Bosetti, Valentina; Galeotti, Marzio; Lanza, Alessandro

Working Paper

How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

Nota di Lavoro, No. 157.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Bosetti, Valentina; Galeotti, Marzio; Lanza, Alessandro (2004) : How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?, Nota di Lavoro, No. 157.2004, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74237

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?
Valentina Bosetti, Marzio Galeotti
and Alessandro Lanza

NOTA DI LAVORO 157.2004

DECEMBER 2004

CCMP – Climate Change Modelling and Policy

Valentina Bosetti, Fondazione Eni Enrico Mattei
Marzio Galeotti, Università di Milano and Fondazione Eni Enrico Mattei
Alessandro Lanza, Fondazione Eni Enrico Mattei, Eni S.p.A., and CreNos

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=643702

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

Summary
Choosing long-term goals is a key issue in the climate policy agenda. Targets should be easily measurable and feasible, but also effective in damage control. Once goals are set globally, given the uncertainty affecting long-term strategies and region-specific preferences for different policy instruments, policies will be better represented by a diversified portfolio to be revised over time, rather than “once and forever” decisions. It therefore becomes crucial to understand to what extent different strategies (or policy portfolios) are consistent with long-term targets, that is, when they imply emission paths which do not irreversibly diverge from globally set goals. The present paper aims to investigate emission paths implied by plausible policy scenarios against those derived by imposing alternative long-term targets, comparing, for example, differences in peak periods. Plausible policy scenarios are for instance Kyoto-type targets with or without participation by the U.S. and/or by developing countries. Different long-term targets considered focus on stabilisation of CO₂ concentrations, radiative forcing and the increase in atmospheric temperature relative to pre-industrial levels. In order to account for the uncertainty surrounding the climate cycle, for each long-term goal multiple paths of emission - the most probable, the optimistic and the pessimistic ones - are considered in the comparison exercise. Comparative analysis is performed using a newly developed version of the FEEM-RICE model, a regional economy-climate model of optimal economic growth which is based on Nordhaus and Boyer’s RICE model crucially extended in order to account for induced technical change. In particular, both carbon and energy intensity are affected by a new endogenous variable – Technical Progress – which captures both the role of Learning by Researching and of Learning by Doing. These are in turn determined by the optimal levels of Research and Development and of Emission Abatement.

Keywords: Climate policy, Long-term climate targets, Climate sensitivity uncertainty, Capping radiative forcing

JEL Classification: H0, H2, H3

This paper is part of the research work being carried out by the Climate Change Modelling and Policy Research Programme at Fondazione Eni Enrico Mattei. We acknowledge the financial support of the European Commission, DG Research, Environment and Sustainable Development Programme, within the project NEMESIS-ETC - New Econometric Model for Environment and Strategies Implementation for Sustainable development / Endogenous Technical Change.

Address for correspondence:
Valentina Bosetti
Fondazione Eni Enrico Mattei
Corso Magenta 63
20123 Milano, Italy
Phone: +3902520369
Fax: +390252036946
E-mail: valentina.bosetti@feem.it
1. Introduction

Goals are for the long run, policies for the short run. Goals relate to what we should do, policies more often than not relate to what we can do. In their implementation process policies often are subject to various constraints imposed by policy making, goals are more easily set. In the case of climate change this general statement is especially relevant and acute. Evidence has been accumulating on the need to take action against the effects of climate change. The policies envisaged by the Kyoto Protocol during the first commitment period 2008-2012 are a major example. At the same time, because of the long time horizon over which climate change displays its effects, goals are set in the distant future. Indeed, no reference to goals in terms of, say, temperature, radiative forcing, concentrations, is made in the Kyoto protocol itself.

Alternative goals can be stated and proposed just like alternative policy portfolios may be conceived and suggested. Most, if not all, of these have been subject to study. However, a clearly relevant issue is how congruent policy packages and goals are with each other. And this is an issue much less studied. One of the few exceptions is represented by the present paper. In it we try to get some insights on how short term policies, which are strongly connected with the actual socio-political scenario and economic constraints binding abatement expenditures, are related with long-term goals, which are generally proposed by the scientific community being more concerned with the importance of immediate unconditional GHGs abatement.

The analysis conducted here is based on the FEEM-RICE model, a multi-region optimal growth model incorporating a climate module: with it we investigate the magnitude of anthropogenic emissions over time when different climate policies, such as those of the
Kyoto Protocol, are adopted. Those emission paths are then compared with emissions deriving from scenarios where global targets, such as a constraint on global temperature, radiative forcing or on atmospheric carbon concentrations, have been imposed. The main reason for this exercise is that uncertainty surrounding the climate change cycle makes it very hard for the scientific community to agree upon an “acceptable” level of greenhouse gas concentrations: see, for example, Schneider (2001). This implies that the main policy objective should be to keep human activities on a reversible path of emissions which leaves open future options to stabilize concentration to some “secure” level. “It is obvious that no ‘once forever’ solution exists (...) the most promising approach to climate policy is sequential decision making (...) Short term strategies are then crafted so that both GHG emissions and the underlying socio-economic processes (resource use, technologies) evolve in a direction which makes future course corrections in any direction the least expensive.” (Toth and Mwandosya, 2001)

Because uncertainty is central to the problem of reconciling policies and goals, in the paper we also explicitly tackle the issue of how uncertainty affects the most critical model parameters through sensitivity analysis. In particular, long-term goal scenarios are simulated for different values of a few key FEEM-RICE parameters which define the climate sensitivity to a doubling of carbon atmospheric concentration and the carbon rate of retention in the atmosphere.

In general the simulation results appear to suggest that some policy action should take place not too late for the short term policy scenarios we have identified to be compatible with our chosen long term targets. In particular, it is to be noted that the Kyoto regime soon to start appears to be on a compatible emission path, at least up to the second commitment period. Zooming in on the first half of the simulation period, we find that the most stringent targets
for concentrations and temperature reduction are clearly out of reach of any policy that could be decided for the first commitment period. In addition, the Kyoto scenario during the first commitment period turns out to actually be below the 550 ppmV stabilization target. This is however not so if we adopt a 2.5°C temperature reduction as our final target. Looking at the uncertainty affecting the climate parameters of the model, it clearly emerges that if they take on a pessimistic value, then we are gravely underestimating our mitigation efforts. This is not so however in the most probable situation and even more so in the optimistic case. In particular the Kyoto scenario, with which we are especially concerned, is compatible, or actually below, both the most probable and optimistic 550 ppmV concentrations targets. Instead, when we look at temperature the Kyoto policy is in 2035 below the optimistic case but above the most probable situation.

The rest of the paper is organized as follows. Section 2 summarizes and compares advantages and disadvantages of alternative targets. Section 3 sketches the FEEM-RICE model and describes the treatment of induced technical change, a fundamental ingredient of climate-economy models for long term analysis. Section 4 presents the results.

2. Comparison of Alternative Targets

The climate change cycle represented in Figure 1 consists of earlier stages, namely human and natural activities producing greenhouse gasses emissions, and final stages, namely the damage feedback effect, both on human activity and on the ecosystems. It is possible to consider constraints and targets on each of these different phases of the cycle. Different targets present advantages and shortcomings as thoroughly discussed by, for instance, Pershing and Tudela (2003).
In general, focusing on earlier stages (such as production or emissions) means having more precise information on what the required effort should be, but it may not produce effectively the desired effects, mainly because of the loose relationship between actions and climate impacts. The reverse is true for targets imposed on later stages.

The IPCC conventionally has concentrated its attention on the earlier phases of the cycle, namely by imposing constraints on atmospheric emissions of tons of greenhouse gasses or on emission intensity (emissions per unit of output), (see IPCC, 2001). Targets on emissions are relatively easy to identify, to implement and to measure. However, given a certain level of emissions through time, resulting concentrations of gasses in different layers of the atmosphere are extremely uncertain and, consequently, it is hard to forecast how severe the final impacts on the climate system and on human activities are going to be. Indeed, each subsequent phase of the chain is highly characterized by uncertainty, thereby making accurate forecasts difficult and scarcely reliable. Nevertheless, targets on actual and future emissions allows to better understand who should undertake abatement efforts and when, thus providing clearer grounds for the international equity debate and climate negotiations among the parties.

Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) states that the goal is the “stabilization of greenhouse gases (GHGs) concentrations in the atmosphere”, thus moving the policy focus one step forward in the climate cycle. While Sarofim, Forest, Reiner and Reilly (2004) discuss whether separate concentration targets should be established for each GHG, Wigley, Richels and Edmonds (1996) discuss the issue of stabilizing carbon concentration in the atmosphere and what are the implications in terms of timing the necessary effort. Setting the control on concentrations implies a less immediate link between the desired goal and the necessary action, a fact that is also true in the cases of targets on radiative forcing or on the rate and magnitude of the change.
of atmospheric temperature. Many recent scientific studies have emphasized the need to go beyond GHGs atmospheric concentration targets and move forward in the climate cycle. Richels, Manne and Wigley (2004) discuss the issue of imposing a cap on temperature increase and the potential beneficial effect on treating relevant uncertainty, while Sarofim, Forest, Reiner and Reilly (2004) discuss the issue of stabilizing radiative forcing. The motivation for this is both scientific - a greater control on the climate phenomena effects might be attained - and policy oriented - these targets incorporate a greater deal of information and consideration which are critical for policy makers. Given the global nature of any climate policy and, therefore, of these targets, it becomes necessary to think of ways of accordingly distributing the effort (for example in terms of emission rights) among different countries, following some equity or efficiency criterion (e.g., on the basis of GDP per capita). For a detailed discussion on various participation incentives the reader is referred to Bosello, Buchner and Carraro (2003) and Buchner and Carraro (2003a; 2003b). Both in the case of atmospheric concentrations and of temperature complications in the measurement phase are absent. However, complications arise when actually trying to measure efforts relative to the defined targets.

Finally, as for targets at the final stages of the climate cycle, the major benefit would be that of having direct control on the amount of damage, which is exactly what a policy eventually would aim to control. The target could take the form of a limit on sea level rise, loss of ecosystems or of economic activities or some other identifiable indicators. Hence, a direct cost-benefit analysis of climate policy would be available. Two problems limit the applicability of this last approach. First, the current limited ability of quantifying damages. Second, the distance between the object under control (final impact) and the control itself grows even larger, thus making this approach, quite unlikely in terms of implementability.
For the just mentioned reasons, in this paper we concentrate our attention on investigating and comparing the first four categories of targets, namely different targets on emissions (which we will refer to also as short-term policy scenarios in order to emphasize their scarce connection with long-term objectives), on one side, and constraints on GHGs atmospheric concentrations, radiative forcing and increase in temperature (which we refer as long-term stabilization scenarios), on the other side.

3. The FEEM-RICE Model

The analysis of the issues discussed in the previous section is conducted by means of a numerical climate-economy model called FEEM-RICE. The FEEM-RICE model, which we briefly describe here, is an extended version of Nordhaus and Boyer (2000)’s RICE model. This is a Ramsey-Koopmans single sector optimal growth model suitably extended to incorporate the interactions between economic activities and climate. There is one such model for each of the eight macro regions into which the world is divided: USA, Other High Income countries (OHI), OECD Europe (Europe), Russia and Eastern European countries (REE), Middle Income countries (MI), Lower Middle Income countries (LMI), China (CHN), and Low Income countries (LI).¹

Within each region a central planner chooses the optimal paths of two controls, fixed investment and carbon energy input, so as to maximize welfare, defined as the present value of per capita consumption. The value added, absorbed from production (net of climate change) according to a constant returns technology, is used for investment and consumption, after subtraction of energy spending. The technology is Cobb-Douglas and combines the

¹ The countries belonging to each one of the macro-regions above indicated are listed in Nordhaus and Boyer (2000). The aggregation in macro-regions does not account for the enlargement process which took place on 1st of May 2004.
inputs from capital, labor and carbon energy together with the level of technology. Population (taken to be equal to full employment) and technology levels grow over time in an exogenous fashion, whereas capital accumulation is governed by the optimal rate of investment.

The carbon-energy input is modeled as being the source of GHGs emissions in the production process, and cumulated emissions (i.e. concentrations) cause an increase in the worldwide temperature. To close the circle, global temperature (relative to pre-industrial levels) is responsible for the wedge between gross output and output net of climate change effects.

In FEEM-RICE each country plays a non-cooperative Nash game in a dynamic setting leading to an Open Loop Nash equilibrium. This is a situation where in each region the planner maximizes its utility subject to the individual resource and capital constraints and the climate module for a given emission production of all the other players.

The major innovation of the FEEM-RICE model is the endogenization of the process of technical change (TC hereafter). In many top-down climate-economy models technical progress has been often depicted as an exogenous process. This feature is also shared by the original RICE model in which the following production function (n indexes regions, t time periods) is specified:

\[
Q(n,t) = A(n,t)[K_F(n,t)^{1-\gamma-\alpha_c} CE(n,t)^{\alpha_c} L(n,t)^\gamma] - p^n_E CE(n,t)
\]

where \(Q\) is output (gross of climate change effects), \(A\) the \textit{exogenously given} level of technology, \(K_F\), \(CE\) and \(L\) are the inputs from physical capital, carbon energy and labor, respectively, and \(p^n_E\) is the fossil fuel price. In addition, carbon emissions are proportional to carbon energy, that is:
(2) \[E(n,t) = \varsigma(n,t)CE(n,t) \]

where \(E \) is industrial \(\text{CO}_2 \) emissions, while \(\varsigma \) is an idiosyncratic carbon intensity ratio which also \textit{exogenously} declines over time.\(^2\) In this way, Nordhaus and Boyer (2000) make the assumption of a gradual, costless improvement of the green technology gained by the agents as time passes.

We consider this treatment of TC as non satisfactory for a model designed to study issues related to climate change. In particular, the induced nature of the bulk of technical innovation should be recognized and consequently modeled.\(^3\)

In FEEM-RICE we focus on two distinct sources of potential TC: the energy intensity of production and the carbon intensity of energy use. These two aspects allow us to address energy-saving as well as energy-switching issues. The main novelty of our new formulation hinges on a new variable, which we call (with poor inventive activity) Technical Progress, which accounts both Learning-by-Researching and Learning-by-Doing \textit{at the same time}. We assume that innovation is brought about by R&D spending which contributes to the accumulation of the stock of existing knowledge. In addition to this Learning-by-Researching effect, the model accounts also for the effect of Learning-by-Doing, now modeled in terms of cumulated abatement efforts. Thus, Technical Progress \(TP \) is defined as follows:

\(^2\) Throughout the paper we will indifferently refer to ‘environmental’ technology or ‘green’ technology when mentioning the time-varying coefficient \(\varsigma \).

\(^3\) The RICE model has been used by Nordhaus (2002) himself and by Popp (2003) to lay out a model of induced innovation brought about by R&D efforts. Both use the non-regional version of the model, called DICE.
The variable TP is conceived to affect both energy intensity (i.e., the quantity of carbon energy required to produce one unit of output) and carbon intensity (i.e., the level of carbonization of primarily used fuels). More specifically TP is formulated as a convex combination of the stocks of knowledge and abatement:

\[TP(n,t) = ABAT_S(n,t) + K_R(n,t) \]

where $K_R(n,t)$ is the stock of knowledge and $ABAT_S$ represents the stock of cumulated abatement, in turn defined as:

\[ABAT_S(n,t+1) = ABAT_F(n,t) + (1 - \delta_A)ABAT_S(n,t) \]

δ_A being the depreciation rate of cumulated experience and $ABAT_F$ the abatement flow. The stock of knowledge $K_R(n,t)$ instead accumulates in the usual fashion:

\[K_R(n,t+1) = R & D(n,t) + (1 - \delta_R)K_R(n,t) \]

δ_R being the depreciation rate of knowledge.

How does the Technical progress affect the rest of the economy? As seen in equation (1), the factors of production are labour, physical capital and effective energy. Let us first consider the effect of technical progress on factor productivity (the energy intensity effect). In
In this case the production function is modified so that (1) is replaced by the following specification:

\[
(1') \quad Q(n,t) = A(n,t)[K_F(n,t)^{1-\alpha_n(TP)-\gamma} CE(n,t)^{\alpha_n(TP)} L(n,t)^{\gamma}] - p_C(n,t)CE(n,t)
\]

where:

\[
\alpha_n = \alpha_n[TP(n,t)] = \frac{\beta_{1n}}{2 - \exp(-\beta_{0n}TP(n,t))}
\]

and \(\beta_{0n}\) and \(\beta_{1n}\) are region specific parameters. Thus, an increase in the endogenously determined Technical Progress variable reduces – ceteris paribus – the output elasticity of the energy input. It is worth noting that the output technology in (1’) also accounts for TC evolving exogenously.

Let us now turn to the effect of technical progress on the carbon intensity of energy consumption. As shown in (2) effective energy results from for both fossil fuels input use and (exogenous) TC in the energy sector. We postulate in this case that \(TP\) serves the purpose of reducing, ceteris paribus, the level of carbon emissions. More precisely:

\[
(2') \quad E(n,t) = h[CE(n,t),TP(n,t)] = \zeta(n,t) \left[\frac{1}{2 - \exp(-\psi_n TP(n,t))} \right] CE(n,t),
\]

Here an increase in \(TP\) reduces progressively the amount of emissions generated by a unit of fossil fuel consumed.

We finally recognize that R&D spending absorbs some resources, that is:
where Y is output net of climate change effects, C is consumption, I gross fixed capital formation, R & D research and development expenditures, p is the equilibrium price on the emissions rights, and NIP is the net quantity of permits demanded on the relative markets (when positive; otherwise, it just indicates the supplied quantity on the same market). In summary, our formulation introduces R&D as a further strategic variable of the model that contributes to output productivity. Knowledge is a substitute for experience, but both quantities are typically positive and therefore affect carbon and energy intensities.4

4. Simulations and Results

The FEEM-RICE has been used to simulate both policy and long-term stabilization scenarios, at the same time accounting for uncertainty on a few key parameters. In particular, four policy scenarios have been simulated, which are defined by alternative assumptions on the involvement of different areas of the world and different time frames. These are reported in Table 1.

Specifically, Scenario 1 is the business-as-usual projection, which is used as a benchmark for the evaluation of any other scenario. Scenario 2 represents the usual

4 For an extensive description of the FEEM-RICE model the reader is referred to Bosetti, Carraro and Galeotti (2004). The issue of induced technical change is discussed at length in the same paper and in Carraro and Galeotti (2003). The appendix reports all model equations.
assumptions regarding the nearest future, while in Scenario 3 and 4 some kind of engagement for subsequent commitment periods is considered. After the U.S. announced its defection from the Kyoto Protocol in March 2001, the remaining Kyoto countries, EU and Japan, and - from October 2004 - Russia, participate in the Kyoto protocol. This is depicted in the “Kyoto Forever without U.S.” (Scenario 2), where Annex B countries, except the U.S., have to comply with the Kyoto target in the first and in subsequent commitment periods. They are also allowed to trade emission permits in an international market, while the U.S. undertakes abatement efforts according to an energy intensity target. Specifically, this target specifies that the country must reduce its intensity ratio by 18% by 2010 relative to the 2000 level. The rest of the world has no constraints on emissions. As far as non-U.S. Annex B countries are concerned, “2020 Global Target” (Scenario 3) is close to Scenario 2. The U.S. observe the same reduction in terms of intensity target in 2010 and minus 10% with respect to Scenario 1 in the second and subsequent commitment periods. Developing countries adopt the same unconstrained Scenario 1 behavior in 2010 and 2020, while 10% reduction vis-à-vis the business-as-usual scenario is imposed from 2020 onwards. Finally, Scenario 4 differs from Scenario 1 only for the third commitment period, in which 2000 emission levels have to be achieved by all countries.

The long-term stabilization target scenarios we consider are summarized in Table 2.

[INSERT TABLE 2 ABOUT HERE]

The first set of constraints is on the level of aggregate atmospheric concentrations of CO₂, which range from 500 to 650 ppmV. The second set relates to the increase in atmospheric temperature above pre-industrial levels: here the range of maximum increases allowed goes
from 2.3 to 3 degrees C. The reason why we consider multiple concentration and temperature targets derives from the open debate concerning what should be a “realistic” stabilization scenario. Nonetheless, for in depth analysis we have concentrated on stabilization levels of 550 ppmV for CO$_2$ concentrations and 2.5 degree C for temperature, which are considered as “appropriate target” by the IPCC (2001). In addition to these two scenarios, we have also simulated a radiative forcing stabilization scenario with a target of 4.5 watts per square meter.

The climate module included in the FEEM-RICE model is a very simplified three box cycle. Nevertheless, it roughly reproduces dynamic phenomena which are much more exhaustively detailed and precisely represented in physical-biogeochemical models (see for example the papers by Joos, Muller-Furstenberger, and Stephan, 1999, and Joos, Prentice, Sitch, Meyer, Hooss, Plattner, Gerber, and Hasselmann, 2001). What is generally recognised within this strand of climate literature is that the climate sensitivity parameter is extremely uncertain, it is known perhaps only to a factor of three or less; at the same time it plays a key role in determining final temperature changes (a detailed discussion on the role of the climate sensitivity parameter can be found in Caldeira, Jain, and Hoffert, 2003). Climate sensitivity is defined as the global mean climatological temperature change resulting from a doubling of atmospheric CO$_2$ content. In several papers the effect of changes in the value of the climate sensitivity parameter is investigated, as for example in Nordhaus and Popp (1997) or Gerlagh and van der Zwaan (2004). In the former paper the authors, investigating the effect of parameters uncertainty on model results, underline the importance of taking into account also other sources of uncertainty, such as uncertainty concerning the GHG atmospheric retention rate. The simplified climate model we use and which is linked to the economic module represents only the basic dynamics. In particular the climate system is represented as a multi-strata system, composed by an atmosphere stratum, an upper ocean and a lower-ocean
A parameter matrix represents the transition from one stratum to the other and the retention rate to each stratum. The GHG atmospheric retention rate represents the rate at which emissions are retained in the atmosphere stratum. Following these considerations, each of the long-term stabilization scenarios considered here have been simulated for a set of different values of these two parameters: the GHG–temperature sensitivity coefficient and the GHG-atmospheric retention rate. In particular, the scenarios considering a cap on temperature increases have been simulated letting the sensitivity parameter take on values 1.5, 2.5 and 4.5 degree C per CO₂ doubling, as these are commonly considered the most optimistic, probable and pessimistic potential realizations of the parameter. As far as the retention parameter is concerned, scenarios considering a cap on atmospheric concentrations have been simulated for a central value of 60.897, an upper value of 63 and lower value of 61.5.

We begin our presentation of the results with Figure 2 which displays global emissions when no constraints on emissions are imposed (Scenario 1) vis-à-vis the case of maximum emission levels compatible with a global cap on concentration of 550 ppmV. The figure also provides the reader with the regional detail as well the temporal evolution of emissions. The 550 ppmV target is the “standard” most usually considered in the literature. In this respect note that under this stabilization scenario abatement effort has been allocated among the different regions purely on the basis of economic efficiency, with no account for equity considerations. Comparing BaU and stabilization scenarios we see that appreciable differences in emissions start to be perceived only after 2075. Indeed, as reported in Table 3, that year is the turning point for emissions under the cap, while in the BaU they increase without limit. From the point of view of the regional disaggregation, most of the abatement effort is undertaken by the U.S. (and to a lesser extent by Low-Middle Income countries) after

5 See equations (A9)-(A13) in the Appendix. The reader is referred to the description of the climate module in Nordhaus and Boyer (2000).
the turning point, whereas emissions of the remaining regions do not significantly decrease and those of China even increase.

[INSERT TABLE 3 ABOUT HERE]

The evidence presented in Figure 3 is central to this paper, in that it shows the emission paths corresponding to the various short term scenarios and to the long term goals. The picture appears to suggest that some policy action should take place not too late for the short term policy scenarios we have identified to be compatible with our chosen long term targets. Note that in the latter case we simply impose a cap at some future date without asking how economies would actually meet those targets. It is to be noted that the Kyoto regime soon to start appears to be on a compatible emission path, at least up to the second commitment period. At the last simulation period we find, as expected, that emissions must be lowest under a global temperature limit, relative to a radiative forcing ceiling and even more to a stabilization cap. Indeed, Table 3 shows that the turning point for emissions occurs much earlier in the case of a temperature ceiling, relative to the bound to radiative forcing and even more so relative to a cap to concentrations. Looking at short run policies, in 2105 emissions produced by a Kyoto (plus US intensity target) regime (Scenario 2) would be inferior only to the unconstrained ones. Interestingly emissions under Scenario 4 – a 2020 global cap – would be roughly similar to those produced under a 550 ppmV stabilization scenario.

Figure 4 and 5 zoom in on the first half of the simulation period, up until 2045, and focus on concentration and temperature long term targets, respectively. Can we in this case get a clue as to when policy action should be undertaken? And how coherent are such policies with concentration and temperature goals respectively? What emerges is a different story for
the two targets. Firstly, the most stringent targets – 500 ppmV concentrations and 2.3°C temperature reduction – are clearly out of reach of any policy that could be decided for the first commitment period. The second interesting finding is that the Kyoto scenario (Scenario 2) during the first commitment period is actually below the 550 ppmV stabilization target (and well below the 650 ppmV cap). This is however not so if we adopt a 2.5°C temperature reduction as our final target. Emissions in this case start to progressively deviate after 2015 from all other paths. Scenario 2 remains compatible with a 3.0 degree reduction until 2010, while it deviates thereafter. A final remark is the notable fact that emissions under the Kyoto scenario 2 are coherent with a 650 ppmV stabilization target for the whole second simulation period that is from 2025 until 2105.

The last two pictures, Figure 6 and 7, relate to the uncertainty issue. They plot the emission paths produced by the four policy scenarios, together with those predicted by simulating just one long-term scenario. Also in this case we zoom in on the first, and more relevant, simulation period (up until 2035). This is a global target on atmospheric concentrations of CO₂ (550 ppmV) in Figure 6 and on temperature increase (2.5°C) in Figure 7. In the two figures, however, we respectively consider different values of the previously mentioned key uncertain parameters. In this way we obtain a “most probable”, an “optimistic” and a “pessimistic” concentrations or temperature stabilization scenarios. In both cases it clearly emerges that if the two parameters take on the corresponding pessimistic value, then we are gravely underestimating our mitigation efforts. This is not so however in the most probable situation and even more so in the optimistic case. Here we have some difference across the two parameters/targets. In particular the Kyoto scenario 2, with which we are especially concerned, is compatible, or actually below, both the most probable and optimistic 550 ppmV concentrations targets (see Figure 6). Instead, when we look at temperature and at
the climate sensitivity parameter, the Kyoto policy is in 2035 below the optimistic case but above the most probable situation. This adverse effect takes place only after the last ten years, as Kyoto emissions were lower until 2025.

5. Concluding Remarks

Choosing long-term goals is a key issue in the climate policy agenda. Targets should be easily measurable and feasible, but also effective in damage control. Once goals are set globally, given the uncertainty affecting long-term strategies and region-specific preferences for different policy instruments, policies will be better represented by a diversified portfolio to be revised over time, rather than “once and forever” decisions. It therefore becomes crucial to understand to what extent different policy portfolios are consistent with long-term targets, that is, when they imply emission paths which do not irreversibly diverge from globally set goals.

In this paper we have investigated emission paths implied by plausible policy scenarios, such as Kyoto-type targets with or without participation by the U.S. and/or by developing countries, vis-à-vis different long-term targets on CO\textsubscript{2} concentrations, radiative forcing and the increase in atmospheric temperature relative to pre-industrial levels. Moreover, we have accounted for the uncertainty surrounding the climate cycle, by considering in the comparison exercise the most probable, optimistic and pessimistic value of a couple of key climate model parameters.

The analysis has been performed using a newly developed version of the FEEM-RICE model, a regional economy-climate model of optimal economic growth which is based on Nordhaus and Boyer (2000)’s RICE model, crucially extended in order to account for induced technical change. In particular, both carbon and energy intensity are affected by a new endogenous variable – Technical Progress – which captures both the role of Learning by
Researching and of Learning by Doing. These are in turn determined by the optimal levels of Research and Development and of Emission Abatement.

In general the simulation results appear to suggest that some policy action should take place not too late for the short term policy scenarios we have identified to be compatible with our chosen long term targets. In particular, it is to be noted that the Kyoto regime soon to start appears to be on a compatible emission path, at least up to the second commitment period. At the last simulation period we find, as expected, that emissions must be lowest under a global temperature limit, relative to a radiative forcing ceiling and even more to a stabilization cap. Zooming in on the first half of the simulation period, up until 2045, and focusing on concentration and temperature long term targets, respectively, we find that the most stringent targets – 500 ppmV concentrations and 2.3°C temperature reduction – are clearly out of reach of any policy that could be decided for the first commitment period. In addition, the Kyoto scenario during the first commitment period turns out to actually be below the 550 ppmV stabilization target (and well below the 650 ppmV cap). This is however not so if we adopt a 2.5°C temperature reduction as our final target. A notable fact is that emissions under the Kyoto scenario are coherent with a 650 ppmV stabilization target for the whole second simulation period that is from 2025 until 2105. Looking at the uncertainty affecting the climate parameters of the model, it clearly emerges that if they take on a pessimistic value, then we are gravely underestimating our mitigation efforts. This is not so however in the most probable situation and even more so in the optimistic case. In particular the Kyoto scenario, with which we are especially concerned, is compatible, or actually below, both the most probable and optimistic 550 ppmV concentrations targets. Instead, when we look at temperature the Kyoto policy is in 2035 below the optimistic case but above the most probable situation.
References

Joos, F., Muller-Furstenberger, G. and Stephan G. (1999) Correcting the carbon cycle representation: how important is it for the economics of climate change?. *Environmental Modeling and Assessment* 4, 133-140.

Appendix: Model Equations

In this appendix we reproduce the equations that make up the original RICE model, including those that have been subsequently modified.

In each region, \(n \), there is a social planner who maximizes the following utility function (\(n \) indexes the world’s regions, \(t \) are 10-years time spans):

\[
(W_n) = \sum_t U[C_n(t), L_n(t)] R(t) = \sum_t L_n(t) \left[\log c_n(t) \right] R(t)
\]

where the pure time preference discount factor is given by:

\[
(R(t)) = \prod_{v=0}^{10} \left[1 + \rho(v) \right]
\]

and the pure rate of time preference \(\rho(v) \) is assumed to decline over time.

The maximization problem is subject to:

\[
(Q_n(t)) = \Omega_n(t) \left\{ \Delta_n(t) K_n(t)^{1-\gamma} L_n(t) \gamma CE_n(t) \alpha - p_n^E(t) CE_n(t) \right\}
\]

\[
(C_n(t)) = \frac{C_n(t)}{L_n(t)}
\]

\[
(K_n(t+1)) = (1 - \delta_F) K_n(t) + I_n(t+1)
\]

\[
(Q_n(t)) = C_n(t) + I_n(t)
\]

\[
(E_n(t)) = \zeta_n(t) CE_n(t)
\]

\[
(p_n^E(t)) = q(t) + \text{markup}_n^E
\]

\[
(M_{AT}(t+1)) = \sum_n \left[E_n(t) + LU_j(t) \right] + \phi_{11} M_{AT}(t) + \phi_{21} M_{UP}(t)
\]

\[
(M_{UP}(t+1)) = \phi_{22} M_{UP}(t) + \phi_{12} M_{AT}(t) + \phi_{13} M_{LO}(t)
\]

\[
(M_{LO}(t+1)) = \phi_{33} M_{LO}(t) + \phi_{23} M_{UP}(t)
\]

\[
(F(t)) = \eta \left\{ \log \frac{M_{AT}(t) / M_{AT}^{PI}}{[\text{log}(2)]} \right\} + O(t)
\]

\[
(T(t+1)) = T(t) + \sigma_1 \left\{ F(t+1) - \lambda T(t) - \sigma_2 \left[T(t) - T_{LO}(t) \right]\right\}
\]

\[
(\Omega_n(t)) = \frac{1}{1 + \left(\theta_{1,n} T(t) + \theta_{2,n} T(t)^2 \right)}
\]

List of variables:

- \(W \) = welfare
- \(U \) = instantaneous utility
- \(C \) = consumption
- \(c \) = per-capita consumption
- \(L \) = population
- \(R \) = discount factor
- \(Q \) = production
- \(\Omega \) = damage
- \(A \) = productivity or technology index
- \(K_F \) = capital stock
- \(CE \) = carbon energy
- \(p_E^F \) = cost of carbon energy
- \(I \) = fixed investment
- \(E \) = carbon emissions
\(M_{AT} = \) atmospheric CO\(_2\) concentrations
\(LU = \) land-use carbon emissions
\(M_{UP} = \) upper oceans/biosphere CO\(_2\) concentrations
\(M_{LO} = \) lower oceans CO\(_2\) concentrations
\(F = \) radiative forcing
\(T = \) temperature level
\(q = \) costs of extraction of industrial emissions

List of parameters:
- \(\alpha, \gamma = \) parameters of production function
- \(\delta_k = \) rate of depreciation of capital stock
- \(\zeta = \) exogenous technical change effect of energy on CO\(_2\) emissions (carbon intensity)
- \(\phi_{11}, \phi_{12}, \phi_{21}, \phi_{22}, \phi_{32}, \phi_{33} = \) parameters of the carbon transition matrix
- \(\eta = \) increase in radiative forcing due to doubling of CO\(_2\) concentrations from pre-industrial levels
- \(\sigma_1, \sigma_2 = \) temperature dynamics parameters
- \(\lambda = \) climate sensitivity parameter
- \(\text{markup}^E = \) regional energy services markup
- \(\theta_1, \theta_2 = \) parameters of the damage function
- \(M_{AT}^{pl} = \) pre-industrial atmospheric CO\(_2\) concentrations
- \(O = \) increase in radiative forcing over pre-industrial levels due to exogenous anthropogenic causes
- \(\rho = \) discount rate
- \(T_{LO} = \) lower ocean temperature
Table 1: Summary of the Four Short Term Policy Scenarios

<table>
<thead>
<tr>
<th>Scenario 1: “Business-as-usual”</th>
<th>2010</th>
<th>2020</th>
<th>from 2020 onwards</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>business-as-usual</td>
<td>business-as-usual</td>
<td>business-as-usual</td>
</tr>
<tr>
<td>Developing countries</td>
<td>business-as-usual</td>
<td>business-as-usual</td>
<td>business-as-usual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario 2: “Kyoto Forever without US”</th>
<th>2010 level</th>
<th>2010 level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex B,US</td>
<td>Kyoto target: -5.2%</td>
<td>2010 level</td>
</tr>
<tr>
<td>U.S.</td>
<td>-18% intensity target</td>
<td>business-as-usual</td>
</tr>
<tr>
<td>Developing countries</td>
<td>business-as-usual</td>
<td>business-as-usual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario 3: “2020 Global Target”</th>
<th>2010 level</th>
<th>2010 level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex B,US</td>
<td>Kyoto target: -5.2%</td>
<td>2010 level</td>
</tr>
<tr>
<td>U.S.</td>
<td>-18% intensity target</td>
<td>-10% 2020 level</td>
</tr>
<tr>
<td>Developing countries</td>
<td>business-as-usual</td>
<td>business-as-usual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario 4: “2020 Global Cap on Emissions”</th>
<th>2000 emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>business-as-usual</td>
</tr>
<tr>
<td>Developing countries</td>
<td>business-as-usual</td>
</tr>
</tbody>
</table>

Table 2: Summary of the Long Term Target Scenarios

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Atmospheric Concentrations of CO₂ (ppmv)</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>650</td>
</tr>
<tr>
<td>Atmospheric Temperature (degrees C above pre-industrial)</td>
<td>2.3°</td>
</tr>
<tr>
<td></td>
<td>2.5°</td>
</tr>
<tr>
<td></td>
<td>3°</td>
</tr>
<tr>
<td>Radiative Forcing (watts per square meter)</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Table 3: Summary of the Turning Points for Emissions under Alternative Scenarios

<table>
<thead>
<tr>
<th>Turning point</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>Above 2105</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>Above 2105</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>2105</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>2025</td>
</tr>
<tr>
<td>550 ppmv</td>
<td>2075</td>
</tr>
<tr>
<td>4.5 watt/m2</td>
<td>2055</td>
</tr>
<tr>
<td>2.5 deg C</td>
<td>2015</td>
</tr>
</tbody>
</table>
Figure 1: The Climate Change Cycle.

GHGs Concentrations → Radiative Forcing → Average Atmospheric Temperature → Impacts on Human, Ecosystems

Emissions of GHGs

Mitigation → Adaptation
Figure 2: Carbon Emissions: BaU versus Stabilization at 550 ppmv Scenarios
Figure 3: World Emission Paths for Short Term Policy Scenarios and Long Term Targets
Figure 4: World Emission Paths for Short Term Policy and Stabilization of CO2 Concentration Scenarios
Figure 5: World Emission Paths for Short Term Policy and Stabilization of Temperature Scenarios

- Scenario 1 (BaU)
- Scenario 2 (Kyoto+US Intensity)
- Scenario 3 (2020 Global Target)
- Scenario 4 (Cap 2020)

Short Term Policies

<table>
<thead>
<tr>
<th></th>
<th>Scenario 1 (BaU)</th>
<th>Scenario 2 (Kyoto+US Intensity)</th>
<th>Scenario 3 (2020 Global Target)</th>
<th>Scenario 4 (Cap 2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Term Targets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6: World Emission Paths - Uncertainty on Carbon Transition Parameter

- **Scenario 1 (BaU)**
- **Scenario 2 (Kyoto-US Target)**
- **Scenario 3 (2020 Global Target)**
- **Scenario 4 (CAP 2020)**

Short Term Policies
- 550 ppmV 'Pessimistic' carbon trans.
- 550 ppmV 'Most probable' carbon trans.
- 550 ppmV 'Optimistic' carbon trans.
Figure 7: World Emission Paths - Uncertainty on Climate Sensitivity Parameter

- Short Term Policies
 - Scenario 1 (BaU)
 - Scenario 2 (Kyoto-US Target)
 - Scenario 3 (2020 Global Target)
 - Scenario 4 (CAP 2020)

- Long Term Targets
 - 2.5°C 'Optimistic' climate sens.
 - 2.5°C 'Most Probable' climate sens.
 - 2.5°C 'Pessimistic' climate sens.
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html

NOTE DI LAVORO PUBLISHED IN 2003

PRIV 2.2003 Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV 3.2003 Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003 Anna ALBERINI, Alberto LONO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003 Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM 9.2003 A. CAPARRÒS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM 11.2003 Efrem CASTELNUOVO and Marzo GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW 14.2003 Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories
KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003 Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community
KNOW 18.2003 Selma van LONDEN and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World
Theory Network Coalition
PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale
PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies
PRIV 24.2003 Hannu VARTIAINEN (lx): Auction Design without Commitment
PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs
PRIV 27.2003 Kjelli G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes
PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
ETA 35.2003 Alessandra DEL BOCA, Marzo GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats

PRIV 37.2003 Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAM: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers

KNOW 39.2003 Silin BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade

CTN 40.2003 Carlo CARRARO and Carmen MARCHHORI: Endogenous Strategic Issue Linkage in International Negotiations

KNOW 42.2003 Tino GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies

CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness

PRIV 45.2003 Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization

SIEV 46.2003 Elbert DJUKGRAAF and Herman R.J. VOLLEBERGH: Burn or Bury? A Social Cost Comparison of Final Waste Disposal Methods

ETA 47.2003 Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

CLIM 48.2003 Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing

CTN 50.2003 László A. KÖCZY and Luc LAUWERS: The Minimal Dominant Set is a Non-Empty Core-Extension

CTN 51.2003 Matthew O. JACKSON (lxii): Allocation Rules for Network Games

CTN 52.2003 Ana MAULEN and Vincent VANNETELBOSCH (lxii): Farsightedness and Cautiousness in Coalition Formation

CTN 54.2003 Matthew HAAG and Roger LAGUNOFF (lxii): On the Size and Structure of Group Cooperation

CTN 55.2003 Taiji FURUSAWA and Hideo KONISHI (lxii): Free Trade Networks

CTN 56.2003 Halis Murat YILDIZ (lxii): National Versus International Mergers and Trade Liberalization

CTN 57.2003 Santiago RUBIO and Alistair ULPH (lxii): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements

KNOW 58.2003 Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research

KNOW 59.2003 Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change

ETA 60.2003 Ronnie SCHOB: The Double Dividend Hypothesis of Environmental Taxes: A Survey

CLIM 61.2003 Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game

SIEV 63.2003 Alberto PETRUCCI: Taxing Land Rent in an Open Economy

CLIM 64.2003 Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures

SIEV 65.2003 Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy

SIEV 66.2003 Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment

CLIM 68.2003 ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target

KNOW 69.2003 David FRANTZ (lxii): Lorenzo Market between Diversity and Mutation

KNOW 70.2003 Ercole SORI (lxii): Mapping Diversity in Social History

KNOW 71.2003 Liljana DERU SIMIC (lxii): What is Specific about Art/Cultural Projects?

KNOW 72.2003 Natalya V. TARANOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case

KNOW 73.2003 Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration

KNOW 74.2003 Kazuma MATOBA (lxii): Glocal Dialogue - Transformation through Transcultural Communication

KNOW 75.2003 Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal

KNOW 76.2003 Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems

KNOW 77.2003 Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities

KNOW 78.2003 Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas

KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change

ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
1000 Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEK, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarni BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 13.2004 Maarten C.W. JANSSEN (lxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (lxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (lxvi): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (lxvi): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 24.2004 Jean-Jacques NOWAK, Monther SAHLI and Pasquale M. SGRO (lxvii): Tourism Trade and Domestic Welfare

NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports

NRM 29.2004 Marian WEBER (lxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada's Boreal Mixedwood Forest

NRM 30.2004 Trond BJØRNDAL, Phoebe KOUNDOURI and Sean PASCOE (lxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

ETA 39.2004 Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

PRA 40.2004 Andrea BIGANO and Stef PROOST (lxix): The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP 41.2004 Micheal FINUS (lxix): International Cooperation to Resolve International Pollution Problems

KTHC 42.2004 Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
Marc ESCRIHUELA-VILLAR: Cartel Sustainability and Cartel Stability
Sebastian BERVOETS and Nicolas GRAVEL: Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach
Signe ANTHON and Bo JELLESMARK THORSEN: Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
Ekin BIROL, Agnes GYOVAI and Melinda SMALE: Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme, Allowance Prices, Trade Flows, Competitiveness Effects
Scott BARRETT and Michael HOEL: Optimal Disease Eradication
Dinko DIMITROV, Peter BORM, Roud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory
Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?
Ingo BRAUER and Rainer MARGGRAF (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices
Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
Katrin REHDA and David MADISON: The Amenity Value of Climate to German Households
Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios
Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxvi): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
Timo GOESCHL and Danilo CAMARGO IGLOJRI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon
Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
Elliasios PAPYRAS and Reyer GÉRLAGH: Resource-Abundance and Economic Growth in the U.S.
Györgyi BELA, György PATAKI, Melinda SMALE and Marians HAJDU (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
E.C.M. RUIJGROK and E.E.M. NILLESEN: The Socio-Economic Value of Natural Riverbanks in the Netherlands
Giannis VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
Anastasios XEPAPADEAS and Constandina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach
Michael FINUS: Modesty Pays: Sometimes!
Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents
Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
Margarita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DEELINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
Salvador BARBERA and Matthew O. JACKSON (lxvii): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union
Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERA and Fernando VEGA-REDONDO (lxvi): Optimal Information Transmission in Organizations: Search and Congestion
Francis BLOCH and Armando GOMES (lxvi): Contracting with Externalities and Outside Options
Rabah AMIR, Effrosyni DIAMANTOUDI and Licun XUE (lxvi): Merger Performance under Uncertain Efficiency Gains
Francis BLOCH and Matthew O. JACKSON (lxvi): The Formation of Networks with Transfers among Players
Daniel DIERMEIER, Hulya ERASLAN and Antonio MERLO (lxvi): Bicameralism and Government Formation
2003 SERIES

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2004 SERIES

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>