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Interaction of European Carbon Trading and Energy Prices 
 

Summary 
This paper addresses the economic impact of the EU Emission Trading Scheme for 
carbon on wholesale electricity and gas prices. Specifically, we analyse the mutual 
relationships between electricity, gas and carbon prices in the daily spot markets in the 
United Kingdom. Using a structural co-integrated VAR model, we show how the prices 
of carbon and gas jointly influence the equilibrium price of electricity. Furthermore, we 
derive the dynamic pass-trough of carbon into electricity price and the response of 
electricity and carbon prices to shocks in the gas price. 
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1 Introduction

As part of its commitment to the Kyoto Protocol, in January 2005 the European Union implemented a scheme

of tradable CO2 emission permits, whereby restricted allowances were allocated to various industrial emitters of

carbon dioxide, specifying the amount of CO2 they can emit each year. At the end of each year, companies

must produce permits to cover their tonnes of CO2 emitted. Since companies are allowed to trade permits freely

with one another within the EU, the scheme was intended to ensure not only that overall emissions would be

reduced, but also that the cuts are made by those firms that can achieve the most efficient abatement costs

(European Commission, 2003). With the success of this scheme having major implications, not only for the

continuing commitment of the EU to greenhouse gas abatements, but also to other countries and regions which

are considering the introduction of a similar scheme, its progress has been subject to intense scrutiny, even before

substantial empirical evidence has accumulated (European Commission, 2005; Smale et al. 2006, Sijm et al. 2006,

Bentz and Trück 2006).

Prior to the emergence of actual evidence from carbon trading in practice, extensive theoretical and simulation

analyses have speculated upon its broad effects (eg, McKibbin et al. 1999, Criqui and Viguer 2000, Böhringer

2002, Böhringer and Lange 2005, Barreto and Kypreos 2004, Huntington and Weyant, 2004). Regarding the

EU power sector in particular, Linares et al. (2006) comment upon the Spanish situation, and Hauch (2003)

on the Nordic region. Despite the longer term policy insights that such studies provided, the first phase of the

EU Emission Trading Scheme (ETS) was introduced as an experiment, with open questions upon the short term

properties of the carbon prices. The initial behaviour of the prices has indeed raised several concerns. In the first

few months of 2005, carbon allowances were traded at about €7/tonne, raising steadily to a peak over €29/tonne

in July, before falling back to around €20/tonne a month later and fluctuating around that level during the rest

of 2005. As daily trading essentially reflects a forward market on the annual commitment to settle emissions

with permits, such volatility not only reflects basic uncertainty in the underlying annual price of abatement, but

substantially adds to the risk management costs of participants. By April 2006, daily prices had again risen over

€30/tonne, falling precipitously during three days at the end of the month to below €10/tonne when the first



settlement news appeared and it became apparent that far less abatement had been needed in the first year than

the market had been expecting. Shocks of that magnitude affect the asset values of power companies with, for

example, British Energy losing 5% of is stock market value during those three days in April 2006. By January,

2007, spot carbon prices had fallen to €4/tonne, but forward prices for 2008 were trading around €16/tonne. The

result of such uncertainty created investment aversion in the industry, to the extent that the major companies

were identifying carbon price risk as the major factor in investment delays, despite institutional concerns about

security of supply (Blyth, 2007).

Hence the objective of this paper is to analyse, econometrically, evidence from the first two years of the

EU ETS, with the aim of determining its interrelationship with gas and power prices. Specifically, we propose a

structural, cointegrated vector autoregressive (SVAR) model, estimated on daily market data, which encompasses

both short-run and equilibrium relations between electricity, gas and carbon prices. From this, we can estimate

the transmission of shocks between gas, carbon and power prices, and thereby address questions on the short term

economic impact and potential efficiency of the scheme. The paper is organised as follows: section 2 presents the

main features of the interaction between carbon, gas and electricity prices, section 3 introduces the statistical

framework regarding the structural cointegrated VAR model, and section 4 describes its estimates on the EU

ETS data. Section 5 concludes.

2 Carbon price formation and the electricity market

As for any other freely-traded product, the price of carbon allowances is determined by the balance between

supply and demand. In the case of carbon permits, it is appropriate to distinguish between the short term daily

market, where trading actually happens, and the ‘long term’ settlement (each multiyear Phase of the scheme),

where the mandatory requirements of the scheme are balanced and audited. Initially the EU ETS was designed

to operate through two Phases (Phase 1: 2005-2007; Phase 2: 2008-2012). Each member state of the EU agrees

on a national allocation plan (NAP) for annual abatement for each Phase, based upon a restricted percentage

of the “business as usual” projection of emissions from particular facilities. Thus there is an annual requirement



Figure 1: Daily day-ahead electricity and gas price in United Kingdom, carbon price (source: Platts)
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for abatement (in tonnes CO2), Dj , (j = 1, 2 for Phases), which will be uncertain because of the underlying

“business as usual” baseline. Across the EU there exists essentially a supply function for abatement, f(.),

reflecting the increasing marginal costs within a year of reducing a tonne of CO2. Thus, in terms of the power

sector responsiveness in the short run, for low levels of abatement f(.) will reflect the substitution of German

lignite by hard coal, then the more expensive option of replacing hard coal by gas (mainly in Spain and the

UK) will appear further up this abatement supply function. Thus, the supply function is convex, discontinuous,

uncertain and variable throughout the year, reflecting the switching costs between primary fuels. Essentially,

therefore, agents trade in the daily market, buying and selling carbon allowances, against their own expectations,

Et[f(Dj)], which evolve through the year on the annual equilibrium price for carbon.

Furthermore, to the extent that annual allowances are granted to the scheme participants at the beginning of

each Phase, and that a daily price for carbon emerges from the markets, these allowances reflect new liquid assets

(some critics argue that polluters have been given windfall profits in the short term), and thus their consumption

(eg. to produce power) involves the opportunity cost of carbon at the market price (see also Sijm et al. 2006). Of

course, production in excess of allowances does require the direct purchase from the market of an allowance. So

it is to be expected that the price of carbon will be an additional increment to the short-term fuel costs of power



generation, the aggregate effect of which will depend on the technology mix across the whole of the EU and the

pricing behavior of firms.

Figure 1 shows the sample of data used in this study, weekdays from April 20051 to May 2006, with UK

electricity and gas prices (upper plot), as well as EU carbon allowances (lower plot). Whilst gas and power prices

are closely related, carbon seems quite distinct. Evidently, fundamental analysis would suggest that gas shocks

should transmit to power, and power shocks could transmit to gas if the power market is a substantial part of the

gas market, which is the case in the UK but not in EU as a whole. Moreover, both electricity and gas consumption

are influenced by weather conditions. As for carbon price, the structural considerations illustrated above (i.e. the

coal to gas switching) might suggest that in a closed system it would be substantially dependent upon gas prices,

but this would be confounded in a particular case with national markets for gas and power, given the much wider

EU market for carbon.

Despite, therefore, these structural considerations, because of the intricate and confounding nature of the

interrelationships, we approached the model specification through the data-driven paradigm, as advocated in

Sims (1980), Hendry and Mizon (1993). In other words, firstly data dynamics are modelled through a detailed

statistical specification without imposing any ’a-priori’ economic restriction and, only in a second step, the

structural model is derived with a downward testing procedure as a restriction of the statistical model describing

the data.

The three series did not reject unit root tests on levels, whilst differences appeared to be stationary2 . Therefore,

in order to avoid the risk of spurious regression, we modeled the series as I(1) with a cointegration methodology

(following Johansen, 1991). This technique seeks to ensure valid inference in non-stationary systems. So far, it has

been used predominantly to estimate long-run macroeconomic relationships. Implementations in high-frequency

context are less common: Baillie and Bollerslev (1989) and Diebold et al. (1994) have used it to evaluate

1From April 2005, the England and Wales power market expanded to include Scotland.
2Modelling non-stationary variables as stationary invalidates in most cases the inferential procedure, cf. Granger and Newbold

(1974), Hendry (1980), Phillips (1986) and Hendry and Juselius (2000). We tested for unit roots using the ADF unit root test (Said

and Dickey 1984) and the KPSS stationarity test (Kwiatkowski, Phillips, Schmidt and Shin, 1992).



daily financial market outcomes, whilst in the electricity market context, Fezzi and Bunn (2006) estimated two

cointegrating vectors for daily supply and demand interactions.

3 The model

We implement a structural cointegrated VAR model, following Pesaran and Shin (1998), Garratt et al. (1998).

This methodology merges the structural VAR approach with the cointegration technique, having the attractive

feature that the estimated equilibrium relationships give a clear economic interpretation whilst the short-run dy-

namics are flexibly estimated in a VAR specification. Structural VARs were introduced by Bernanke (1986), Sims

(1986) and Blanchard and Quah (1989), in response to criticism regarding the “lack of economic interpretability”

(Cooley and ReLoy, 1985) of the classical VAR approach proposed in Sims (1980). In a classical VAR all the

variables are modelled as endogenous a priori, as a function of their on past values, i.e. as:

yt = A1yt−1 +A2yt−2 + ...+Apyt−p + ut , (1)

with yt = vector of n endogenous variables, A1, . . . , Ap = n× n regression matrices, p = number of lags chose to

ensure no serial correlation in the residual component ut with covariance matrix Σu. Equation (1) is a reduced

form since the contemporaneous relations between the endogenous variables are not modelled and therefore it

may difficult to give to the residual a direct economic interpretation, especially if the cross-correlation matrix

Σu contains high values. Alternatively, the structural VAR has been developed to transform the reduced form

VAR model into a system of structural equations, whose impulse response function and variance decomposition

present, in principle, direct economic meanings. This can be achieved either by imposing restrictions on the

residual cross-correlation matrix or on the long-run relations. A SVAR model can be written in the form:

B0yt = B1yt−1 +B2yt−2 + ...+Bpyt−p + εt , (2)

where εt = B0ut, Bq = B0 ∗ Aq, q = 1, . . . , p and the correlation matrix of the residuals is Ω = B0ΣuB0

(in general equal to the identity matrix). Considering only short-run restrictions (for long-run restrictions see



Blanchard and Quah, 1989) one has to impose n ∗ (n−1)/2 restrictions on the matrix B0 (plus the normalisation

restrictions achieved by setting the covariance matrix of the structural shocks to identity) in order to identify

all the parameters of equation (2) from the reduced form model (1). These restrictions should, in general, be

motivated by economic theory (see, among others, Amisano and Giannini, 1997). In this paper, we derive them

from two auxiliary regressions, in the next section.

The SVAR technique has also been implemented in vector error-correction models with cointegrated variables.

The Johansen (1991) procedure for testing the presence of cointegrating vectors starts with a reduced form VAR

model (equation 1), and therefore without imposing any ‘a priori’ restrictions. The model can be re-written in

the following error-correction form:

∆yt = Πyt−1 + Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 + ut , (3)

where Π = A1 + A2 + ... + Ap and Γi = −(Ai+1 + ... + Ap). Model (3) can be augmented considering the

simultaneous interactions between endogenous variables and therefore giving structural meaning to the residual

component:

B0∆yt = Ψyt−1 +Λ1∆yt−1 + ...+Λp−1∆yt−p+1 + εt , (4)

where equation (3) can be obtained simply pre-multiplying the system by B−1

0 . Thus, to compute the responses

to the economic shocks εt, one has to link the forecast errors ut in the reduced form model (3) to the structural

residuals εt through the identity: εt = B0ut. In the next section we show how to identify the residual matrix,

based on two auxiliary regressions.

Our modelling approach starts from a reduced form VAR considering electricity, gas and carbon prices as

potentially endogenous ‘a priori’. Furthermore, we include, as exogenous variables, atmospheric temperature

(which is the most important determinant of electricity and gas demand on daily basis) and three dummy variables

in order to capture the huge drop in carbon price over three days, following news of the settlement, at the end



of April 2006. In this model the main purpose of the exogenous variables is to capture the co-movements of the

endogenous ones and, therefore, highlight the interactions among the endogenous. As shown, for instance, by

Engle et al. (1986), the energy demand (and, therefore, price) and temperature relationship is a highly non-linear

‘V’ shaped function, since energy is used for both heating and cooling purposes. Thus, following an explorative

analysis, we identify a threshold at which the price-temperature gradient reverses and define two variables and a

dummy from the original temperature, namely cold temperature, tcold, hot temperature, thot and dtemp.

Defining y′t = [pelectricity, pgas, pcarbon], z′t = [thot,t, tcold,t, dtemp]
3 and x′t = [y′t, z

′

t], and dt = determin-

istic term containing centered seasonal dummies to capture the weekly seasonality and three dummy variables

encompassing the carbon shock, the reduced form VECM system can be written as:

∆yt = ω∆zt + αβ′yt−1 + Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 +Cdt + ut . (5)

In this model temperature and deterministic factors affect the short run dynamics of the price series that revert

towards the equilibrium vector(s) β′yt−1 according to the adjustment coefficients α. Thus, it is possible to identify

the structural interactions among the variables by imposing restrictions on the matrix B0 (eq. 4), which we do

in the next section through two auxiliary regressions.

4 The results

The above model is estimated using day-ahead electricity (UKPX) and gas prices (NBP) for United Kingdom

and European carbon emission price (source: Platts). Atmospheric temperature is represented by the daily

3The model is actually estimated using the differenciated variables ∆tcold and ∆thot, which are not simply the first differences of

tcold and thot. In fact, to linearise a "V" relation in the first differences, one has to consider that if during the intra-period variation

the temperature crosses the threshold the relationship is reverted. To overcome this problem ∆thot is defined as all the variation of

the temperature that occurs above the threshold and as ∆tcold all the variation that occurs below. If, for instance, the threshold is

60oF and temperature drops from 63oF to 55oF , ∆thot = −3 and ∆tcold = −5. Furthermore, on the first differences, the dummy

disappears.



Trace Test

Ho r n-r p-value eigenv.

0 2 54.090 [0.000] 0.1223

1 1 11.821 [0.474] 0.0253

2 0 3.5225 [0.499] 0.0108

Cointegrating vector estimates

1pelectricity − 0.628pgas − 0.428pcarbon − 0.592

[...] [−11.926] [−3.985] [−1.842]

Table 1: Cointegration tests and vector estimates with LR test

average temperature in London, available from the archive provided by the University of Dayton. We transform

the endogenous variables (electricity, gas and carbon prices) into their natural logarithms to reduce variability,

and thus obtaining directly the elasticity values from the parameter estimates. We estimate model (5) with one

lag in the endogenous variables (selected by the Hannan-Quinn criterion), and test for the number of cointegrating

vectors using the trace test introduced in Johansen (1991). We restrict the intercept to lie in the cointegration

space since we do not find evidence of a trend in the dynamics of the variables.

The results, reported in table 1, strongly support4 the presence of one cointegrating vector. Observing the

cointegrating coefficients, we are reassured that all the estimates have plausible signs. Furthermore, they are

all significant according to the Likelihood Ratio (LR) test as showed in Johansen (1996). The coefficients can

be interpreted as price elasticities, implying, for instance, that a gas price rise of 1%, would, in equilibrium, be

associated with an electricity price rise of 0.63%. Furthermore, since all the coefficients are strongly significant,

all the price variables are important to define the equilibrium vector, i.e. both carbon and gas prices are crucial

to define the level to which electricity price is attracted over time.

Even though useful to understand the equilibrium price of electricity in the “long run”, this cointegrating

4Since exogenous and deterministic variables are included, and thus the original critical values are no longer valid, we compute

the approximated p-values based on Doornik (1998).



∆pelectricity ∆pgas ∆pcarbon

ECt−1 -0.249 (-5.235 ) -0.094 (-2.047 ) -0.004 (-0.292 )

∆pelectricity,t−1 -0.119 (-2.240) – –

∆pgas,t−1 0.192 (3.450) – 0.036 (2.002)

∆pcarbon,t−1 – – –

∆tcold,t -0.013 (-4.364) -0.007 (-2.185) –

Dcarb,t – – -0.123 (-3.148)

Dcarb,t−1 – – -0.305 (-7.904)

Dcarb,t−2 – – -0.269 (-7.025)

TESTS

AR(3), χ(27) 37.42 [0.087]

ARCH(5), χ(180) 253.53 [0.000]

Normality 3363.18 [0.000]

CORRELATIONS

uelectricity 1 – –

ugas 0.72 1 –

ucarbon 0.10 0.04 1

Table 2: Vector error-correction model estimates and tests, t-ratios in parenthesis

vector does not contain any information regarding the short term interactions of those prices (matrixes B0 and

Λi, i = 1, ..., p, in model 4) nor how fast each of the variables moves towards the equilibrium (matrix α in model

5). In order to analyse these issues we estimate model (5) with the software jmulti (Lütkepohl and Krätzig,

2004) using 3SLS and eliminate the non-significant coefficients through a recursive procedure, i.e. sequentially

excluding the regressors with the lowest t-ratio and ultimately minimising the HQ criterion (see Brüggemann and

Lütkepohl, 2001).



Dependent: pelectricity Dependent: pgas

Intstrum: Int. flow, stored gas Intstrum: excess capacity

variable coefficient t-ratio variable coefficient t-ratio

k 0.23 1.87 k 0.30 0.14

pgas,t 0.69 2.87 pelec,t 0.30 1.52

pelec,t−1 0.75 19.36 pgas,t−1 0.89 19.85

pgas,t−1 -0.48 -2.03 pelec,t−1 -0.25 -1.52

thot,t 0.012 2.01 temp -0.004 -3.45

tcold,t -0.002 -2.00 tempt−1 0.002 1.63

dtemp,t -0.94 -2.23

thot,t−1 -0.005 -0.57

tcold,t−1 0.002 3.28

dtemp,t−1 0.48 0.84

Table 3: Auxiliary regressions estimates

The final estimates are reported in table 25 . According to the adjustment coefficient values (see Johansen,

1991) there is evidence of long-run weak exogeneity in the carbon price. Nevertheless, carbon price is influenced

by lagged gas price, even though the significance level is not very high. Although there is no serial correlation,

there is evidence of ARCH and non-normality in the residuals. However, this is not likely to be a major problem

in our cointegration analysis since the Johansen ML estimator present small sample properties consistent with

the asympothic values even this drawbacks are present (see Gonzalo, 1994). Observing the correlation matrix

we see how the cross-correlation between gas and electricity residuals is quite high and, on the other hand,

how the cross correlation between carbon residuals and the others is fairly low. In order to identify matrix B0

(model 4) and give structural meaning the residuals we need to impose 3 restrictions on the B0 matrix itself.

5Normality test computed as in Doornik and Hansen (1994); AR LM test computed regressing the residuals on the explanatory

variables and lagged residuals; Arch LM test computed regressing the squared residuals on the lagged squared residuals, as in

Lütkepohl H., Krätzing M. (2004).



Because of the low magnitude of the cross correlation involving carbon residuals, two of the restrictions can

be imposed on them without substantially changing the results. Most important is the restriction regarding

the interaction of electricity and gas price, given the high-value of the cross-correlation, and it is clearly crucial

to understand if this high cross-correlation is caused mainly by gas price influencing electricity price or vice

versa. To investigate this we conduct two auxiliary ADL(1, 1) regressions using instrumental variables. The

first equation measures the instantaneous effect of the gas price on the electricity price, using as instruments

the gas available in the storage facilities (source: National Grid) and the quantity of gas flowing through the

Zeebrugge-Bacton interconnector, the only gas interconnection between UK and Europe at the time. Using

wt = [thot,t, tcold,t, dtemp,t, pgas,t−1, pelectricity,t−1, thot,t−1, tcold,t−1, dtemp,t−1] we can write:

pelectricity,t = b0 + b1pgas,t + θ′wt + eet .

The second equation6 measures the effect of electricity on gas prices, and uses as instruments the excess generation

capacity available on the system (source: National Grid) and can be written as:

pgas,t = δ0 + δ1pelectricity,t + ϑ′wt + egt .

The estimates of both regressions with 2SLS are reported in table 37 . Since the parameter b1 do not appear

to be significantly different from zero, whereas δ1 is strongly significant, we can conclude that the high-cross

correlation between gas and electricity residuals is due to the influence of gas on electricity, and not the other way

round. Therefore, we impose the restriction on the matrix B0 and obtain the equations relating the structural

residuals εt to the reduced form residuals ut:

uelect,t = εelect,t − b12εgas,t − b13εcarb,t ,

ugas,t = εgas,t − b23εcarb,t ,

ucarb,t = εcarb,t ,

6 In the gas price regression actual temperature is used, since the V relation holds for electricity only.
7Heteroskedasticity robust standard errors following White (1980).



with matrix B0 equal to:






1 ∗ ∗

0 1 ∗

0 0 1






.

Given these restrictions, we use the a Maximum Likelihood procedure (Amisano and Giannini, 1997) to

estimate matrix B0 in model (4) and we use it to derive the dynamic response of the system to a shock on one

of the structural residuals. This approach is useful to determine the dynamic impact, for instance, of a carbon

price shock (e.g. at the end of April 2006) on electricity and gas price. As showed, for instance, in Lütkepohl

and Krätzig (2004), this can be achieved by simply re-arranging equation (5) as a function of the residuals, and

directly obtaining the dynamic impact of a shock at any lag. We use bootstrapped confidence intervals, as in Hall

(1992), with 500 bootstrap replications. The estimated dynamic impact on the three prices of a sudden increase

in carbon prices is reported in figure 2.

As shown, a carbon price shock produces a significant increase in the electricity price. Furthermore, even

though the instantaneous reaction of electricity prices is significant, carbon price is fully passed-trough only after

some days. Gas price also increases but, at least in the first days, the increment is not significant. In the long

run the price of gas is higher than before the shock, in line with the electricity price. A shock on gas prices as a

similar effect: in line with the theory, it increases the overall prices of the three commodities. Nevertheless, the

temporal dynamics and the magnitudes are different. In fact a gas price increase has its highest impact over the

first few days and then its effect fades.

5 Conclusions

Using a structural, cointegrated VAR model, we show how carbon price is important in formulating the

equilibrium price of electricity and gas in the UK, and that it is essentially exogenous. We also identify the



Figure 2: Impulse response functions for electricity, gas and carbon; shock on carbon price. Dotted line = 95%

bootstrapped confidence intervals.
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Figure 3: Impulse response functions for electricity, gas and carbon; shock on gas price. Dotted line = 95%

bootstrapped confidence intervals
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short-term dynamics and show that carbon prices react significantly and quickly to a shock on gas price, but, in

turn, the dynamic pass-trough of carbon to electricity price is only after some days. In particular, we estimated

that eventually a 1% shock in carbon translates on average into a .42% shock in UK electricity, with [0.21; 0.64] as

a 95% confidence interval. Essentially we see that gas drives carbon, whilst both carbon and gas drive electricity

prices. Evidently one of the indirect effects of carbon trading has been to strengthen the link between gas and

power, and to the extent that global gas prices are acquiring the geopolitical risk characteristics of oil, that may

not be a welcome outcome.
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