) for \(j=F, CCS, \) and

\[\mu_i^F = h_i^F \varphi_i^F + (1 - CCSR_i) \tilde{\tau}_i^F \varphi_i^F + h_i^{CCS} \varphi_i^{CCS} \varphi_i^{F} (CCSR_i + \sqrt{2} \times CCSR_i^2), \quad (\tilde{Y}_i^F) \]
\[(1 + \kappa CCSR_i) \varphi_i^{CCS} h_i^{CCS} \geq \tau_i, \quad \perp \text{CCSR} \geq 0, \quad (CCSR_i) \]

respectively, where the Lagrange variable of (12), \(\tilde{\tau}_i \) is the shadow price for \(E_i \) and the Lagrange variable for (8), which has the same value as the Lagrange variable for (13).

References

Manne and Richels 2002

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENNEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (lxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Marta STRYSZOWSKA (lxvii): Late and Multiple Bidding in Competing Second Price Internet Auctions

NRM 18.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA (lxvii): Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 20.2004 Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists

NRM 22.2004 Riaa ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 23.2004 Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (lxvii): Tourism, Trade and Domestic Welfare

NRM 25.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 26.2004 Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports

NRM 29.2004 Marian WEBER (lxviii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada's Boreal Mixedwood Forest

NRM 30.2004 Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE (lxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

An Application to the Recreational Value of Forests
Gernot KLEPPER and Sonja PETERSON:

Andrea BIGANO and Stef PROOST:

Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Possibilities of the Contingent Valuation Method
Ingo BRÄUER and Rainer MARGGRAF

Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transitional Economy
Sergio CURRARINI and Marco MARINI:

Notes on the Determinants of Innovation: A Multi-Perspective Analysis
Sebastian BEROYETS and Nicolas GRAVEL (lxvi):

Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach

Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits

Wildlife Conservation and Management in Kenya: Towards a Co-management Approach

Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms; Agri-Environmental Policies in a Transition al Economy

The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects

Optimal Disease Eradication

Simple Priorities and Core Stability in Hedonic Games

Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis

The Socio-Economic Value of Natural Riverbanks in the Netherlands

The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

On Coalition Formation with Heterogeneous Agents

Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

An Application to the Recreational Value of Forests

The Amenity Value of Climate to German Households

Conserving Crop Genetic Resources on Smallholder Farms in Hungary

The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

On Coalition Formation with Heterogeneous Agents

Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

An Application to the Recreational Value of Forests
<table>
<thead>
<tr>
<th>Journal</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>74.2004</td>
<td>Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment</td>
</tr>
<tr>
<td>ETA</td>
<td>75.2004</td>
<td>Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach</td>
</tr>
<tr>
<td>CTN</td>
<td>77.2004</td>
<td>Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lx): Optimal Information Transmission in Organizations: Search and Congestion</td>
</tr>
<tr>
<td>CTN</td>
<td>78.2004</td>
<td>Francis BLOCH and Armando GOMES (lx): Contracting with Externalities and Outside Options</td>
</tr>
<tr>
<td>CTN</td>
<td>79.2004</td>
<td>Rabah AMIR, Efsunsoy DIAMANTOU and Licun XUE (lx): Merger Performance under Uncertain Efficiency Gains</td>
</tr>
<tr>
<td>CTN</td>
<td>80.2004</td>
<td>Francis BLOCH and Matthew O. JACKSON (lx): The Formation of Networks with Transfers among Players</td>
</tr>
<tr>
<td>CTN</td>
<td>81.2004</td>
<td>Daniel DIEMEIER, Hühya ERASLAN and Antonio MERLO (lx): Bicameralism and Government Formation</td>
</tr>
<tr>
<td>CTN</td>
<td>82.2004</td>
<td>Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lx): Potential Maximization and Coalition Government Formation</td>
</tr>
<tr>
<td>CTN</td>
<td>83.2004</td>
<td>Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lx): Group Decision-Making in the Shadow of Disagreement</td>
</tr>
<tr>
<td>CTN</td>
<td>84.2004</td>
<td>Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lx): Economics: An Emerging Small World?</td>
</tr>
<tr>
<td>CTN</td>
<td>85.2004</td>
<td>Edward CARTWRIGHT (lx): Learning to Play Approximate Nash Equilibria in Games with Many Players</td>
</tr>
<tr>
<td>IEM</td>
<td>86.2004</td>
<td>Finn R. FØRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power</td>
</tr>
<tr>
<td>KTHC</td>
<td>87.2004</td>
<td>Eliasios PAPYRakis and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income</td>
</tr>
<tr>
<td>IEM</td>
<td>89.2004</td>
<td>A. MARKANDYA, S. PEDROSOS and D. STREMIKIE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?</td>
</tr>
<tr>
<td>GG</td>
<td>90.2004</td>
<td>Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy</td>
</tr>
<tr>
<td>PRA</td>
<td>91.2004</td>
<td>Sergei IZMALKOV (lx): Multi-Unit Open Ascending Price Efficient Auction</td>
</tr>
<tr>
<td>KTHC</td>
<td>92.2004</td>
<td>Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures</td>
</tr>
<tr>
<td>KTHC</td>
<td>93.2004</td>
<td>Massimo DEL GAITTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus devolution</td>
</tr>
<tr>
<td>CCMP</td>
<td>94.2004</td>
<td>Pierre-André JOUYET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits</td>
</tr>
<tr>
<td>CCMP</td>
<td>95.2004</td>
<td>Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply</td>
</tr>
<tr>
<td>CCMP</td>
<td>96.2004</td>
<td>Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise</td>
</tr>
<tr>
<td>CTN</td>
<td>97.2004</td>
<td>Gustavo BERGANTÍNOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form</td>
</tr>
<tr>
<td>CTN</td>
<td>98.2004</td>
<td>Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation</td>
</tr>
<tr>
<td>GG</td>
<td>99.2004</td>
<td>Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements</td>
</tr>
<tr>
<td>SIEV</td>
<td>100.2004</td>
<td>Chiara M. TRAVISI and Peter NJIKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents</td>
</tr>
<tr>
<td>NRM</td>
<td>102.2004</td>
<td>Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test</td>
</tr>
<tr>
<td>CCMP</td>
<td>103.2004</td>
<td>Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy</td>
</tr>
<tr>
<td>PRA</td>
<td>106.2004</td>
<td>Kiru BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?</td>
</tr>
<tr>
<td>PRA</td>
<td>107.2004</td>
<td>Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets</td>
</tr>
<tr>
<td>SIEV</td>
<td>108.2004</td>
<td>Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo GALEOTTI: Economic Convergence Towards the EU Average?</td>
</tr>
<tr>
<td>CTN</td>
<td>109.2004</td>
<td>Somdeb LAHIR: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results</td>
</tr>
<tr>
<td>NRM</td>
<td>110.2004</td>
<td>Giuseppe DI VITA: Natural Resources Dynamics: Another Look</td>
</tr>
<tr>
<td>SIEV</td>
<td>111.2004</td>
<td>Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study</td>
</tr>
<tr>
<td>KTHC</td>
<td>112.2004</td>
<td>Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making</td>
</tr>
<tr>
<td>SIEV</td>
<td>113.2004</td>
<td>Paulo A.L.D. NUNES and Laura ONOFRI: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications</td>
</tr>
<tr>
<td>IEM</td>
<td>114.2004</td>
<td>Patrick CAYRÁ: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?</td>
</tr>
<tr>
<td>IEM</td>
<td>115.2004</td>
<td>Valeria COSTANTINI and Francesco GRACCEVA: Oil Security: Short- and Long-Term Policies</td>
</tr>
<tr>
<td>ID</td>
<td>Year</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>CCMP</td>
<td>157</td>
<td>Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?</td>
</tr>
<tr>
<td>ETA</td>
<td>159</td>
<td>William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling</td>
</tr>
<tr>
<td>KTHC</td>
<td>160</td>
<td>Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons</td>
</tr>
<tr>
<td>IEM</td>
<td>161</td>
<td>Xavier LABANDEIRA, José M. LABEJA and Miguel RODRIGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain</td>
</tr>
</tbody>
</table>

NOTE DI LAVORO PUBLISHED IN 2005

<table>
<thead>
<tr>
<th>ID</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>1.2005</td>
<td>Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>2.2005</td>
<td>Qiang WU and Paulo Augusto Nunes: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>3.2005</td>
<td>Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>4.2005</td>
<td>Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>5.2005</td>
<td>Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>8.2005</td>
<td>Lorenzo PELLEGRINI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption Democracy and Environmental Policy</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>9.2005</td>
<td>Angelo ANTOCCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>10.2005</td>
<td>Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>11.2005</td>
<td>Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate</td>
<td></td>
</tr>
<tr>
<td>PRCG</td>
<td>14.2005</td>
<td>Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure</td>
<td></td>
</tr>
<tr>
<td>CSRIM</td>
<td>15.2005</td>
<td>Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>16.2005</td>
<td>Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>17.2005</td>
<td>Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>18.2005</td>
<td>Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>19.2005</td>
<td>Mombert HOPPE: Technology Transfer Through Trade</td>
<td></td>
</tr>
<tr>
<td>PRCG</td>
<td>20.2005</td>
<td>Roberto ROSON: Platform Competition with Endogenous Multithoming</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>21.2005</td>
<td>Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>23.2005</td>
<td>Michael PINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>26.2005</td>
<td>Maxsimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>27.2005</td>
<td>Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>29.2005</td>
<td>Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>30.2005</td>
<td>Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>31.2005</td>
<td>Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>32.2005</td>
<td>Joseph HUBER: Key Environmental Innovations</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>33.2005</td>
<td>Antoni CALVÓ-ARMENGOL and Rahimi ILKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>34.2005</td>
<td>Francesco FERI (lxxii): Network Formation with Endogenous Decay</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>35.2005</td>
<td>Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games</td>
<td></td>
</tr>
</tbody>
</table>

NOTE DI LAVORO PUBLISHED IN LXXII

<table>
<thead>
<tr>
<th>ID</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>17.2005</td>
<td>Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>18.2005</td>
<td>Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>19.2005</td>
<td>Mombert HOPPE: Technology Transfer Through Trade</td>
<td></td>
</tr>
<tr>
<td>PRCG</td>
<td>20.2005</td>
<td>Roberto ROSON: Platform Competition with Endogenous Multithoming</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>21.2005</td>
<td>Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>23.2005</td>
<td>Michael PINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>26.2005</td>
<td>Maxsimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>27.2005</td>
<td>Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>29.2005</td>
<td>Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>30.2005</td>
<td>Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>31.2005</td>
<td>Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>32.2005</td>
<td>Joseph HUBER: Key Environmental Innovations</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>33.2005</td>
<td>Antoni CALVÓ-ARMENGOL and Rahimi ILKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>34.2005</td>
<td>Francesco FERI (lxxii): Network Formation with Endogenous Decay</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>35.2005</td>
<td>Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games</td>
<td></td>
</tr>
</tbody>
</table>
Alessandra CASELLA and Nobuyuki HANAKI (lxxii): Information Channels in Labor Markets. On the Resilience of Referral Hiring
Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated Games
Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): The Egalitarian Sharing in Provision of Public Projects
Francesco FERF, Stochastic Stability in Network with Decay
Aart de ZEEUW (lxxii): Dynamic Effects on the Stability of International Environmental Agreements
C. Martijn van der HEIDEN, Jeroen C.J.M. van den BERGH, Ekkos C. van IERLAND and Paulo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands
Carlo VIEIRA and Ana Paula SERRA: Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms
Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice
Michael FINUS and Bianca RUNDHAGEN: Participation in International Environmental Agreements: The Role of Timing and Regulation
Lorenzo PELLEGRINI and Reyer GERLAGH: Are EU Environmental Policies Too Demanding for New Members States?
Matteo MANERA: Modeling Factor Demands with SEM and VAR: An Empirical Comparison
Olivier TERCIJEUX and Vincent VANNEBELBOSCH (lxxii): A Characterization of Stochastically Stable Networks
Ana MAULEON, José SEMPERE-MONERRIS and Vincent J. VANNEBELBOSCH (lxxii): R&D Networks Among Unionized Firms
Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in International Environmental Agreements
Valeria GATTA: From the Theory of the Firm to FDI and Internationalisation: A Survey
Aliresa NAGHAVI: Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the Doha Proposal
Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES: Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach
Alessandra del BOCA, Marzio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA: Investment and Time to Plan: A Comparison of Structures vs. Equipment in a Panel of Italian Firms
Gernot KLEPPER and Sonja PETERSON: Emissions Trading, CDM, JI, and More — The Climate Strategy of the EU
Maia DAVID and Bernard SINCLAIR-DESAGNÉ: Environmental Regulation and the Eco-Industry
Alain-Désiré NIMUBONA and Bernard SINCLAIR-DESAGNÉ: The Pigouvian Tax Rule in the Presence of an Eco-Industry
Helmut KARL, Antje MÖLLER, Ximena MATUS, Edgar GRANDE and Robert KAISER: Environmental Innovations: Institutional Impacts on Co-operations for Sustainable Development
Dimitra VOUVAKI and Anastasios XEPAPADEAS (lxxii): Criteria for Assessing Sustainable Development
Christopher A. SCHALTEGGER and Benno TORGLER: Trust and Fiscal Performance: A Panel Analysis with Swiss Data
Irene FALSECCHI: A Role for Instructions
Valentina BOSETTI and Gianni LOCATELLI: A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks
Andreas LÖSCHEL: Impure Public Goods and Technological Interdependencies
Elena VALSECCHI: A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks
C. Martijn van der HEIDEN, Jeroen C.J.M. van den BERGH: Modeling ‘No-choice’ Responses in Attribute Based Valuation Surveys
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Applications of Negotiation Theory to Water Issues
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Advances in Negotiation Theory: Bargaining, Coalitions and Fairness
Grazzia BENETTO and Chiara STROZZI: Trust and Fiscal Performance: A Panel Analysis with Swiss Data
Eric M. USLANER (lxxiv): Varieties of Trust
Thomas P. LYON (lxxiv): On the Determinants of Social Capital in Greece Compared to Countries of the European Union
Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship

Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITTHAEGEN (lxxvi): Local and Global Interactions in an Evolutionary Resource Game

Joëlle NOAILLY, Cees A. WITTHAEGEN and Jeroen C.J.M. van den BERGH (lxxvi): Spatial Evolution of Social Norms in a Common-Pool Resource Game

Maximiliano MAZZANTII and Roberto ZOBOLI: Economic Instruments and Induced Innovation: The Case of End-of-Life Vehicles European Policies

Anna LASUT: Creative Thinking and Modelling for the Decision Support in Water Management

Valentina BOSETTI and Barbara BUCHNER: Using Data Envelopment Analysis to Assess the Relative Efficiency of Different Climate Policy Portfolios

IEM 89.2005

IEM 90.2005

IEM 100.2005

Alessandro COLOGNI and Matteo MANERA: Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G7 Countries

Anna ALBERINI and Alberto LONGO: The Value of Cultural Heritage Sites in Armenia: Evidence from a Travel Cost Method Study

Mikel GONZÁLEZ and Rob DELLINK: Impact of Climate Policy on the Basque Economy

Gilles LAFFORGUE and Walid OUESLATI: Optimal Soil Management and Environmental Policy
Martin D. SMITH and Larry B. CROWDER (lxxvi): Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary

Dan HOLLAND and Kurt SCHNIER (lxxvi): Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

John NELLI: The Evolution of Enterprise Reform in Africa: From State-owned Enterprises to Private Participation in Infrastructure — and Back?

Bernardo BORTOLOTTI: Italy's Privatization Process and Its Implications for China

Anna ALBERINI, Marcella VERONESI and Joseph C. COOPER: Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys

Federico ECHENIQUE and Mehmet B. YENMEZ: A Solution to Matching with Preferences over Colleagues

Valeria GATTAI and Corrado MOLTENI: Dissipation of Knowledge and the Boundaries of the Multinational Enterprise

Valeria GATTAI: Firm’s Intangible Assets and Multinational Activity: Joint-Venture Versus FDI

Socrates KYPREOS: A MERGE Model with Endogenous Technological Change and the Cost of Carbon Stabilization

Fuminori SANO, Keigo AKIMOTO, Takashi HOMMA and Toshimasa TOMODA: Analysis of Technological Portfolios for CO₂ stabilizations and Effects of Technological Changes

Fredrik HEDENUS, Christian AZAR and Kristian LINDGREN: Induced Technological Change in a Limited Foresight Optimization Model

Reyer GERLAGH, The Value of ITC under Climate Stabilization
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>