Gupta, Manish

Working Paper

Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 147.2006

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Gupta, Manish (2006) : Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 147.2006

This Version is available at:
http://hdl.handle.net/10419/74110

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector
Manish Gupta

DECEMBER 2006
CCMP – Climate Change Modelling and Policy

Manish Gupta, National Institute of Public Finance and Policy

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=951455

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector

Summary
If India were to participate in any international effort towards mitigating CO2 emissions, the power sector which is one of the largest emitters of CO2 in the country would be required to play a major role. In this context the study estimates the marginal abatement costs, which correspond to the costs incurred by the power plants to reduce one unit of CO2 from the current level. The study uses an output distance function approach and its duality with the revenue function to derive these costs for a sample of thermal plants in India. Two sets of exercises have been undertaken. The average shadow prices of CO2 for the sample of thermal plants for the period 1991-92 to 1999-2000 was estimated to be respectively Rs.3380.59 and Rs.2401.99 per ton for the two models. These shadow prices can be used for designing environmental policies and market-based instruments for controlling pollution in the power sector in India.

Keywords: Marginal Abatement Costs, Distance Function, CO2 Emissions, Shadow Prices, Power Generation Sector

JEL Classification: Q40

Address for correspondence:
Manish Gupta
National Institute of Public Finance and Policy
18/2 Satsang Vihar Marg
Special Institutional Area (Near JNU)
New Delhi 110 067
India
Phone: 011 26563305, 011 26569303 (Office)
E-mail: manish@nipfp.org.in
1. Introduction

Issues concerning greenhouse gas (GHG) emission and global warming have received a great deal of attention in the recent years. As per the Kyoto Protocol signed in 1997, the industrialised countries, which have historically been mostly responsible for increase in GHG concentration, agreed to reduce the flow of their GHG emission by 5.2 percent below the level prevailing in 1990. While the developing countries do not yet have any binding commitment, there is a realization that large developing countries such as China and India need to take some action in this regard since they are among the large contributors to incremental emissions. Any commitment by India towards reducing emissions would mean that all the sectors in the economy would have to make efforts for reducing their respective GHG emissions so that the national emission targets are met.

Power sector in India is one of the largest emitters of carbon dioxide (CO\textsubscript{2}) in the country accounting for about 35.53 percent of the total CO\textsubscript{2} emissions in the year 2001-02 (see Table 1). The main reason for such a high share is its heavy reliance upon coal. About 81.7 percent of the total power generation by the utilities in the country in the year 2000-01 was from coal (GOI, 2002). In addition, the coal burnt in the thermal power plants in the country is of inferior quality thereby resulting in an even higher level of emissions.1 Thus, in near future if India were to participate in any international effort towards mitigating CO\textsubscript{2} emissions, the power sector, which is one of the largest emitter of carbon dioxide in the country, would be required to play a major role.

In this context the present study analyses the potential costs imposed on the coal fired thermal power plants, one of the main sources of CO\textsubscript{2} emissions in India, by the implementation of environmental regulation. More specifically the study aims to estimate the marginal abatement costs, which corresponds to the costs incurred by the power plants to reduce one unit of carbon dioxide from the current level. The present exercise, therefore, seeks to derive the ‘shadow prices’ of reducing carbon dioxide emissions generated by the thermal plants in India. It thus attempts to provide an answer to the question: how much does it cost the thermal plants in India to reduce CO\textsubscript{2} emission in terms of foregone output or revenue? These estimates are expected to help in formulating environmental policies. The marginal abatement costs thus obtained would

1 Coal used in coal-fired power plants in India has a low calorific value (around 3,500 Kcal/kg) and a high ash content (as high as 45%).
provide guidance on whether the current regulation on pollution satisfies the cost-effectiveness criterion which is based on the principle of marginal abatement costs be equal across individual power plants (Baumol and Oates, 1988). It is being recognized by the developed world that the marketable emission permit system is a more efficient way of regulating pollution. The unit price of a marketable emission permit would be equivalent to the derived marginal abatement costs (Baumol and Oates, 1988; Titenberg, 1985). Consequently, these estimates of marginal abatement cost could be used to predict the price level of emission permits to be introduced.

Table 1: Carbon dioxide Emissions in India (mn t CO$_2$)

<table>
<thead>
<tr>
<th>Year</th>
<th>Aggregate Emissions</th>
<th>Power Sector Emissions</th>
<th>Share of Power Sector in Total Emission (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-81</td>
<td>244.71</td>
<td>68.06</td>
<td>27.81</td>
</tr>
<tr>
<td>85-86</td>
<td>342.22</td>
<td>105.09</td>
<td>30.71</td>
</tr>
<tr>
<td>90-91</td>
<td>481.70</td>
<td>170.42</td>
<td>35.38</td>
</tr>
<tr>
<td>95-96</td>
<td>632.08</td>
<td>237.98</td>
<td>37.65</td>
</tr>
<tr>
<td>96-97</td>
<td>676.80</td>
<td>250.49</td>
<td>37.01</td>
</tr>
<tr>
<td>97-98</td>
<td>704.05</td>
<td>269.81</td>
<td>38.32</td>
</tr>
<tr>
<td>98-99</td>
<td>632.41</td>
<td>185.33</td>
<td>29.31</td>
</tr>
<tr>
<td>99-00</td>
<td>682.78</td>
<td>219.98</td>
<td>32.22</td>
</tr>
<tr>
<td>00-01</td>
<td>736.49</td>
<td>242.98</td>
<td>32.99</td>
</tr>
<tr>
<td>01-02</td>
<td>698.76</td>
<td>248.24</td>
<td>35.53</td>
</tr>
</tbody>
</table>

Source: Derived from Energy Balance Table using TEDDY (various years) and IPCC (1995).

Theoretical framework of the study is based on production theory and in particular on the distance function approach. The distance function (also known as the gauge function, transformation function, or deflation function) identifies a boundary or a frontier technology, which contains all observation on one side of the frontier and minimises a suitable measure of the total distance of all observations from the frontier. Although the basic ingredients of the theoretical framework on which the distance function is based was known long ago owing to the works of Debreu (1951), Malmquist (1953), and Shephard (1953, 1970), its application became popular only in the recent years by the works of Rolf Färe, Shawna Grosskopf and others. The methodology based on distance function framework was first developed by Färe et al.(1993) and applied by Coggins and Swinton (1996) to the US coal burning utilities. Hetemäki (1996), Kwon
and Yun (1999), Murty and Kumar (2002) etc. have also used the technique to derive the shadow prices of reducing the undesirable outputs. The main advantage of using the distance function approach over the conventional ones i.e., the production, cost, revenue and profit function is its computation requiring only quantity data. This feature is of particular importance in the field of environment economics since price data related to environmental compliance costs are often not available or are unreliable.

The present study uses the output distance function and its duality with the revenue function to derive the marginal abatement costs or the shadow prices of reducing CO₂ emissions for a sample of coal fired thermal power plants in India. The remainder of the paper is organized as follows: the next section provides a theoretical model for estimating the marginal abatement costs. It also describes the methodology for deriving marginal abatement costs using an output distance function approach. Section 3 highlights the procedure for the empirical estimation of the model while Section 4 provides information on the data used and also discusses the estimation procedure. The estimated results are presented in Section 5. The final Section 6 concludes by summarizing the main results of the study.

2. Theoretical Model

The conventional production function is defined as the maximum output that can be produced from a given vector of inputs. The distance function generalizes this concept to a multi-output case and describes how far an output vector is from the boundary of the representative output set. We can define the output distance function in terms of the output set $P(x)$. Suppose that a producer employs the vector of inputs $x \in R^N_+$ to produce the vector of outputs $y \in R^M_+$, where R^N_+, R^M_+ are non-negative N and M dimensional Euclidean spaces, respectively. The plant technology captures the relationship between the inputs and outputs and is described by the output set $P(x)$. The output set $P(x)$ denotes all output vectors that are technically feasible for any given input vector x, i.e.,

$$ (i)\ldots\quad P(x) = \{ y \in R^M_+ : x \text{ can produce } y \} $$

The output set is assumed to satisfy certain axioms, the details of which can be seen in Färe (1988). The output distance function is defined on the output set $P(x)$ as

$$ (ii)\ldots\quad D_\theta (x, y) = \min_{\theta > 0} \{ (y / \theta) \in P(x) \} \forall x \in R^N_+ $$
The above equation measures the largest radial expansion of the output vector \(y \), for a given input vector \(x \), that is consistent with \(y \) belonging to \(P(x) \). The value of the output distance function must be less than or equal to one for any feasible output. The axioms regarding the output set \(P(x) \) impose a set of properties\(^2\) on the output distance function some of which are as follows:

1. \(D_o(0, y) = +\infty \) for \(y \geq 0 \), i.e., there is no free lunch. To produce outputs one requires inputs.
2. \(D_o(x, 0) = 0 \) for all \(x \) in \(R_+^N \), i.e., inaction is possible. No output is possible from positive inputs.
3. \(x' \geq x \) implies that \(D_o(x', y) \leq D_o(x, y) \), i.e., more the inputs the less efficient would the production be.
4. \(D_o(x, \mu y) = \mu D_o(x, y) \) for \(\mu > 0 \), i.e., positive linear homogeneity.
5. \(D_o(x, y) \) is convex in \(y \).

Of particular interest for our purpose is the disposability properties of the technology with respect to the output, especially the undesirable outputs. We assume that such outputs are weakly disposable i.e., a reduction in the undesirable outputs can only be achieved by simultaneously reducing some of the desirable outputs. We also assume that the desirable outputs are strongly disposable i.e., it is possible to reduce the desirable outputs without actually reducing the undesirable outputs. In other words the outputs are weakly disposable if \(y \in P(x) \) and \(\theta \in [0,1] \), then \(\theta y \in P(x) \); and strongly disposable if we have \(\nu \leq y \in P(x) \) implies \(\nu \in P(x) \).

Let \(r = (r_1, r_2, \ldots, r_M) \) denote the output price vector. Using the output set concept we can now define the revenue function in the lines of Shephard (1970), and Färe and Primont (1995) as

\[
(iii) \cdots \quad R(x, r) = \max_{y} \left\{ ry : y \in P(x) \right\}
\]

The revenue function describes the maximum revenue that can be obtained from a given technology at the output price \(r \). The revenue function, like the distance function, completely describes the production technology. Shephard (1970) showed that the revenue function and the output distance function are dual to one another. So,

\(^2\) For detailed descriptions of these properties refer to Färe (1988).
Thus the revenue function can be derived from the output distance function by maximising revenue over output quantities, and the output distance function can be derived by maximising the revenue function over output prices. This duality between the output distance function and the revenue function can be used to derive the shadow prices of the outputs. These are relative output shadow prices and in order to obtain absolute shadow prices additional information regarding the revenue is required (Färe et al 1993). In order to derive the shadow prices of outputs we assume that both the revenue and distance functions are differentiable. We follow the methodology used by Färe et al (1993) to derive the shadow price of the undesirable output. Let m' output be the undesirable output. In order to derive the shadow price of the undesirable output it is assumed that the price of at least one of the desirable output (say, the mth output) is known and is equal to its shadow price, r_m^o. Then the absolute shadow price r_m' of the m' output can be computed as

$$(vi) \ldots \quad r_m' = r_m^o \cdot \frac{\partial D_o(x, y)}{\partial y_m}/\frac{\partial D_o(x, y)}{\partial y_m'}$$

As can be seen from equation (vi), the shadow price of the m' output (the undesirable output) is given by the product of the market price of the mth output (the desirable output) and the marginal rate of transformation. This, in turn, is equivalent to the value of the foregone desirable output associated with the reduction in one unit of the undesirable output. In the above equation the ratio of the output shadow prices reflects the relative opportunity cost of the output in terms of the revenue foregone. In other words, it is equivalent to the marginal rate of transformation between the outputs. Thus the shadow prices reflect the trade-off between the desirable and undesirable outputs at the actual mix of outputs. Derivation of the shadow prices of undesirable output as given by equation (vi) is based on the assumption that the production is occurring at the frontier of the output set. But if the production firms lie within the output set and not on the frontier (i.e., for such firms the value of the output distance function is less than one) then there might be some problem in estimating the shadow prices. To resolve the problem of estimating
the shadow prices for such inefficient firms one can proportionately increase all the outputs so that they are on the frontier. Such proportionate scaling of the outputs will have no affect on the shadow prices as the output distance function is homogeneous of degree one in outputs and therefore its derivatives with respect to the outputs as shown in equation (vi) are homogeneous of degree zero. Thus, regardless of the location of the observed production combinations, the shadow prices can be derived through an estimated output distance function by using the actual data of the inputs and outputs - both desirable and undesirable (Kwon and Yun, 1999).

3. The Empirical Model

The present study uses the deterministic parametric method for estimating the output distance function. The objective of such an exercise is to analyse the potential cost, if any, imposed on the coal fired thermal power plants in India by the implementation of environmental regulation. Thus, the objective is to estimate the shadow price of reducing CO₂ emissions (the undesirable output) expressed in terms of the value of electricity generation (the desirable output) foregone for a sample of coal fired thermal power plants in India by using the output distance function and its duality with the revenue function.

In order to derive the shadow prices by estimating the deterministic parametric output distance function we have to initially define its functional form. We choose to parameterise the output distance function \(D_o(x, y) \) as a translog function, as has been followed in the literature (see studies by Althin, 1994; Färe et al, 1993). Thus,

\[
(vii) \quad \ln D_o(x, y) = \alpha_o + \sum_{n=1}^{N} \beta_n \ln x_n + \sum_{m=1}^{M} \alpha_m \ln y_m + 0.5 \sum_{n=1}^{N} \sum_{m=1}^{N} \beta_{nm} \ln x_n \ln x_m' \\
+ 0.5 \sum_{m=1}^{M} \sum_{m'=1}^{M} \alpha_{mm'} \ln y_m \ln y_{m'} + \sum_{n=1}^{N} \sum_{m=1}^{M} \gamma_{nm} \ln x_n \ln y_m \\
+ \gamma_1 t + 0.5 \gamma_{tt} t^2
\]

In the above equation (vii), \(x = (x_1, x_2, ..., x_N) \) denotes the inputs, and \(y = (y_1, y_2, ..., y_M) \) corresponds to both the desirable and undesirable outputs. In the model \(y = (y_1, y_2, ..., y_i) \) are the desirable outputs while \(y = (y_{i+1}, ..., y_M) \) represent the undesirable outputs. In our empirical

3 The advantage of using the deterministic parametric method for estimating the output distance function is that it is easy to use and allows computation of a large number of parameters even with a small number of observations.
model fuel (F), capital (K) and labour (L) are the three inputs while the outputs consists of desirable output, electricity (Y) and undesirable output, CO₂ emitted by the power plants. We introduce a time variable \(t \) in the model to reflect technical change. In order to reduce the number of parameters to be estimated the terms of the products of time variable and logarithms of other variables are excluded by assuming a neutral technical change.

The parameters of the equation (vii) are computed by using the linear programming technique as suggested by Aigner and Chu (1968). Theoretically the value of the output distance function \(D_o(x, y) \) cannot exceed unity and it must be less than or equal to one (assuming there are no measurement errors). Formally,

\[
\text{(viii)} \quad \ln D^k_o(x, y) \leq 0 \quad \forall k = 1, 2, \ldots, K.
\]

where \(k = (1, 2, \ldots, K) \) indexes individual observation. By adding a non-negative error term, one can write equation (viii) as

\[
\text{(ix)} \quad \ln D^k_o(x, y) + \varepsilon^k = 0
\]

where \(\varepsilon, (\varepsilon \geq 0) \) denotes the non-negative residual or the error term.\(^4\) Next we choose the ‘fitting’ criterion to be the minimum absolute error (MAE), i.e.,

\[
\sum_{k=1}^{K} |\varepsilon^k|, \quad \varepsilon^k \geq 0.
\]

The MAE fits \(\ln D_o(x, y) \) so that the sum of errors is as small as possible (Hetemäki, 1996). The parameters of the translog output distance function can be obtained by solving the following problem:

\[
(x) \quad \max \sum_{k=1}^{K} \left[\ln D_o(x^k, y^k) - \ln 1 \right]
\]

where \(k = (1, 2, \ldots, K) \) indexes individual observation. \(\ln D_o(x, y) \) has an explicit functional form as given by equation (vii). We assume that the first \(i \) outputs are desirable while the remaining \((M - i)\) outputs are undesirable or bad outputs. The objective function minimises the sum of deviations of individual observations from the frontier of the technology. We know that the distance function takes a value less than equal to unity, therefore the natural logarithm of it i.e., \(\ln D_o(x^k, y^k) \) will be less than or equal to zero and the expression \([\ln D_o(x^k, y^k) - \ln 1] \), which denotes the deviation from the frontier for observation \(k \) will be less than or equal to zero.

\(^4\) It may be noted that in the literature the non-negative error term is interpreted as the reciprocal of Farrell output based technical efficiency index.
Our objective is to maximise the expression in equation (x) subject to the following constraints

\[(x_i) \ldots \ln D_o(x^k, y^k) \leq 0, \quad k = 1, \ldots, K \]

This constraint restricts the individual observations to be either on or below the frontier of the technology i.e., there are no outputs outside the frontier of the technology, given the set of inputs.

Desirable outputs are assumed to be strongly disposable, which implies that the output distance function should be increasing in desirable outputs. The strong disposability condition can be represented by the following inequality:

\[(x_{ii}) \ldots \frac{\partial \ln D_o(x^k, y^k)}{\partial \ln y^k_m} \geq 0, \quad m = 1, \ldots, i; \quad k = 1, \ldots, K \]

The constraint above ensures that the shadow prices of the desirable outputs are non-negative. In addition it is assumed that both the outputs are weakly disposable. This weak disposability is always satisfied for the output distance function specified as the translog form when linear homogeneity condition represented by equation (xiv) and the symmetry conditions represented by equation (xv) are being imposed. Therefore, one requires no additional constraints when the restrictions denoted by equations (xiv) and (xv) are imposed (Kwon and Yun, 1999).

The weak disposability of undesirable outputs implies that the desirable output decreases when the emission of the pollutants or the undesirable outputs is reduced. The following assumption satisfies the criterion of weak disposability of the undesirable output:

\[(x_{iii}) \ldots \frac{\partial \ln D_o(x^k, y^k)}{\partial \ln y^k_m} \leq 0, \quad m = i + 1, \ldots, M; \quad k = 1, \ldots, K \]

In addition to the above constraints we also impose the homogeneity and symmetry constraints into the model which can be represented as

\[(xiv) \ldots \sum_{m=1}^{M} \alpha_m = 1, \quad \sum_{m=1}^{M} \gamma_{nm} = \sum_{m'=1}^{M} \alpha_{mm'} = 0, \quad \text{for all } m, n \text{ and} \]

\[(xv) \ldots \alpha_{mm'} = \alpha_{m'm}, \quad \beta_{nn'} = \beta_{n'n}, \quad \text{for all } m, m', n \text{ and } n' \]

Equations (x)-(xv) represent the model we shall use to derive the shadow prices of the undesirable output. The model is solved using the GAMS programming tool.
4. Data and Estimation Procedure

The empirical analysis is based on primary data collected from the coal fired thermal plants under the Calcutta Electricity Supply Corporation (CESC), West Bengal Power Development Corporation Limited (WBPDCL) and Damodar Valley Corporation (DVC) in the Eastern region of India. These coal fired thermal plants are a part of the Eastern Grid. We have collected detailed data on inputs and outputs for the years 1990-91 to 1999-2000 for all the thermal plants listed above. However, the data for the Mejia TPS and Budge-Budge TPS were available for the years 1997-98 to 1999-2000 as these thermal plants were commissioned in the year 1997 and had started commercial production only from the year 1997-98. A detailed table listing the various thermal power stations along with the year of commissioning of their respective units is presented in Table A1 in the appendix. An interesting feature worth mentioning about our sample of thermal plants is that these plants are of different vintages. On the one hand we have plants like Bokaro TPS ‘A’ which was commissioned in the decade of fifties, there are newer plants like Mejia TPS and Budge-Budge TPS which are still under construction and only some of their units have started commercial operations on the other. Moreover, there are also plants that were commissioned in the decades of eighties and nineties. So we have a whole spectrum of thermal plants in the analysis representing technologies of different vintages. The primary data pertaining to inputs and outputs were collected from the WBSEB, DVC and CESC for their respective thermal plants. Only plant level data on inputs, outputs and prices of one of the desirable output is needed for our analysis.

Inputs: The main inputs needed for generation of electricity by the thermal plants are fuel, capital and labour. The major fuel input needed by the power plants considered in the present study is coal. In addition, the coal fired thermal plants also require fuel oil or light diesel oil (LDO), as a secondary fuel to provide the necessary heat input as and when required to start-up the boiler or for stabilization of flame at low load. Coal consumption figures are given in metric tonnes while the fuel oil (or LDO) consumption is recorded in kilolitres. The data pertaining to coal and fuel oil consumed by the power plants are converted from their respective units to tonnes of oil equivalent (See Box 1 for conversion factors) and are then aggregated to get the total fuel consumption figure for the individual plants.
Box 1: Conversion Factors

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Kilolitre of LDO</td>
<td>= 0.863 metric tonnes of LDO</td>
</tr>
<tr>
<td>1 Metric tonne of LDO</td>
<td>= 1.035 tonne of oil equivalent</td>
</tr>
<tr>
<td>1 Metric tonne of Coal</td>
<td>= 0.67 tonnes of oil equivalent</td>
</tr>
</tbody>
</table>

Source: India, Ministry of Petroleum and Natural Gas (MPNG), (various years), *Indian Petroleum and Natural Gas Statistics*, (New Delhi: MPNG, various years).

The other important inputs in the generation of electricity are capital and labour. In the present study we have used the plant capacity in megawatt (MW) as the capital variable following Kwon and Yun (1999). The data on labour input cover both production and non-production (white-collar) workers employed in the plant.

Outputs: The output variable consists of both desirable and undesirable outputs. While electricity generated by the thermal plant is the desirable output and is measured in Megawatt hours (Mwh), CO₂ emission is the bad output. We have used for the desirable output the plant-wise electricity generation data which was made available by the WBSEB, DVC and CESC for their respective thermal plants for the period 1990-91 to 1999-2000.

Coal is burnt to generate electricity in the thermal plants. Since in coal carbon is bundled with ash, carbon, sulfur etc., its burning results in the emission of carbon dioxide, particulate matters, NOₓ, etc., in the atmosphere as pollutants. The emission of these pollutants in the atmosphere can be regarded as the byproduct of electricity generation, and thus is considered as the undesirable output. The present study considers carbon dioxide as the only undesirable output. The data relating to the emission of CO₂ are not readily available, as most of the thermal plants in India still do not measure the emissions of CO₂. As a result we have used the data on fuel consumption for generating the data on CO₂ emissions. Having obtained the plant wise data on the consumption of coal and fuel oil or LDO, the emission factors of various fuels given by IPCC (1995) was used to derive plant wise total CO₂ emissions. We also collected data on the calorific value of coal consumed by the thermal plants in the sample and found that the coal supplied to these thermal plants is of a higher grade and has a higher calorific value vis-à-vis those used in most thermal plants in India. In the present study while calculating plant-wise CO₂ emissions from burning of coal the calorific values of different grades of coal consumed by the

5 The thermal plants included in the empirical model are Kolaghat Thermal Power Station (KTPS) under the WBPDCL, Bokaro TPS ‘A’, Bokaro TPS ‘B’, Chandrapura TPS, Durgapur TPS, Mejia TPS under the DVC and
power plants were incorporated and the CO\textsubscript{2} emission factors for coal provided by the IPCC were adjusted accordingly.6

The descriptive data on the inputs and outputs are given in Table 2 below. The standard deviations for all the variables are less than their mean values, indicating that the plants are a relatively homogeneous group (Hetemäki, 1996).

Table 2: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Unit</th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (Y)</td>
<td>Mwh</td>
<td>1874281</td>
<td>1541744</td>
<td>141000</td>
<td>6686101</td>
</tr>
<tr>
<td>Capital (K)</td>
<td>MW</td>
<td>469.64</td>
<td>341.52</td>
<td>67.50</td>
<td>1260</td>
</tr>
<tr>
<td>Labour (L)</td>
<td>number</td>
<td>1308</td>
<td>792.48</td>
<td>104</td>
<td>2946</td>
</tr>
<tr>
<td>Fuel (F)</td>
<td>toe</td>
<td>887848.20</td>
<td>735710.10</td>
<td>68720.71</td>
<td>3197387</td>
</tr>
<tr>
<td>CO\textsubscript{2} (P)</td>
<td>tCO\textsubscript{2}</td>
<td>2413491</td>
<td>2182987</td>
<td>139013.60</td>
<td>9169197</td>
</tr>
</tbody>
</table>

Note: Sample size is 76; toe = tonnes of oil equivalent; t CO\textsubscript{2} = tonnes of carbon dioxide; Mwh = Megawatt hour; MW = Megawatt; Fuel comprises both coal and oil consumption.

Electricity Prices: In order to derive the shadow prices of the outputs, market price of at least one of the output is necessary. As there exists no market for the undesirable outputs we do not get the prices for these. Therefore, in order to derive the shadow prices of the undesirable outputs we need to know the price of the desirable output, which in the present case is electricity. The data on electricity tariffs i.e., the sale price of electricity is taken as the price of electricity and is obtained from CESC, DVC and WBPDCCL for their respective plants for the different years.

It should be noted here that as the data on CO\textsubscript{2} emission used in the present exercise is generated from the consumption of fossil fuels by the thermal plants it cannot be used for econometrically estimating the output distance function. Hence the present study uses the deterministic linear programming technique to derive the shadow prices of undesirable output.

As mentioned the sample consists of plants of different vintages, some are new and use relatively better and efficient technologies and thus emit less CO\textsubscript{2} than the plants which are very old and pollute more per unit of output. In order to differentiate plants that are old and have not

6 In India most of the coal that is consumed in the thermal plants is of a lower grade and has low calorific value in comparison the coal consumed by the plants under consideration. In order to capture the grade differential while

Titagarh TPS, Southern TPS and Budge-Budge TPS under the CESC.
installed any equipment to control their emissions i.e., the dirty plants, from the plants that use new technology which is less polluting and plants which have old technology but have installed equipment or have taken additional measure to restrict emissions and hence pollute less i.e., the cleaner plants, a dummy variable\(^7\) is introduced in the model. The output distance function is initially estimated without making any distinction between the dirty and cleaner plants. This is our Model-1. The estimation of the output distance function is again carried out, now by incorporating the dummy variable to distinguish the dirty plants from the cleaner ones. This is called Model-2.\(^8\) The estimated parameters of both the models are presented in Table 3.

Table 3: Estimated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model-1</td>
<td>Model-2</td>
<td></td>
</tr>
<tr>
<td>(\alpha_o)</td>
<td>5.713907</td>
<td>8.265383</td>
<td>(\alpha_{YY})</td>
</tr>
<tr>
<td>(\beta_L)</td>
<td>-0.756283</td>
<td>-0.168085</td>
<td>(\alpha_{YP})</td>
</tr>
<tr>
<td>(\beta_K)</td>
<td>0.526069</td>
<td>0.947600</td>
<td>(\alpha_{PP})</td>
</tr>
<tr>
<td>(\beta_F)</td>
<td>-1.875104</td>
<td>-2.727518</td>
<td>(\gamma_{LY})</td>
</tr>
<tr>
<td>(\alpha_Y)</td>
<td>-0.892840</td>
<td>-0.409482</td>
<td>(\gamma_{LP})</td>
</tr>
<tr>
<td>(\alpha_P)</td>
<td>1.892840</td>
<td>1.409482</td>
<td>(\gamma_{KY})</td>
</tr>
<tr>
<td>(\beta_{LL})</td>
<td>-0.005172</td>
<td>-0.100494</td>
<td>(\gamma_{KP})</td>
</tr>
<tr>
<td>(\beta_{LK})</td>
<td>0.148123</td>
<td>0.205437</td>
<td>(\gamma_{FY})</td>
</tr>
<tr>
<td>(\beta_{LF})</td>
<td>-0.013652</td>
<td>-0.036834</td>
<td>(\gamma_{FP})</td>
</tr>
<tr>
<td>(\beta_{KK})</td>
<td>0.126568</td>
<td>0.060381</td>
<td>(\gamma_i)</td>
</tr>
<tr>
<td>(\beta_{KF})</td>
<td>-0.181760</td>
<td>-0.210416</td>
<td>(\gamma_H)</td>
</tr>
<tr>
<td>(\beta_{FF})</td>
<td>0.163526</td>
<td>0.250791</td>
<td>Dummy</td>
</tr>
</tbody>
</table>

Note: In Model 2 we have used Dummy \(D = 1\) for plants which are dirty and used dated technology and \(D = 0\) for plants which are clean.

7 A Dummy Variable assuming values \(D = 1\) for dirty plants and \(D = 0\) for plants which are cleaner is incorporated in Model-2.

8 In Model-2, as per our formulation, Titagarh TPS, Bokaro TPS ‘A’, Durgapur TPS, and Chandrapura TPS fall under the category of dirty plants while the remaining thermal plants are considered as cleaner plants.
5. Results

Having estimated the parameters of the distance function we now substitute their values in equation \((vii)\) to get the estimated value of the output distance function. Substituting the estimated output distance function in equation \((vi)\) and simplifying we get the marginal cost of abating CO\(_2\) expressed in terms of the value of electricity foregone.

Out of a total 76 observations in Model-1, 15 observations are located on the frontier of the output set as the value of the output distance function for these observations is unity, while the remaining 61 observations, for which the value of the output distance function is less than one, lie inside it. Similarly, in Model-2, 17 observations lie on the frontier of the output set and have value of the distance function as unity and the remaining 59 observations lie inside the frontier. On an average the mean value of the output distance function for the sample of thermal plants in Model-1 is estimated to be 0.9669 with standard deviation 0.0356. This means that the electricity generation can be increased by 3.31 percent (with CO\(_2\) emissions increasing in the same proportion) on an average by the thermal plants if they produce efficiently i.e. if they operate on the frontier of the output set. On the other hand, for Model-2, the mean value of the distance function is estimated to be 0.9722 with a standard deviation of 0.0275 implying that the electricity generation can be increased by 2.78 percent if the plants operate efficiently. But such increase in output will be accompanied by a proportionate increase in the emission of the pollutants. The mean value of the shadow price or the marginal cost of abatement of CO\(_2\) for the power plants in the study is estimated to be Rs. 3380.59 per tonne in case of Model-1 and Rs. 2401.99 per tonne in case of Model-2. These shadow prices reflect the trade-off between the desirable and undesirable outputs at the actual mix of outputs. This means that if the plants were to reduce their CO\(_2\) emission by one tonne, they will have to forego electricity output worth Rs. 3380.59 in Model-1 and Rs. 2401.99 in Model-2. It should be noted here that these shadow prices or the marginal abatement costs of CO\(_2\) are at constant 1990-91 prices. There is a wide variation in the mean values of the output distance function and the marginal abatement cost across plants as is shown in Table A2 in the appendix. The mean value of the distance function varies, in case of Model-1, between 0.896814 (for Titagarh TPS) and 0.998510 (for Mejia TPS) and between 0.937319 (for Bokaro ‘B’ TPS) and 0.997814 (for Mejia TPS) in case of Model-2. Thus there is a considerable scope of increasing the electricity output if these plants were to
operate efficiently. Similarly, there is a wide variation in the mean value of the output distance function and the mean value of the marginal abatement costs of CO₂ across years as is seen in Table A3 in the appendix.

In both the models there is wide variation in the marginal abatement cost across plants. Even for a particular plant there are variations in the shadow prices across different years (Refer to Tables A4 and A5 in the Appendix). The wide variation in the marginal abatement costs or the shadow prices of CO₂ can be explained by the variation in the ratio of CO₂ emissions to electricity generation, the different vintages of capital used by the different plants for generation of power and the different measures adopted for abating or controlling pollution. The variations in the marginal abatement costs by plant have an important implication in evaluating the cost effectiveness of the current environmental policies in India. These differences in the marginal abatement costs across plants are important because of their policy implications. They suggest, per se, the current pollution control regulations in the country cause an inefficient allocation of abatement resources across plants and a market oriented system would potentially result in transfer of such resources across plants and this would lead to cost effectiveness.

It would be meaningful to statistically test whether the equi-marginal principle is satisfied for power generation sector in the country. To secure a minimum number of observations for a statistical test, we divide the sample into two periods of 1990-91 to 1994-95 and 1995-96 to 1999-00. The hypothesis to be tested is that the marginal abatement costs for CO₂ are same within the sub-samples. For this end, after ordering the marginal abatement costs for CO₂, we separate each sub-sample into two groups of high and low marginal abatement costs. Using a t-test, we test whether the mean of high-cost group is different from that of low cost group. The results of the test are shown in Table 5. From Table 5 it is evident that for both the sub-samples, the hypothesis is rejected at 1 per cent level of significance, thereby implying that the equi-marginal principle does not hold for environmental regulations pertaining to CO₂ emission in the Indian power generation sector. Thus, the CO₂ emission reduction is not being achieved in the least cost way.
We define the ratio of total CO₂ emissions to electricity generation as our index of efficiency. As per the definition an efficient plant is associated with a lower value of this ratio because it would emit less of CO₂ per unit of electricity output generated. In other words the higher the ratio the less efficient the plant is and vice-versa. On the basis of the index of efficiency and the estimated shadow prices, the present study gets the expected result that the higher efficiency is associated with a higher value of the shadow price of CO₂. This means that the marginal cost of abating CO₂ emissions is high for a clean and efficient plant while for a dirty and inefficient plant it is low. The estimated relation between the estimated shadow prices and the efficiency index is given in Table 6.

Table 6: Impact of Efficiency Index on Marginal Abatement Cost

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model-1</th>
<th>Model-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td>log(shadow price of CO₂)</td>
<td></td>
</tr>
<tr>
<td>Explanatory Variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(CO₂ emission/power generation)</td>
<td>-1.379 (-7.16)</td>
<td>-3.689 (-8.34)</td>
</tr>
<tr>
<td>constant</td>
<td>7.758 (80.78)</td>
<td>5.232 (17.58)</td>
</tr>
<tr>
<td>envt_dummy</td>
<td></td>
<td>3.942 (9.02)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.748</td>
<td>0.668</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.717</td>
<td>0.629</td>
</tr>
<tr>
<td>N</td>
<td>75</td>
<td>76</td>
</tr>
</tbody>
</table>

Note: Figures in parenthesis are t-values. Plant dummies have been used in estimating both the regressions but are not reported while presenting the results.

From the estimated relationship between the marginal abatement costs and efficiency index one can infer that, for the sample of thermal plants, the marginal cost of abatement of CO₂ increases with the increase in the efficiency of the plant. That is, it becomes increasingly difficult
or expensive for a plant, which has invested in pollution abating technology or equipment and is emitting less of CO\textsubscript{2} per unit of output to reduce an additional unit of the pollutant vis-à-vis plants that emit more CO\textsubscript{2} per unit of electricity generation. Thus, for a given level of output the less one pollutes, the higher will be the cost of reducing an additional unit of the pollutant and vice-versa.

6. Conclusion

There have been a number of studies for India, which have applied the output distance function approach to calculate the shadow prices of the undesirable outputs. These studies mainly relate to water pollutants like BOD (biological oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) (Refer to studies by Murty and S. Kumar 2001, 2002). The present study is one of the few to use the output distance function technique for the coal fired thermal plants in India and perhaps the only one to calculate the shadow price of CO\textsubscript{2} emissions for the power sector India. The only other study that uses the output distance technique to calculate the shadow prices of the pollutants emitted by the power plants in India, is Kumar (1999) which uses both deterministic and stochastic output distance function technique to derive the shadow price of (PM\textsubscript{10}) for the power plants in India. Apart from the studies relating to India, numerous other studies have also been carried out worldwide to derive the shadow prices of the pollutants using the output distance technique. Appendix Table A6 displays the results of some of the studies that use the output distance function technique to derive the shadow price(s) of pollutant(s) for the power sector.

The present study uses the output distance function approach and its duality with the revenue function to calculate the plant specific shadow prices of CO\textsubscript{2}, for the coal fired thermal power plants in India. A distinguishing feature of this framework is that it provides a measure of productive efficiency for each producer. The output distance function technique, since it allows shadow prices to vary across producers, can reveal a pattern of variation by production techniques, by other plant characteristics like the age of the plant, volume of pollution etc. This type of information would be helpful for policy makers in designing or formulating policies to reduce carbon dioxide emissions.

Economic theory suggests that equalization of the marginal cost of abatement across the firms would minimise the total cost of abating the pollutants at an aggregate level. The results of
the study reveal that the estimated shadow prices of CO\(_2\) vary across plants. The estimated mean values of the shadow price or the marginal abatement cost of CO\(_2\) for the coal fired thermal plants in India for the period 1991-92 to 1999-2000 is Rs. 3380.59 per ton of CO\(_2\) as per model-1 and Rs. 2401.99 per ton of CO\(_2\) as per model-2. Considerable differences in the plant specific shadow prices point towards inefficient use of abatement technology by the thermal plants in the country. One can also infer from the study that the command and control measures are not successful in controlling pollution in this sector thereby building a case for consideration of various economic instruments like pollution taxes, input taxes or tradable pollution permits to control pollution. As the marginal abatement costs vary considerably across plants it implies that the current environmental regulations in India do not achieve cost minimisation condition. Therefore it would be expected that the introduction of environmental/pollution taxes, input taxes or tradable pollution permits which are highly market oriented and incentive-based would achieve reduction in social costs.\(^9\)

As regards the relationship between efficiency of the power plants defined in terms of CO\(_2\) emissions per unit of electricity output generated and marginal cost of abating CO\(_2\) is concerned the results of the study indicate that there exists a direct correlation between the two. This implies that a relatively efficient plant is associated with a higher marginal cost of abating CO\(_2\). In other words, it becomes increasingly difficult for a plant, which emits less CO\(_2\) per unit of its good output to reduce an additional unit of CO\(_2\) vis-à-vis plants that are less efficient and hence emit more CO\(_2\) per unit of good output. That is, the marginal abatement cost increases with the efficiency of the thermal plant.

\(^9\) In order to predict the amount of cost savings by these market oriented policies, it would be necessary to analyse further the extent to which the costs related to reducing pollution emissions would be decreased compared to the current level due to the introduction of these policies.
Appendix

Table A1: Details of the Various Thermal Power Stations (TPS)

<table>
<thead>
<tr>
<th>Thermal Power Stations</th>
<th>Units</th>
<th>Year of Commissioning</th>
<th>Thermal Power Stations</th>
<th>Units</th>
<th>Year of Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcutta Electric Supply Corporation</td>
<td></td>
<td></td>
<td>Damodar Valley Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titagarh TPS</td>
<td>Unit 1</td>
<td>1983</td>
<td>Bokaro TPS "A"</td>
<td>Unit 1</td>
<td>February 1953</td>
</tr>
<tr>
<td></td>
<td>Unit 2</td>
<td>1983</td>
<td></td>
<td>Unit 2</td>
<td>August 1953</td>
</tr>
<tr>
<td></td>
<td>Unit 3</td>
<td>1984</td>
<td></td>
<td>Unit 3</td>
<td>October 1953</td>
</tr>
<tr>
<td></td>
<td>Unit 4</td>
<td>1985</td>
<td></td>
<td>Unit 4</td>
<td>1 April 1960</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bokaro TPS "B"</td>
<td>Unit 1</td>
<td>12 March 1987</td>
</tr>
<tr>
<td>Southern TPS</td>
<td>Unit 1</td>
<td>1990</td>
<td>Chandrapura TPS</td>
<td>Unit 1</td>
<td>November 1968</td>
</tr>
<tr>
<td></td>
<td>Unit 2</td>
<td>1991</td>
<td></td>
<td>Unit 2</td>
<td>April 1965</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 3</td>
<td>1 August 1968</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 4</td>
<td>31 March 1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 5</td>
<td>1 April 1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 6</td>
<td>1 April 1980</td>
</tr>
<tr>
<td>Budge-Budge TPS</td>
<td>Unit 1</td>
<td>1997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 2</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Bengal Power Development Corporation Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolaghat TPS</td>
<td>Unit 1</td>
<td>9 September 1990</td>
<td>Durgapur TPS</td>
<td>Unit 1</td>
<td>December 1960</td>
</tr>
<tr>
<td></td>
<td>Unit 2</td>
<td>9 March 1986</td>
<td></td>
<td>Unit 2 *</td>
<td>February 1961</td>
</tr>
<tr>
<td></td>
<td>Unit 3</td>
<td>12 October 1984</td>
<td></td>
<td>Unit 3 *</td>
<td>1 April 1967</td>
</tr>
<tr>
<td></td>
<td>Unit 4</td>
<td>1 April 1995</td>
<td></td>
<td>Unit 4</td>
<td>1 December 1982</td>
</tr>
<tr>
<td></td>
<td>Unit 5</td>
<td>14 May 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 6</td>
<td>1 January 1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mejia TPS</td>
<td>Unit 1</td>
<td>1 December 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 2</td>
<td>15 March 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit 3</td>
<td>28 September 1999</td>
</tr>
</tbody>
</table>

Note: * Decommissioned due to fire since 23 October 1985.
Table A2: Mean Values of Output Distance Function and Shadow Prices Across Plants

<table>
<thead>
<tr>
<th>Thermal Plants</th>
<th>Model-1 Distance Function</th>
<th>Model-1 Shadow Price (Rs. / tonne)</th>
<th>Model-2 Distance Function</th>
<th>Model-2 Shadow Price (Rs. / tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titagarh TPS</td>
<td>0.896814</td>
<td>3086.94</td>
<td>0.966136</td>
<td>2436.48</td>
</tr>
<tr>
<td>Southern TPS</td>
<td>0.964838</td>
<td>3709.37</td>
<td>0.965143</td>
<td>2715.56</td>
</tr>
<tr>
<td>Bokaro TPS 'A'</td>
<td>0.965746</td>
<td>939.31</td>
<td>0.976638</td>
<td>673.47</td>
</tr>
<tr>
<td>Bokaro TPS 'B'</td>
<td>0.977155</td>
<td>3418.66</td>
<td>0.937319</td>
<td>2453.95</td>
</tr>
<tr>
<td>Chandrapura TPS</td>
<td>0.984893</td>
<td>4760.05</td>
<td>0.984939</td>
<td>2679.60</td>
</tr>
<tr>
<td>Durgapur TPS</td>
<td>0.981496</td>
<td>7595.67</td>
<td>0.988897</td>
<td>5726.76</td>
</tr>
<tr>
<td>Kolaghat TPS</td>
<td>0.986287</td>
<td>1312.70</td>
<td>0.982368</td>
<td>909.74</td>
</tr>
<tr>
<td>Mejia TPS</td>
<td>0.998510</td>
<td>2587.78</td>
<td>0.997814</td>
<td>1567.78</td>
</tr>
<tr>
<td>Budge-Budge TPS</td>
<td>0.972593</td>
<td>1716.42</td>
<td>0.960523</td>
<td>630.81</td>
</tr>
<tr>
<td>Overall</td>
<td>0.966916</td>
<td>3380.59</td>
<td>0.972229</td>
<td>2401.99</td>
</tr>
</tbody>
</table>

Note: The values of the shadow price or marginal abatement costs of CO\textsubscript{2} abatement are at 1990-91 Prices; TPS = Thermal Power Station.

Table A3: Mean Values of Output Distance Function and Shadow Prices Across Years

<table>
<thead>
<tr>
<th>Year</th>
<th>Model-1 Distance Function</th>
<th>Model-1 Shadow Price (Rs. / tonne)</th>
<th>Model-2 Distance Function</th>
<th>Model-2 Shadow Price (Rs. / tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-91</td>
<td>0.961592</td>
<td>4492.213</td>
<td>0.973064</td>
<td>2788.97</td>
</tr>
<tr>
<td>1991-92</td>
<td>0.961590</td>
<td>4768.077</td>
<td>0.972118</td>
<td>2746.79</td>
</tr>
<tr>
<td>1992-93</td>
<td>0.961934</td>
<td>3357.720</td>
<td>0.973692</td>
<td>3679.13</td>
</tr>
<tr>
<td>1993-94</td>
<td>0.967121</td>
<td>2445.274</td>
<td>0.972898</td>
<td>1922.71</td>
</tr>
<tr>
<td>1994-95</td>
<td>0.971794</td>
<td>3091.220</td>
<td>0.976806</td>
<td>2213.27</td>
</tr>
<tr>
<td>1995-96</td>
<td>0.969427</td>
<td>3124.218</td>
<td>0.971137</td>
<td>2327.37</td>
</tr>
<tr>
<td>1996-97</td>
<td>0.959193</td>
<td>3714.176</td>
<td>0.961707</td>
<td>2535.19</td>
</tr>
<tr>
<td>1997-98</td>
<td>0.979707</td>
<td>3074.603</td>
<td>0.981455</td>
<td>2041.24</td>
</tr>
<tr>
<td>1998-99</td>
<td>0.968473</td>
<td>3313.584</td>
<td>0.971292</td>
<td>2187.87</td>
</tr>
<tr>
<td>1999-00</td>
<td>0.964824</td>
<td>2717.520</td>
<td>0.967193</td>
<td>1888.36</td>
</tr>
<tr>
<td>Overall</td>
<td>0.966916</td>
<td>3380.59</td>
<td>0.972229</td>
<td>2401.99</td>
</tr>
</tbody>
</table>

Note: The values of the shadow price or marginal abatement costs of CO\textsubscript{2} abatement are at 1990-91 prices; The numbers of plants in our study which were seven till 1996-97 increased to nine from the year 1997-98 with the commissioning of two new plants.
Table A4: Shadow Price Of CO₂ (Rs. / tonne) (Model-1)

<table>
<thead>
<tr>
<th>Year</th>
<th>Titagarh</th>
<th>Southern</th>
<th>Bokaro 'A'</th>
<th>Bokaro 'B'</th>
<th>Chandrapura</th>
<th>Durgapur</th>
<th>Kolaghat</th>
<th>Mejia</th>
<th>Budge-Budge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-91</td>
<td>3004.55</td>
<td>9788.45</td>
<td>720.96</td>
<td>2399.59</td>
<td>5329.14</td>
<td>7985.58</td>
<td>2217.22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1991-92</td>
<td>3580.52</td>
<td>3069.24</td>
<td>866.61</td>
<td>3594.23</td>
<td>4945.82</td>
<td>15652.64</td>
<td>1667.48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1992-93</td>
<td>3470.91</td>
<td>3087.15</td>
<td>675.99</td>
<td>6199.12</td>
<td>4757.24</td>
<td>1955.90</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1993-94</td>
<td>2742.66</td>
<td>2727.92</td>
<td>826.29</td>
<td>3277.56</td>
<td>2740.97</td>
<td>3140.97</td>
<td>1660.54</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1994-95</td>
<td>2926.60</td>
<td>2990.87</td>
<td>855.24</td>
<td>3565.90</td>
<td>4372.71</td>
<td>1277.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1995-96</td>
<td>3535.08</td>
<td>2912.66</td>
<td>872.74</td>
<td>4875.58</td>
<td>4926.40</td>
<td>888.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1996-97</td>
<td>2498.35</td>
<td>3316.50</td>
<td>947.68</td>
<td>3897.56</td>
<td>2987.34</td>
<td>11564.53</td>
<td>787.27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1997-98</td>
<td>2622.94</td>
<td>2443.97</td>
<td>627.65</td>
<td>2301.21</td>
<td>5400.80</td>
<td>6380.25</td>
<td>962.00</td>
<td>4120.71</td>
<td>2811.91</td>
</tr>
<tr>
<td>1998-99</td>
<td>2869.59</td>
<td>3152.50</td>
<td>1539.58</td>
<td>1995.88</td>
<td>6619.60</td>
<td>9302.76</td>
<td>901.01</td>
<td>2035.36</td>
<td>1405.98</td>
</tr>
<tr>
<td>1999-00</td>
<td>3618.20</td>
<td>3604.45</td>
<td>1460.34</td>
<td>2079.96</td>
<td>5311.41</td>
<td>5035.23</td>
<td>809.47</td>
<td>1607.27</td>
<td>931.36</td>
</tr>
</tbody>
</table>

Note: The shadow prices or the marginal abatement costs are at 1990-91 prices.

Table A5: Shadow Price Of CO₂ (Rs. / tonne) (Model-2)

<table>
<thead>
<tr>
<th>Year</th>
<th>Titagarh</th>
<th>Southern</th>
<th>Bokaro 'A'</th>
<th>Bokaro 'B'</th>
<th>Chandrapura</th>
<th>Durgapur</th>
<th>Kolaghat</th>
<th>Mejia</th>
<th>Budge-Budge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-91</td>
<td>2369.08</td>
<td>5415.70</td>
<td>558.19</td>
<td>1979.47</td>
<td>2883.03</td>
<td>4806.78</td>
<td>1510.57</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1991-92</td>
<td>2733.01</td>
<td>2256.15</td>
<td>656.19</td>
<td>2428.11</td>
<td>2823.26</td>
<td>7148.74</td>
<td>1182.07</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1992-93</td>
<td>2719.09</td>
<td>2397.26</td>
<td>534.72</td>
<td>4002.66</td>
<td>2741.40</td>
<td>12058.91</td>
<td>1299.88</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1993-94</td>
<td>2161.01</td>
<td>2208.95</td>
<td>575.29</td>
<td>2961.04</td>
<td>1860.65</td>
<td>2599.88</td>
<td>1092.12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1994-95</td>
<td>2306.98</td>
<td>2431.92</td>
<td>615.41</td>
<td>2605.58</td>
<td>2780.10</td>
<td>3877.56</td>
<td>875.37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1995-96</td>
<td>2796.70</td>
<td>2414.38</td>
<td>563.99</td>
<td>3535.65</td>
<td>2241.55</td>
<td>4098.96</td>
<td>640.34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1996-97</td>
<td>2048.91</td>
<td>2666.44</td>
<td>562.14</td>
<td>2587.65</td>
<td>2047.18</td>
<td>7264.05</td>
<td>569.95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1997-98</td>
<td>2115.83</td>
<td>2037.96</td>
<td>440.12</td>
<td>1651.34</td>
<td>2991.31</td>
<td>4965.66</td>
<td>686.01</td>
<td>2413.82</td>
<td>1069.13</td>
</tr>
<tr>
<td>1998-99</td>
<td>2320.92</td>
<td>2516.58</td>
<td>1124.43</td>
<td>1398.27</td>
<td>3478.73</td>
<td>6422.47</td>
<td>653.19</td>
<td>1298.90</td>
<td>477.35</td>
</tr>
<tr>
<td>1999-00</td>
<td>2793.23</td>
<td>2810.25</td>
<td>1104.22</td>
<td>1389.69</td>
<td>2948.78</td>
<td>4024.56</td>
<td>587.94</td>
<td>990.61</td>
<td>345.96</td>
</tr>
</tbody>
</table>

Note: The shadow prices or the marginal abatement costs are at 1990-91 prices.
Table A6: The Marginal Abatement Costs for Air-borne Pollutants from Various Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Period</th>
<th>Sample</th>
<th>CO₂</th>
<th>SOₓ</th>
<th>NOₓ</th>
<th>TSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coggins and Swinton(1996)</td>
<td>1990-92</td>
<td>Coal Burning Utilities in Wisconsin</td>
<td>-</td>
<td>$175.7 - $326.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gollop and Roberts (1985)</td>
<td>1973-79</td>
<td>Fossil fueled electric generation in US</td>
<td>-</td>
<td>$141 - $1226</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kwon and Yun (1999)</td>
<td>1990-95</td>
<td>Bunker-C and coal power plants in Korea</td>
<td>$2.38</td>
<td>$194.1</td>
<td>$91.69</td>
<td>$ 9676.44</td>
</tr>
<tr>
<td>Kumar (1999)</td>
<td>1992-93</td>
<td>Coal burning utilities in India</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Rs.326.18*</td>
</tr>
<tr>
<td>Our Study</td>
<td>1990-2000</td>
<td>Thermal power plants in eastern India</td>
<td>Rs.3380.59 #</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rs.2401.99 @</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: * this shadow price value is for PM₁₀ and the unit is Rs. per kg.
This pertains to Model-1 and @ for Model-2
References:

The Energy and Resources Institute (various years), *TERI Energy Data Directory and Yearbook (TEDDY)*, TERI, New Delhi.
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org
http://agecon.lib.umn.edu

NOTE DI LAVORO PUBLISHED IN 2006

SIEV 1.2006
Anna ALBERINI: Determinants and Effects on Property Values of Participation in Voluntary Cleanup Programs: The Case of Colorado

CCMP 2.2006
Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control

CCMP 3.2006
Roberto ROSON: Introducing Imperfect Competition in CGE Models: Technical Aspects and Implications

KTHC 4.2006
Sergio VERGALLI: The Role of Community in Migration Dynamics

SIEV 5.2006
Fabio GRAZI, Jeroen C.J.M. van den BERGH and Piet RIETVELD: Modeling Spatial Sustainability: Spatial Welfare Economics versus Ecological Footprint

CCMP 6.2006
Olivier DESCHENES and Michael GREENSTONE: The Economic Impacts of Climate Change: Evidence from Agricultural Profits and Random Fluctuations in Weather

PRCG 7.2006
Michele MORETTO and Paola VALBONESE: Firm Regulation and Profit-Sharing: A Real Option Approach

SIEV 8.2006
Anna ALBERINI and Aline CHIABAI: Discount Rates in Risk v. Money and Money v. Money Tradeoffs

CTN 9.2006
Jon X. EUÍUA: United We Vote

CTN 10.2006
Shaoo CHIN SUNG and Dinko DIMITRO: A Taxonomy of Myopic Stability Concepts for Hedonic Games

NRM 11.2006
Fabio CERINA (lxxviii): Tourism Specialization and Sustainability: A Long-Run Policy Analysis

NRM 12.2006
Valentina BOSETTI, Mariaaeter CASSINELLI and Alessandro LANZA (lxxviii): Benchmarking in Tourism Destination, Keeping in Mind the Sustainable Paradigm

CCMP 13.2006
Jens HORBACH: Determinants of Environmental Innovation – New Evidence from German Panel Data Sources

KTHC 14.2006
Fabio SABATINI: Social Capital, Public Spending and the Quality of Economic Development: The Case of Italy

KTHC 15.2006
Fabio SABATINI: The Empirics of Social Capital and Economic Development: A Critical Perspective

CSRMM 16.2006
Giuseppe DI VITA: Corruption, Exogenous Changes in Incentives and Deterrence

CCMP 17.2006

IEM 18.2006
Philippe QUIRION: Distributional Impacts of Energy-Efficiency Certificates Vs. Taxes and Standards

CTN 19.2006
Somdeb LAHIRI: A Weak Bargaining Set for Contract Choice Problems

CCMP 20.2006
Massimiliano MAZZANTI and Roberto ZOBOLI: Examining the Factors Influencing Environmental Innovations

SIEV 21.2006
Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Work Incentive and Labor Supply

CCMP 22.2006
Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve

NRM 23.2006
Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time?

NRM 24.2006
Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction

SIEV 25.2006

SIEV 26.2006
Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes

KTHC 27.2006

CCMP 28.2006
Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions

IEM 29.2006
Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries

KTHC 30.2006
Fabio SABATINI: Social Capital and Labour Productivity in Italy

ETA 31.2006
Andrea GALLICE (lxxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret

IEM 32.2006
Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy

NRM 33.2006
Rinaldo BRAU and Davide CAO (lxxviii): Uncovering the Macrostructure of Tourists’ Preferences: A Choice Experiment Analysis of Tourism Demand to Sardinia

CTN 34.2006
Parvash CHANDER and Henry TULKENS: Cooperation, Stability and Self-Enforcement in International Environmental Agreements: A Conceptual Discussion

IEM 35.2006
Valeria COSTANTINI and Salvatore MONNI: Environment, Human Development and Economic Growth

ETA 36.2006
Monica BARNI and Walter F. LALICH (lxxx): Measurement and Spatial Effects of the Immigrant Created Cultural Diversity in Perceived Diversity of Complex Situations

Ugo GASPARINO, Barbara DEL CORPO and Dino PINELLI (lxxx): The Challenges of Data Comparison and Unity in Diversity Through Art? Joseph Beuys' Models of Cultural Diversity in People's Attitudes and Perceptions

Rinaldo BRAU and Matteo LIPPI BRUNI: Eliciting the Demand for Long Term Care Coverage: A Discrete Choice Modelling Analysis

Dirk JACOBS and Andrea REA: Construction and Import of Ethnic Categorisations: “Allochthones” in Direction Migrants: The Case of Undocumented Poles and Bulgarians in Brussels

Walter F. LALICH (lxxx): Measurement and Spatial Effects of the Immigrant Created Cultural Diversity in Sydney

Elena FASPALANOVA (lxxx): Cultural Diversity Determining the Memory of a Controversial Social Event

Ugo GASPARINO, Barbara DEL CORPO and Dino PINELLI (lxxx): Perceived Diversity of Complex Environmental Systems: Multidimensional Measurement and Synthetic Indicators

Aleksandra HAUKÉ (lxxx): Impact of Cultural Differences on Knowledge Transfer in British, Hungarian and Polish Enterprises

Katherine MARQUAND FORSYTH and Vanja M. K. STENIUS (lxxx): The Challenges of Data Comparison and Varied European Concepts of Diversity

Gianmarco I.P. OTTAVIANO and Giovanni PERI (lxxx): Rethinking the Gains from Immigration: Theory and Evidence from the U.S.

Monica BARNI (lxxx): From Statistical to Geolinguistic Data: Mapping and Measuring Linguistic Diversity

Lucia TAJOLI and Lucia DE BENEDICTIS (lxxx): Economic Integration and Similarity in Trade Structures

Suzanna CHAN (lxxx): “God’s Little Acre” and “Belfast Chinatown”: Diversity and Ethnic Place Identity in Belfast

Diana PETKOVA (lxxx): Cultural Diversity in People’s Attitudes and Perceptions

John J. BETANCUR (lxxx): From Outsiders to On-Paper Equals to Cultural Curiosities? The Trajectory of Diversity in the USA

Kiflemariam HAMDE (lxxx): Cultural Diversity A Glimpse Over the Current Debate in Sweden

Emilio GREGORI (lxxx): Cultural Diversity in People’s Attitudes and Perceptions

Christa-Maria LERM HAYES (lxxx): Unity in Diversity Through Art? Joseph Beuys’ Models of Cultural Dialogue

Sara VERTOMMEN and Albert MARTENS (lxxx): Ethnic Minorities Rewarded: Ethnositratification on the Wage Market in Belgium

Nicola GENOVESE and Maria Grazia LA SPADA (lxxx): Diversity and Pluralism: An Economist's View

Carla BAGNA (lxxx): Italian Schools and New Linguisic Minorities: Nationality Vs. Pluralism. Which Ways and Methodologies for Mapping these Contexts?

Yedran OMANOVIĆ (lxxx): Understanding “Diversity in Organizations” Paradigmatically and Methodologically

Mila PASPALANOVA (lxxx): Identifying and Assessing the Development of Populations of Undocumented Migrants: The Case of Undocumented Poles and Bulgarians in Brussels

Roberto ALZETTA (lxxx): Diversities in Diversity: Exploring Moroccan Migrants’ Livelihood in Genoa

Monika SEDENKOVA and Jiri HORAK (lxxx): Multivariate and Multicriteria Evaluation of Labour Market Situations

Dirk JACOBS and Andrea REA (lxxx): Construction and Import of Ethnic Categorisations: “Allochthones” in The Netherlands and Belgium

Eric M. USLANER (lxxx): Does Diversity Drive Down Trust?

Paula MOTA SANTOS and João BORGES DE SOUSA (lxxx): Diversities in Diversity: Exploring Moroccan Migrants’ Livelihood in Genoa

Roland AMANN and Thomas GALL: How (not) to Choose Peers in Studying Groups
NRM 118.2006 Isabel CORTÉS-JIMÉNEZ and Manuela PULINA: A further step into the ELGH and TLGH for Spain and Italy
SIEV 119.2006 Beat HINTERMANN, Anna ALBERINI and Anil MARKANDYA: Estimating the Value of Safety with Labor
Market Data: Are the Results Trustworthy?
SIEV 120.2006 Elena STRUKOVA, Alexander GOLUB and Anil MARKANDYA: Air Pollution Costs in Ukraine
CCMP 121.2006 Massimiliano MAZZANTI, Antonio MUSOLESI and Roberto ZOBOLI: A Bayesian Approach to the Estimation of Environmental Kuznets Curves for CO2 Emissions
ETA 122.2006 Jean-Marie GRETER, Nicole A. MATTHYS, and Jaime DE MELO: Unraveling the World-Wide Pollution Haven Effect
KTHC 123.2006 Sergio VERGALLI: Entry and Exit Strategies in Migration Dynamics
PRCG 124.2006 Bernardo BORTOLOTTI and Valentina MILELLA: Privatization in Western Europe Stylized Facts, Outcomes and Open Issues
SIEV 125.2006 Pietro CARATI, Ludovico FERRAGUTO and Chiara RIBOLDI: Sustainable Development Data Availability on the Internet
SIEV 126.2006 S. SILVESTRI, M PELLIZZATO and V. BOATTO: Fishing Across the Centuries: What Prospects for the Venice Lagoon?
SIEV 127.2006 Alison WATTS: Formation of Segregated and Integrated Groups
SIEV 128.2006 Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Lexicographic Preferences in Discrete Choice Experiments: Consequences on Individual-Specific Willingness to Pay Estimates
CCMP 129.2006 Giovanni BELLA: Transitional Dynamics Towards Sustainability: Reconsidering the EKC Hypothesis
IEM 130.2006 Elisa SCARPA and Matteo MANERA: Pricing and Hedging Illiquid Energy Derivatives: an Application to the ICC Index
PRCG 131.2006 Andrea BELTRATTI and Bernardo BORTOLOTTI: The Nontradable Share Reform in the Chinese Stock Market
IEM 132.2006 Alberto LONGO, Anil MARKANDYA and Marta PETRUCCI: The Internalization of Externalities in The Production of Electricity: Willingness to Pay for the Attributes of a Policy for Renewable Energy
KTHC 134.2006 Antonia R. GURRIERI and Luca PETRIZZELIS: Local Networks to Compete in the Global Era. The Italian SMEs Experience
SIEV 137.2006 Anna ALBERINI, Alberto LONGO and Patrizia RIGANTI: Using Surveys to Compare the Public’s and Decisionmakers’ Preferences for Urban Regeneration: The Venice Arsenale
ETA 138.2006 Y. Rossein FARZIN and Ken-Ichi AKAO: Environmental Quality in a Differentiated Duopoly
CCMP 139.2006 Denny ELLERMAN and Barbara BUCHNER: Over-Allocation or Abatement? A Preliminary Analysis of the EU Ets Based on the 2005 Emissions Data
CCMP 140.2006 HorSri A. RUS (lxxxi): Renewable Resources, Pollution and Trade in a Small Open Economy
CCMP 141.2006 Enrica DE CIAN (lxxxi): International Technology Spillovers in Climate-Economy Models: Two Possible Approaches
CCMP 143.2006 Gregory F. NEMET (lxxxi): How well does Learning-by-doing Explain Cost Reductions in a Carbon-free Energy Technology?
CCMP 144.2006 Anne BRIAND (lxxxi): Marginal Cost Versus Average Cost Pricing with Climatic Shocks in Senegal: A Dynamic Computable General Equilibrium Model Applied to Water
CCMP 145.2006 Thomas ARONSSON, Kenneth BACKLUND and Linda SAHLEN (lxxxi): Technology Transfers and the Clean Development Mechanism in a North-South General Equilibrium Model
IEM 146.2006 Theocharis N. GRIGORIADIS and Benno TORGLER: Energy Regulation, Roll Call Votes and Regional Resources Evidence from Russia
CCMP 147.2006 Manish GUPTA: Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector
This paper was presented at the Second International Conference on "Tourism and Sustainable Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005.

This paper was presented at the International Workshop on "Economic Theory and Experimental Economics" jointly organised by SET (Center for advanced Studies in Economic Theory, University of Milano-Bicocca) and Fondazione Eni Enrico Mattei, Italy, Milan, 20-23 November 2005. The Workshop was co-sponsored by CISEPS (Center for Interdisciplinary Studies in Economics and Social Sciences, University of Milan-Bicocca).

This paper was presented at the First EURODIV Conference “Understanding diversity: Mapping and measuring”, held in Milan on 26-27 January 2006 and supported by the Marie Curie Series of Conferences “Cultural Diversity in Europe: a Series of Conferences.

This paper was presented at the EAERE-FEEM-VIU Summer School on "Computable General Equilibrium Modeling in Environmental and Resource Economics", held in Venice from June 25th to July 1st, 2006 and supported by the Marie Curie Series of Conferences "European Summer School in Resource and Environmental Economics".

<table>
<thead>
<tr>
<th>2006 SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
</tr>
<tr>
<td>SIEV</td>
</tr>
<tr>
<td>NRM</td>
</tr>
<tr>
<td>KTHC</td>
</tr>
<tr>
<td>IEM</td>
</tr>
<tr>
<td>CSRM</td>
</tr>
<tr>
<td>PRCG</td>
</tr>
<tr>
<td>ETA</td>
</tr>
<tr>
<td>CTN</td>
</tr>
</tbody>
</table>