Lozano, Javier; Rey-Maquieira, Javier

Working Paper
An Analysis of the Evolution of Tourism Destinations from the Point of View of the Economic Growth Theory

Nota di Lavoro, No. 146.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Lozano, Javier; Rey-Maquieira, Javier (2005) : An Analysis of the Evolution of Tourism Destinations from the Point of View of the Economic Growth Theory, Nota di Lavoro, No. 146.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74161
An Analysis of the Evolution of Tourism Destinations from the Point of View of the Economic Growth Theory

Javier Lozano, Carlos Gómez and Javier Rey-Maquieira

NOTA DI LAVORO 146.2005

Javier Lozano, University of the Balearic Islands, IMEDEA-UIB of CSIC
Carlos Gómez, University of Alcalá
Javier Rey-Maquieira, University of the Balearic Islands, IMEDEA-UIB of CSIC

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=861885

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei

Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
An Analysis of the Evolution of Tourism Destinations from the Point of View of the Economic Growth Theory

Summary
In this paper we try to build a bridge between the traditional analysis of the evolution of tourism destinations and economic growth theory. With such an aim we develop an environmental growth model for an economy specialized in tourism and we derive the pattern of tourism development with numerical calculations. The results of our simulations do not contradict the general pattern of evolution implied in the Tourism Area Life Cycle Hypothesis, being environmental deterioration and public goods congestion the main reasons for the stagnation of the tourism destination. We also show the importance of the quality of private tourism services in the evolution of the tourism destination.

Keywords: Tourism, Economic growth, Tourism lifecycle

JEL Classification: L83, Q26, O41

This paper was presented at the Second International Conference on "Tourism and Sustainable Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005.

Address for correspondence:

Javier Lozano
University of the Balearic Islands
Campus Universitari
Cra. de Valldemossa, km 7.5
07071 Palma
Spain
Phone: +34 971 17 30 16
E-mail: javier.lozano@uib.es
1. Introduction

The analysis of the development of tourism destinations is one of the main topics in tourism research. The literature on this topic has been structured around the concept of Tourism Area Life Cycle (TALC) that Butler (1980) put forward. As it is well known, according to the TALC hypothesis a tourism destination experiences several stages of tourism development that end up in the stagnation of the tourism destination. These stages are differentiated by several factors such as the number of visitors, tourist’s motivations, the perception of the tourism phenomenon by the residents or the degree of environmental damage. As this last factor is usually stressed as one of the main reasons for the final stagnation of the tourism destination, this literature is closely linked to the concepts of sustainability and carrying capacity.

Most of the literature is aimed to test the adequacy of the TALC hypothesis for specific tourism destinations (for instance, Cooper and Jackson, 1989; Agarwal, 1997, 2002). The methodology is mainly descriptive, without a formal base. An important shortcoming of this literature is that there have been little attempts to base the analysis of the evolution of tourism destinations on sound economic principles. Specifically, it is quite disappointing the disconnection of this literature from the economic growth theory.

In the field of economic growth analysis the so called environmental growth models have been developed as an appropriate tool to consider the role of environmental constraints on economic development (Barbier, 1999; Hettich, 1998; Schou, 2000; Stockey, 1998; Beltratti, 1996 are just some examples). These models have several characteristics that make them useful tools for the analysis of the development of tourism destinations. First their dynamic nature allows for the consideration of the intertemporal effects of resource allocation. Second they are based on optimisation behaviour and therefore allow for an analysis of the impact on welfare of different policies and institutional settings. Third they consider the interdependence among different markets in a general equilibrium framework. Forth, they explicitly consider the relationship between economic activity and environmental and natural resources. Finally, they allow for a consideration of the different market failures associated with the use of natural and environmental resources.

In this paper we build an environmental growth model for an economy specialized in tourism and analyze the pattern of tourism development that stems from the model. Despite the simplifying assumptions of the model, it gives interesting insights about the dynamics of tourists’ inflows, tourism revenues, environmental quality, congestion of public goods and residents’ welfare.

The approach we adopt is quite innovative regarding the determinants of the evolution of a tourism destination. In the few papers on the TALC hypothesis that have a formal base it is usually assumed that the evolution of tourists inflows is demand driven (see for example
Lundtorp y Wanhill, 2001) and it is derived from a model of information diffusion that results in a logistic function for the number of tourists. It is therefore assumed that supply will respond adequately to the increase in demand. In our model the incentives to build tourism facilities (due to high returns to investment) are the driving force and we assume that occupation of accommodation capacity is guaranteed. The role of the demand side is to determine the price paid for tourism services and, therefore, the returns to investment in the tourism sector and the building of tourism facilities. The willingness to pay will depend on the characteristics of the tourism destination.

The rest of the paper is organized as follows. Section 2 describes the assumptions of the model and finds the equilibrium. Section 3 shows the pattern of evolution of a tourism destination for different levels of accommodation quality. Finally, section 4 concludes.

2. The model

2.1. International tourism market

We consider an economy that supplies tourism services in an international tourism market where there are a large number of suppliers. Specifically, we assume that in this market several economies or tourism regions participate. In each of these economies there are different firms that supply tourism accommodation. On the other hand, in this market there also are a large number of heterogeneous tourists differentiated by their tastes and their income. In these circumstances, and given the hedonic price theory (Rosen, 1974) there exist an hedonic price function where the equilibrium price depends on the quality of the tourism product. Firms in this market compete in the characteristics space and the large number of suppliers implies zero profits.

We will consider a bounded set of characteristics that are valued by tourists and therefore determine the price of the tourism product:

First, the quality of accommodation services, represented in the model as the amount of capital per unit of accommodation, \(K_{ij}/T_{ij} \), where \(K_{ij} \) is total amount of capital of firm \(i \) in destination \(j \) and \(T_{ij} \) is the number of units of accommodation (let us say beds) of the firm.

Second, public goods provided by the government, \(G_j \). We assume that these public goods experience congestion (they are therefore rival but non-excludable) so that their impact on the hedonic price function is given by \(G_j/T_j \), where \(T_j \) is the total number of beds in destination \(j \).

Finally, environmental quality of tourism destinations. We represent environmental quality with a single variable, \(N_j \).

Given these assumptions, the hedonic price function is:
\[P_y = P \left(\frac{K_y}{T_y}, \frac{G_i}{T_j}, N_j \right) \]

or, considering a Cobb-Douglas:

\[P_y = \left(\frac{K_y}{T_y} \right)^\alpha \left(\frac{G_i}{T_j} \right)^\beta N_j^\mu \quad (1) \]

We will assume that \(0 < \alpha, \beta < 1; \mu > 0; \alpha + \beta < 1 \)

Given (1), the tourism revenue function for a firm \(i \) in a tourism destination \(j \) is:

\[TR_{ij} = T_y^{1-\alpha} K_y^\alpha \left(\frac{G_i}{T_j} \right)^\beta N_j^\mu \quad (2) \]

Whereas the aggregate tourism revenue function for the whole economy is:

\[TR = T^{1-\alpha} K^\alpha G^\beta N^\mu \quad (2') \]

Therefore, tourism revenues may rise due to increases in accommodation capacity or because of improvements in the attractiveness of the tourism destination thanks to higher quality of private tourism services, higher public expenditure or better environmental quality.

2.2. Public sector

We assume that the government finances the provision of public goods with an ad-valorem tax levied on tourism revenues, \(\tau_{TR} \), \(0 \leq \tau_{TR} < 1 \). Public budget is always in equilibrium, that is:

\[\tau_{TR} TR = G \quad (3) \]

2.3. Firm’s behaviour

Tourism firms maximize profits choosing the amount of capital and the number of accommodation units. Both decisions determine the quality of services provided by the firm, \(K_i/T_j \). Firms take as given the amount of goods and services provided by the public sector, environmental quality and aggregate accommodation capacity of the economy. Notice that the model allows for two kind of investment. Investment in quality takes place when the firm increases its capital without modifying its accommodation capacity. However, when accommodation capacity is raised in the same proportion as capital we can speak of investment in capacity.

In this paper we simplify firms’ decision considering that there is a minimum of capital per unit of accommodation, \(\kappa \), to which all the firms adjust optimally. This minimum could be justified as a characteristic of tourism preferences. In this case we would assume that
there is a minimum threshold for accommodation quality below which tourists are not willing to visit the tourism destination. Alternatively, we could consider that this minimum is set by the public sector as a tool for tourism quality management. In any case, this assumption will allow to compare the evolution of tourism destinations for different alternatives regarding the quality of accommodation facilities.

Given these assumptions, the optimal behavior of the firm is determined by the following expressions:

\[T_i = \frac{K_i}{\kappa} \]

\[(1 - \tau_{TR}) \frac{TR_i}{K_i} = R \]

Where \(R \) is the return to capital. Or, in the aggregate:

\[T = \frac{K}{\kappa} \]

\[(1 - \tau_{TR}) \frac{TR}{K} = R \quad (4) \]

2.4. Residents’ behavior

We consider that the economy is populated by a single representative agent that maximizes the following intertemporal utility function:

\[\omega_0 = \int_0^\infty e^{-\rho t} \left(\frac{C_i N_i^{\nu}}{1 - \theta} \right)^{-\theta} dt \quad \nu, \rho, \theta > 0 \]

Where the arguments of the utility function are consumption, \(C \), and environmental quality, \(N \). It is assumed a constant elasticity of intertemporal substitution and a unitary intratemporal elasticity between consumption and environmental quality. We also assume that marginal utility of each argument is positive and decreasing. The parameter \(\rho \) is a discount factor while \(\nu \) measures the relative weight of environmental quality on residents’ preferences.

Residents own capital. Returns to capital net of depreciation and taxes are \(r \). Income is used for consumption and saving (investment in capital). Therefore, the budget constraint for residents is:

\[\dot{K} = rK - C \quad (7) \]

Applying the usual optimal control conditions we derive the following expressions that, beside the budget constraint, describe the residents’ behavior:
\[
\frac{\dot{C}}{C} = \frac{1}{\theta} \left[r - \rho + \nu (1 - \theta) \frac{\dot{N}}{N} \right] \tag{8}
\]

\[
\lim_{t \to \infty} \lambda_t K_t = 0 \tag{9}
\]

Where \(\lambda_t \) is a costate variable and \(r \) is the returns to capital net of depreciation.

2.6. The environment

We interpret environmental quality as a renewable resource. The quality of the environment accumulates due to the regenerative capacity of nature that depends on the level of environmental quality. We consider that tourism activity has damaging effects on the environment. Davies and Cahill [12] give an account of the environmental impacts of tourism such as energy consumption, water consumption, wastes, impacts on water and air quality, ecosystems alteration and fragmentation, impacts on wildlife and on aesthetic and cultural environment. The intensity of those impacts are closely related to the number of visitors and the building of facilities for their lodging and recreational activities.

We assume that environmental quality evolves over time according to the following function:

\[
\dot{N} = \varsigma (\overline{N} - N) - zT \tag{10}
\]

For simplicity we have considered a linear regeneration function. \(\overline{N} \) is the maximum level of environmental quality, \(\varsigma \) is the rate of recovery of the environment due to natural regeneration and \(z \) measures the environmental impact associated with a unit of accommodation capacity. Given this specification, investment in capacity has a negative impact on the environment but investment in quality (higher capital for a given capacity of accommodation) has not. We do not differentiate the environmental impact of different types of tourism. For instance, the differences in habits and behavior of tourists with different socio-economic characteristics may imply differences in their environmental impact. Therefore, a change from mass tourism to “quality” tourism would not only affect the environment through the amount of tourists (assumedly in a positive way) but also from a change in \(z \). A constant \(z \) is therefore a simplification only justified by our lack of evidence about the magnitude and even the sign of the change in \(z \) when the composition of visitors changes.

2.7. Equilibrium

Given our previous assumptions, the revenue function for the whole tourism destination is:
\[TR = \kappa \frac{\alpha + \beta - 1}{1 - \beta} \frac{\beta}{\tau_{TR}^{1 - \beta}} KN^{1 - \beta} \]

(2'')

where the public budget constraint has been considered.

The dynamic behaviour of the economy is defined by equations (2''), (7), (9), (10) and the following one that results from the combination of (4) and (8):

\[\frac{\dot{C}}{C} = \frac{1}{\theta} \left[(1 - \tau_{TR}) \frac{IT}{K} - \delta - \rho + v(1 - \theta) \frac{\dot{N}}{N} \right] \]

(12)

The steady state is defined by the following expressions:

\[N = \left[\kappa^{1 - \alpha - \beta} (\delta + \rho)^{1 - \beta} \left(\frac{1}{1 - \tau_{TR}} \right)^{1 - \beta} \left(\frac{1}{\tau_{TR}} \right)^{\beta} \right]^{1 - \mu} \]

(13)

\[T = \frac{\zeta (N - \bar{N})}{z} \]

(14)

\[K = \kappa T \]

(15)

\[IT = \frac{\delta + \rho}{(1 - \tau_{TR})} K \]

(16)

\[C = (1 - \tau_{TR}) IT - \delta K \]

(17)

3. Dynamics of tourism development

In this section we show the pattern of tourism development that follows from our model. With such an aim, we calibrate the model and perform numerical calculations of the dynamic of the relevant variables considering an initial situation of low tourism development.

Before presenting the assumptions of this exercise and its results we explain the working forces of the model dynamics. The evolution of the tourism destination is determined by the interplay of demand and supply factors. The demand factors, through the hedonic price function, determine the price of the tourism services supplied in the economy. This price is a main determinant of the returns to the tourism firms and therefore the accommodation capacity of the tourism destination. Under the assumption of full occupation of capacity, the evolution of this capacity determines how the number of visitors changes. As the model is set up, the economy converges to a steady state or, in TALC terminology, reaches the stagnation stage.

An analysis of expression 2'' helps to understand the reasons for the final stagnation. They are not the usual assumptions of neoclassical growth models about decreasing returns to

1 See appendix A for a discussion of the stability of the steady state.
2 Simulations have been done using the solver CONOPT2 of the program GAMS 2.0. For numerical calculations the version of the model in discrete time is used. See appendix B.
investment since returns to capital are constant once it is considered that investment is in
capacity (κ is assumed to be constant) and congestion of public goods is compensated by a
higher provision thanks to increases in tourism revenues. The only limitative factor to
continuous growth is the negative impact of the increase in capacity on environmental
quality and its effect on the price of tourism services and eventually on the return to
investment in the tourism business.

After these general comments we show the results of our numerical calculations.
Specifically, we show the evolution of the number of visitors, tourism revenues,
environmental quality, public expenditure per tourist and instantaneous utility of residents.
For all simulations the model is calibrated using the following parameter values:

<table>
<thead>
<tr>
<th>δ</th>
<th>ρ</th>
<th>α</th>
<th>β</th>
<th>μ</th>
<th>V</th>
<th>ζ</th>
<th>N</th>
<th>z</th>
<th>θ</th>
<th>τ_{TR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.6</td>
<td>0.3</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Given that we are only interested in the general dynamic patterns and not in precise
quantitative results, these values are hypothetical and have been chosen according to the
following criteria. The value of δ implies a slow depreciation due to the importance of
buildings in total capital stock of tourism. We have assumed that net returns to capital in
steady state are 5% (ρ=0.05). We assume that the elasticity of tourism revenues with respect
to the quality of accommodation (α) is higher than the elasticity with respect to public goods
(β) and with respect to environmental quality (μ). It is plausibly assumed that residents give
a higher value to the environment than visitors (v>µ). The regenerative capacity of the
environment is considered to be high (ζ=1) The highest level of environmental quality and
the relationship between tourism flows and environmental damage are normalized to one
(N=1 and z=1). As it is usual in the literature, the intertemporal elasticity of substitution is
set to a value close to one (θ=0.9). Finally, the tax levied on tourism revenues is at its
efficient value equal to the elasticity of tourism revenues with respect to public expenditure.

Obviously, different parameter values would imply different values for the endogenous
variables. However, our aim in not to get exact values but to show general patterns of
evolution. For different parameter values the shape of the curves will be the same as far as
the stability condition is satisfy.

We perform different simulations considering different levels of capital per unit of
accommodation. Since this variable is taken as an indicator of accommodation quality, this
allows to consider the consequences of specializing in different market segments. As a point
of reference we take the steady state level of capital per unit of accommodation in the central planner solution of the model. Specifically, simulations are done for values of capital per unit of accommodation of 1%, 10%, 30%, 50% y 100% of that value.

As we want to show the complete evolution of the tourism destination, the initial values of the state variables are chosen as to represent a situation of low tourism development. Specifically, we assume that initially environmental quality is at its highest value \(N_0 = \bar{N} \) and tourism capital is very low \(K = 0.01 \) \(^3\).

3.1. Tourism flows

Figure 2 shows the evolution of the annual number of tourists that visit the destination for different levels of accommodation quality. For every case the shape of the curve reproduces the pattern of evolution described by Butler (1980). Therefore, after a first stage when the number of visitors grows slowly the inflows accelerate but sooner or later the number of visitors stagnates at its steady state level. This result is quite interesting since we have not imposed a logistic function to the inflows of tourists as, for instance, in Lundtorp and Wanhill (2001).

Figure 1 also shows that when accommodation quality is higher it takes a longer time to reach the stagnation stage and the number of visitors in the steady state is lower. This last characteristic can also be verified in figure 2.

\(^3\) This is 0.15% of the steady state level of capital in the central planner solution.
Figure 2. Evolution of tourists inflows for different levels of accommodation quality
3.2. Tourism revenues

Figure 4 shows the dynamics of tourism revenues for different levels of accommodation quality. Again, the pattern of evolutions fits to a logistic and it takes longer to reach the steady state for higher levels of accommodation quality. However, as it is shown in figure 3, the relationship accommodation quality and steady state tourism revenues is not monotonous. When accommodation quality is low, an increase in the quality of private tourism facilities would imply higher long term tourism revenues. However, above a critical threshold higher quality of accommodation means lower long term tourism revenues. This characteristic of the model can be explained in the following way. On the one hand, low accommodation quality is associated in the long term with high tourists’ inflows, a very degraded natural environment, high congestion of public goods (as shown below) and therefore a low tourism price. On the other hand, to provide for higher quality private services a larger investment per unit of accommodation is needed and this investment effort may not be compensated by the positive effect on price of a better environment and lower congestion.

Figure 3. Relationship between tourism revenues and accommodation quality in the steady state.
Figure 4. Evolution of tourism revenues for different levels of accommodation quality.
3.3. Environmental quality

Figure 6 shows how environmental quality evolves in the process of tourism development. For every case, environmental quality evolves following three stages that are consistent with the evolution of tourism inflows. In the first stage environmental deterioration is low. This stage is shorter the lower is the quality of accommodation supply. Afterwards, environmental degradation accelerates and eventually environmental quality reaches its steady state value. As can be seen in figure 5, higher accommodation quality is associated with a better environment in the long term.

![Figure 5. Relationship between environmental quality and accommodation quality in the steady state](image)
Figure 6. Evolution of environmental quality for different levels of accommodation quality.
3.4. Congestion of public goods

Figure 8 shows that, given a constant tax rate, tourism development implies an increase in public goods congestion. This factor contributes to the final stagnation of the tourism destination. The increase in congestion can be attributed to the faster growth of tourists inflows compared to the growth in revenues due to the fall in the price of tourism services associated to environmental degradation.

Another interesting characteristic is that the increase in congestion is slower and less pronounced when accommodation quality is higher. As can be seen in figure 7, an economy that supplies private tourism services of higher quality can also finance a higher level of public goods per tourist.

Figure 7. Relationship between environmental quality and accommodation quality in the steady state (constant tax rate)
Figure 8. Evolution of public goods congestion for different levels of accommodation quality
3.5. Instantaneous utility

Finally, figure 11 represents the evolution of resident’s welfare. The utility function depends on material consumption and environmental quality. Although tourism development implies environmental degradation, the resident’s welfare increases through time thanks to the growth in consumption possibilities. As it happens with tourism revenues, long term welfare has a non monotonous relationship with accommodation quality. There is, therefore, an intermediate level of accommodation quality that maximizes steady state welfare.

Figura 9. Relationship between accommodation quality and steady state utility.

Finally, figure 10 helps to understand why a “myopic” society with an inadequate perception of the environmental impacts of tourism development may prefer to supply low quality services in the first stages of tourism development. As it is shown, a lower investment effort per accommodation unit allows to reach higher levels of utility in the short run although it implies to reach the stagnation stage quicker and to have a lower long run welfare level.

4 It should be stressed that in every case we are dealing with market solutions where there are market failures associated with the environment and the congestion of public goods. Therefore, none of the possible scenarios represented in the figures imply maximum resident’s welfare.
Figura 10. Evolution of resident’s welfare for different levels of accommodation quality.
Figura 11. Evolution of instantaneous utility for different levels of accommodation quality
4. Conclusions

In this paper an analysis of the evolution of tourism destinations is made from the point of view of the economic growth theory. Specifically, we build an environmental growth model to give some insights about the dynamics of the number of tourists, tourism revenues, environmental quality, congestion of public goods and welfare. We also show how the pattern of evolution depends on the average quality of private tourism services supplied in the tourism destination.

Our simulations show that the tourism destination eventually reaches a stagnation stage. However, the length of the growth period very much depends on the quality of private tourism services. Specifically, higher accommodation quality implies a longer time to reach the stagnation, lower tourists’ inflows, higher environmental quality and lower public goods congestion. In terms of long term tourism revenues and residents’ welfare, an intermediate level of accommodation quality is the best option.

Numerical calculations are based on hypothetical data since we just want to highlight general dynamic patterns, not precise quantitative results. Nevertheless, beyond the specific results, the paper is an illustration of how economic growth models may help to understand the dynamic behavior of economies based on the tourism industry. A methodology based on the building of dynamic general equilibrium models and their calibration to real data would yield results to compare with actual patterns of evolution of specific tourism destinations. This methodology has successfully employed in other fields of research as business cycles or international macroeconomics and we think it would help to understand the determinants of the evolution of tourism destinations.

Appendixes

Appendix A. Stability of the steady state

In this appendix we discuss the steady state stability conditions.

Combining (2’’), (4), (7) (10) and (12) we arrive at:

\[
\dot{C} = \frac{1}{\theta} \left\{ (1 - \tau_T T_R) \left(\kappa^{-\alpha - \theta} - \tau_T T_R N^\rho \right)^{\lambda - \rho} - \delta - \rho + \nu \left(1 - \theta \left(\frac{N - N}{N} - \frac{z K}{\kappa N} \right) \right) \right\} \]

\[
\dot{K} = \left\{ (1 - \tau_T T_R) \left(\kappa^{-\alpha - \theta} - \tau_T T_R N^\rho \right)^{\lambda - \rho} - \delta \right\} K - C
\]

\[
\dot{N} = \varsigma \left(N - N \right) - \frac{z K}{\kappa} K
\]
Linearization around the steady state results in a system whose Jacobian is:

$$B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$$

$$b_{11} = 0$$

$$b_{12} = -\frac{zv(1 - \theta)}{\theta \kappa} C^*$$

$$b_{13} = \frac{1}{\theta} \left[\frac{\mu(\delta + \rho)}{1 - \beta} - v(1 - \theta) \zeta \right] C^*$$

$$b_{21} = -1$$

$$b_{22} = \rho$$

$$b_{23} = \frac{\mu(\delta + \rho)}{(1 - \beta)} K^*$$

$$b_{31} = 0$$

$$b_{32} = -\frac{z}{\kappa}$$

$$b_{33} = -\zeta$$

The determinant of B is:

$$|B| = \frac{\rho \zeta (\delta + \rho) \mu (N - N^*)}{(1 - \beta) \theta} N^* > 0$$

The determinant is positive and therefore there are two possibilities: three positive eigenvalues or one positive and two negative. The characteristic equation is:

$$\lambda^3 - (\rho - \zeta) \lambda^2 + \left[\frac{\mu \zeta (\delta + \rho)(N - N^*)}{(1 - \beta)N^*} - \varphi \right] \lambda - |B| = 0$$

This equation cannot be solved analytically. However if we set $\theta = 1$ the characteristic equation is:

$$(\lambda - \rho) \left[\lambda^2 + \zeta \lambda + \frac{(\delta + \rho) \mu \zeta (N - N^*)}{(1 - \beta)N^*} \right] = 0$$

and the eigenvalues are:
\[\lambda_1 = \rho \]
\[\lambda_2, \lambda_3 = -\xi \pm \frac{\sqrt{\xi^2 - 4 \mu \xi (\delta + \rho)(N^* - N^*)}}{2(1 - \beta)N^*} \]

The first eigenvalue is positive. The other two are negative because:
\[\xi^2 - 4 \mu \xi (\delta + \rho)(N^* - N^*) < \xi^2 \]

Therefore, provided that the roots are real, the steady state is a saddle-path. Different values for the intertemporal elasticity of substitution mean horizontal shifts of the characteristic equation.

Therefore, this result would hold for a large range of values for \(\theta \).

Appendix B. The model in discrete time

The equations of the model in discrete time are the following:

Tourism revenues:
\[TR_t = K_t^{\alpha+\beta-1} G_t^\beta N_t^\mu \] (B.1)

Firms’ behaviour:
\[T_t = \frac{K_t}{K_t} \] (B.2)
\[(1 - \tau_{TR}) \frac{TR_t}{K_t} = (r_t + \delta) \] (B.3)
\[\Pi_t = TR_t - \tau_{TR} TR_t - (r_t + \delta) K_t \] (B.4)

Resident:
\[\omega_0 = \sum_{t=0}^{\infty} b^t \left(\frac{C_t}{N_t^*} \right)^{1-\theta}, \quad b = 1/(1 + \rho) \] (B.5)
\[K_{t+1} = (1 + r_t) K_t + \Pi_t - C_t \] (B.6)

Public sector:
\[\tau_{TR} TR_t = G_t \] (B.7)

Environment:
Residents maximize the following lagrangian:

\[
\ell = \sum_{t=0}^\infty b^t \left(\frac{C_t N_t^\gamma}{1 - \theta} \right)^{\frac{\theta}{1 - \gamma}} + \sum_{t=0}^\infty b^t \lambda_t \left[(1 + r_t)K_t + \Pi_t - C_t - K_{t+1} \right]
\]

where choice variables are \(C_t\) and \(K_t\), \(t \in [0, \infty)\) and the remaining variables are given for the resident. Euler equation is:

\[
C_{t+1} = C_t \left[b(1 + r_{t+1}) \left(\frac{N_{t+1}}{N_t} \right)^{\gamma(1-\theta)} \right]^{\frac{1}{\theta}}
\]

(B.9)

Combining (B.9) with (B.1), (B.3) we obtain:

\[
C_{t+1} = C_t \left[b \left(\gamma(1-\theta) \left(\frac{N_{t+1}}{N_t} \right)^{\gamma(1-\theta)} - \delta \right) \left(\frac{N_{t+1}}{N_t} \right)^{\gamma(1-\theta)} \right]^{\frac{1}{\theta}}
\]

(B.10)

Combining (B.6) with (B.1), (B.3), (B.4) and (B.7) we get:

\[
K_{t+1} = \left[1 + (1 - \tau_{Trt}) \left(\frac{\alpha+\beta-1}{\alpha} \right) s_t^\beta N_t^\mu - \delta \right] K_t - C_t
\]

(B.11)

From (B.2) and (B.8) results:

\[
N_{t+1} = N_t + \zeta(\bar{N} - N_t) - \frac{\bar{z}}{K} K_t
\]

(B.12)

(B.10)-(B.12) is the system of difference equations that determines the dynamic behaviour of the economy.
References

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries
ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries
PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy
ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms
PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market
PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets
PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values
PRA 13.2004 Maarten C.W. JANSEN (lxv): Auctions as Coordination Devices
PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers
PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination
CCMP 16.2004 Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions
PRA 17.2004 Slim Ben YOUSSEF: B&D in Cleaner Technology and International Trade
NRM 18.2004 Angela ANTOCI, Simone BORGHESI and Paolo RUSSU (lxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics
SIEV 19.2004 Anna ALBERNI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice
NRM 21.2004 Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists
NRM 23.2004 Pius ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya
NRM 24.2004 Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (lxvii): Tourism, Trade and Domestic Welfare
NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach
NRM 27.2004 Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports
NRM 29.2004 Marian WEBER (lxviii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest
NRM 30.2004 Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE (lxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting
CTN 33.2004 Wilton PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution
An Application to the Recreational Value of Forests

Gernot KLEPPER and Sonja PETERSON:

Ekin BIROL, Ağnes GYÖVÁI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects

Anastasios XEPAPADEAS and Constadina PASSA:

Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA

Notes on the Determinants of Innovation: A Multi-Perspective Analysis

E.C.M. RUIJGROK and E.E.M. NILLESEN

Using a Choice Experiment to Value Agricultural Resources on Smallholder Farms in Hungary: Institutional Analysis

E.C.M. RUIJGROK and E.EM. NILLESEN

Ekin BIROL, Ágnes GYOVAI and Melinda SMALE: Valuation of Ecosystem Services Provided by Biodiversity

E.C.M. RUIJGROK: The Socio-Economic Value of Natural Riverbanks in the Netherlands: Institutional Analysis

E.C.M. RUIJGROK: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

E.C.M. RUIJGROK: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

Salvador BARBERA and Matthew O. JACKSON (lxx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union

Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lxx): Optimal Information Transmission in Organizations: Search and Congestion

Francis BLOCH and Armando GOMES (lxx): Contracting with Externalities and Outside Options

Rabah AMIR, Efronsiny DIAMANTOUDI and Licun XUE (lxx): Merger Performance under Uncertain Efficiency Gains

Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players

Daniel DIERMEIER, Hília ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation

Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization and Coalition Government Formation

Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): Economics: An Emerging Small World?

Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. FØRUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elisaios PAPYRKAIS and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

Marzio GALEOTTI and Claudia KEMPFERT: Interactions between Climate and Trade Policies: A Survey

A. MARKANDYA, S. PEDROSO and D. STREMIKIENT: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

Sergei IZMALKOV (lxx): Multi-Unit Open Ascending Price Efficient Auction

Massimo DEL GAITTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities: Centralisation versus devolution

Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits

Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BERGANTÍNOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIJKAMP: A Meta-Analysis of the Willingness to Pay for Reducing Pesticide Risk Exposure

Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

Massimo FLORIO and Mara GRASSENI: The Missing Shock: The Macroeconomic Impact of British Privatisation

John BENNETT, Saul ESTRIN, James MAW and Giovanni URGA: Privatisation Methods and Economic Growth in Transition Economies

Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo MAINARDI: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective

Somdeb LAHIRE: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results

Giuseppe DI VITA: Natural Resources Dynamics: Another Look

Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

Valentina BOSETTI and David TOMBERLIN: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications

Patrick CAYRAN: Investments in Gas Pipelines and liquefied Natural Gas Infrastructure: What is the Impact on the Security of Supply?

Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies
CCMP 157.2004 Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?
ETN 159.2004 William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling
KTHC 160.2004 Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons
IEM 161.2004 Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRÍGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1 2005 Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change
CCMP 2 2005 Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China
CCMP 3 2005 Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level
CCMP 4 2005 Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice
ETA 5 2005 Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?
CCMP 6 2005 Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change
ETA 8 2005 Lorenzo PELLEGRINI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption
CCMP 9 2005 Angelo ANTOCCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model
CTN 10 2005 Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers
NRM 11 2005 Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate
KTHC 13 2005 Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms
PRCG 14 2005 Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure
CSRM 15 2005 Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry
KTHC 16 2005 Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence
KTHC 17 2005 Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms
KTHC 18 2005 Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer
KTHC 19 2005 Mombert HOPPE: Technology Transfer Through Trade
PRCG 20 2005 Roberto ROSON: Platform Competition with Endogenous Multithoming
CCMP 21 2005 Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes
IEM 22 2005 Fausto CAVALLARO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method
CTN 23 2005 Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria
CTN 25 2005 Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: Perceived Realism, Threat and WTP Estimates for Biodiversity Protection
SIEV 26 2005 Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities
CCMP 27 2005 Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information
NRM 28 2005 Maurice SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations
CCMP 29 2005 Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism
NRM 30 2005 Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies
NRM 31 2005 Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility
CCMP 32 2005 Joseph HUBER: Key Environmental Innovations
CTN 33 2005 Antonio CALVÓ-ARMENGOL and RahimI ILKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation
CTN 34 2005 Francesco FERI (lxxii): Network Formation with Endogenous Decay
CTN 35 2005 Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship

Umberto CHERUBINI and Matteo MANERA: Hunting the Living Dead A “Peso Problem” in Corporate Liabilities Data

Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITHAGEN (lxxvi): Local and Global Interactions in an Evolutionary Resource Game

Joëlle NOAILLY, Cees A. WITHAGEN and Jeroen C.J.M. van den BERGH (lxxvi): Spatial Evolution of Social Norms in a Common-Pool Resource Game

Massimiliano MAZZANTI and Roberto ZOBOLI: Economic Instruments and Induced Innovation: The Case of End-of-Life Vehicles European Policies

Anna LASUT: Creative Thinking and Modelling for the Decision Support in Water Management

Valentina BOSETTI and Barbara BUCHNER: Using Data Envelopment Analysis to Assess the Relative Efficiency of Different Climate Policy Portfolios

IEM 75.2005

ETA 76.2005

CTN 77.2005

ETM 78.2005

CCMP 80.2005

NRM 81.2005

CCMP 82.05

ETA 83.2005

KTHC 84.2005

ETA 85.2005

CCMP 86.2005

CSRM 87.2005

IEM 89.2005

NRM 91.2005

CCMP 92.05

CCMP 93.2005

CCMP 94.2005

CTN 95.2005

ETA 96.2005

CCMP 98.2005

CCMP 98.2005

PRC 91.2005

PRC 92.05

CCMP 93.2005

CCMP 94.2005

ETM 95.2005

ETM 96.2005

CCMP 97.2005

CCMP 98.2005

CTN 99.2005

IEM 100.2005

IEM 101.2005

KTHC 102.2005

ETA 103.2005

SIEV 104.2005

SIEV 105.2005

SIEV 106.2005

CTN 107.2005

KTHC 108.2005

NRM 109.2005

SIEV 110.2005

SIEV 111.2005

SIEV 112.2005

CCMP 113.2005

NRM 114.2005
Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary

Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

The Evolution of Enterprise Reform in Africa: From State-owned Enterprises to Private Participation in Infrastructure — and Back?

Italy’s Privatization Process and its Implications for China

A Solution to Matching with Preferences over Colleagues

Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys

Societal Explanations of Economic Development: the Role of Precious Metals

Firm’s Intangible Assets and Multinational Activity: Joint-Venture Versus FDI

Induced Technological Change in a Limited Foresight Optimization Model

The Value of ITC under Climate Stabilization

Dynamic Controllability with Overlapping targets: A Generalization of the Tinbergen-Nash Theory of Economic Policy

Multi-Product Crops for Agricultural and Energy Production – an AGE Analysis for Poland

Restructuring Italian Utility Markets: Household Distributional Effects

The Impact of Speed Limits on Recreational Boating in the Lagoon of Venice

Tourism, Jobs, Capital Accumulation and the Economy: A Dynamic Analysis

Risk Management of Daily Tourist Tax Revenues for the Maldives

The Economics of Local Tourist Systems

Simulating the Impact on the Local Economy of Alternative Management Scenarios for Natural Areas

Growth, Conventional Production and Tourism Specialisation: Technological Catching-up Versus Terms-of-Trade Effects

An International and Economic Growth: a Panel Data Approach

An Open Source Based Data Warehouse Architecture to Support Decision Making in the Tourism Sector

Tourism Immerization: Fact or Fiction?

Social Carrying Capacity of Mass Tourist Sites: Theoretical and Practical Issues about its Measurement

Environmental Quality and Long Run Tourism Development a Cyclical Perspective for Small Island Tourist Economies

An Analysis of the Evolution of Tourism Destinations from the Point of View of the Economic Growth Theory
<table>
<thead>
<tr>
<th>2004 SERIES</th>
<th>2005 SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>CCMP</td>
</tr>
<tr>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td>GG</td>
<td>GG</td>
</tr>
<tr>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>SIEV</td>
<td>SIEV</td>
</tr>
<tr>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
</tr>
<tr>
<td>NRM</td>
<td>NRM</td>
</tr>
<tr>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KTHC</td>
<td>KTHC</td>
</tr>
<tr>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>IEM</td>
</tr>
<tr>
<td>CSRM</td>
<td>CSRM</td>
</tr>
<tr>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
</tr>
<tr>
<td>PRA</td>
<td>PRA</td>
</tr>
<tr>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>ETA</td>
</tr>
<tr>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>CTN</td>
</tr>
<tr>
<td>Coalition Theory Network</td>
<td>Coalition Theory Network</td>
</tr>
</tbody>
</table>