Sgro, Pasquale M.; Chao, Chi-Chur; Hazari, Bharat R.; Laffargue, Jean-Pierre; Yu, Eden S. H.

Working Paper
Tourism, Jobs, Capital Accumulation and the Economy: A Dynamic Analysis

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 136.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Sgro, Pasquale M.; Chao, Chi-Chur; Hazari, Bharat R.; Laffargue, Jean-Pierre; Yu, Eden S. H. (2005) : Tourism, Jobs, Capital Accumulation and the Economy: A Dynamic Analysis, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 136.2005

This Version is available at:
http://hdl.handle.net/10419/74114
Tourism, Jobs, Capital
Accumulation and the Economy:
A Dynamic Analysis
Chi-Chur Chao, Bharat R. Hazari, Jean-Pierre Laffargue, Pasquale M. Sgro, and Eden S. H. Yu

NOTA DI LAVORO 136.2005

NOVEMBER 2005
NRM – Natural Resources Management

Chi-Chur Chao, Department of Economics, Chinese University of Hong Kong and Deakin Business School, Deakin University, Australia
Bharat R. Hazari, Deakin Business School, Deakin University, Australia
Jean-Pierre Laffargue, CEPREMAP, France
Pasquale M. Sgro, Deakin Business School, Deakin University, Australia
Eden S. H. Yu, Department of Economics and Finance, City University of Hong Kong

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=855904

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Tourism, Jobs, Capital Accumulation and the Economy: A Dynamic Analysis

Summary
This paper examines the effects of tourism in a dynamic model of trade on unemployment, capital accumulation and resident welfare. A tourism boom improves the terms of trade, increases labor employment, but lowers capital accumulation. The reduction in the capital stock depends on the degree of factor intensity. When the traded sector is weakly capital intensive, the expansion of tourism improves welfare. However, when the traded sector is strongly capital intensive, the fall in capital can be a dominant factor in lowering national welfare. This dynamic immiserizing result of tourism on resident welfare is confirmed by simulations on German data.

Keywords: Tourism, Employment, Capital accumulation, Welfare

JEL Classification: O10, F11

This paper was presented at the Second International Conference on "Tourism and Sustainable Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005.

Address for correspondence:
Pasquale M. Sgro
Deakin Business School
Deakin University
Malvern, Victoria 3144
Australia
E-mail: sgro@deakin.edu.au
1. Introduction

Tourism is a growing and important industry in both developed and developing countries. It is also an important source of earning foreign exchange and provides employment opportunities for domestic labor. Generally, tourist consumption in the receiving country is predominantly of non-traded goods and services. This type of consumption can be very significant in economies suffering a cyclical downturn in their traded-goods sector in times of recession. The recent recovery of the Hong Kong economy is an excellent example of tourism-led growth with job creation. The restructuring and relocation of manufacturing processes to China in the past two decades has resulted in unemployment of unskilled workers in Hong Kong. The Asian financial crisis in 1997 and the SARS outbreak in 2003 had made the situation even worse, and the unemployment rate in Hong Kong reached more than 7 per cent. Since April 2003, China allowed individuals from selected cities to visit Hong Kong. This resulted in tourism growth. About four million Chinese tourists came to Hong Kong, which in turn created job opportunities and substantially reduced unemployment.\(^1\)

Tourism research has concentrated on understanding the effects of tourism on the economy both in distortion and distortion-free models. In the latter models,\(^2\) a tourism boom via a demand push raises the relative price of the non-traded good. Since tourism is essentially exports of services, this gain in the “tertiary terms of trade” improves residents’ welfare. Subsequent research has extended the analysis of the effects of tourism in two directions. The first direction is to examine static economies with distortions. Hazari, et al. (2003) and Nowak et al. (2003) are examples of this line of research, where the former analyzes the welfare effect of tourism in a Harris-Todaro (1970) economy, while the latter introduces increasing returns to scale in the economy. The second direction of research is the analysis of tourism in dynamic models of trade. Using a one-sector growth model, Hazari and Sgro (1995) found that tourism without monopoly power in trade is necessarily welfare improving. Recently, Chao, et al. (2005) demonstrated that an expansion of tourism may result in capital decumulation, thereby lowering welfare in a two-
sector model with a specific type of distortion, namely, capital-generating externality. However, the relationship between tourism and employment remains unexplored in the literature. Does an expansion in tourism create more jobs in the local economy, reduce the unemployment rate and hence improve workers’ welfare? We explore this problem in a uniform minimum-wage dynamic economy, and extend the framework by incorporating capital adjustments in the long run. The assumption of a minimum wage is captured by wage indexation. We find that because of the nature of labor intensity of the tourism industry, the expansion of tourism raises demand for labor and increases employment. Nonetheless, the expansion of the tourism sector may lead to capital decumulation in other traded sectors. When the traded sector is strongly capital intensive relative to the non-traded good sector, the fall in the capital stock plays a dominant role that can lower economic welfare. Therefore, in evaluating the effectiveness of tourism to the economy, a trade off exists between the gain in employment and the loss in capital decumulation. German data is used to simulate these results.

The structure of this paper is as follows. Section 2 sets out a dynamic model with capital accumulation for examining the effects of tourism on the relative price of the non-traded good, labor employment, capital accumulation and welfare in the short and long runs. Section 3 provides numerical simulations for the effects of tourism on the economy. Section 4 outlines the main findings and conclusions.

2. The Model

We consider an open economy that produces two goods, a traded good X and a non-traded good Y, with production functions: $X = X(L_X, K_X, V_X)$ and $Y = Y(L_Y, K_Y, V_Y)$. The variables L_i, K_i and V_i denote the allocation of labor and capital and specific factor employed in sector $i, i = X, Y$. While both labor and capital are perfectly mobile between sectors, there are specific factors to each sector. So, the model considered is a hybrid of the Heckscher-Ohlin and the specific-factors model. Commodity X has been chosen as the numeraire. The relative price of the non-
traded good Y is denoted by \(p \). The production structure of the model is expressed by the revenue function:

\[
R(1, p, K, L) = \max \{X(L_X, K_X, V_X) + pY(L_Y, K_Y, V_Y); L_X + L_Y = L, K_X + K_Y = K\},
\]

where \(L \) is the actual level of labor employment and \(K \) is the stock of capital in the economy. The fixed endowments of specific factors \(V_i \) have been suppressed in the revenue function. Denoting subscripts as partial derivatives and employing the envelope property, it follows: \(R_p = Y \), being the output of good \(Y \), and \(R_{pp} > 0 \), expressing the positive supply curve. Stability condition of this system requires that sector \(Y \) is labor intensive relative to sector \(X \). This gives: \(R_{pl} > 0 \) and \(R_{pk} < 0 \), by the Rybczynski theorem. The rental on capital \(r \) equals \(R_K \). The specificity of factors \(V_i \) results in \(R_{KK} < 0 \) and \(R_{KL} > 0 \). Let \(w \) denote the wage rate, then the level of total employment is determined by

\[
R_L(1, p, K, L) = w,
\]

where \(R_{LL} < 0 \) due to diminishing returns of labor. Note that the wage rate is set by the government according to the goods prices, i.e., \(w = w(1, p) \), with \(\partial w/\partial p > 0 \) and \((p/w)(\partial w/\partial p) \leq 1 \).

This real wage indexation results in economy-wide unemployment, measured by \(\bar{L} - L \), where \(\bar{L} \) is the exogenously given labor endowment in the economy.

We now consider the demand side of the economy. Domestic residents consume both goods, \(C_X \) and \(C_Y \), while foreign tourists demand only the non-traded good \(Y \). Let \(D_T(p, T) \) be the tourists’ demand for good \(Y \), where \(T \) is a shift parameter capturing the tastes and other exogenously given variables, for example, foreign income, with \(\partial D_T/\partial T > 0 \). The market-clearing condition for the non-traded good requires the equality of demand (where this consists of domestic and tourist demand) and supply:

\[
C_Y + D_T(p, T) = R_p(1, p, K, L).
\]

This equation determines the relative price of the non-traded good, \(p \).

In a dynamic setting, domestic savings out of consumption of goods \(X \) and \(Y \) are used for capital accumulation:
\[
\dot{K} = R(1, p, K, L) - C_X - pC_Y, \tag{3}
\]
where the dot over the variable denotes its time derivative. Note that in exchange for tourism exports, capital is imported at a given world price which is normalized to unity.

Under the budget constraint (3), the domestic residents maximize the present value of their instantaneous utility, \(U(\cdot)\). The overall welfare \(W\) is therefore:

\[
W = \int_{-\infty}^{\infty} U(C_X, C_Y)e^{-\rho t} dt, \tag{4}
\]
where \(\rho\) represents the rate of time preference. Let \(\lambda\) denote the shadow price of capital in the economy. The first-order conditions with respect to \(C_X\) and \(C_Y\) are:

\[
U_X(C_X, C_Y) = \lambda, \tag{5}
\]
\[
U_Y(C_X, C_Y) = \lambda p. \tag{6}
\]
where \(U_X\) and \(U_Y\) denote marginal utilities of consuming good \(X\) and \(Y\) respectively.

In addition, the evolution of the shadow price of capital is governed by the following dynamic equation:

\[
\dot{\lambda} = \lambda[\rho - R(1, p, K, L)], \tag{7}
\]
which is a function of the difference between the subjective rate of time preference and the return to capital.

Using the above framework, we can examine the resource allocation and welfare effects of tourism on the economy in the short and long runs.

(a) Short-run equilibrium

In the short-run equilibrium, the initial amount of capital \(K\) is given by \(K_0\) as its shadow price is fixed.\(^8\) For a given value of the tourism parameter \(T\), the system can be solved for \(L, p, C_X\) and \(C_Y\) by using equations (1), (2), (5) and (6) as functions of \(K, \lambda\) and \(T\); \(L = L(K, \lambda, T)\); \(p = p(K, \lambda, T)\); \(C_X = C_X(K, \lambda, T)\) and \(C_Y = C_Y(K, \lambda, T)\). An increase in capital, \(K\), raises the
productivity of labor and hence labor employment \((\partial L/\partial K > 0)\). However, the increase in capital lowers the supply of good \(Y\) by the Rybczynski effect, which raises its price \((\partial p/\partial K > 0)\). This in turn lowers the demand for good \(Y\) by domestic residents \((\partial C_{yi}/\partial K < 0)\). Furthermore, for \(U_{xy} > 0\) the decreased consumption of good \(Y\) lowers marginal utility of good \(X\), which reduces the demand for good \(X\) \((\partial C_{xi}/\partial K < 0)\). Similarly, a rise in the shadow price of capital lowers the demand for labor in production \((\partial L/\partial \lambda < 0)\) and the demand for goods in consumption \((\partial C_{yi}/\partial \lambda < 0)\) and \((\partial C_{xi}/\partial \lambda < 0)\). This results in the fall in the relative price of the non-traded good \((\partial p/\partial \lambda < 0)\).

In addition, a rise in tourism increases the demand for the non-traded good and hence its price \((\partial p/\partial T > 0)\). This leads to an increase in employment in the economy, \(\partial L/\partial T > 0\). However, the higher price also reduces the demand for both goods by domestic residents \((\partial C_{yi}/\partial T < 0\) and \((\partial C_{xi}/\partial T < 0)\)).

\((b)\) Dynamics

We can utilize the short-run comparative-static results to characterize the local dynamics of the model. The dynamics of domestic capital accumulation in equation (3) and its shadow prices in equation (7) are:

\[
\dot{K} = R[1, p(K, \lambda, T), K, L(K, \lambda, T)] - C_x(K, \lambda, T) - p(K, \lambda, T)C_i(K, \lambda, T),
\]

\[
\dot{\lambda} = \lambda\{\rho - R_{ki}[1, p(K, \lambda, T), K, L(K, \lambda, T)]\}.
\]

Taking a linear approximation of the above system around the equilibrium, we have:

\[
\begin{bmatrix}
\dot{K} \\
\dot{\lambda}
\end{bmatrix} =
\begin{bmatrix}
A & B \\
M & N
\end{bmatrix}
\begin{bmatrix}
K - \bar{K} \\
\lambda - \bar{\lambda}
\end{bmatrix}
\]

where a tilde (-) over a variable denotes its steady-state level. Note that \(A = R_K + R_{li}(\partial L/\partial K) + D_i(\partial p/\partial K) - \partial C/\partial K, B = R_i(\partial L/\partial \lambda) + D_i(\partial p/\partial \lambda) - \partial C/\partial \lambda, M = -\lambda[R_{ki} + R_{kl}(\partial L/\partial K) + R_{kl}(\partial p/\partial K)]\) and \(N = -\lambda[R_{kl}(\partial p/\partial \lambda) + R_{kl}(\partial L/\partial \lambda)]\). The signs of \(A, B, M\) and \(N\) are in general indeterminate.
However, for our purposes, $A > 0$, $M > 0$ and $N < 0$ when $R_{kp} < 0$ and $R_{lp} > \frac{\partial w}{\partial p}$, i.e., the non-traded good Y is labor intensive, and $R_{LL}/R_{LK} < R_{pL}/R_{pk} < R_{KL}/R_{KK}$. Furthermore, $B > 0$ when $\eta = -(\partial D_y/\partial p)(p/D_y) \geq 1$, i.e., the price elasticity of the demand for good Y by tourists is elastic.

![Figure 1. An expansion of tourism](image)

The schedules of $\dot{K} = 0$ and $\dot{\lambda} = 0$ are depicted in Figure 1, with the slopes of $d\lambda/dK|_{\lambda} = -A/B < 0$ and $d\lambda/dK|_{\lambda} = -M/N > 0$. Under these conditions, the determinant of the above coefficient matrix is negative and the steady-state equilibrium is at point E which is a saddle point with one negative and one positive eigenvalue. For the given initial value of the capital stock K_0,

6
we can obtain from (10) the following solutions for the capital stock and its shadow price around their steady-state values:

\[K_t = \bar{K} + (K_0 - \bar{K})e^{\mu t}, \quad (11) \]

\[\lambda_t = \bar{\lambda} + \theta(K_t - \bar{K}), \quad (12) \]

where \(\theta = (\mu - A)/B < 0 \), and \(\mu \) is the negative eigenvalue in equation (10). The stable arm of the relation between \(K \) and \(\lambda \), as shown by equation (12) and also depicted by the SS schedule in Figure 1, indicates that a decrease in \(K \) leads to an increase in its shadow price \(\lambda \), and vice versa.

\[(c) \quad \text{Steady State} \]

The long-run equilibrium is obtained by using the short-run equilibrium conditions in equations (1), (2), (4) and (5), together with no adjustments in the capital stock and its shadow price in equations (3) and (7) as:

\[R(1, \tilde{p}, \bar{K}, \bar{L}) - \tilde{C}_X - \tilde{p} \tilde{C}_Y = 0, \quad (13) \]

\[R_s(1, \tilde{p}, \bar{K}, \bar{L}) = \rho. \quad (14) \]

Equations (1), (2), (4), (5), (13) and (14) contain six endogenous variables, \(\tilde{L}, \tilde{p}, \tilde{C}_X, \tilde{C}_Y, \bar{K} \) and \(\bar{\lambda} \), along with a tourism parameter, \(T \). This system can be used to solve for the impact of tourism in the long run. An increase in tourism on the long-run price of the non-traded good \(Y \) is:

\[d\tilde{p}/dT = S \frac{\partial D_Y}{\partial T}(p^2U_{XX} + U_{YY} - 2pU_{XY})/\Delta > 0, \quad (15) \]

where \(U_{XX} < 0, U_{YY} < 0, \) and \(\Delta < 0.11 \). Note that \(S = R_{XX}R_{LL} - R_{XL}^2 > 0 \) by the concavity of the production functions. Hence, an increase in tourism will necessarily improve the tertiary terms of trade.

In addition, from equations (1) and (14), we can obtain the long-run effects of tourism on the capital stock and labor employment, as follows:
\[d\tilde{L}/dT = \left[R_p/r_{KK}(R_{KL}/R_{KK} - R_p/[R_{KK}]_S)(d\tilde{p}/dT) > 0, \right. \tag{16} \]
\[d\tilde{K}/dT = -\left[R_p/r_{KK}(R_{LL}/R_{KK} - R_p/[R_{KK}]_S)(d\tilde{p}/dT) < 0, \tag{17} \right. \]

where recalling that \(R_{LL}/R_{KK} < R_p/[R_{KK}]_S < R_{KL}/R_{KK}\) for stability. An increase in tourism will increase employment in the long run, but at the expense of capital accumulation in the economy. The reduction in the capital stock can be seen in Figure 1. A boom in tourism shifts both schedules of \(\dot{K} = 0\) and \(\dot{L} = 0\) to the left.\(^\text{12}\) Since the capital stock is given at time 0, the adjustment path takes the system from point \(E\) to point \(F\). This immediately leads to a fall in the shadow price of capital,\(^\text{13}\) and consequent reductions in capital accumulation from point \(F\) to a new equilibrium at point \(E'\).\(^\text{14}\)

\[(d)\text{ Welfare}\]

We are now in a position to examine the effect of tourism on overall welfare of the economy. Total welfare in equation (4) can be obtained from the sum of the instantaneous utility \(Z = U(C_X, C_Y)\). Following Turnovsky (1999, p. 138), the adjustment path of \(Z\) is: \(Z_t = \tilde{Z} + [Z(0) - \tilde{Z}]e^{\mu t}\), where \(Z(0)\) denotes the utility at time 0. However, total welfare is \(W = \tilde{Z}/\rho + [Z(0) - \tilde{Z}]/(\rho - \mu)\), and the welfare change is: \(dW = [dZ(0) - (\mu/\rho)d\tilde{Z}]/(\rho - \mu)\), where \(-\mu/\rho (> 0)\) denotes the discount factor. Utilizing equation (13), the change of total welfare caused by a tourism boom is:

\[dW/dT = \left[\lambda/(\rho - \mu)\right]D_3[dp(0)/dT - (\mu/\rho)(d\tilde{p}/dT)] + R_{L_1}[dL(0)/dT - (\mu/\rho)(d\tilde{L}/dT)] \]

where \(p(0)\) and \(L(0)\) denote the relative price of the non-traded good and labor employment at time 0. Since the capital stock is given at time 0, a tourist boom immediately increases the demand for good \(Y\) and hence its price. As a consequence, higher labor demand is needed for
producing more good Y. These results can be derived from using equations (1), (2), (5), (6) and (13) as

$$dp(0)/dT = -(\partial Y / \partial T)_{RLL}(2pU_{xy} - p^2U_{xx} - U_{yy})/H > 0,$$

(19)

$$dL(0)/dT = -(R_{xt}/R_{LL})(dp(0)/dT) > 0,$$

(20)

where $H > 0.$

The welfare effects of tourism in equation (18) depend on the changes in the terms of trade, labor employment and capital accumulation. An expansion of tourism increases the initial and steady-state relative price of the non-traded good, Y, which yields a gain in the terms of trade as shown in the first term in the curly bracket in equation (18). While the static terms-of-trade effect is well known in the literature, the impact of tourism on labor employment and capital accumulation is generally not mentioned in the literature. These are of critical importance in analyzing economic welfare. As indicated in second term of equation (18), tourism can generate more labor employment in the short and the long run via the higher price of the non-traded good. However, the higher price of the non-traded good can reduce the demand for capital, causing a welfare loss as shown by the third term in equation (18). Due to these conflicting forces, the welfare effect of tourism is in general ambiguous. To illustrate the strength of our results we will use simulations to ascertain the welfare effects of tourism both in the short and the long run.

3. Simulations

To calibrate the effects of an increase in tourism on the endogenous variables of the economy, we need to specific functional forms for the utility and production functions.

(a) Specifications

We assume that the production of the traded and non-traded goods takes place with the help of Cobb-Douglas production functions:
\begin{align*}
X &= A L_X^{\alpha_X} K_X^{\alpha_X} V_X^{1-\alpha_X-\alpha_Y}, \\
Y &= B L_Y^{\beta_Y} K_Y^{\beta_Y} V_Y^{1-\beta_X-\beta_Y},
\end{align*}
\tag{21}
\tag{22}

where \(A \) and \(B \) are the constant technology factors, and \(\alpha_i \) and \(\beta_i \) are respectively the \(i \)th factor shares in productions of goods \(X \) and \(Y \). Total employment for sectors \(X \) and \(Y \) in the economy is given by
\begin{equation}
L = L_X + L_Y. \tag{23}
\end{equation}

Similarly, capital allocation between sectors is:
\begin{equation}
K_i = K_X + K_Y. \tag{24}
\end{equation}

Note that total capital is inherited from the past and is fixed in the short run, but it can be freely allocated between both sectors. This is the reason why total capital is indexed by -1 (it is predetermined in the short-run equilibrium) and capital allocation in each sector is not indexed.

Given the wage rate \(w \), the rental rate \(r \) and the relative price of the non-traded good \(p \), the production sector solves the program: Max \(X + pY - w(L_X + L_Y) - r(K_X + K_Y) \), subject to \(X = A L_X^{\alpha_X} K_X^{\alpha_X} \) and \(Y = B L_Y^{\beta_Y} K_Y^{\beta_Y} \). Here, the specific factors \(V_X \) and \(V_Y \) are normalized to unity. The first-order conditions with respect to \(L_i \) and \(K_i \) yield equilibrium allocation of labor and capital between sectors:
\begin{align*}
w &= \alpha_1 A(K_X / L_X)^{\alpha_X} L_X^{\alpha_X+\alpha_Y-1} = p \beta_1 B(K_Y / L_Y)^{\beta_Y} L_Y^{\beta_X+\beta_Y-1}, \tag{25} \\
r &= \alpha_2 A(L_X / K_X)^{\alpha_X} K_X^{\alpha_X+\alpha_Y-1} = p \beta_2 B(L_Y / K_Y)^{\beta_Y} K_Y^{\beta_X+\beta_Y-1}. \tag{26}
\end{align*}

The resulting factor-price frontiers can be deduced from equations (25) and (26):
\begin{align*}
(w / \alpha_1)^{1-\alpha_X} & (r / \alpha_2)^{\alpha_X} L_X^{1-\alpha_X-\alpha_Y} = A, \tag{27} \\
(w / \beta_1)^{1-\beta_X} & (r / \beta_2)^{\beta_X} L_Y^{1-\beta_X-\beta_Y} = pB. \tag{28}
\end{align*}

In addition, real wage, denoted by \(w_c \), in the economy is assumed to be rigid in the sense that it is indexed to the price of the consumption goods \(p_c \):
\begin{equation}
w_c = w/p_c. \tag{29}
\end{equation}
where p_c is defined in equation (32).

On the demand side of the economy, we utilize the CES functional form for the instantaneous utility function of domestic households:

$$U = \left[b^{1/(1+\sigma)} C_X^{\sigma/(1+\sigma)} + \frac{1-b}{\sigma} + \frac{1}{\sigma+b} \right]^{(1+1/\sigma)(1-\gamma)/(1-\gamma)}, \quad (30) $$

where $b \in [0, 1]$ and $\bar{b} = 1 - b$ are the parameters, γ expresses the index of relative risk aversion and σ captures the elasticity of substitution between the two goods with $1 + \sigma \geq 0$. From the first-order conditions of utility maximization, we derive

$$\frac{bCY}{b CX} = 1/p^{(1+\sigma)}. \quad (31)$$

Let $C = \left[b^{1/(1+\sigma)} C_X^{\sigma/(1+\sigma)} + \frac{1-b}{\sigma} + \frac{1}{\sigma+b} \right]^{(1+1/\sigma)}$ denote aggregate consumption. Then by using equation (31) we obtain that $C = (C_X/b)(b + \bar{b} p^{(1+\sigma)/\sigma})$. The relative price of the consumption aggregate is then defined by $p_c C = C_X + pCY$, which can be solved for p_c as

$$p_c = (b + \bar{b} p^{(1+\sigma)/\sigma}). \quad (32)$$

Therefore, the current utility of domestic households can be expressed as: $U(C) = C^{(1-\gamma)/(1-\gamma)} = [(C_X/b)(b + \bar{b} p^{(1+\sigma)/\sigma})]^{(1+1/\sigma)}(1-\gamma)/(1-\gamma)$.

The model is closed by using the market-clearing condition for the non-traded good Y:

$$C_Y + D_Y = Y, \quad (33)$$

and the demand for the non-traded good by tourists is specified as

$$D_Y = T/p^\eta, \quad (34)$$

where η measures the price elasticity of demand for good Y by tourists. Tourists spending T, measured in terms of the traded good, is exogenous and tourists consume only non-traded good.

Finally, the budget constraint for each period is:

$$K - K_{-1} + C_X + pCY = X + pY. \quad (35)$$
Note that the balance of payments is in equilibrium for each period. From equations (33) and (35), we can deduce that: \(K - K_{-1} + C_X - X = pD_Y \). That is, the excess demand for capital and the traded good is financed by income receipts from tourism.

Total welfare of domestic residents is the discounted sum of the instantaneous utility and it can be written as: \(W = \sum_{t=0}^{\infty} (1 - \rho)^t [C_X(b + \bar{b} p^{-\sigma})]^{1+1/\sigma} (1 - \gamma) \). This function is maximised relatively to capital and the consumption of the traded good under the series of budget constraints: \(K - K_{-1} + C_X(b + \bar{b} p^{-\sigma}) / b = X + pY = w(L_X + L_Y) + rK_{-1} + v_XV_X + v_YV_Y \). Solving this maximisation program with respect to \(C_X \) and \(K \), we obtain the first-order conditions: \((1 - \rho)\alpha X^{-\gamma} (b + \bar{b} p^{-\sigma})^{(1+1/\sigma)(1-\gamma)} = \delta b \) and \(\delta - \delta_1 (1 + r_{-1}) = 0 \) where \(\delta \) is the Langrange multiplier. After the elimination of \(\delta \) and \(\delta_1 \), we have

\[
(1 + r_{-1})(1 - \rho) = (C_X / C_{X+1})^{-\gamma} [(b + \bar{b} p^{-\sigma})(b + \bar{b} p^{-\sigma}_{-1})]^{1+1/\sigma(1-\gamma)}
\]

(b) Calibrations

Equations (21) – (36) consist of sixteen endogenous variables and a shift parameter of tourist spending \(T \) for the economy. We utilize the German data to calibrate the short- and long-run impact of an increase in tourism on the economy. It is assumed that tourists’ spending is 0 in the reference steady state. We choose \(p = 0.9488, X + pY = 1.3909 \) and \(L = 27.27 \), which represent the averages values of these variables for Germany for the period 1996-2002. Units are in trillion of 1995 euros and in millions of persons. We set: \(T = 0, \sigma = -0.5, b = 1/3, \rho = 0.05, \alpha_1 = 0.30, \alpha_2 = 0.50, \beta_1 = 0.5, \beta_2 = 0.10, \lambda = 0.5 \) and \(\eta = 1.16 \). Note that the labor intensity of good \(Y \) is captured by the chosen values of \(\alpha_i \) and \(\beta_i \). The steady-state values of the sixteen endogenous variables can be then computed according to: \(D_Y = 0, X = (X + pY) / [1 + (b / b)p^{-\sigma}], Y = (X + pY - X / p, C_Y = Y, C_X = X, r = 1/(1 - \rho) - 1, L_Y = \beta pY(\alpha YX + \beta pY)L_0, L = L_X + L_Y, C_X = \beta pY/r, B = Y / L_Y, K_X, X, r = p \beta_1 B^{1/(1-\beta_1)}(p \beta_2 / r) \beta_2 r, L_X, K_X = \alpha X / r, A = X(L_X) \alpha X / r, U = ... \)
\[
\left[b^{1/(1+\gamma)} C^\sigma (K - C)^{(1+\gamma)/(1+\sigma)} + \bar{b}^{1/(1+\gamma)} C^\sigma (K - C)^{(1+\gamma)/(1+\sigma)} \right]^{1/(1+1/(1-\gamma))} (1 - \gamma),
\]
\[K = K_X + K_Y, \text{ and } p_c = (b + \bar{b} p^\sigma)^{1/\sigma}.\]
The reference steady state values are therefore:
\[C_X = 0.4718, \quad C_Y = 0.9687, \quad D_Y = 0, \quad K = 6.2285, \quad K_X = 4.4821, \quad K_Y = 1.7464, \quad L = 27.27, \quad L_X = 6.4212, \quad L_Y = 20.8488, \quad p = 0.9488, \quad p_c = 0.9657, \quad r = 0.0526,
\]
\[U = 2.4003, \quad w = 0.02204, \quad X = 0.4718 \quad \text{and} \quad Y = 0.9687.\]

There is one anticipated variable \(C_{X,t+1}\) and one predetermined variable \(K_{t-1}\) in the system. The eigenvalues in the neighbourhood of the reference steady state are equal to 0.9717 and 1.092. So the local condition of existence and uniqueness are satisfied (one of the eigenvalues must be less than one and the other larger than one to get the existence and uniqueness of a solution). As we will compare sums of discounted utilities when the convergence speed to the steady state is slow, we simulated the model over 250 periods.\(^\text{17}\)

As for reference simulations, we let tourist spending \(T\) to increase from 0 to 0.01 (which means by 10 billions euros, the German value-added in non-tradable goods being 982 billion euros). We obtain the short- and long-run impacts of tourism on the economy, as plotted in Figure 2:

1. \(C_X\) and \(C_Y\) immediately increase above their reference values, and then progressively decrease but \(C_Y\) ends with a level lower than its reference value.
2. \(L_X\) immediately falls and then slightly increases, while \(L_Y\) immediately rises and then slightly decreases. This gives that total employment \(L\) to rise initially and progressively decreases but stays above its reference level.
3. \(K_X\) immediately declines and continuously falls, while \(K_Y\) immediately rises and then declines. However, total \(K\) progressively decreases to a lower level.
4. \(X\) immediately decreases and then progressively decreases to a lower level, while \(Y\) immediately rises and then progressively decreases to a level which is higher than its reference value.
5. \(p \) immediately increases above its reference value, and then progressively decreases but stays above its reference value.

6. \(U \) immediately increases above its reference value, and then progressively decreases to a value that is above its reference value. The sum of discounted utilities increases from 343.6305 to 344.0061. Hence, a rise in tourism improves total welfare in the long run.

Consider next the case that the non-traded sector \(Y \) is strongly labor-intensive relative to the traded sector \(X \). For this case, we choose \(\beta_2 = 0.001 \) and leave the other parameters the same as before. The consequent eigenvalues are 0.9683 and 1.093, and the reference steady-state values are the same as in the previous case but for: \(K = 4.4996 \) and \(K_Y = 0.0175 \). Consider reference simulations by increasing tourist spending \(T \) from 0 to 0.01. We obtain the short- and long-run impacts of tourism, as plotted in Figure 3. Compared to the results in Figures 2 and 3, the patterns of changes in all the endogenous variables are the same. However, in Figure 3, the rise in total employment \(L \) is smaller but the fall in capital \(K \) is larger. These differences render a different effect of tourism on utility and welfare: although \(U \) immediately increases above its reference value, it progressively decreases and reaches a value below its reference value. Therefore, the sum of discounted utilities decreases from 343.6305 to 343.5839. Thus, owing to the fall in the capital stock, a rise in tourism can lower total welfare when the traded sector is strongly capital-intensive relative to the non-traded tourism sector.

4. Conclusions

Using a dynamic general-equilibrium framework, this paper has examined the short- and long-run effects of tourism on labor employment, capital accumulation and resident welfare for an open economy with unemployment via wage indexation. A tourism boom improves the terms of trade, increases labor employment, but lowers capital accumulation if the non-traded tourism sector is labor intensive relative to the other traded sector. Nonetheless, the reduction in the capital stock depends on the degree of factor intensity. When the traded sector is not strongly
capital intensive, the fall in capital would not be so severe and the expansion of tourism improves welfare. However, when the traded sector is strongly capital intensive, the fall in capital can be a dominant factor to lower total welfare. This immiserizing result of tourism on resident welfare is confirmed by the German data.
Figure 2. Effects of tourism ($\beta_2 = 0.10$)
Figure 3. Effects of Tourism ($\beta = 0.001$)
Footnotes

1. The economic doldrums were halted and the GDP growth is 8.2 per cent in 2004, well above average 4.8 per cent over the past 20 years. The details can be found in the Budget Speech by the Hong Kong Financial Secretary on March 16, 2005. The simulations in this paper have been done on the basis of German data. Hong Kong data is not easily accessible. Moreover, the results are robust with regard to the choice of the country.

3. See Brecher (1974) for the minimum wage model under the Heckscher-Ohlin setting.

5. The stability analysis is provided in the Appendix.

6. Letting \(c' (\cdot) \) be the \(i \)th sector unit cost function, by perfect competition we have:
\[
c^i(w, r, v_i) = 1 \quad \text{and} \quad c^i(w, r, v_j) = p,
\]
where \(w \) is the fixed minimum wage and \(v_i \) are the rates of return on the specific factors \(V_i \). Owing to the existence of the specific factors, the capital return \(r \) depends on the good price \(p \) and the factor suppliers \(L \) and \(K \).

7. A recent study on a generalized minimum wage model can be found in Kreickemeier (2005). Also see Hatzipanayoyou and Michael (1995) and Michael and Hatzipanayoyou (1999) for endogenous labor supply.

9. Mathematical derivations of the comparative-static results are provided in the Appendix.

10. Following Brock (1996), we use
\[
\partial C / \partial K = \partial C_X / \partial K + p(\partial C_Y / \partial K), \quad \partial C / \partial \lambda = \partial C_X / \partial \lambda + p(\partial C_Y / \partial \lambda)
\]
and
\[
\partial C / \partial T = \partial C_X / \partial T + p(\partial C_Y / \partial T).
\]

11. Note that \(\Delta = R_{pk} R_{kk}(R_{kl}/R_{kk} - R_{pl}/R_{pk}) \{(U_{xy} - pU_{xx})[R_{1l} - p(\partial w / \partial p)](U_{xy} - pU_{xx}) + (U_{yy} - pU_{xy})(R_{pl} - \partial w / \partial p)\} + R_{pk} R_{lk}(R_{pl}/R_{pk} - R_{ll}/R_{lk})[R_{lk}(U_{xy} - pU_{xx}) + R_{pk}(U_{yy} - pU_{xy})] - (U_{xy} - pU_{xx})(R_{pl} R_{lk} - R_{kl} R_{kk})(\partial w / \partial p) - (R_{ll} R_{kk} - R_{lk}^2)Q < 0 \), where \(Q = \lambda + D_1(\eta - 1)(U_{xy} - pU_{xx}) - \)
\((\partial D_y/\partial p)(pU_{XY} - U_{YY}) + R_{pp}(2pU_{XY} - p^2U_{XX} - U_{YY}) > 0\) by the stability conditions: \(\eta \geq 1, R_{pl} > 0, R_{pk} < 0\) and \(R_{Lp}/R_{pK} < R_{pl}/R_{pk} < R_{KL}/R_{KK}\).

12. For holding \(\lambda\) fixed, the shifts of \(K = 0\) and \(\lambda = 0\) in Figure 1 are:

\[
(\partial w/\partial p)_{\lambda = 0} = \left(\partial D_y/\partial T\right)\left[\lambda \partial (\partial L/\partial T) + R_{pl}(\partial p/\partial T)\right]/H < 0,
\]

where \(H = -R_{LL}QL - R_{pK}(R_{KL}U_{XX}U_{YY} - U_{XY}^2)/(\partial w/\partial p)\).

13. From (1), (2), (5), (6) and (13), we can obtain:

\[
\frac{d\lambda(0)/dT}{d\lambda} = \left(\partial D_y/\partial T\right)\left(\partial (\partial L/\partial T) + R_{pl}(\partial p/\partial T)\right)/H < 0,
\]

where \(H = -R_{LL}QL - R_{pK}(R_{KL}U_{XX}U_{YY} - U_{XY}^2)/(\partial w/\partial p)\).

14. The change in the steady-state value of \(\lambda\) depends on the relative shifts of the schedules of \(\lambda\) and \(K = 0\); specifically,

\[
\frac{d\lambda}{d\alpha} \approx \left(\partial D_y/\partial T\right)\left(\partial (\partial L/\partial T) + R_{pl}(\partial p/\partial T)\right)/H < 0,
\]

where \(H = -R_{LL}QL - R_{pK}(R_{KL}U_{XX}U_{YY} - U_{XY}^2)/(\partial w/\partial p)\).

15. See footnote 13 for the positive sign of \(H\).

16. Putting the price elasticity different from 1 would not change the results qualitatively.

17. The model was simulated and its eigenvalues computed with the software Dynare, which was run under Matlab. Dynare was developed by Michel Juillard, and can be unloaded from the website http://www.cepremap.cnrs.fr/dynare.
References

Brock, P. L., 1996, “International Transfers, the Relative Price of Non-traded goods, and the

Chao, C. C., B. R. Hazari, J. P. Laffargue, P. M. Sgro and E. S. H. Yu, 2005, “Tourism, Dutch
Disease and Welfare in an Open Dynamic Economy,” forthcoming in Japanese
Economic Review.

Economica, 58, 515-529.

Analysis,” American Economic Review, 60, 126-142.

Hatzipanayoyou, P. and M. S. Michael, 1995, “Tariffs, Quotas and Voluntary Export Restraints

Immiserization,” Pacific Economic Review, 8, 269-278.

Jones, R. W., 1971, “A Three Factor Model in Theory, Trade, and History,” in Trade, Balance of

under variable labor supply, public goods and income taxation,” Economica, 66, 389-401.

Appendix: Short-run Comparative Statics

From (1), (2), (5) and (6), the results of the comparative statics in the short run are:

\[
\frac{\partial L}{\partial K} = - \frac{\left[R_{pl}(R_{pl} - \partial w/\partial p) + R_{Kp}(\partial D_{x}/\partial p - R_{pp})\right] (U_{XX}U_{YY} - U_{XY}^2) + \lambda R_{LK}U_{XX}}{J} > 0,
\]

\[
\frac{\partial C_{X}}{\partial K} = \lambda U_{XY}R_{LK}R_{pk}(R_{pl}/R_{pk} - R_{LL}/R_{LK})/J < 0,
\]

\[
\frac{\partial C_{Y}}{\partial K} = - \lambda U_{XX}R_{LK}R_{pk}(R_{pl}/R_{pk} - R_{LL}/R_{LK})/J < 0,
\]

\[
\frac{\partial p}{\partial K} = - R_{LK}R_{pk}(R_{pl}/R_{pk} - R_{LL}/R_{LK})(U_{XX}U_{YY} - U_{XY}^2)/J > 0,
\]

\[
\frac{\partial L}{\partial \lambda} = - \frac{\left[R_{pl}(R_{pl} - \partial w/\partial p) + R_{Kp}(\partial D_{x}/\partial p - R_{pp})\right] (U_{XX}U_{YY} - pU_{XX})}{J} < 0,
\]

\[
\frac{\partial C_{X}}{\partial \lambda} = \frac{\lambda U_{XY}R_{LK}R_{pk}(R_{pl}/R_{pk} - R_{LL}/R_{LK})/J}{J} < 0,
\]

\[
\frac{\partial C_{Y}}{\partial \lambda} = \frac{\lambda U_{XX}R_{LK}R_{pk}(R_{pl}/R_{pk} - R_{LL}/R_{LK})/J}{J} < 0,
\]

\[
\frac{\partial p}{\partial \lambda} = \frac{R_{LK}(U_{XY} - pU_{XX})}{J} < 0,
\]

\[
\frac{\partial L}{\partial T} = (R_{pl} - \partial w/\partial p)(\partial D_{y}/\partial T)(U_{XX}U_{YY} - U_{XY}^2)/J > 0,
\]

\[
\frac{\partial C_{X}}{\partial T} = \lambda R_{LL}U_{XX}(\partial D_{y}/\partial T)/J < 0,
\]

\[
\frac{\partial C_{Y}}{\partial T} = \lambda R_{LL}U_{XX}(\partial D_{y}/\partial T)/J < 0,
\]

\[
\frac{\partial p}{\partial T} = R_{LL}(\partial D_{y}/\partial T)(U_{XX}U_{YY} - U_{XY}^2)/J > 0,
\]

where \(J = [R_{pl}(R_{pl} - \partial w/\partial p) + R_{LL}(\partial D_{y}/\partial p - R_{pp})](U_{XX}U_{YY} - U_{XY}^2) + \lambda R_{LL}U_{XX} > 0 \). We obtain the above signs when the stability condition, \(R_{LL}/R_{LK} < R_{pl}/R_{pk} < R_{KL}/R_{KK} \), is imposed.

Using the above results, we can obtain:

\[
B = R_{L}(\partial L/\partial \lambda) + D_{x}(\partial p/\partial \lambda) - \partial C/\partial \lambda = \{(U_{XY} - pU_{XX})[R_{LL}D_{x}(1 - \eta) - (R_{Lp} - \partial w/\partial p)(R_{L} - pR_{Lp})] - [R_{pl}(R_{pl} - \partial w/\partial p) + R_{LL}(\partial D_{y}/\partial T)](U_{YY} - pU_{XY}) + R_{pp}R_{LL}(U_{YY} - 2pU_{XY} + p^2U_{XX})\}/J > 0,
\]

\[
M = -\lambda[R_{KK} + R_{KL}(\partial L/\partial K) + R_{Kp}(\partial p/\partial K)] = - \lambda R_{Kp}R_{KK}(R_{pl}/R_{pk} - \partial w/\partial p)(R_{pl}/R_{pk} - R_{LK}/R_{KK})(U_{XX}U_{YY} - U_{XY}^2) + (R_{LL}R_{KK} - R_{LK}^2)(((\partial D_{y}/\partial p - R_{pp})(U_{XX}U_{YY} - U_{XY}^2) + \lambda U_{XX})]/J > 0,
\]
\[N = - \lambda [R_K(\partial p/\partial \lambda) + R_{KL}(\partial L/\partial \lambda)] = - \lambda R_{pk} R_{L} - R_{pl}/R_{pk} + (\partial w/\partial p)/R_{pk}[(U_{XY} - pU_{XX})/J < 0, \]

where the condition that \(\eta \geq 1 \) is imposed in the sign of \(B \). Furthermore, \(R_L - pR_{lp} = R_{L1} < 0 \) because \(R_L \) is homogeneous of degree one in prices, and the subscript 1 denotes the price of the traded good \(X \), which is relatively capital intensive (i.e., \(R_{L1} < 0 \) and \(R_{lp} > 0 \)). In addition, for stability, we need \(R_{pl} > \partial w/\partial p > 0 \).
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (Ixv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENNEGG, Pegaret PICHLER and Alex STOMP (Ixv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (Ixv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (Ixv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (Ixv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

CCMP 16.2004 Marta STRYSZOWSKA (Ixv): Late and Multiple Bidding in Competing Second Price Internet Auctions

NRM 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angela ANTOCCI, Simone BORGHESI and Paolo RUSSU (Ixvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (Ixvii): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (Ixvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (Ixvii): Impact of Tourism Consumption on GDP. The Role of Imports

NRM 29.2004 Marian WEBER (Ixvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

NRM 30.2004 Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE (Ixvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

<table>
<thead>
<tr>
<th>Conference</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTHC</td>
<td>36.2004</td>
<td>Franca ECKERT COEN and Claudio ROSSI (lxviii): Foreigners, Immigrants, Host Cities: The Policies of Multi-Ethnicity in Rome, Reading Governance in a Local Context</td>
</tr>
<tr>
<td>ETA</td>
<td>39.2004</td>
<td>Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly</td>
</tr>
<tr>
<td>PRA</td>
<td>40.2004</td>
<td>Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?</td>
</tr>
<tr>
<td>CCMP</td>
<td>41.2004</td>
<td>Michael FINUS (lxvix): International Cooperation to Resolve International Pollution Problems</td>
</tr>
<tr>
<td>KTHC</td>
<td>42.2004</td>
<td>Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis</td>
</tr>
<tr>
<td>CTN</td>
<td>43.2004</td>
<td>Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies</td>
</tr>
<tr>
<td>CTN</td>
<td>44.2004</td>
<td>Marc ESCRIVUELA-VILLAR: Cartel Sustainability and Cartel Stability</td>
</tr>
<tr>
<td>NRM</td>
<td>45.2004</td>
<td>Sebastian BERYOETS and Nicola GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach</td>
</tr>
<tr>
<td>NRM</td>
<td>46.2004</td>
<td>Signe ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits</td>
</tr>
<tr>
<td>NRM</td>
<td>48.2004</td>
<td>Ekin BIROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy</td>
</tr>
<tr>
<td>CCPM</td>
<td>49.2004</td>
<td>Germot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects</td>
</tr>
<tr>
<td>GG</td>
<td>50.2004</td>
<td>Scott BARRETT and Michael HOEL: Optimal Disease Eradication</td>
</tr>
<tr>
<td>CTN</td>
<td>51.2004</td>
<td>Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games</td>
</tr>
<tr>
<td>SIEV</td>
<td>52.2004</td>
<td>Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory</td>
</tr>
<tr>
<td>NRM</td>
<td>54.2004</td>
<td>Ingolf BRAUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturalized Streams</td>
</tr>
<tr>
<td>NRM</td>
<td>55.2004</td>
<td>Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices</td>
</tr>
<tr>
<td>NRM</td>
<td>56.2004</td>
<td>Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance</td>
</tr>
<tr>
<td>CCPM</td>
<td>57.2004</td>
<td>Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households</td>
</tr>
<tr>
<td>NRM</td>
<td>59.2004</td>
<td>Valentina BOSETTI, MariaA CASSINELLI and Alessandro LANZA (lxvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management</td>
</tr>
<tr>
<td>NRM</td>
<td>60.2004</td>
<td>Timo GOESCHL and Danilo CAMARGO IGLIORI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon</td>
</tr>
<tr>
<td>CCPM</td>
<td>61.2004</td>
<td>Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol</td>
</tr>
<tr>
<td>NRM</td>
<td>63.2004</td>
<td>Györgyi BELA, György PATÁKI, Melinda SMÁLÉ and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis</td>
</tr>
<tr>
<td>NRM</td>
<td>64.2004</td>
<td>E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands</td>
</tr>
<tr>
<td>ETA</td>
<td>66.2004</td>
<td>Gianmario YARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings</td>
</tr>
<tr>
<td>GG</td>
<td>67.2004</td>
<td>Anastasios XEPAPADEAS and Constinda PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach</td>
</tr>
<tr>
<td>GG</td>
<td>68.2004</td>
<td>Michael FINUS: Modesty Pays: Sometimes!</td>
</tr>
<tr>
<td>NRM</td>
<td>69.2004</td>
<td>Trond BJØRNDAI and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications</td>
</tr>
<tr>
<td>CTN</td>
<td>70.2004</td>
<td>Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents</td>
</tr>
<tr>
<td>IEM</td>
<td>71.2004</td>
<td>Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants</td>
</tr>
<tr>
<td>IEM</td>
<td>72.2004</td>
<td>Anastasios LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns</td>
</tr>
</tbody>
</table>
Pehr-Johan NORBÄCK and Lars PERSSON: Party Formation and Coalitional Bargaining in a Model of

Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT: The Economics of Warm Glow: A Note on Consumer’s Behavior

Valeria PAPPONETTI and Dino PINELLI: Willingness to Pay for Reductions in Pesticide Risk Exposure from a Survey of Milan, Italy, Residents

Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities. Centralisation versus devolution

Edward CARTWRIGHT (lx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. FÖRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elisaasos PAPYRakis and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

Marzio GALEOTTI and Claudia KEMFERT: Interactions between Climate and Trade Policies: A Survey

A. MARKANDYA, S. PEDROSO and D. STREIMIKIENE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

Sergei IZMALKOV: Hydroelectric Power

Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures

Massimino DEL GAITTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities. Centralisation versus devolution

Pierre-André JOUVET, Philippe MICHEL and Gilles ROTTILLON: Equilibrium with a Market of Permits

Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BERGANTIÑOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIJKAMP: A Meta-Analysis of the Willingness to Pay for Reducing Pesticide Risk Exposure

Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability

in Italy

Massimo FLORIO and Mara GRASSEN I: The Missing Shock: The Macroeconomic Impact of British Privatisation

John BENNETT, Saul ESTRIN, James MAW and Giovanni URGA: Privatisation Methods and Economic Growth in Transition Economies

Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo MAINARDI: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective

Somdeb LAHIRE: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results

Giuseppe DI VITA: Natural Resources Dynamics: Another Look

Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

Paulo A.L.D. NUNES and Laura ONOFRI: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications

Patrick CAYRADE: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?

Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies
Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling

Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons

Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRÍGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change

Qiing WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?

Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change

Lorenzo PELLEGRINI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption

Angelo ANTOCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model

Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

Carla MASSIDDA: Estimating the New Keynesian Phillips Curve for Italian Manufacturing Firms

Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry

Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms

Valentina BOSETTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change

Mombert HOPPE: Technology Transfer Through Trade

Roberto ROSON: Platform Competition with Endogenous Multihoming

Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs, A Game Theoretic Perspective on Bottom-up Climate Regimes

Fausto CAVALLARO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method

Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria

Wietze LISE: Decomposition of CO2 Emissions over 1980–2003 in Turkey

Somdeb LAHRI: The Core of Directed Network Problems with Quotas

Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: Perceived Realism, Threat and WTP Estimates for Biodiversity Protection

Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information

Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility

Antoni CALVÓ-ARMENGOL and Rahmi İLKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation

Francesco FERI (lxxii): Network Formation with Endogenous Decay

Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
Alessandra CASELLA and Nobuyuki HANAKI (lxxii): Information Channels in Labor Markets, On the Resilience of Referral Hiring
Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated Games
Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): The Egalitarian Sharing in Provision of Public Projects
Francesco FERI, Stochastic Stability in Network with Decay
Aart de ZEEUW (lxxii): Dynamic Effects on the Stability of International Environmental Agreements
Carla VIEIRA and Ana Paula SERRA (lxxii): Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms
Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO (lxxii): Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice
Michael FINUS and Bianca RUNDSHAGEN (lxxii): Participation in International Environmental Agreements: The Role of Timing and Regulation
Lorenzo PELLEGRINI and Reyer GERLAGH (lxxii): Are EU Environmental Policies Too Demanding for New Members States?
Matteo MANERA (lxxii): Modeling Factor Demands with SEM and VAR: An Empirical Comparison
Olivier TERCIEUX and Vincent VANNETELBOSCH (lxxii): A Characterization of Stochastically Stable Networks
Ana MAULEON, José SEMPERE-MONERRIS and Vincent J. VANNETELBOSCH (lxxii): R&D Networks Among Unionized Firms
Carlo CARRARO, Johan EYCKMANS and Michael FINUS (lxxii): Optimal Transfers and Participation Decisions in International Environmental Agreements
Valeria GATTAF: From the Theory of the Firm to FDI and Internalisation: A Survey
Alessandra CASELLA and Nobuyuki HANAKI (lxxii): Information Channels in Labor Markets, On the Resilience of Referral Hiring
Helmut KARL, Antje MÖLLER, Ximena MATUS, Edgar GRANDE and Robert KAISER (lxxii): Environmental Innovations: Institutional Impacts on Co-operations for Sustainable Development
Dimitra VOUVAKI and Anastasios XEPAPADEAS (lxxii): Criteria for Assessing Sustainable Development: Theoretical Issues and Empirical Evidence for the Case of Greece
Andreas LöSCHEL and Dirk T.G. RÜBBELKE (lxxii): Impure Public Goods and Technological Interdependencies
Christoph A. SCHALTEGGER and Benno TORGLER (lxxii): Trust and Fiscal Performance: A Panel Analysis with Swiss Data
Irene VALSECCHI (lxxii): A Role for Instructions
Valentina BOSETTI and Gianni LOCATELLI (lxxii): A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks
Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): The Egalitarian Sharing in Provision of Public Projects
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI (lxxii): Applications of Negotiation Theory to Water Issues
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI (lxxii): Advances in Negotiation Theory: Bargaining, Coalitions and Fairness
Sandra WALLMAN (lxxii): Network Capital and Social Trust: Pre-Conditions for ‘Good’ Diversity?
Arianna T. de BLAEIJ, Paulo A.L.D. NUNES and Jeroen C.J.M. van den BERGH: Modeling ‘No-choice’ Responses in Attribute Based Valuation Surveys
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI (lxxii): Applications of Negotiation Theory to Water Issues
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI (lxxii): Advances in Negotiation Theory: Bargaining, Coalitions and Fairness
KTHC 67.2005: Network Capital and Social Trust: Pre-Conditions for ‘Good’ Diversity?
KTHC 68.2005: On the Determinants of Social Capital in Greece Compared to Countries of the European Union
KTHC 69.2005: Varieties of Trust
KTHC 71.2005: Citizenship Laws and International Migration in Historical Perspective
KTHC 72.2005: Accommodating Differences
KTHC 73.2005: Governance of Diversity Between Social Dynamics and Conflicts in Multicultural Cities, A Selected Survey on Historical Bibliography
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship</td>
<td>Antonio MUSOLESI and Mario NOSVELLI</td>
</tr>
<tr>
<td>2005</td>
<td>Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule</td>
<td>Hans-Peter WEIKARD</td>
</tr>
<tr>
<td>2005</td>
<td>Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITHAGEN (lxvvi): Local and Global Interactions in an Evolutionary Resource Game</td>
<td>Joëlle NOAILLY and Cees A. WITHAGEN and Jeroen C.J.M. van den BERGH</td>
</tr>
<tr>
<td>2005</td>
<td>Valentina BOSETTI and Barbara BUCHNER: Using Data Envelopment Analysis to Assess the Relative Efficiency of Different Climate Policy Portfolios</td>
<td>Valentina BOSETTI and Barbara BUCHNER</td>
</tr>
<tr>
<td>2005</td>
<td>Nicoletta FERRO: Value Through Diversity: Microfinance and Islamic Finance and Global Banking</td>
<td>Nicoletta FERRO</td>
</tr>
<tr>
<td>2005</td>
<td>A. MARKANDYA and S. PEDROSO: How Substitutable is Natural Capital?</td>
<td>A. MARKANDYA and S. PEDROSO</td>
</tr>
<tr>
<td>2005</td>
<td>Valentina BOSETTI and Laurent GILOTTE: Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?</td>
<td>Valentina BOSETTI and Laurent GILOTTE</td>
</tr>
<tr>
<td>2005</td>
<td>Vincent M. OTTO, Andreas LÖSCHEL and Rob DELLINK: Energy Biased Technical Change: A CGE Analysis</td>
<td>Vincent M. OTTO, Andreas LÖSCHEL and Rob DELLINK</td>
</tr>
<tr>
<td>2005</td>
<td>Carlo CAPUANO: Abuse of Competitive Fringe</td>
<td>Carlo CAPUANO</td>
</tr>
<tr>
<td>2005</td>
<td>Sabrina AUCI and Leonardo BECCETTI: The Stability of the Adjusted and Unadjusted Environmental Kuznets Curve</td>
<td>Sabrina AUCI and Leonardo BECCETTI</td>
</tr>
<tr>
<td>2005</td>
<td>Francesco BOSELLO and Jian ZHANG: Assessing Climate Change Impacts: Agriculture</td>
<td>Francesco BOSELLO and Jian ZHANG</td>
</tr>
<tr>
<td>2005</td>
<td>Alessandro COLOGNI and Matteo MANERA: Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries</td>
<td>Alessandro COLOGNI and Matteo MANERA</td>
</tr>
<tr>
<td>2005</td>
<td>Chiarà M. TRAVISI and Roberto CAMAGNI: Sustainability of Urban Sprawl: Environmental-Economic Indicators for the Analysis of Mobility Impact in Italy</td>
<td>Chiarà M. TRAVISI and Roberto CAMAGNI</td>
</tr>
<tr>
<td>2005</td>
<td>Anna ALBERINI and Aline CHIABAI: Environmental Health and Sensitive Populations: How Much are the Italians Willing to Pay to Reduce Their Risks?</td>
<td>Anna ALBERINI and Aline CHIABAI</td>
</tr>
<tr>
<td>2005</td>
<td>Michele BERNASCONI and Matteo GALIZZI: Coordination in Networks Formation: Experimental Evidence on Learning and Salience</td>
<td>Michele BERNASCONI and Matteo GALIZZI</td>
</tr>
<tr>
<td>2005</td>
<td>Benno TORGLER and Maria A. GARCIA-VALIÑAS: The Determinants of Individuals’ Attitudes Towards Preventing Environmental Damage</td>
<td>Benno TORGLER and Maria A. GARCIA-VALIÑAS</td>
</tr>
<tr>
<td>2005</td>
<td>Alexander K. LONGO and Anna ALBERINI: What are the Effects of Contamination Risks on Commercial and Industrial Properties? Evidence from Baltimore, Maryland</td>
<td>Alexander K. LONGO and Anna ALBERINI</td>
</tr>
<tr>
<td>2005</td>
<td>Anna ALBERINI and Alberto LONGO: The Value of Cultural Heritage Sites in Armenia: Evidence from a Travel Cost Method Study</td>
<td>Anna ALBERINI and Alberto LONGO</td>
</tr>
<tr>
<td>2005</td>
<td>Mikkel GONZALEZ and Rob DELLINK: Impact of Climate Policy on the Basque Economy</td>
<td>Mikkel GONZALEZ and Rob DELLINK</td>
</tr>
<tr>
<td>2005</td>
<td>Gilles LAFFORGUE and Walden OUESLATI: Optimal Soil Management and Environmental Policy</td>
<td>Gilles LAFFORGUE and Walden OUESLATI</td>
</tr>
</tbody>
</table>
Martin D. SMITH and Larry B. CROWDER (lxxvi): Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary

Dan HOLLAND and Kurt SCHNIER (lxxvi): Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

John NELLIS: The Evolution of Enterprise Reform in Africa: From State-owned Enterprises to Private Participation in Infrastructure — and Back?

Bernardo BORTOLOTTI: Italy’s Privatization Process and Its Implications for China

Anna ALBERINI, Marcella VERONESI and Joseph C. COOPER: Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys

Federico ECHENIQUE and Mehmet B. YENMEZ: A Solution to Matching with Preferences over Colleagues

Valeria GATTAI and Corrado MOL TENI: Dissipation of Knowledge and the Boundaries of the Multinational Enterprise

Valeria GATTAI: Firm’s Intangible Assets and Multinational Activity: Joint-Venture Versus FDI

Fuminori SANO, Keigo AKIMOTO, Takashi HOMMA and Toshimasa TOMODA: Analysis of Technological Portfolios for CO2 stabilizations and Effects of Technological Changes

Fredrik HEDENUS, Christian AZAR and Kristian LINDGREN: Induced Technological Change in a Limited Foresight Optimization Model

Reyer GERLAGH: The Value of ITC under Climate Stabilization

John NELLIS: Privatization in Africa: What has happened? What is to be done?

Pascual GAUTIER and Raphael SOUBEYRAN: Political Cycles: The Opposition Advantage

Giovanni DI BARTOLOMEO, Nicola ACOCELLA and Andrew HUGHES HALLETT: Dynamic Controllability with Overlapping targets: A Generalization of the Tinbergen-Nash Theory of Economic Policy

Elissaios PAPYRAKIS and Reyer GERLAGH: Institutional Explanations of Economic Development: the Role of Precious Metals

Giovanni DI BARTOLOMEO and Nicola ACOCELLA: Tinbergen and Their Meet Nash: Controllability in Policy Games

Adriana M. IGNACIUK and Rob B. DELLINK: Multi-Product Crops for Agricultural and Energy Production — an AGE Analysis for Poland

Raffaele MINIACI, Carlo SCARPA and Paola VALBONESI: Restructuring Italian Utility Markets: Household Distributional Effects

Valentina ZANATTA, Paolo ROSATO, Anna ALBERINI and Dimitrios REPPAS: The Impact of Speed Limits on Recreational Boating in the Lagoon of Venice

Chi-CHUR CHAO, Bharat R. HAZARI, Jean-Pierre LAFFARGUE, Pasquale M. SGRO, and Eden S. H. YU (lxxviii): Tourism, Jobs, Capital Accumulation and the Economy: A Dynamic Analysis
2004 SERIES

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>