

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Pautrel, Xavier

Working Paper Pollution, Health and Life Expectancy: How Environmental Policy Can Promote Growth

Nota di Lavoro, No. 96.2007

Provided in Cooperation with: Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Pautrel, Xavier (2007) : Pollution, Health and Life Expectancy: How Environmental Policy Can Promote Growth, Nota di Lavoro, No. 96.2007, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at: https://hdl.handle.net/10419/74175

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Pollution, Health and Life Expectancy: How Environmental Policy Can Promote Growth Xavier Pautrel

NOTA DI LAVORO 96.2007

OCTOBER 2007

CCMP – Climate Change Modelling and Policy

Xavier Pautrel, Université de Nantes, Laboratoire d'Économie de Nantes (LEN)

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract=1024742

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it

Pollution, Health and Life Expectancy: How Environmental Policy Can Promote Growth

Summary

This article investigates the influence of environmental policy on growth assuming that the channel of transmission relies on the link between pollution, health and the survival probability, in an overlapping generations model à la Blanchard (1985) where growth is driven by a mechanism à la Romer (1986). We demonstrate that environmental policy has an ambiguous effect on growth in the steady-state when the detrimental impact of pollution on health and lifetime is taken into account: for low levels of taxation, environmental policy promotes growth while it is harmful to growth for high levels. Furthermore, we show that the environmental policy is more likely to promote growth (i.e. it stimulates growth for a wider range of environmental taxes) when public expenditures in health and/or the impact of pollution on health are important. Finally, using numerical simulations, we find that for the value of parameters chosen the environmental policy will be more likely to harm growth when agents smooth consumption over time.

Keywords: Growth, Environment, Overlapping generations

Address for correspondence:

Xavier Pautrel Université de Nantes Nantes Atlantique Université Laboratoire d'Économie de Nantes (LEN) Chemin de la Censive du Tertre, BP 81307 44313 Nantes Cedex 3 France E-mail: xavier.pautrel@univ-nantes.fr

1 INTRODUCTION

Even if the link between environmental policy and growth is a longstanding debate, recent reports upon climate change and the very quick and unbridled industrialization of the biggest economies in the world, such as China and India,¹ have dramatically emphasized the pressing necessity to implement efficient and global environmental policy with an eye towards economic performances.

This article investigates the effect of environmental policy on growth emphasizing the link between pollution, health and life expectancy as the main channel of transmission. It gets away from two observations about the existing literature on the environment and growth. First, as highlighted by Ricci (2007) in a recent survey, the trade-off between environmental quality and growth is negative in both basic *AK*, R&D-driven growth or human capital accumulation models: reducing pollution to increase the environmental quality turns away resources to investment and therefore drags down growth. To offset this negative effect, it is necessary, for example, either to take into account the external influences of the environment on productivity or some policy-induced adjustments (see Ricci (2007) p. 694), either to assume an influence of environmental policy on savings behaviour or constant returns to scale in the pollution abatement sector (see Michel and Rotillon (1995)). Second, while the detrimental influence of pollution on health is one of the most well-documented phenomenon in the field and one of the most striking features of the negative impact of pollution on individuals,² few growth analysis integrate it explicitly.³

¹From the World Development Indicators (the World Bank), in 2005, India and China grew respectively at an annual rate of 9.23% and 10.20% (in stable increase) while the World and the High income countries grew respectively at 3.48% and 2.66%.

²For a survey of studies on pollution and health, see Brunekreef and Holgate (2002), and references in Gutierrez (2005) and Pautrel (in press).

³While Gradus and Smulders (1993) justify the negative impact of pollution on human capital accumulation by its effect on health, their formalization seems too rough to enable to capture all the mechanisms at work. Note that the influence of pollution on health has already been accounted for in models that do not investigate its effect on growth. In a continuous time framework, Williams (2002, 2003), for example, studies its impact in terms of environmental taxation assuming that pollution leads to absenteeism due to illness and to higher medical care expenses. In a discrete time framework, Gutierrez (2005), for example, explicitly integrates the

Consequently, in this article, we re-examinate the relation between the environment and growth, taking into account the impact of pollution on health and life expectancy as the main channel of transmission, and without making any assumption about a positive effect of the environmental quality on factors productivity. For this purpose, we use an overlapping generations model à *la* Blanchard (1985) in which we model explicitly the link between pollution and public health and its impact on the lifetime of the agents. Long-run growth is driven by externalities from the aggregate stock of physical capital (*AK* model à *la* Romer (1986)) and the lifetime of agents depends on public health which is influenced negatively by the level of pollution and positively by public health expenditures.

In this *AK* model with environmental and health concerns, we demonstrate that environmental policy has an ambiguous effect on growth in the steady-state when the detrimental effect of pollution on health and life expectancy is taken into account. For low levels of taxation, the environmental policy promotes growth because the positive effect of a lower net flow of pollution on health and life expectancy offsets the drag-down effect on the investment due to the increasing tax. For higher levels, the environmental policy becomes harmful to growth because the positive effect of health is defeated by the drag-down effect. We show that the higher public expenditures in health and the greater the impact of pollution on health, the more the environmental policy is likely to promote growth. Furthermore, we demonstrate that when pollution does not affect health, environmental policy remains detrimental to growth whatever the value of the tax, even if the lifetime of agents is finite. Finally, we make numerical simulations to investigate the influence of the intertemporal substitution rate of consumption on our result. We find that, for the value of parameters chosen, the environmental policy is more likely to harm growth when agents smooth consumption over time.

The article is structured as follows. Section 2 gives the basic framework of our model and section 3 formalizes the link between pollution, health and the life expectancy. Section

link between pollution and health costs for the elderly and shows that pollution makes dynamic inefficiency more likely.

4 investigates the steady-state equilibrium of the economy. Section 5 looks into the impact of environmental taxation on growth and section 6 goes into detail using numerical simulations. Section 7 draws this article to a conclusion.

2 THE ECONOMY'S STRUCTURE

Let us consider an overlapping generations model à *la* Blanchard (1985) with human capital accumulation and environmental concerns. Time is continuous. Each individual born at time *s* faces a constant probability of death per unit of time $\lambda_s \ge 0$. Consequently, his life expectancy is $1/\lambda_s$. When λ_s increases, the horizon of the economy becomes shorter. At time *s*, a cohort of size λ_s is born. This cohort has a size equal to $\lambda_s e^{-\lambda_s(t-s)}$ at time *t*. The constant population is equal to $L_t \equiv \int_{-\infty}^t \lambda_s e^{-\lambda_s(t-s)} ds$ at time *t*. For convenience it is normalized to unity. There are insurance companies and there is no bequest motive.

Contrary to Blanchard (1985), we assume that the probability of death for an agent born at time *s* depends negatively on the public health in the economy when he is born ε_s . To simplify we pose $\lambda_s = \varepsilon_s^{-1}$.

The expected utility function of an agent born at $s \le t$ is:

$$\int_{s}^{\infty} U\left(c_{s,t}, \mathcal{P}_{t}\right) e^{-(\rho + \lambda_{s})(t-s)} dt \tag{1}$$

with

$$U(c_{s,t}, \mathcal{P}_{t}) = \begin{cases} \frac{[c_{s,t}\mathcal{P}_{t}^{-\phi}]^{1-1/\sigma} - 1}{1-1/\sigma} & \sigma \neq 1, \\ \ln c_{s,t} - \phi \ln \mathcal{P}_{t} & \sigma = 1, \end{cases}$$
(2)

where $c_{s,t}$ denotes consumption in period *t* of an agent born at time *s*, $\rho \ge 0$ is the rate of time preference and ϕ measures the weight in utility attached to the environment, that is environmental care. σ is the elasticity of intertemporal substitution.

Due to the simple demographic structure, all individual variables are additive across

individuals. Consequently, the aggregate consumption equals

$$C_t = \int_{-\infty}^t c_{s,t} \lambda_s e^{-\lambda_s(t-s)} ds,$$

The aggregate production function is defined by:

$$Y_t = \tilde{A}_t K_t^{\alpha} L_t^{1-\alpha}, \qquad 0 < \alpha < 1 \tag{3}$$

with Y_t being the aggregate final output. K_t is the aggregate stock of physical capital and L_t is the amount of labor. As discussed in Romer (1986), we assume that there exists external effects of aggregate capital on productivity: $\tilde{A}_t = AK_t^{1-\alpha}$, where A > 0 is a constant parameter. Consequently, the aggregate production function reduces to:

$$Y_t = AK_t L_t^{1-\alpha}$$

Finally we assume that the government implements two types of policy: a health policy which consists in publicly providing health services to agents and an environmental policy which consists in taxing the flow of pollution from firms. The government is assumed to balance its budget constraint all the time (see below).

3 POLLUTION, HEALTH AND LIFETIME

Following Gradus and Smulders (1993), pollution flow is assumed to increase with the stock of physical capital *K* and reduces with abatement activities *D*:

$$\mathcal{P}_t = \left[\frac{K_t}{D_t}\right]^{\gamma}, \qquad \gamma > 0 \tag{4}$$

We consider that public health at time *s* is influenced negatively by the net flow of pollution and positively by the part of public health expenditures in GDP:⁴

$$\varepsilon_s = \frac{\beta\theta}{\delta \mathcal{P}_s^{\psi}} \tag{5}$$

⁴We follow empirical studies which use in their estimations expenditures in health as a percentage of GDP rather than the amount of expenditures in health (see Currais and Rivera (1999), Currais and Rivera (2003) for example).

where θ is the exogenous part of the aggregate final output that the government uses to publicly provide public-health services. $\beta > 0$ is the productivity of the health sector, δ is a positive parameter and $\psi > 0$ measures the influence of pollution on public health.

Abatement activities use final output (one for one) so the final market clearing condition is:

$$(1-\theta)Y_t = C_t + \dot{K}_t + D_t.$$
(6)

4 THE GENERAL EQUILIBRIUM AND THE BALANCED GROWTH PATH

In this section, we derive the dynamical system which summarize the intertemporal evolution of the economy and the steady-state defined as a balanced-growth path equilibrium where *C*, *Y*, *D* and *K* evolve at a common positive rate of growth.

As previously noted, besides its health policy, the government also implements an environmental policy which consists of taxing the net flow of pollution by firms and transferring to them the fruit of the taxes to fund their abatement activities. Consequently, firms under perfect competition pay a pollution tax on their net pollution \mathcal{P}_t and they choose their abatement activities D_t (whose cost equals D_t) and the amount of factors which maximize their profits $\pi_t = Y_t - r_t K_t - w_t L_t - \vartheta_t \mathcal{P}_t - D_t + T_t^p$ where ϑ_t is the pollution tax rate and T_t^p denotes transfers from the public sector with $T_t^p = \vartheta_t \mathcal{P}_t$. Firms take as given these transfers and pay each production factor at its marginal productivity to maximize profit:

$$r_t = \alpha A - \vartheta_t \gamma \frac{\mathcal{P}_t}{\mathcal{K}_t} \tag{7}$$

$$w_t = (1 - lpha) K_t L_t^{-lpha}$$

$$D_t = \vartheta_t \gamma \mathcal{P}_t \tag{8}$$

From equations (4) and (8), we have $\mathcal{P}_t = \left[\gamma \frac{\vartheta_t}{K_t}\right]^{-\gamma/(1+\gamma)}$. Because in the steady-state, the quality of the environment must be constant, ϑ_t must evolve as the physical capital. Intuitively, it increases over time to encourage firms to increase abatement activities to limit

pollution which rises with the physical capital stock. Consequently, we define $\tau \equiv \vartheta_t / K_t$, the environmental tax normalized by the physical capital, and following Oueslati (2002) we assume that it is fixed by the government and has no transitional dynamics.⁵ Consequently, we obtain:

$$\mathcal{P} = \Phi(\tau)^{-\gamma} \tag{9}$$

with $\Phi(\tau) \equiv [\gamma \tau]^{\frac{1}{1+\gamma}}$ is an increasing function of τ . The net flow of pollution \mathcal{P} is constant over time. Then, equations (7) and (8) may be re-written as (remembering that population is normalized to unity):

$$r = \alpha A - \Phi(\tau) \tag{10}$$

$$w_t = (1 - \alpha) K_t \tag{11}$$

$$D_t = \Phi(\tau) K_t \tag{12}$$

By definition $D_t < K_t$ consequently we impose that $\Phi(\tau) \in]0,1[$. Furthermore, r > 0, therefore we also impose $\alpha A > \Phi(\tau)$.

From (5) and because we assumed $\lambda_t = \varepsilon_t^{-1}$, the probability of death is independent of time and defined by:

$$\lambda = \frac{\delta \Phi(\tau)^{-\psi\gamma}}{\beta\theta} \equiv \mathcal{L}(\tau) \tag{13}$$

where $\mathcal{L}(\tau)$ is a decreasing function of τ .

Households face the following budget constraint:

$$\dot{a}_{s,t} = [r + \lambda] \, a_{s,t} + w_t - c_{s,t} \tag{14}$$

where $a_{s,t}$ is the financial wealth in period *t* and ω_t represents the wage rate per effective unit of labor.

⁵Here this assumption is of no consequence inasmuch as the AK model has no transitional dynamics.

The representative agent chooses the time path for $c_{s,t}$ by maximizing (1) subject to (14). It gives the consumption at time *t* of an agent born at time *s*:

$$c_{s,t} = \Delta(\tau) \left[a_{s,t} + \omega_{s,t} \right] \tag{15}$$

where $\omega_{s,t} \equiv \int_t^\infty w_\nu e^{-(\nu-t)(r+\lambda)} d\nu$ is the present value of lifetime earning and

$$\Delta(\tau) = (1 - \sigma)\alpha A - (1 - \sigma)\Phi(\tau) + \sigma\rho + \mathcal{L}(\tau)$$
(16)

is the propensity to consume the overall individual revenue and is constant over time.⁶ By definition the propensity to consume must be positive, consequently we consider that the probability to die is high enough to ensure that $\Delta(\tau)$ is always positive. It implies:

$$\mathcal{L}(\tau) > (1 - \sigma) \left[\Phi(\tau) - \alpha A \right] - \sigma \rho \tag{17}$$

Because the interest rate must be positive (that is $\alpha A > \Phi(\tau)$ from equation 10) this conditions is always verified whatever $\mathcal{L}(\tau)$ when $\sigma \leq 1$.

The aggregate consumption equals

$$C_t = \int_{-\infty}^t c_{s,t} \lambda e^{-\lambda(t-s)} ds = \Delta(\tau) \left[K_t + \Omega_t \right]$$
(18)

with $\Omega_t \equiv \int_{-\infty}^t \omega_{s,t} \lambda e^{-\lambda(t-s)} ds$, and the aggregate stock of physical capital is defined by

$$K_t = \int_{-\infty}^t a_{s,t} \lambda e^{-\lambda(t-s)} ds \tag{19}$$

Differentiating (18) with respect to time and using the expression of dK_t/dt and $d\Omega_t/dt$ with equations (10) and (13) gives the law of motion of the aggregate consumption:

$$g_{C,t} \equiv \dot{C}_t / C_t = \sigma \left[\alpha A - \Phi(\tau) - \rho \right] - \mathcal{L}(\tau) \Delta(\tau) K_t / C_t$$
⁽²⁰⁾

Furthermore, the law of motion of the physical capital is:

$$g_{K,t} \equiv \dot{K}_t / K_t = (1 - \theta)A - C_t / K_t - \Phi(\tau)$$
⁽²¹⁾

⁶When the interest rate is not constant over time, we have $\int_t^{\infty} e^{-(\sigma\rho+\lambda)(\nu-t)-(1-\sigma)\int_t^{\nu} r_{\mu}d\mu}d\nu$ which is not constant.

Consequently, defining $x_t \equiv C_t/K_t$, the economy is summarized by the two following equations which depends on x_t :

$$g_{C,t} = \sigma \left[\alpha A - \Phi(\tau) - \rho \right] - \mathcal{L}(\tau) \Delta(\tau) x_t^{-1}$$

$$g_{K,t} = (1 - \theta) A - x_t - \Phi(\tau)$$
(22)

The first equation is an increasing function of x and the second one is an decreasing function. When they intersect they define a unique x^* which corresponds to the steady-state equilibrium of the economy, where C, K, D and Y grow at a common positive rate g^* (the star denotes steady-state). Formally, x^* is the positive solution of the second-order equation $x^{*2} + \Omega(\tau)x^* - \mathcal{L}(\tau)\Delta(\tau) = 0$ that is

$$x^{\star} = \frac{1}{2} \left\{ -\Omega(\tau) + \sqrt{\Omega(\tau)^2 + 4\mathcal{L}(\tau)\Delta(\tau)} \right\}$$
(23)

where $\Omega(\tau) \equiv (\theta + \sigma \alpha - 1) A + (1 - \sigma) \Phi(\tau) - \sigma \rho < 0^7$ and $\Delta(\tau) \equiv (1 - \sigma) [\alpha A - \Phi(\tau)] + \sigma \rho + \mathcal{L}(\tau)$.

The growth rate in the steady-state is unique and defined as a function of the environmental tax τ :

$$g^{\star} = (1-\theta)A - \frac{1}{2} \left\{ -\Omega(\tau) + \sqrt{\Omega(\tau)^2 + 4\mathcal{L}(\tau)\Delta(\tau)} \right\} - \Phi(\tau)$$
(24)

5 ENVIRONMENTAL TAXATION AND GROWTH

To investigate the influence of the environmental taxation on growth, we derive (24) with respect to τ . It gives:

$$\frac{\partial g^{\star}}{\partial \tau} = \frac{\partial g^{\star}}{\partial \Phi(\tau)} \frac{\partial \Phi(\tau)}{\partial \tau}$$
(25)

⁷We impose that $\Omega(\tau)$ is positive to have x^* positive if the lifetime tends to infinity.

where

$$\frac{\partial g^{\star}}{\partial \Phi(\tau)} = \frac{-1}{2} \left\{ (1+\sigma)\Phi(\tau) + (1-\sigma)\Phi(\tau)\frac{\Omega(\tau) + 2\mathcal{L}(\tau)}{\sqrt{\Omega(\tau)^2 + 4\Delta(\tau)\mathcal{L}(\tau)}} -2\gamma\psi\frac{\mathcal{L}(\tau)[\Delta(\tau) + \mathcal{L}(\tau)]}{\sqrt{\Omega(\tau)^2 + 4\Delta(\tau)\mathcal{L}(\tau)}} \right\}$$
(26)

and

$$\begin{array}{lll} \Phi(\tau) \equiv & [\gamma\tau]^{\frac{1}{1+\gamma}} \\ \mathcal{L}(\tau) \equiv & \frac{\delta}{\beta\theta} \Phi(\tau)^{-\psi\gamma} \\ \Delta(\tau) \equiv & (1-\sigma)[\alpha A - \Phi(\tau)] + \sigma\rho + \mathcal{L}(\tau) > 0 \\ \Omega(\tau) \equiv & (\theta + \sigma\alpha - 1) A + (1-\sigma)\Phi(\tau) - \sigma\rho < 0 \end{array}$$

The function $\Phi(\tau)$ being an increasing function of τ , the influence of the environmental tax is given by the sign of (26).

To clarify as much as possible the mechanisms which operate when pollution affects health and health influences the lifetime of agents, we first expose the case where the lifetime of agents is infinite and the case where lifetime is finite but pollution does not impact health. Hence, we back to the general case exposed in the previous sections and we examinate the effect of environmental taxation on growth when pollution affects health and health influences the lifetime of agents.

5.1 Lifetime is infinite

In this case, the probability of death is independent of the environmental policy because it is null: $\mathcal{L}(\tau) = 0$. The system (22) becomes:

$$g_{C,t} = \sigma \left[\alpha A - \Phi(\tau) - \rho \right]$$
$$g_{K,t} = (1 - \theta)A - x_t - \Phi(\tau)$$

The growth rate of the aggregate consumption becomes independent from x and consequently is an horizontal curve which shifts downward when τ increases. The growth rate of the aggregate capital remains a decreasing curve with respect to x and shifts on the left

when τ increases. The variation of x^* depends on the value of σ with respect to 1 because $g_C^* = g_K^*$ gives $x^* = (1 - \theta - \sigma \alpha)A + (\sigma - 1)\Phi(\tau) + \sigma \rho > 0$. When $\sigma < 1$ (respectively $\sigma > 1$), x^* decreases (respectively increases) with τ . Nevertheless, the growth rate in the steady-state is given by the first equation of the previous system. It is a decreasing function of the environmental tax rate.

Therefore, we obtain the conventional result of the *AK* growth model with infinitly-lived agents: environmental policy is always harmful to growth because it reduces the rewards to capital and therefore physical capital accumulation.

5.2 Lifetime is finite but health is not affected by pollution

This case corresponds to $\psi = 0$. Therefore, the probability of death λ does no longer depends on the tax rate τ : $\bar{\lambda} = \frac{\delta}{\beta\theta}$. The economy is summarized by:

$$g_{C,t} = \sigma \left[\alpha A - \Phi(\tau) - \rho \right] - \frac{\delta}{\beta \theta} \Delta_{\psi}(\tau) x_t^{-1}$$

$$g_{K,t} = (1 - \theta) A - x_t - \Phi(\tau)$$

with $\Delta_{\psi}(\tau) = (1 - \sigma)\alpha A - (1 - \sigma)\Phi(\tau) + \sigma\rho + \frac{\delta}{\beta\theta}$. $g_{C,t}$ remains an increasing function of x_t but the influence of τ is not clear-cut. $g_{K,t}$ is not modified.

The influence of the environmental tax on the steady-state rate of growth is then given by the sign of the following expression:

$$\frac{-\Phi(\tau)}{2} \left\{ (1+\sigma) + (1-\sigma) \frac{\Omega(\tau) + 2\bar{\lambda}}{\sqrt{\Omega(\tau)^2 + 4\Delta(\tau)\bar{\lambda}}} \right\}$$
(27)

with $\Omega(\tau) < 0$ for all σ . When $\sigma \leq 1$, $(1 - \sigma)\Omega(\tau) \leq 0$, but $\frac{\Omega(\tau)}{\sqrt{\Omega(\tau)^2 + 4\Delta(\tau)\bar{\lambda}}} < 1$ consequently $(1 + \sigma) + (1 - \sigma)\frac{\Omega(\tau)}{\sqrt{\Omega(\tau)^2 + 4\Delta(\tau)\bar{\lambda}}} \geq 0$. The term into brackets is positive, therefore $\partial g^* / \partial \tau < 0$. In the same way, when $\sigma > 1$, $(1 - \sigma)\Omega(\tau) \geq 0$ and $(1 - \sigma)\frac{2\bar{\lambda}}{\sqrt{\Omega(\tau)^2 + 4\Delta(\tau)\bar{\lambda}}} < 0$. Nevertheless $\frac{2\bar{\lambda}}{\sqrt{\Omega(\tau)^2 + 4\Delta(\tau)\bar{\lambda}}} < 1$ and therefore $(1 + \sigma) + (1 - \sigma)\frac{2\bar{\lambda}}{\sqrt{\Omega(\tau)^2 + 4\Delta(\tau)\bar{\lambda}}} \geq 0$. The term into brackets is positive, therefore $\partial g^* / \partial \tau < 0$. Consequently, when the lifetime of agents is finite but pollution does not affect health status, the environmental policy remains harmful to growth.

5.3 Lifetime is finite and pollution affects health

Because the general case is very cumbersome to study, we only investigate in this preliminary version the case where $\sigma = 1$. Then, $\Delta(\tau)$ is a decreasing function τ and $\Omega(\tau) = \overline{\Omega}$ is independent of τ . Consequently, the influence of the environmental tax on growth is given by the sign of the following expression:

$$\frac{\partial g^{\star}}{\partial \Phi(\tau)} = -\left\{ \Phi(\tau) - \gamma \psi \frac{\mathcal{L}(\tau)[\rho + 2\mathcal{L}(\tau)]}{\sqrt{\bar{\Omega}^2 + 4\mathcal{L}(\tau)[\rho + \mathcal{L}(\tau)]}} \right\}$$

We obtain
$$\frac{\partial g^{\star}}{\partial \tau} > 0$$
 if an only if

$$\gamma \psi \frac{\mathcal{L}(\tau)[\rho + 2\mathcal{L}(\tau)]}{\sqrt{\bar{\Omega}^2 + 4[\rho + \mathcal{L}(\tau)]\mathcal{L}(\tau)}} > \Phi(\tau)$$
(28)

with $\Phi(\tau) \equiv [\gamma \tau]^{\frac{1}{1+\gamma}}$ and $\mathcal{L}(\tau) \equiv \frac{\delta}{\beta \theta} \Phi(\tau)^{-\psi \gamma}$.

Because the left-hand side of this inequality is a decreasing function of τ ,⁸ and the righthand side is an increasing function of τ , this inequality defines a threshold value $\hat{\tau}$ below which the condition is verified. Therefore, when pollution affects health and health influences life expectancy environmental policy is ambiguous for growth. The link between the environmental policy and growth is a reversed-U shape relation: for low values of the tax, the environmental policy promotes growth and for high values it harms growth.

Consequently, from section 5.2, it is not the finiteness of lifetime by itself which enables the environmental policy to play positively on growth. It is a necessary but not sufficient condition. The sufficient condition is that lifetime is bounded and depends on the environment.

⁸Its derivative with respect to
$$\tau$$
 is
$$\frac{\gamma\psi\left[\rho\bar{\Omega}^{2}+2\mathcal{L}(\tau)\left(\rho^{2}+2\bar{\Omega}^{2}+6\rho\mathcal{L}(\tau)+4\mathcal{L}(\tau)^{2}\right)\right]}{\left[\bar{\Omega}^{2}+4\mathcal{L}(\tau)(\rho+\mathcal{L}(\tau))\right]^{3/2}}\frac{\partial\mathcal{L}(\tau)}{\partial\tau}<0.$$

Using condition (28), it is possible to find the impact of the determinants of the thresold critical value of τ^9

	δ	θ	β	A	ρ	ψ	γ
$\hat{\tau}$	+	-	_	_	+	-	?

Table 1: Impact of the parameters on $\hat{\tau}$

We investigate further comparative statics in the next section.

6 NUMERICAL SIMULATIONS

This sections aims at answering two questions. First, even if we derived analytically the influence of parameters on the threshold value of the pollution tax, what are their effects on the growth rate in the economy and how do they affect the positive influence of the environmental taxation? Second, what is the influence of the intertemporal elasticity of substitution of consumption σ on the link between the environmental policy and growth?

To answer these questions, we use numerical simulations. We first calibrate the model to obtain realistic values of the probability of death for the US economy and a realistic rate of growth. From the *World Development Indicators 2005* by the World Bank, life expectancy was 77.4 years in 2003, and the public health expenditures as percentage of GDP was 6.55%. Since the expected lifetime is the reverse of the probability of death per unit of time λ , we want λ to be close to 1/77.4 = 0.0129.

Table 1 summarizes the benchmark value of parameters and Table 2 summarizes the exercise of comparative statics for log utility.

θ	α	δ	ψ	β	ρ	A	γ
0.0655	0.03	0.025	2	20	0.065	0.7	0.3

Table 2: Benchmark value of parameters

⁹Remembre that $\Phi(\tau) < 1$. See page 4.

The relation between environmental tax and the rate of growth obtained is drawn in Figure 1. The threshold value of the environmental taxation $\hat{\tau}$ is 5.33% and the rate of growth for this value (which is also the maximum rate of growth attainable) equals 5.85%. Note also that $\tau \in]0.01, 0.23[$ to have a positive growth rate in the steady-state.

Figure 1: Benchmark case

In the appendix, we report the effects of a variation of the key parameters on the growth rate and on the threshold value of environmental taxation. Numerical simulations show, for example, that a higher public health expenditures in terms of GDP (θ) and a greater productivity in the health sector (β) makes the environmental policy less likely to promote growth. The maximum rate of growth (for an environmental tax equals to $\hat{\tau}$) is greater for all values of the environmental tax. In the same way, when the influence of pollution on health (ψ) increases, the threshold value of the environmental tax rises and the maximum rate of growth is higher. Because these criterions are verified in the most industrialized countries, our results mean that the environmental policy is more likely to promote growth is such a countries.

Finally, we simulate the relation between the growth rate and the environment tax for different values of the intertemporal elasticity of substitution σ . For the values chosen in our numerical simulations, figure 2 and Table 3 in the following confirm our main result

σ	0.25	0.5	0.75	1	1.5	2	2.5
τ	0.1730	0.0948	0.0677	0.0533	0.0379	0.0297	0.0245

Table 3: Impact of an increase in σ

when σ is different from unity: the environmental tax has an ambiguous effect on growth when pollution affects health and health influences the lifetime of agents. Furthermore, the threshold value of the environmental taxation is lower when agents want to smooth their consumption over time (σ is small): the environmental policy is more likely to harm growth in such a case.

7 CONCLUSION

The aim of this article was to investigate the impact of environmental policy on growth in an *AK*-type growth model, when the link pollution, health and life expectancy is the main channel of transmission.

We demonstrated that environmental policy has an ambiguous effect on growth in the steady-state when the detrimental effect of pollution on health and lifetime is taken into account. For low levels of taxation, the environmental policy promotes growth because the positive effect of a lower net flow of pollution on health and life expectancy offsets the drag-down effect on the investment due to the increasing tax. For higher levels, the environmental policy becomes harmful to growth because the positive effect of health is defeated by the drag-down effect. Furthermore, we show that the environmental policy is more likely to promote growth when public expenditures in health and/or the impact of pollution on health are more important. We also make numerical simulations to investigate the influence of the intertemporal substitution rate of consumption on our result. We find that, for the value of parameters chosen, the environmental policy is more likely to harm growth when agents want to smooth consumption over time.

Finally, we demonstrated that the ambiguous impact of environmental policy on growth disappears when the lifetime of agents is finite but pollution does not affect health: environmental policy is always detrimental to growth. Consequently, the key mechanism relies on the features of the health function and the dependence of health to the environment.

Our results militate for an active environmental policy and calls for further investigations on the link between environment and growth, especially incorporating a more realistic health function.

REFERENCES

- Blanchard, O. (1985). Debt, deficits and finite horizon. *Journal of Political Economy*, 93:223–247.
- Brunekreef, B. and Holgate, S. T. (2002). Air pollution and health : review. *The Lancet*, 360:1233–1242.
- Currais, L. and Rivera, B. (1999). Income variation and health: Direct impact or reverse causation. *Applied Economics Letters*, 6:761–764.
- Currais, L. and Rivera, B. (2003). The effect of health investment on growth: A causality analysis. *International Advances in Economic Research*, 9(4):312–324.

- Gradus, R. and Smulders, S. (1993). The trade-off between environmental care and long-term growth-pollution in three prototype growth models. *Journal of Economics*, 58(1):25–51.
- Gutierrez, M. (2005). Dynamic inefficiency in an overlapping generation economy with pollution and health costs. Technical report, University of the Basque Country.
- Michel, P. and Rotillon, G. (1995). Disutility of pollution and endogenous growth. *Environmental and Resource Economics*, 6(3):279–300.
- Oueslati, W. (2002). Environmental policy in an endogenous growth model with human capital and endogenous labor supply. *Economic Modelling*, 19:487–507.
- Pautrel, X. (in press). Reconsidering the impact of pollution on long-run growth when pollution influences health and agents have a finite-lifetime. *Environmental and Resource Economics*.
- Ricci, F. (2007). Channels of transmission of environmental policy to economic growth: A survey of the theory. *Ecological Economics*, 60:688–699.
- Romer, P. (1986). Increasing returns and long run growth. *Journal of Political Economy*, 94:1002–1037.

Appendix

Figure 4: Increase in α (*the straightline is the benchmark case*)

Figure 5: Decrease in ψ (the straightline is the benchmark case)

Figure 6: Increase in β (*the straightline is the benchmark case*)

Figure 7: Decrease in ρ (*the straightline is the benchmark case*)

Figure 8: Increase in *A* (*the straightline is the benchmark case*)

Figure 9: Decrease in γ (the straightline is the benchmark case)

Figure 10: Increase in θ (the straightline is the benchmark case)

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:

http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

http://www.ssrn.com/link/feem.html

http://www.repec.org

http://agecon.lib.umn.edu

http://www.bepress.com/feem/

NOTE DI LAVORO PUBLISHED IN 2007

NRM	1.2007	Rinaldo Brau, Alessandro Lanza, and Francesco Pigliaru: How Fast are Small Tourism Countries Growing?
		The 1980-2003 Evidence
PRCG	2.2007	C.V. Fiorio, M. Florio, S. Salini and P. Ferrari: <u>Consumers' Attitudes on Services of General Interest in the EU:</u>
DDCC	2 2007	Accessibility, Price and Quality 2000-2004
PRCG	3.2007	Cesare Dosi and Michele Moretto: Concession Bidding Rules and Investment Time Flexibility
IEM	4.2007	Chiara Longo, Matteo Manera, Anil Markandya and Elisa Scarpa: Evaluating the Empirical Performance of
DDCC	5 0007	Alternative Econometric Models for Oil Price Forecasting
PRCG	5.2007	Bernardo Bortolotti, William Megginson and Scott B. Smart: The Rise of Accelerated Seasoned Equity
CCMD	6 2007	Underwriting Resouth and Massime Tayonii Uncertain P&D. Resketon Technology and CHCs Stabilization
CCMP	0.2007	Palant Küster Ingo Ellerdorfer Illrich Eghl (hyvi): A CCE Analysis of Energy Policies Considering Labor
CCMF	7.2007	Nobert Kuster, higo Ellersdolfer, Orich Full (IXXI). A COE-Analysis of Energy Fonces Considering Labor
CCMD	8 2007	Market Imperfections and Technology Specifications Monica Servano (lyyyi): The Production and Consumption Accounting Principles as a Guideline for Designing
CCIVII	8.2007	monica servino (TXXI). The Household and Consumption Accounting Environmental Tax Dollar
CCMP	9 2007	Environmental rax rolley Environ L. Corona (lyvyi): Economic and Poverty Impacts of a Voluntary Carbon Reduction for a Small
CCIVII	9.2007	Liberalized Developing Economy: The Case of the Philippines
CCMP	10 2007	Valenting Rosetti Emanuele Massetti and Massimo Tayoni: The WITCH Model Structure Baseline Solutions
SIEV	11 2007	Marsherita Turvani Aline Chiabai Anna Alberini and Stefania Tonin: Public Policies for Contaminated Site
SILV	11.2007	Cleanup: The Opinions of the Italian Public
CCMP	12.2007	M Berrittella A Certa M Enea and P Zito: An Analytic Hierarchy Process for The Evaluation of Transport
com	1212007	Policies to Reduce Climate Change Impacts
NRM	13.2007	Francesco Bosello. Barbara Buchner. Jacopo Crimi. Carlo Giupponi and Andrea Povellato: The Kvoto
		Protocol and the Effect of Existing and Planned Measures in the Agricultural and Forestry Sector in the EU25
NRM	14.2007	Francesco Bosello, Carlo Giupponi and Andrea Povellato: A Review of Recent Studies on Cost Effectiveness of
		GHG Mitigation Measures in the European Agro-Forestry Sector
CCMP	15.2007	Massimo Tavoni, Brent Sohngen, and Valentina Bosetti: Forestry and the Carbon Market Response to Stabilize
		Climate
ETA	16.2007	Erik Ansink and Arjan Ruijs: Climate Change and the Stability of Water Allocation Agreements
ETA	17.2007	François Gusdorf and Stéphane Hallegatte: Compact or Spread-Out Cities: Urban Planning, Taxation, and the
		Vulnerability to Transportation Shocks
NRM	18.2007	Giovanni Bella: A Bug's Life: Competition Among Species Towards the Environment
IEM	19.2007	Valeria Termini and Laura Cavallo: "Spot, Bilateral and Futures Trading in Electricity Markets. Implications for
		<u>Stability"</u>
ETA	20.2007	Stéphane Hallegatte and Michael Ghil: Endogenous Business Cycles and the Economic Response to Exogenous
		Shocks
CTN	21.2007	Thierry Bréchet, François Gerard and Henry Tulkens: <u>Climate Coalitions: A Theoretical and Computational</u>
6 61 F		<u>Appraisal</u>
ССМР	22.2007	Claudia Kettner, Angela Köppl, Stefan P. Schleicher and Gregor Thenius: <u>Stringency and Distribution in the</u>
	22 2007	EU Emissions Trading Scheme – The 2005 Evidence
NKM	23.2007	Hongyu Ding, Arjan Ruijs and Ekko C. van Ierland: Designing a Decision Support System for Marine Reserves
COM	24 2007	Management: An Economic Analysis for the Dutch North Sea
CCMP	24.2007	Massimiliano Mazzanii, Anna Monimi ana Roberto Zoooli: <u>Economic Dynamics, Emission Trends and the EKC</u>
БТΥ	25 2007	<u>Hypothesis New Evidence Using NAMEA and Provincial Panel Data for Italy</u> Loan Canton: Redealing the Carde: How the Presence of an Eac Industry Modifies the Political Economy of
EIA	23.2007	<i>Joan Canton</i> . <u>Redeating the Cards: How the Presence of an Eco-industry Modifies the Political Economy of</u>
FTΛ	26 2007	<u>Environmental Foncies</u> Joan Canton: Environmental Toyotion and International Eco. Industries
CCMP	27 2007	Oscar Cacho and Leslie Linner (lyyyii): Abatement and Transaction Costs of Carbon-Sink Projects Involving
COM	27.2007	Smallholders
CCMP	28 2007	A Canarrós E Cerdá P Ovando and P Campos (Ixxxii): Carbon Sequestration with Reforestations and
Centi	20.2007	Biodiversity-Scenic Values
CCMP	29,2007	Georg E. Kindermann, Michael Obersteiner, Ewald Rametsteiner and Ian McCallcum (lxxxii): Predicting the
		Deforestation–Trend Under Different Carbon–Prices

CCMP	30.2007	Raul Ponce-Hernandez (lxxxii): A Modelling Framework for Addressing the Synergies between Global
		Conventions through Land Use Changes: Carbon Sequestration, Biodiversity Conservation, Prevention of Land
		Degradation and Food Security in Agricultural and Forested Lands in Developing Countries
ETA	31.2007	Michele Moretto and Gianpaolo Rossini: Are Workers' Enterprises Entry Policies Conventional
KTHC	32.2007	Giacomo Degli Antoni: Do Social Relations Affect Economic Welfare? A Microeconomic Empirical Analysis
CCMP	33.2007	Reyer Gerlagh and Onno Kuik: Carbon Leakage with International Technology Spillovers
CCMP	34.2007	Richard S.J. Tol: The Impact of a Carbon Tax on International Tourism
CCMP	35.2007	Reyer Gerlagh, Snorre Kverndokk and Knut Einar Rosendahl: Optimal Timing of Environmental Policy;
		Interaction Between Environmental Taxes and Innovation Externalitie
SIEV	36.2007	Anna Alberini and Alberto Longo: Valuing the Cultural Monuments of Armenia: Bayesian Updating of Prior
		Beliefs in Contingent Valuation
ССМР	37.2007	Roeland Bracke, Tom Verbeke and Veerle Dejonckheere: <u>What Distinguishes EMAS Participants</u> ? An
	20.2005	Exploration of Company Characteristics
ССМР	38.2007	E. Tzouvelekas, D. Vouvaki and A. Xepapadeas: <u>Total Factor Productivity Growth and the Environment: A Case</u>
COM	20 2007	tor Green Growth Accounting
CCMP	39.2007	Klaus Keller, Louise I. Millich, Alexander Robinson and Richard S.J. 101: <u>How Overconfident are Current</u>
CCMD	40 2007	Projections of Anthropogenic Carbon Dioxide Emissions?
CCMP	40.2007	Massimiliano Mazzanii ana Roberto Zoboli: <u>Environmentai Efficiency</u> , <u>Emission Trends and Labour</u> Droductivity Trada Off or Joint Dynamics? Empirical Evidence Using NAMEA Danal Data
PPCG	41 2007	<u>Froductivity: Trade-Off of Joint Dynamics? Empirical Evidence Using NAMEA Panel Data</u>
rico	41.2007	Flectoral Support in Mexico and Argentina in the '90s
PRCG	42 2007	Veronica Ronchi: The Neoliberal Myth in Latin America: The Cases of Mexico and Argentina in the '90s
CCMD	42.2007	David Anthoff Camoyon Honburn and Dishaud S. I. Tal: Equity Waighting and the Marsinal Damage Costs of
CCIVIF	43.2007	Climate Change
FTA	44 2007	Cliniate Change Round R. Diiketra, and Dirk T.G. Rübbelke: Group Rewards and Individual Sanctions in Environmental Policy
	45 2007	Bound Tanglaw Tweet in International Organizational An Empirical Investigation Economy on the United National
	45.2007	Benno Torgier. <u>Trust in International Organizations: An Empirical Investigation Focusing on the Onneo Nations</u>
CCMP	46.2007	Enrica De Cian, Elisa Lanzi and Roberto Roson: The Impact of Temperature Change on Energy Demand: A
COM	17 2007	Dynamic Panel Analysis
CCMP	47.2007	Edwin van der Werj: Production Functions for Climate Poncy Modering: An Empirical Analysis
KTHC	48.2007	Francesco Lancia and Giovanni Prarolo: <u>A Politico-Economic Model of Aging, Technology Adoption and</u>
NDM	40 2007	$\frac{\text{Growth}}{\text{Gridentian}}$
NRM	49.2007	Giulia Minola: Gender Issue and Water Management in the Mediterranean Basin, Middle East and North Africa
KTHC	50.2007	Susanna Mancinelli and Massimiliano Mazzanti: SME Performance, Innovation and Networking Evidence on
CCMD	51 2007	<u>Complementarities for a Local Economic System</u>
CCMP	51.2007	Kelly C. ae Bruin, Roo B. Dellink and Richard S.J. Tol: <u>AD-DICE: An Implementation of Adaptation in the DiCE</u>
NRM	52 2007	<u>Model</u> Frank van Konwan, Carol Dianarink, Paul P. Schot and Martin I. Wassan: Interactive Problem Structuring with
	52.2007	ICZM Stakeholders
CCMP	53 2007	Valeria Costantini and Francesco Cresni: Environmental Regulation and the Export Dynamics of Energy
ceiiii	55.2007	Technologies
CCMP	54.2007	Barbara Buchner, Michela Catenacci and Alessandra Sgobbi: Governance and Environmental Policy
		Integration in Europe: What Can We learn from the EU Emission Trading Scheme?
CCMP	55.2007	David Anthoff and Richard S.J. Tol: On International Equity Weights and National Decision Making on Climate
		Change
CCMP	56.2007	Edwin van der Werf and Sonja Peterson: Modeling Linkages Between Climate Policy and Land Use: An
		Overview
CCMP	57.2007	Fabien Prieur: The Environmental Kuznets Curve in a World of Irreversibility
KTHC	58.2007	Roberto Antonietti and Giulio Cainelli: Production Outsourcing, Organizational Governance and Firm's
		Technological Performance: Evidence from Italy
SIEV	59.2007	Marco Percolo: Urban Transport Policies and the Environment: Evidence from Italy
ETA	60.2007	Henk Folmer and Pierre von Mouche: Linking of Repeated Games. When Does It Lead to More Cooperation
		and Pareto Improvements?
CCMP	61.2007	Arthur Riedacker (lxxxi): A Global Land Use and Biomass Approach to Reduce Greenhouse Gas Emissions,
		Fossil Fuel Use and to Preserve Biodiversity
CCMP	62.2007	Jordi Roca and Monica Serrano: Atmospheric Pollution and Consumption Patterns in Spain: An Input-Output
		Approach
CCMP	63.2007	Derek W. Bunn and Carlo Fezzi (lxxxi): Interaction of European Carbon Trading and Energy Prices
CTN	64.2007	Benjamin Golub and Matthew O. Jackson (lxxxiii): Naïve Learning in Social Networks: Convergence, Influence
		and Wisdom of Crowds
CTN	65.2007	Jacob K. Goeree, Arno Riedl and Aljaž Ule (lxxxiii): In Search of Stars: Network Formation among
		Heterogeneous Agents
CTN	66.2007	Gönül Doğan, M.A.L.M. van Assen, Arnout van de Rijt, and Vincent Buskens (lxxxiii): The Stability of
OTN	CT 0007	Exchange Networks
CIN	67.2007	ben Zissimos (IXXXIII): Why are Irade Agreements Kegional?
UIN	08.2007	Jucques Dreze, Michel Le Breion, Alexel Savvaleev and Shiomo Weber (IXXXIII): <u>«Almost» Subsidy-free Spatial</u>
CTN	60 2007	<u>1 nong m a Multi-ultiensional Setting</u>
	07.2007	And Buous (IAAAIII). THE FORMATOR OF FINALION OF FINALICIAL INCLIGATE

CTN	70.2007	Andrea Galeotti and Sanjeev Goyal (lxxxiii): <u>A Theory of Strategic Diffusion</u>
IEM	71.2007	Francesco Bosello, Enrica De Cian and Roberto Roson: Climate Change, Energy Demand and Market Power in
		a General Equilibrium Model of the World Economy
ETA	72.2007	Gastón Giordana and Marc Willinger: Fixed Instruments to Cope with Stock Externalities An Experimental
		Evaluation
KTHC	73.2007	Oguzhan Dincer and Eric Uslaner: <u>Trust and Growth</u>
CCMP	74.2007	Fei Teng and Alun Gu: Climate Change: National and Local Policy Opportunities in China
KTHC	75.2007	Massimiano Bucchi and Valeria Papponetti: Research Evaluation as a Policy Design Tool: Mapping
CIEV	76 2007	<u>Approaches across a Set of Case Studies</u>
SIEV	/6.2007	Paolo Figini, Massimiliano Castellani ana Laura Vici: Estimating Tourist Externalities on Residents: A Choice
IEM	77 2007	Inducting Approach to the Case of Kinning
CCMD	77.2007	<i>Ciuganna Di Vita</i> : Logal Familias and Environmental Drotaction: is there a Causal Palationshin?
KTUC	78.2007	Behavia Autoriatii and Cialia Crinellia Sectial Academentian Technologue and Outormaine of Knowleder
KIHC	79.2007	Intensive Business Services Empirical Insights from Italy
КТНС	80 2007	Jacono Grassi: The Music Market in the Age of Download
ETA	81.2007	Carlo Carraro and Alessandra Soobbi: Modelling Negotiated Decision Making: a Multilateral. Multiple Issues.
2	0112007	Non-Cooperative Bargaining Model with Uncertainty
CCMP	82.2007	Valentina Bosetti, Carlo Carraro, Emanuele Massetti and Massimo Tavoni: International Energy R&D
		Spillovers and the Economics of Greenhouse Gas Atmospheric Stabilization
CCMP	83.2007	Sjak Smulders and Edwin van der Werf. Climate Policy and the Optimal Extraction of High- and Low-Carbon
		Fossil Fuels
SIEV	84.2007	Benno Torgler, Bruno S. Frey and Clevo Wilson: Environmental and Pro-Social Norms: Evidence from 30
		Countries
KTHC	85.2007	Elena Bellini, Ugo Gasparino, Barbara Del Corpo and William Malizia: Impact of Cultural Tourism upon
		Urban Economies: An Econometric Exercise
NRM	86.2007	David Tomberlin and Garth Holloway: Trip-Level Analysis of Efficiency Changes in Oregon's Deepwater
		Trawl Fishery
CTN	87.2007	Pablo Revilla: Many-to-One Matching when Colleagues Matter
IEM	88.2007	Hipòlit Torró: Forecasting Weekly Electricity Prices at Nord Pool
ETA	89.2007	Y. Hossein Farzin: Sustainability and Optimality in Economic Development: Theoretical Insights and Policy
		Prospects
NRM	90.2007	P. Sarfo-Mensah and W. Oduro: Traditional Natural Resources Management Practices and Biodiversity
		Conservation in Ghana: A Review of Local Concepts and Issues on Change and Sustainability
NRM	91.2007	Lorenzo Pellegrini: The Rule of The Jungle in Pakistan: A Case Study on Corruption and Forest Management in
		Swat
NRM	92.2007	Arjan Ruijs: Welfare and Distribution Effects of Water Pricing Policies
ETA	93.2007	Jean-Marie Grether, Nicole A. Mathys and Jaime de Melo: Trade, Technique and Composition Effects: What is
		Behind the Fall in World-Wide SO2 Emissions 1990-2000?
PRCG	94.2007	Bernardo Bortolotti, Carlo Cambini, Laura Rondi and Yossi Spiegel: Capital Structure and Regulation: Does
a a		Ownership Matter?
CCMP	95.2007	Valentina Bosetti, Carlo Carraro, Emanuele Massetti and Massimo Tavoni: Optimal Energy Investment and
COM	06 0007	<u>R&D Strategies to Stabilise Greenhouse Gas Atmospheric Concentrations</u>
CCMP	96.2007	<i>Xavier Pautrel</i> : <u>Pollution, Health and Life Expectancy: How Environmental Policy Can Promote Growth</u>

(lxxxi) This paper was presented at the EAERE-FEEM-VIU Summer School on "Computable General Equilibrium Modeling in Environmental and Resource Economics", held in Venice from June 25th to July 1st, 2006 and supported by the Marie Curie Series of Conferences "European Summer School in Resource and Environmental Economics".

(lxxxii) This paper was presented at the Workshop on "Climate Mitigation Measures in the Agro-Forestry Sector and Biodiversity Futures", Trieste, 16-17 October 2006 and jointly organised by The Ecological and Environmental Economics - EEE Programme, The Abdus Salam International Centre for Theoretical Physics - ICTP, UNESCO Man and the Biosphere Programme - MAB, and The International Institute for Applied Systems Analysis - IIASA.

(Ixxxiii) This paper was presented at the 12th Coalition Theory Network Workshop organised by the Center for Operation Research and Econometrics (CORE) of the Université Catholique de Louvain, held in Louvain-la-Neuve, Belgium on 18-20 January 2007.

	2007 SERIES
ССМР	Climate Change Modelling and Policy (Editor: Marzio Galeotti)
SIEV	Sustainability Indicators and Environmental Valuation (Editor: Anil Markandya)
NRM	Natural Resources Management (Editor: Carlo Giupponi)
КТНС	Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM	International Energy Markets (Editor: Matteo Manera)
CSRM	Corporate Social Responsibility and Sustainable Management (Editor: Giulio Sapelli)
PRCG	Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)
ETA	Economic Theory and Applications (Editor: Carlo Carraro)
CTN	Coalition Theory Network