Bosetti, Valentina; Locatelli, Gianni

Working Paper
A Data Envelopment Analysis Approach to the Assessment of Natural Parks' Economic Efficiency and Sustainability. The Case of Italian National Parks

Nota di Lavoro, No. 63.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Bosetti, Valentina; Locatelli, Gianni (2005) : A Data Envelopment Analysis Approach to the Assessment of Natural Parks' Economic Efficiency and Sustainability. The Case of Italian National Parks, Nota di Lavoro, No. 63.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74248

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks
Valentina Bosetti and Gianni Locatelli

NOTA DI LAVORO 63.2005

MAY 2005

NRM – Natural Resources Management

Valentina Bosetti, Fondazione Eni Enrico Mattei
Gianni Locatelli, DISCo, Università di Milano Bicocca

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=718621

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks

Summary
Wilderness protection is a growing necessity for modern societies, and this is particularly true for areas where population density is extremely high, as for example Europe. Conservation, however, implies very high opportunity costs. It is thus crucial to create incentives to efficient management practices, to promote benchmarking and to improve conservation management. In the present paper we propose a methodology based on Data Envelopment Analysis, DEA, a non parametric benchmarking technique specifically developed to assess the relative efficiency of decision-making units. In particular, the objective of the discussed methodology is to assess the relative efficiency of the management units of the protected area and to indicate how it could be improved, by providing a set of guidelines. The main advantage of this methodology is that it allows to assess the efficiency of natural parks’ management not only internally (comparing the performance of the park to itself in time) but also by external benchmarking, thus providing new and different perspectives on potential improvements. Although the proposed methodology is fairly general, we have applied it to the context of Italian National Parks in order to produce a representative case study. Specifically, the choice of adequate cost and benefit indicators is a very important and delicate phase of any benchmark analysis. For this purpose, a questionnaire was used to investigate the opinions of Italian National Parks managers and stakeholders and to define the relevant indicators for the analysis. Finally, relevant policy implications for the case study are given.

Keywords: Data envelopment analysis, Natural park management

JEL Classification: Q01, Q26, Q56

Address for correspondence:
Valentina Bosetti
Fondazione Eni Enrico Mattei
Corso Magenta 63
20123 Milano
Italy
Phone: +390252036938
Fax: +390252036946
E-mail: valentina.bosetti@feem.it
Introduction

Since ancient eras, the idea of protecting portions of the land has appeared as a necessity. The reasons for this have intrinsically changed over time, going from the mere necessity of preserving hunting areas to the idea of biological conservation, which remains one of today’s driving causes. Although in different times and places, and motivated by different concerns, this idea has led to the same result: the conservation of ecosystems that would otherwise have disappeared. Indeed, if on the one hand the first example of a modern National Park is quite recent (Yellowstone, Wyoming, instituted in 1872), on the other hand, examples of protected areas can be traced back to game reserves. The first example, which can be dated back to 7,500-7,000 B.C., shows the existence of hunting areas in archaeological sites in South-west Iran. During the history of Indo-European civilizations, the aristocracy used to create game preserves in forests with the effect of conserving wide pristine areas which solely a very restricted number of individuals could make use of. This was also the case for Italy where many areas which are still protected today, were originally game preserves. The preservation of wilderness is also linked to religious activities, for example the holy woods of Mediterranean cultures. During the Middle Ages, almost all of the forests surrounding monasteries were turned into preserves and the population was forbidden to harvest these areas. In Italy, the Apennine forest of Abetone and the “Foreste Casentinesi” National Park have been preserved to the present day thanks to the presence of eremitical places (Massa, 1999). However, the origins of the concept of ‘holy forests’ can be traced back to the Etruscan and Greek civilizations, when natural areas
surrounding towns were consecrated to divinities and any human activity was forbidden.

The modern idea of protected areas, which underpinned the Yellowstone Park institution, was based on the recognition of the value of wilderness amenity and of the recreational services it produces. The American “Protection Ethics” sprung from the ideas of three naturalists: Ralph Waldo Emerson, Henry David Thoreau and John Muir. In their interpretation, for the first time wilderness was as important as religion. Nature could not be exploited for purely economic reasons. Moreover, the beauty of Nature had to be safeguarded in that its contemplation was recognized as a basic need for human beings; this ‘use value’, mainly centered on human needs, was at the foundation of this early protection ethic.

At the beginning of the twentieth century, a new idea took shape: that of Gifford Pinchot. He based his thought on the philosophical outlook of John Stuart Mill and believed that preserving nature has first of all an economic rationale behind it. It was only around the 1950s that along with these different interpretations of nature’s conservation, essentially based on an anthropocentric perspective, a new thought emerged: that of Aldo Leopold. It was based on the recognition of the intrinsic value of the existence of nature and it constituted, in subsequent years, the foundation of modern evolutionary ecology.

During the twentieth century, particularly in Europe, the erosion of territory, hence of ecosystems, due to human activities was dramatically increasing. This led to a growing concern for wilderness conservation issues, tracing back from the first meetings in Paris (1902) and London (1937), up to the 1987 report “Our Common Future”, prepared as a discussion basis for the Earth Summit held in Rio de Janeiro in
1992. During these subsequent meetings, the concept of a preserved natural area, the ‘natural park’, has undergone several successive transformations, until a new interpretation emerged. Natural parks should be government-managed territories, where development and preservation forces are kept in balance. Management should not only be concerned with environmental issues, but more broadly with the socio-economic features of the territory. Indeed, in a dynamic perspective, it might turn out more appropriate for conservation purposes, to open a protected area to some human activities, rather than to close it completely, preventing any development, even under a pure non-anthropocentric ethic of conservation. Indeed, it is now widely recognized that untouchable territories are bound to slowly disappear, because of land scarcity, and this is particularly true for highly populated areas as Europe. Therefore, in a long-term perspective, the involvement and sustainable development of human activities within protected areas may prove to be a win-win strategy.

Within this enlarged vision, natural areas’ management entails the dynamic assessment of environmental quality indicators as well as the sustainability level of management activities, thus increasing the need for comprehensive indicators. Qualitative and quantitative indicators may support the decision-maker in comparing different realities, in evaluating the environmental and economic performance of its management’s policies, and in trying to forecast the effectiveness of potential changes in management strategies. There is a long tradition of benchmarking methodologies, however most of them are commonly restrained to cover an internal perspective and do not investigate how the analysed protected area is performing when compared to others.
The main objective of the present paper is the external benchmarking of protected areas. To this aim, it is necessary to introduce a common benchmarking methodology, capable of taking into account specific features of different realities. Data Envelopment Analysis (DEA) is an extremely flexible and useful methodology, which provides an indicator of the relative efficiency for each different analysed decision-making unit (in our case National Park Management offices), where efficiency is a measure of different features related to the environmental as well as to the economic or social impacts of the protected area.

In this paper we present and discuss the application of DEA to the case of Italian National Parks. In order to create a common set of indicators, a preliminary questionnaire was administered to investigate the opinion of parks’ managers and other stakeholders at a qualitative level. A follow-up questionnaire was subsequently carried out in order to collect intertemporal quantitative data for all the indicators that were considered more relevant by managers and stakeholders. DEA analysis was carried out on the data set.

The paper is organized as follows. Section 1 provides a brief literature review. In Section 2 a brief description of the DEA methodology is given, while in Section 3 the data set and the data collection methodology are discussed, together with the types of DEA analysis performed. Section 4 is a description of the main results and Section 5 concludes with a summary of the main findings along with the final remarks and future extensions.
1 DEA and the environment

DEA is a multivariate technique for monitoring productivity and providing insights on the possible directions of improvement of the status quo, when inefficient. It is a non-parametric technique, i.e. it can compare input/output data, making no prior assumptions about the probability distribution under study. The origin of non-parametric programming methodology, with respect to the relative efficiency measurement, lies in the work of Charnes et al. (1978, 1979, 1981).

DEA has been applied to several benchmarking studies and to the performance analysis of public institutions, such as schools (Charnes et al., 1981), hospitals (Nyman and Bricker, 1989), but also of private ones, such as banks (Charnes et al., 1990). An exhaustive analysis of its underlying theory and main applications can be found in Charnes et al. (1993), while a comprehensive literature review in Tavaresa (2002).

Applications to environmental and resource management problems are less frequent. An interesting overview of the role of DEA in environmental valuation can be found in Kortelainen and Kuosmanen (2004), while a survey of indicators of firm’s environmental behavior can be found in Tyteca (1996). We briefly report some application studies in the following.

<table>
<thead>
<tr>
<th>Application</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure ecological efficiency</td>
<td>Dyckhoff and Allen, (2001)</td>
</tr>
<tr>
<td>Measure environmental impacts of different production technology</td>
<td>De Koeijer, et al. (2002)</td>
</tr>
<tr>
<td>Measure different systems of waste management</td>
<td>Sarkis and Weinrach (2001)</td>
</tr>
<tr>
<td>Measure efficiency of environmental regulation schemes</td>
<td>Hernandez-Sancho et al. (2000)</td>
</tr>
</tbody>
</table>
2 Methodology

Although DEA is based on the concept of efficiency that approaches the idea of a classical production function, the latter is typically determined by a specific equation, while DEA is generated from the data set of observed operative units (Decision Making Units or DMUs). The DEA efficiency score of any DMU is derived from the comparison with the other DMUs that are included in the analysis, considering the maximum score of unity (or 100%) as a benchmark. The score is independent of the units in which outputs and inputs are measured, and this allows for a greater flexibility in the choice of inputs and outputs to be included in the study.

An important assumption of the DEA is that all DMUs face the same unspecified technology and operational characteristics, which defines the set of their production possibilities.

The idea of measuring the efficiency of DMUs with multiple inputs and outputs is specified as a linear fractional programming model. A commonly accepted measure of efficiency is given by the ratio of the weighted sum of outputs over the weighted sum of inputs. It is however necessary to assess a common set of weights and this may give rise to some problems. With DEA methodology each DMU can freely assess its own set of weights, that can be inferred through the process of maximizing the efficiency. Given a set of N DMUs, each producing J outputs from a set of I inputs, let us denote by y_{jm} and x_{jm} the vectors representing the quantities of outputs and inputs relative to the m-th DMU, respectively. The efficiency of the m-th DMU can thus be calculated as:
\[e_m = \frac{\sum_{j=1}^{J} u_j y_{jm}}{\sum_{i=1}^{I} v_i x_{im}}, \quad \begin{bmatrix} f = 1, \ldots, J \\ i = 1, \ldots, I \end{bmatrix} \]

where \(u_j \) and \(v_i \) are two vectors of weight that DMU \(m \) uses in order to measure the relative importance of the consumed and the produced factors. As mentioned, the set of weights, in DEA, is not given, but is calculated through the DMU’s maximization problem, that is stated below for the \(m \)-th DMU.

\[
\begin{align*}
\text{max } & e_m \\
\text{s.t. } & \\
& \sum_{j=1}^{J} u_j y_{jm} \leq 1 \quad \forall n = 1, \ldots, N_m, N \\
& \sum_{i=1}^{I} v_i x_{im} \\
& 0 \leq u_j \leq 1 \\
& 0 \leq v_i \leq 1
\end{align*}
\]

To simplify computations it is possible to scale the input prices so that the cost of the DMU \(m \)’s inputs equals 1, thus transforming problem set in (2) in the ordinary linear programming problem stated below:

\[
\begin{align*}
\text{max } & h_m = \sum_{j=1}^{J} u_j y_{jm} \\
\text{s.t. } & \\
& \sum_{i=1}^{I} v_i x_{im} = 1 \\
& \sum_{j=1}^{J} u_j y_{jm} - \sum_{i=1}^{I} v_i x_{im} \leq 0 \quad \forall n = 1, \ldots, N_m, N \\
& \varepsilon \leq u_j \leq 1, \quad \varepsilon \leq v_i \leq 1, \quad \varepsilon \in \mathbb{R}^+
\end{align*}
\]
In addition to the linearization constraint, weights have to be strictly positive in order to avoid the possibility that some inputs or outputs may be ignored in the process of determination of the efficiency of each DMU.

If the solution to the maximization problem gives a value of efficiency equal to 1, the corresponding DMU is considered to be efficient or non-dominated, if the efficiency value is inferior to 1 then the corresponding DMU is dominated, therefore does not lie on the efficiency frontier, which is defined by the efficient DMUs.

As for every linear programming problem, there is a dual formulation of the primal formulation of the maximization problem outlined in (3), which has an identical solution. While the primal problem can be interpreted as an output-oriented formulation (for a given level of input, DMUs maximizing output are preferred), the dual problem can be interpreted as an input-oriented formulation (for a given level of output, DMUs minimizing inputs are preferred).

Scale effects can be accounted for modifying the model as presented in (3), in order to account for variable returns to scale (we adopt the solution suggested in Banker et al., 1984).

Finally, the dynamic analysis was performed using the window approach, first put forward by Charnes and others (Charnes et al., 1978), in order to produce not only a static picture of efficiency, but also the evolution of efficiency of each municipality. The DEA is performed over time using a similar moving average procedure, where parks’ performances in one year are compared with their performances in another year.
3 Data Collection and Analysis

To define environmental efficiency is a very challenging task; several different definitions of ecological efficiency exist in the literature. In the case of protected areas, the problem becomes even more complicated, because management and financial features have to be considered as well. As mentioned above, in a DEA study, the most crucial phase is indeed the choice of the representative benefit and cost indicators, which will be extremely influential in defining each DMU level of efficiency.

For this reason, the direct involvement of stakeholders is appropriate, if not fundamental. The managers of all the National Parks\(^1\) in Italy were therefore interviewed through mail questionnaires in order to understand what they perceived as the most relevant indicators. In particular, for each proposed indicator, the respondent could choose among different qualitative definitions (very relevant, VR, relevant, R, not very relevant, NVR, and not relevant, NR). On the basis of the survey’s results, which are summarized in Table 1, a second survey was designed in order to obtain quantitative definitions of each of the indicators (the final set of indicators used in the DEA analysis is reported in Table 2 divided in three models, see section 4).

On the output side, first the number of visitors to the park was considered as an indicator of its attractiveness, providing potential indirect benefit to the local economy. Second, the number of the parks’ employees, as an indicator of the social and economic indirect and direct benefits. Third, the number of economic businesses which are directly linked empowered or created thanks to the presence of the park (e.g. parks

\(^1\) There are 21 National Parks in Italy. The analysis was performed on the 17 parks which were able to produce the required data, which are: Abruzzo, Lazio and Molise; Arcipelago la Maddalena; Arcipelago Toscano; Asinara; Aspromonte; Cilento and Vallo di Diano; Circeo; Monti Sibillini; Gargano; Dolomiti Bellunesi; Foreste Casentinesi; Gran Paradiso; Gran Sasso and Monti della Laga; Majella; Val Grande; Vesuvio.
certifying farmers producing within the protected area). Fourth, the number of protected species, which is a good proxy of the environmental quality and biodiversity of the park (in some models the inverse of this biodiversity indicator was included as an input). Finally, the number of students who visit the park for environmental education trips, as a proxy of the social and educational benefits deriving from the park.

On the input side, economic costs, computed aggregating management costs and variable costs and extraordinary expenses were considered. Moreover, the area extension was also considered as a proxy of fixed costs, which are assumed to be proportional to the area covered by the park.

4 Results

Three different models have been used to perform DEA analysis. The choice of using more than one model specification derives from the consideration that the DEA technique is extremely sensitive to the choice of indicators. Hence, coherent responses obtained by different models prove to be more reliable and robust, diminishing the degree of subjectivity of the efficiency scores produced. Moreover, each different model mimics the three main existing management strategies, namely a ‘pure socio-economic development oriented’ (Model 1), a ‘pure conservation oriented’ (Model 2) and an ‘in between’ strategy (Model 3).

In Table 3, results for Model 1, 2 and 3 (for the maximization of outputs approach, MAXOUTPUT) are shown, respectively. Parks scoring a 100% efficiency in Model 1 (as for example the National Park Foreste Casentinesi) are successfully promoting the development of the area. DMUs efficient according to Model 2 prove to have a high
natural performance, in terms of biodiversity conservation, attractiveness and capacity of diffusing awareness among new generations (as for example the National Park *Gran Sasso and Monti della Laga*).

When a DMU is scoring maximum efficiency according to all three models, then one can argue the management has attained the sustainable development goal in a very broad sense. In the case of DMUs which are partially inefficient (as for example the National Park *Gran Paradiso*) it is possible to use the DEA analysis to obtain information concerning potential improvements of the management\(^2\) (see Figure 1).

Finally, the total potential improvements, described in Figure 2, are defined by aggregating over all inefficient DMUs, in order to provide guidelines to properly allocate government incentives.

Conclusions

In recent years, a substantial re-interpretation of wilderness management objectives has occurred. According to this conceptual ‘revolution’, management strategies should aim at harmonizing human and nature’s interests, in the attempt of finding a balance between development and preservation, rather than a “put under a glass bell” approach. Nowadays a protected area has a new function: it is also a place where the concept of sustainable development can be put into practice and where traditional economic activities can be consistent with preservation needs.

This is the interpretation of nature protection, and specifically of Natural Parks, underpinning the design of environmental protection strategies.

\(^2\) *Parco Nazionale del Gargano, Parco del Vesuvio, Parco delle Foreste Casentinesi and Parco del Gran Sasso e dei Monti della Laga* compose the peer group for the *Parco Nazionale delle Dolomiti*, used to define the virtual efficient DMU, thus providing information on potential improvements, \(P\).
Accordingly, it becomes increasingly important to monitor multi-objectives efficiency, a task which can be successfully accomplished by adopting benchmarking techniques (as for example DEA). These techniques provide information about efficiency, interpreted as a multi dimensional object, but also enable a detailed analysis of potential improvements.

The present study represents the first attempt to apply this methodology to this complex and experimental area. In particular, the methodology has been applied to the case of Italian National Parks; the resulting rankings and information to improve the management status have been provided as a feedback to their questionnaires to Parks’ managers and to the Italian authority. The next step on the research agenda is the enlargement of the data set to include a broader variety of parks (for example national parks of other countries in Europe) in order to produce a more reliable and useful efficiency classification.
References

Michael J.B. Grenn e James Paine 1997. State of the world’s protected areas at the end of the twentieth century. IUCN.

Tables and Figures

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>VR-R</th>
<th>NVR-NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Number of annual visitors</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>b Number of historical buildings</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>c Number of protected species</td>
<td>89%</td>
<td>11%</td>
</tr>
<tr>
<td>d Number of students which visit the park for environmental education trips</td>
<td>88%</td>
<td>12%</td>
</tr>
<tr>
<td>e Number of equipped areas</td>
<td>56%</td>
<td>44%</td>
</tr>
<tr>
<td>f Area extension</td>
<td>56%</td>
<td>44%</td>
</tr>
<tr>
<td>g Number of parks employees</td>
<td>56%</td>
<td>44%</td>
</tr>
<tr>
<td>h Number of environmental illegal acts</td>
<td>55%</td>
<td>45%</td>
</tr>
<tr>
<td>i Restored environmental area extension</td>
<td>45%</td>
<td>55%</td>
</tr>
<tr>
<td>l Presence of a certification system with park labels</td>
<td>44%</td>
<td>56%</td>
</tr>
<tr>
<td>m Gadget sale</td>
<td>22%</td>
<td>78%</td>
</tr>
<tr>
<td>n Number of economic business directly linked, empowered or created thanks to the presence of the park</td>
<td>22%</td>
<td>78%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT</th>
<th>VR-R</th>
<th>NVR-NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Management costs</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>b Variable costs</td>
<td>89%</td>
<td>11%</td>
</tr>
<tr>
<td>c Area extension</td>
<td>56%</td>
<td>44%</td>
</tr>
</tbody>
</table>

Table 1 - Results to questionnaire. The column VR-R presents the sum of the answers VR and R. The column NVR-NR presents the sum of the answers NVR and NR. (author)
<table>
<thead>
<tr>
<th>Model 1</th>
<th>Visitors</th>
<th>Parks employees</th>
<th>Economic business created thanks to the park</th>
<th>Ind. of biodiversity</th>
<th>Management costs</th>
<th>Variable costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>Visitors</td>
<td>protected species</td>
<td>environmental education trips</td>
<td>Total costs</td>
<td>Area extension</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td>Visitors</td>
<td>Parks employees</td>
<td>Economic business created thanks to the park</td>
<td>Ind. of biodiversity</td>
<td>Management costs</td>
<td>Variable costs</td>
</tr>
</tbody>
</table>

Table 2 - Definition of input-output for the three models. Grey indicates input assumed as uncontrollable. (author)
<table>
<thead>
<tr>
<th>DMU</th>
<th>Model 1 Efficiency</th>
<th>Model 2 Efficiency</th>
<th>Model 3 Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abruzzo, Lazio e Molise</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Arcipelago la Maddalena</td>
<td>6,54</td>
<td>45,2</td>
<td>22,94</td>
</tr>
<tr>
<td>Arcipelago Toscano</td>
<td>54,82</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Asinara</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Aspromonte</td>
<td>7,3</td>
<td>51,77</td>
<td>21,81</td>
</tr>
<tr>
<td>Cilento Vallo di Diano</td>
<td>16,56</td>
<td>30,14</td>
<td>35,33</td>
</tr>
<tr>
<td>Circeo</td>
<td>93,27</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dolomiti Bellunesi</td>
<td>23,56</td>
<td>62,28</td>
<td>33,07</td>
</tr>
<tr>
<td>Foreste Casentinesi</td>
<td>100</td>
<td>68,07</td>
<td>100</td>
</tr>
<tr>
<td>Gargano</td>
<td>68,23</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Gran Paradiso</td>
<td>58,62</td>
<td>48,16</td>
<td>65,62</td>
</tr>
<tr>
<td>Gran Sasso e Monti della Laga</td>
<td>34,02</td>
<td>42,94</td>
<td>100</td>
</tr>
<tr>
<td>Majella</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Monti Sibillini</td>
<td>100</td>
<td>92,45</td>
<td>100</td>
</tr>
<tr>
<td>Val Grande</td>
<td>9,43</td>
<td>100</td>
<td>53,32</td>
</tr>
<tr>
<td>Vesuvio</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3 - Efficiency results for the three models. (author)
Figure 1 - Suggested potential improvements to obtain full efficiency. (author)
Figure 2 - Total potential improvements. (author)
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo Di CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (Ixxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (Ixxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (Ixxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (Ixxv): Equilibrium in the Two Player, K-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSSEN (Ixxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

CCMP 16.2004 Marta STRYSZOWSKA (Ixxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

NRM 17.2004 Angelo ANTOCI, Simone BORGHESI and Paolo RUSSO (Ixxv): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

NRM 18.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 20.2004 Jacqueline M. HAMILTON (Ixxvii): Climate and the Destination Choice of German Tourists

NRM 22.2004 Pius ODUNGA and Henk FOLMER (Ixxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 23.2004 Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (Ixxvii): Tourism, Trade and Domestic Welfare

NRM 25.2004 Juan Luis EUGENIO-MARTIN, Noelia MARTIN MORALES and Riccardo SCARPA (Ixxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Nicoletta FERRO: Cross-Country Ethical Dilemmas in Business: A Descriptive Framework

CSRM 28.2004 Francesco CORSO: Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

CSRM 29.2004 Trond BJORNDAAL, Phoebe KOUNDOURI and Sean PASCOE (Ixxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CTN 32.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

KTHC 34.2004 Linda CHAIB (Ixxviii): Immigration and Local Urban Participatory Democracy: A Boston-Paris Comparison

KTHC 35.2004
Franca ECKERT COEN and Claudio ROSSI (lxvii): Foreigners, Immigrants, Host Cities: The Policies of Multi-Ethnicity in Rome. Reading Governance in a Local Context

Kiflemariam HAMDE (lxviii): Mind in Africa, Body in Europe: The Struggle for Maintaining and Transforming Cultural Identity - A Note from the Experience of Eritrean Immigrants in Stockholm

Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

Michael FINUS (lxix): International Cooperation to Resolve International Pollution Problems

Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies

Marc ESCRIHUELA-VILLAR: Cartel Sustainability and Cartel Stability

Sebastian BEROYETS and Nicolas GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatric Approach

Signe ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits

Ekin BIROL, Ágnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transitional Economy

Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects

Scott BARRETT and Michael HOEL: Optimal Disease Eradication

Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Ingo BRÄUER and Rainer MARGGRAF

Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance

Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households

Koen SMEEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

Valentina BOSETTI, Mariaeter CASSINELLI and Alessandro LANZA (lxvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management

Timo GOESCHL and Danilo CAMARGO IGLIORI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon

Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol

Elissaios PAPYRAKIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.

Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis

E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands

Giannis YARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings

Anastasios XEPAPADEAS and Constadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Michael FINUS: Modesty Pays: Sometimes!

Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Alejandro CAPARRÓS, Abdellahim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margherita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

Salvador BARBERA and Matthew O. JACKSON (lxx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union

Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lxx): Optimal Information Transmission in Organizations: Search and Congestion

Francis BLOCH and Armando GOMES (lxx): Contracting with Externalities and Outside Options

Rabah AMIR, Efronsi DIAMANTIOUDI and Licun XUE (lxx): Merger Performance under Uncertain Efficiency Gains

Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players

Daniel DIERMEIER, Hïlya ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation

Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization and Coalition Government Formation

Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): Economics: An Emerging Small World?

Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. FØRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elissaios PAPYRakis and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

Marzio GALEOTTI and Claudia KEMPFERT: Interactions between Climate and Trade Policies: A Survey

A. MARKANDYA, S. PEDROSOS and D. STREMIKIE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

Sergei IZMALKOV (lxx): Multi-Unit Open Ascending Price Efficient Auction

Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures

Massimino DEL GAITTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus Devolution

Pierre-André JOUVEY, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits

Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BERGANTINOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIJKAMP: A Meta-Analysis of the Willingness to Pay for Reductions in Pesticide Risk Exposure

Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

Alessandra GORIA e Gretel GAMBERELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

Massimo FLORIO and Mara GRASSEN: The Missing Shock: The Macroeconomic Impact of British Privatisation

John BENNETT, Saul ESTRIN, James MAW and Giovanni URGA: Privatisation Methods and Economic Growth in Transition Economies

Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo MAINARDI: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective

Somdeb LAHIRI: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results

Giuseppe DI VITA: Natural Resources Dynamics: Another Look

Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence

Paulo A.L.D. NUNES and Laura ONOFRI: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications

Patrick CAYRADE: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?

Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies
Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling

Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons

Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRIGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change

Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?

Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change

Lorenzo PELLEGRI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption

Angelo ANTOCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model

Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

Carla MASSIDDA: Estimating the New Keynesian Phillips Curve for Italian Manufacturing Sectors

Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

Clara GRAZIANO and AnnaLisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry

Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms

Michele NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer

Mombert HOPPE: Technology Transfer Through Trade

Roberto ROSON: Platform Competition with Endogenous Multihoming

Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs, A Game Theoretic Perspective on Bottom-up Climate Regimes

Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer

Mombert HOPPE: Technology Transfer Through Trade

Roberto ROSON: Platform Competition with Endogenous Multihoming

Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs, A Game Theoretic Perspective on Bottom-up Climate Regimes

Fausto CAVALLARO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method
<table>
<thead>
<tr>
<th>CTN</th>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.2005</td>
<td>41x777</td>
<td>Matthew O. JACKSON and Alison WATTS (lxxii)</td>
<td>Social Games: Matching and the Play of Finitely Repeated Games</td>
</tr>
<tr>
<td>39.2005</td>
<td>41x766</td>
<td>Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii)</td>
<td>The Egalitarian Sharing Rule in Provision of Public Projects</td>
</tr>
<tr>
<td>40.2005</td>
<td>41x756</td>
<td>Francesco FERI</td>
<td>Stochastic Stability in Network with Decay</td>
</tr>
<tr>
<td>41.2005</td>
<td>41x745</td>
<td>Aart de ZEEUW (lxxii)</td>
<td>Dynamic Effects on the Stability of International Environmental Agreements</td>
</tr>
<tr>
<td>42.2005</td>
<td>41x724</td>
<td>C. Martijn van der HEIDE, Jeroen C.J.M. van den BERGH, Ekko C. van IERLAND and Paulo A.L.D. NUNES</td>
<td>Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands</td>
</tr>
<tr>
<td>43.2005</td>
<td>41x714</td>
<td>Matthew O. JACKSON and Alison WATTS</td>
<td>Social Games: Matching and the Play of Finitely Repeated Games</td>
</tr>
<tr>
<td>44.2005</td>
<td>41x703</td>
<td>Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii)</td>
<td>The Egalitarian Sharing Rule in Provision of Public Projects</td>
</tr>
<tr>
<td>45.2005</td>
<td>41x692</td>
<td>C. Martijn van der HEIDE, Jeroen C.J.M. van den BERGH, Ekko C. van IERLAND and Paulo A.L.D. NUNES</td>
<td>Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands</td>
</tr>
<tr>
<td>46.2005</td>
<td>41x581</td>
<td>Carlo VIEIRA and Ana Paula SERRA</td>
<td>Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms</td>
</tr>
<tr>
<td>47.2005</td>
<td>41x570</td>
<td>Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO</td>
<td>Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice</td>
</tr>
<tr>
<td>48.2005</td>
<td>41x559</td>
<td>Olivier TERCIEUX and Vincent VANNETELBOSCH (lxxi)</td>
<td>A Characterization of Stochastically Stable Networks</td>
</tr>
<tr>
<td>49.2005</td>
<td>41x548</td>
<td>Ana MAULEON, José SEMPERE-MONERRIS and Vincent J. VANNETELBOSCH (lxxii)</td>
<td>R&D Networks</td>
</tr>
<tr>
<td>50.2005</td>
<td>41x537</td>
<td>Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO</td>
<td>Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice</td>
</tr>
<tr>
<td>51.2005</td>
<td>41x526</td>
<td>Carlo CARRARO, Johan EYCKMANS and Michael FINUS</td>
<td>Optimal Transfers and Participation Decisions in International Environmental Agreements</td>
</tr>
<tr>
<td>52.2005</td>
<td>41x515</td>
<td>Anna MAULEON, José SEMPERE-MONERRIS and Vincent J. VANNETELBOSCH (lxxii)</td>
<td>R&D Networks</td>
</tr>
<tr>
<td>53.2005</td>
<td>41x504</td>
<td>Carlo CARRARO, Johan EYCKMANS and Michael FINUS</td>
<td>Optimal Transfers and Participation Decisions in International Environmental Agreements</td>
</tr>
<tr>
<td>54.2005</td>
<td>41x493</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>55.2005</td>
<td>41x482</td>
<td>Carlo CARRARO, Johan EYCKMANS and Michael FINUS</td>
<td>Optimal Transfers and Participation Decisions in International Environmental Agreements</td>
</tr>
<tr>
<td>56.2005</td>
<td>41x471</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>57.2005</td>
<td>41x460</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>58.2005</td>
<td>41x449</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>59.2005</td>
<td>41x438</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>60.2005</td>
<td>41x427</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>61.2005</td>
<td>41x416</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>62.2005</td>
<td>41x405</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>63.2005</td>
<td>41x394</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
</tbody>
</table>
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>