Noailly, Joëlle; van den Bergh, Jeroen C.J.M.; Withagen, Cees A.

Working Paper
Local and Global Interactions in an Evolutionary Resource Game

Nota di Lavoro, No. 78.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Noailly, Joëlle; van den Bergh, Jeroen C.J.M.; Withagen, Cees A. (2005) : Local and Global Interactions in an Evolutionary Resource Game, Nota di Lavoro, No. 78.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74078
Local and Global Interactions in an Evolutionary Resource Game
Joëlle Noailly, Jeroen C.J.M. van den Bergh and Cees A. Withagen

NOTA DI LAVORO 78.2005

MAY 2005

ETA – Economic Theory and Applications

Joëlle Noailly, CPB Netherlands Bureau for Economic Policy Analysis
Jeroen C.J.M. van den Bergh, Institute for Environmental Studies, Free University and Department of Spatial Economics, Faculty of Economics and Business Administration, Free University
Cees A. Withagen, Department of Spatial Economics, Faculty of Economics and Business Administration, Free University and Department of Economics, Faculty of Economics and Business Administration, Tilburg University

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=740164

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Local and Global Interactions in an Evolutionary Resource Game

Summary

Conditions for the emergence of cooperation in a spatial common-pool resource game are studied. This combines in a unique way local and global interactions. A fixed number of harvesters are located on a spatial grid. Harvesters choose among three strategies: defection, cooperation, and enforcement. Individual payoffs are affected by both global factors, namely, aggregate harvest and resource stock level, and local factors, such as the imposition of sanctions on neighbors by enforcers. The evolution of strategies in the population is driven by social learning through imitation. Numerous types of equilibria exist in these settings. An important new finding is that clusters of cooperators and enforcers can survive among large groups of defectors. We discuss how the results contrast with the non-spatial, but otherwise similar, game of Sethi and Somanathan (1996).

Keywords: Common property, Cooperation, Evolutionary game theory, Global interactions, Local interactions, Social norms

JEL Classification: C72, Q2

This paper was presented at the 3rd Workshop on Spatial-Dynamic Models of Economics and Ecosystems held in Trieste on 11-13 April 2005 and organised by the Ecological and Environmental Economics - EEE Programme, a joint three-year programme of ICTP - The Abdus Salam International Centre for Theoretical Physics, FEEM - Fondazione Eni Enrico Mattei, and The Beijer International Institute of Ecological Economics.

Address for correspondence:

Joëlle Noailly
CPB Netherlands Bureau for Economic Policy Analysis
Centraal Planbureau
P.O. Box 80510
2508 GM
The Hague
The Netherlands
Phone: +31 070 338 3498
E-mail: noailly@cpb.nl
1 Introduction

The management of common-pool resources (CPRs), such as forests, fishing grounds, and groundwater basins, is characterized by a conflict between individual and social interests. While the collective interest of the group is to limit harvesting to a sustainable level, the combined actions of individual harvesters pursuing their own interest inevitably result in a suboptimal outcome, characterized by excessive exploitation of the resource (Dasgupta and Heal, 1979: Chapter 3). This dilemma can take the form of a game played by two types of harvesters: namely, defectors and cooperators, adopting high and low levels of harvest, respectively (Ostrom et al., 1994). In the finitely repeated CPR game, unilateral defection is the unique Nash equilibrium, while privatization of the resource is often the suggested management solution.

Privatization is, however, not always feasible in the case of common-pool resources, or it may destroy the culturally evolved social norms. Moreover, while economic theory predicts defection, case studies and laboratory experiments have provided evidence that, in real life, cooperation can be sustained among harvesters (Ostrom, 1990; Hackett et al., 1994; Chermak and Krause, 2002). Accordingly, cooperative outcomes can be reached as long as norms or rules, such as trust, reward or punishment, prevail in the group. The imposition of sanctions on harvesters that adopt excessive exploitation levels has proved to be particularly effective in sustaining cooperation, even in the case of non-repeated interactions among unrelated individuals or in very large groups. Evidence from the field suggests that some agents voluntarily engage in ‘altruistic punishment’, that is, penalizing free-riders, even if this implies an individual cost. Often, a small proportion of these altruistic punishers is sufficient to enforce cooperation in the group (Fehr and Gächter, 2002).

A rare theoretical analysis of the role of altruistic punishers or ‘enforcers’ in solving CPR dilemmas is presented in Sethi and Somanathan (1996). They consider an evolutionary CPR game played by a fixed population of players with three strategies: defection, cooperation, and enforcement. Payoffs of defectors are lowered by a sanction that depends on the number of enforcers in the population, while enforcers bear a cost that depends upon the total number of defectors. Players experience social learning and imitate the strategy that yields the highest payoffs. The evolution of strategies is captured by a replicator dynamics equation, according to which the share of the best-performing strategy in the population increases due to agents imitating it. Sethi and Somanathan combine replicator and resource dynamics to show how changes in the resource stock affect harvesting behavior, and vice versa. They identify two equilibria in the system:
namely, a final population composed of only defectors, and a cooperative equilibrium with only cooperators
and enforcers.

The model considered in this paper adds a major innovation to Sethi and Somanathan’s work, namely
spatial interactions between agents. While Sethi and Somanathan restrict themselves to aggregate population
dynamics, our model more realistically emphasizes the role of locality. The approach is, therefore, unlike
replicator dynamics, based on the explicit modeling of micro-interactions among individuals. This approach
results in a combination of local and global interactions. Global interactions include effects that run through
aggregate harvest and the resource stock, and feed back to profits associated with harvesting strategies
employed by individual agents.

The objective of the present paper is to find conditions for the emergence of cooperative equilibria
in the spatial evolutionary CPR game. The objective comes down to testing the robustness of Sethi and
Somanathan’s findings in an evolutionary game with spatial interactions. In particular, it will be examined
whether other types of equilibria than found by Sethi and Somathan emerge.

The present CPR game with spatial interactions has connections with two different bodies of literature.
First, it relates to studies on local interaction games within the field of evolutionary game theory (Eshel et
al., 1998; Lindgren and Nordahl, 1994; for an overview, see Nowak and Singmund, 1999). The structure
of our game relates most closely to Nowak and May (1992). A well-known result of the literature on local
games is that the introduction of local interactions between agents enhances the survival of cooperation.
The game presented in this article differs from these approaches in that it combines both local and global
interactions.

Second, the approach presented here also relates to the wide body of experimental and theoretical work
on the evolution of social norms in CPR games (Ostrom et al., 1994). In this literature, only a very few
studies have formally analyzed an evolutionary CPR game with a variable resource stock (Akiyama and
Kaneko, 2000; Janssen, 2001; Sethi and Somanathan, 1996). Among these studies, Sethi and Somanathan’s
analysis provides an attractive benchmark because of its simplicity, which is due to a combination of only
three types of strategies and replicator dynamics. The present study adds insights to this literature as it
illustrates how results from local interaction games can be applied to the problem of overexploitation of
common-pool resources. For this purpose numerical simulation techniques are used.

The problem of local interaction in a common-pool resource game is also studied by Noailly et al.
(2004). But its setup differs substantially from the present one, in two respects. First, it studies interaction when agents are located on a circle, whereas here we consider interaction between agents situated on a torus. On the one hand, the circle allows for more theoretical insights, because of the fact that the structure is less complicated. On the other hand, the torus provides a richer and more realistic spatial structure of interactions and learning among agents. Most real world interactions, like in agriculture or in fisheries, occur in two-dimensional space. Second, Noailly et al. (2004) employ a different learning rule. In their settings, agents imitate the strategy yielding the highest average payoffs. For most parts of the present paper, we assume that agents are more ‘naive’ and simply imitate their most successful neighbor. We find that changing the learning rule does not qualitatively affect the results found in Noailly et al. (2004). We also find the emergence of equilibria in which cooperators and enforcers coexist in our settings. In this sense, our analysis can be seen as a robustness test of the analysis of Noailly et al. (2004). Yet, we find quantitative differences between the two models. A main new insight of the present study is that cluster equilibria of cooperators and defectors are favored when agents are learning in a ‘naive’ way. This study presents in addition new results regarding the role of certain parameters, like population size and the productivity of harvesting technology.

The paper is organized as follows. Section 2 presents the benchmark neoclassical CPR game and its evolutionary spatial version. Section 3 identifies the equilibria of the system with a fixed resource level and shows how these contrast with Sethi and Somanathan’s findings. In addition, we test for the effects of changes in parameters. Section 4 discusses the impact of adding resource dynamics to the evolutionary system. Section 5 concludes.

2 The Model

2.1 The CPR game

The benchmark neoclassical CPR game (Dasgupta and Heal, 1979: Chapter 3; Chichilnisky, 1994) is presented briefly here. This game relies on the assumption of maximizing behavior and thus contrasts sharply with the evolutionary version of the game that will be discussed further on.

A fixed population of m ($m > 1$) harvesters has access to a natural resource. The individual effort level of harvester i ($i = 1, \ldots, m$) in period t ($t = 0, 1, \ldots$) is denoted by x_{it}. Total effort of the population is
simply the sum of all individual efforts:

\[X_t = \sum_{i=1}^{m} x_{it}. \]

(1)

Aggregate harvest \(H \) is a strictly concave and increasing function of total effort \(X_t \) and of the total stock of natural resources \(N_t \). In a first stage, we ignore resource dynamics to simplify the analysis and fix the resource stock \(N_t \) at \(N_0 \). Suppressing \(N_0 \), we can write the harvest rate as a function of \(X_t \) only and we can ignore time subscripts for all variables. We define \(F \) as the total harvest rate, which is strictly concave and increasing with \(F(0) = 0, F'(0) > w, F'(\infty) < w \), where \(w \) is the constant cost per unit of effort employed.

\[H(X, N_0) = F(X). \]

(2)

Each agent receives a share of total profits in proportion to the amount of effort invested. Individual profits are then given by:

\[\pi_i(x_i, X) = \frac{x_i}{X} F(X) - wx_i, \]

(3)

where it is assumed that the harvested commodity is the numeraire. Individual payoffs are thus a function of a global factor, namely aggregate harvest. The larger aggregate harvest is, that is, the more defectors are present, the lower individual payoffs are. Thus, the level of aggregate profits is:

\[\Pi = \sum_{i=1}^{m} \pi_i(x_i, X) = F(X) - wX. \]

(4)

At \(X_P \), which is the Pareto efficient level of effort defined by \(F'(X_P) = w \), total profits are maximized and the resource is used efficiently. When access to the resource is open to everyone, entry of harvesters continues until \(X_0 \), where \(F(X_O) = wX_O \), i.e., no harvester enjoys positive profits. In the case of a fixed population of agents, maximization of individual profits in the CPR game leads to a suboptimal outcome \(X_C \). This is the unique Nash equilibrium that is inefficient \((X_C > X_P)\) but yields positive rents \((X_C < X_O)\).

An evolutionary version of this standard framework has been studied by Sethi and Somanathan (1996). In an evolutionary game, harvesters are boundedly rational, which means that they do not solve any optimization problem. Instead, they rely on simple forms of social learning like imitation of the best-performing strategy. Diffusion of strategies occurs through the learning process and drives the evolution of strategies towards an equilibrium that falls between the benchmark equilibrium aggregate harvest rates \(X_P \) and \(X_O \).
In the remainder of the paper, we base our analysis on a similar evolutionary framework but introduce spatial interactions between the agents.

2.2 A spatial evolutionary CPR game without resource dynamics

The spatial evolutionary CPR game embodies the following four main features:

Space. A fixed population of \(m \) harvesters is distributed on a two-dimensional torus. A torus is a lattice whose corners are pasted together to ensure that all cells are connected, so that there are no edge-effects. On a torus, all cells in the first row (column) are connected to cells in the last row (column). For example, the cell in the top-left corner is connected not only to its right and bottom neighbors, but also to the cells in the bottom-left corner and top-right corners. Each single cell of the torus is occupied by one, fixed player during the game. We define the neighborhood of each player as the set of the four closest neighbors, located North, South, East, and West of the player, as shown in Figure 1. An alternative definition of neighborhood entails eight neighbors (adding North- and South-East and North- and South-West neighbors). We will not go into this.

![Figure 1 about here]

Strategies. Just as in Sethi and Somanathan (1996), we consider three possible different types of strategy for every player: defection, cooperation, and enforcement. Enforcers punish defectors. Both cooperators and enforcers choose a low level of effort \(x_L \) to avoid overexploitation of the resource, while defectors choose a high level of effort \(x_H \), which yields higher profits ceteris paribus. Individual effort levels \(x_L \) and \(x_H \) are fixed such that:

\[
X_P \leq mx_L < mx_H \leq X_O, \tag{5}
\]

with \(X_P \) and \(X_O \) as defined in the previous section, and \(m x_L \) (\(m x_H \)) the total harvest when all agents harvest low (high).

In each round \(\tau \) (\(\tau = 0, 1, \ldots \)) of the game, the aggregate effort \(X_\tau \) is calculated according to the distribution of strategies in the population:

\[
X_\tau = m_{D,\tau}x_H + (m_{E,\tau} + m_{C,\tau})x_L, \tag{6}
\]

where \(m_{D,\tau} \), \(m_{E,\tau} \) and \(m_{C,\tau} \) are, respectively, the number of defectors, enforcers and cooperators present.
in the system in round τ.

Enforcers punish all defectors located in their neighborhood. Monitoring is thus conducted locally among close neighbors. This is a major difference with Sethi and Somanathan’s model in which sanctions are imposed by the group of enforcers on the group of defectors at the aggregate level. Here, each enforcer punishing a defector bears a cost γ per defector, while each defector being punished by an enforcer pays a sanction δ. The maximum sanction falling on a defector is thus 4δ, when he is surrounded by four enforcers. Similarly, the maximum cost borne by an enforcer is 4γ.

Payoffs can be formulated for each possible strategy, given aggregate effort X_τ and strategies located in the neighborhood:

$$\pi_{C,\tau} = \frac{x_L}{X_\tau} (F(X_\tau) - wX_\tau) \quad (7)$$

$$\pi_{Dk,\tau} = \frac{x_H}{X_\tau} (F(X_\tau) - wX_\tau) - k\delta \quad (8)$$

$$\pi_{El,\tau} = \frac{x_L}{X_\tau} (F(X_\tau) - wX_\tau) - l\gamma, \quad (9)$$

Here $\pi_{j,\tau}$ denotes payoffs in round τ for strategy j ($j \in \{C, D, E\}$), k ($k \in \{0, 1, 2, 3, 4\}$) denotes the number of enforcers in the neighborhood of any given defector, and l ($l \in \{0, 1, 2, 3, 4\}$) the number of defectors in the neighborhood of any given enforcer. We use the notations Dk to refer to a defector punished k times and thus paying the sanction $k\delta$. Similarly, El refers to an enforcer surrounded by l defectors. Thus, e.g. $\pi_{D3,2}$ refers to the payoffs of a defector surrounded by three enforcers in round $\tau = 2$. Obviously, $\pi_{Dh,\tau} > \pi_{Dh+1,\tau}$ and $\pi_{Eh,\tau} > \pi_{Eh+1,\tau}$ ($h \in \{0, 1, 2, 3\}$). In addition, from (5), (7), (8), and (9), we have $\pi_{D0,\tau} > \pi_{C,\tau} > \pi_{E1,\tau}$ and $\pi_{E0,\tau} = \pi_{C,\tau}$ for all τ.

We make one additional assumption regarding the level of punishment in the system, namely:

$$\pi_{D4,\tau} < \pi_{E0,\tau}, \quad \forall \tau. \quad (10)$$

This implies that a defector incurring the maximum sanction level, regardless of X, earns a lower payoff than any enforcer who does not punish ($E0$). This is to ensure that enforcers can actually win over defectors.
We further assume that $H(X, N_0)$ is a Cobb-Douglas production function:

$$F(X) = \alpha X^{\beta} N_0^{1-\beta} \quad \alpha > 0, \quad 0 < \beta < 1. \quad (11)$$

As discussed in Section 2.1, we can solve $F'(X_P) = w$ and $F(X_O) = wX_O$ to find X_P and X_O, respectively. This gives:

$$X_P = \left(\frac{\alpha}{\beta} \right)^{\frac{1}{\beta}} N_0 \quad \text{and} \quad X_O = \left(\frac{\alpha}{w} \right)^{\frac{1}{\beta}} N_0 \quad (12)$$

Learning, i.e., updating of strategies, is driven by expectations of larger profits in the next period. In each round, every player updates his current strategy by imitating the strategy that yields the highest payoffs in his neighborhood. Similar learning rules, where agents simply pick up the strategy with the largest score, were used by Axelrod (1984, Chapter 8) and Nowak and May (1992). Eshel et al. (1998) instead impose a learning rule in which the on average best performing strategy in the observed neighbourhood is imitated. This rule is examined with a spatial evolutionary analysis in another paper (Noailly et al., 2004). When the best strategy in the neighborhood is identical to the player’s current strategy, the player sticks to his current strategy. When multiple strategies other than the player’s current strategy yield the largest (equal) payoffs in the neighborhood, that is, when there is a tie between two strategies, the player randomizes among these strategies with probability $p = 0.5$.

Time. We assume that agents exhibit synchronous behavior. In other words, interactions and learning occur simultaneously. Huberman and Glance (1993) have shown that asynchronous learning can lead to different outcomes than synchronous learning. In our model, seasonal harvesting of the resource suggests the existence of a ‘global clock’ that governs the learning process. Therefore, it is reasonable to assume that all harvesters modify their strategy simultaneously at the beginning of each new season. A season or a ‘round’ of the game can be described by the following sequence:

(i) Aggregate effort X_τ is computed given the number of defectors, cooperators and enforcers on the torus.

(ii) Aggregate harvest $F(X_\tau)$ is calculated.

(iii) Individual payoffs π_C, π_Dk and π_El are computed for all agents, given $F(X_\tau)$, the strategy chosen by
(iv) Agents observe the payoffs of their neighbors’ strategies and decide whether to stick to their current strategy or to adopt the strategy of their most successful neighbor. All agents update their strategy simultaneously. This updating process yields a new distribution of strategies in the population.

3 Spatial evolutionary dynamics

In this section we study the spatial evolutionary dynamics using numerical simulations. An equilibrium is a spatial distribution of strategies in which no player has an incentive to change strategy. It is important to realize that in our setting it is possible for a neighboring strategy to earn a larger profit than the player’s current strategy even when these strategies are identical. For example, enforcers punishing one defector are in an equilibrium, even if they earn the lowest payoffs, as long as their neighbor with the highest payoff is a non-punishing enforcer. A similar reasoning applies to defectors. This contrasts with Sethi and Somanathan’s model, in which agents belonging to the same (sub)group always earn equal payoffs, since sanctions and costs falling on defectors and enforcers are determined at the aggregate level. Such aggregation evidently leads to a loss of information and accuracy of description.

3.1 Notation and parameter values

We use D, C and E to refer to equilibria composed of only defectors, cooperators and enforcers, respectively. In addition, DE, CE and CDE refer to equilibria composed of the corresponding mixes of strategies. In contrast with D, C and E-equilibria, many diverse equilibrium configurations can constitute DE, CE or CDE-equilibria. In addition, note that there cannot be any CD-equilibrium for the simple reason that this corresponds to the case where there is no local punishment between the agents. In this case, defectors are never punished and spread quickly over the lattice.

Which equilibrium emerges depends on three factors:

1. The initial spatial distribution of strategies. Initially, strategies either form clusters or are scattered irregularly. Section 3.3 studies how different equilibria can be reached by varying the initial spatial arrangement of the strategies, while initial shares remain fixed.
2. The initial share of each strategy in the population. Strategy shares in round \(\tau \) are denoted by \(z_\tau = (m_D/m, m_E/m, m_C/m) \), which corresponds to a population composed of a mix of \(m_D \) defectors, \(m_E \) enforcers and \(m_C \) cooperators in round \(\tau \). We will study how different initial shares \((z_0) \) lead to diverse types of equilibria in Section 3.2.

3. Parameter values. Most of the simulations were performed on a 10x10 \((m = 100) \) spatial grid. A simulation run corresponds to 50 time steps, which appears to be sufficiently long for the system to settle into an equilibrium. The following parameters were used:

\[
\begin{align*}
\alpha &= 0.2 & \beta &= 0.2 \\
N_0 &= 500 & w &= 0.2 \\
x_H &= 4 & x_L &= 2 \\
\delta &= 0.4 & \gamma &= 0.1.
\end{align*}
\]

Given the other parameter values, the levels of harvest \(x_H \) and \(x_L \) satisfy (5).\(^1\) The level of sanction \(\delta = 0.4 \) satisfies condition (10).\(^2\) A sensitivity analysis of critical parameters is conducted in Section 3.4.

3.2 The effects of initial strategy shares in the population

In this section, we study the effects of variation in initial strategy shares. To reduce the number of runs necessary to cover the whole simplex, only initial strategy shares that are multiples of 0.05 are considered. The set of initial coordinates \(Z = \{(1; 0; 0), (0.95; 0.05; 0), \ldots, (0.30; 0.40; 0.30), \ldots, (0; 0.05; 0.95), (0; 0; 1)\} \) is composed of 231 coordinates \(z_0 \). For every \(z_0 \in Z \), we compute 100 runs of 50 rounds, each run corresponding to a spatial configuration drawn from a uniform distribution, such that each player has a probability of 1/100, to be assigned to a particular position. In total, therefore, 23,100 runs are necessary to cover the

\(^1\) \(X_P = 67 \) and \(X_O = 500 \) according to (12).

\(^2\) Condition (10) is rewritten as:

\[
x_H \left(\frac{\alpha_X X_P^\alpha N_0^{\alpha-\beta}}{X_\tau} - w \right) - 4\delta < x_L \left(\frac{\alpha_X X_P^\alpha N_0^{\alpha-\beta}}{X_\tau} - w \right).
\]

After simplification, it follows that this is satisfied for all \(X_\tau \), i.e. in every round \(\tau \), whenever the following condition holds:

\[
\left[\frac{1}{\alpha} \left(\frac{4\delta}{x_H - x_L} + w \right) \right]^{\frac{1}{\alpha-1}} N_0 < mx_H.
\]
set Z. We use simplex representations to present the results. In a simplex, each point corresponds to a three-dimensional coordinate.

Figure 2 provides results about the frequencies of occurrence of each equilibrium for each initial strategy share, where every $z_0 \in Z$ is represented by a dot. The grey-black scale indicates the frequency of occurrence of each type of equilibrium out of 100 random spatial distributions. A black colored coordinate indicates that, starting with the respective z_0, all runs converge to the given type of equilibrium.

As expected, Figure 2a shows that D-equilibria are more easily achieved for initial populations with few enforcers and, inversely, CE-equilibria are more likely to be reached for initial populations composed of many enforcers (Figure 2b). This is consistent with Sethi and Somanathan’s findings. Second, DE-equilibria are most likely to be achieved for middle-range initial shares with a slight majority of defectors (Figure 2c), while CDE-equilibria are most frequently achieved for middle-range initial shares with a slight majority of enforcers (Figure 2d). This makes sense intuitively, since a large number of enforcers needs to surround cooperators to allow CDE-equilibria to emerge, as we will explain in Section 3.3. When there are more defectors in the system, cooperators find it difficult to survive, and DE-equilibria emerge.

In this example, we find that, on average, 41% of the runs (out of 23,100) converge to a D-equilibrium, 18% converge to a CE-equilibrium, 18% to a DE-equilibrium, 20% to a CDE-equilibrium, 3% to an E-equilibrium\(^3\) and 0.4% to a C-equilibrium. Note that frequencies do not add up to 1 due to rounding off.

In order to compare our results with the ones obtained by Noailly et al. (2004), we perform additional simulations on the torus using their ‘sophisticated’ learning rule. This rule states that agents imitate the strategy that is the most successful on average. Using the same parameters as above, we find that with the sophisticated learning rule, 79% of the runs (out of 23,100) converge to a D-equilibrium, 23% converge to a CE-equilibrium, 3% to an E-equilibrium and 0.4% to a C-equilibrium. There are no occurrences of CDE- and DE-equilibria. In other words, the main consequence of changing the learning rule is that such equilibria are more difficult to sustain. Qualitatively, these equilibria remain possible with the sophisticated learning rule.

[INSERT Figure 2 about here]

\(^3\) The E and C equilibria are not studied by Sethi and Somanathan because in their analysis all initial shares are positive.
3.3 The effects of the initial spatial distribution of strategies

In this section, we study the impact of the initial spatial arrangement of strategies on convergence to equilibria. It turns out that the spatial distribution of strategies matters. The graphs in Figure 3 show possible movements in such a simplex, if the system starts near the center of the simplex at point \(z_0 = (0.30; 0.40, 0.30) \), i.e., with an initial population composed of 30 defectors, 40 enforcers and 30 cooperators. Each simplex in Figure 3 corresponds to a different random initial spatial arrangement of the strategies. Arrows indicate the evolution of strategy shares over time and \(\sigma \) denotes the number of rounds after which an equilibrium is reached.

[INSERT Figure 3 about here]

Which equilibrium actually emerges depends crucially on the initial spatial location of the strategies on the lattice. In general, the coexistence of several strategies in the long run is favored by the formation of ‘clusters’. A cluster is a spatial configuration composed of a central agent and its 4 immediate neighbors. Any ‘cooperating cluster’ with a central cooperator surrounded by 4 cooperators or non-punishing enforcers will survive amidst a large number of non-punishing enforcers, because the central cooperator, not being punished, earns the highest possible payoff. An example is given in Figure 4a. Similarly, a defecting group will survive when surrounded by cooperators and enforcers as long as the central defector is surrounded by 4 defectors, so that he earns the highest profit (see Figure 4b). One can see that the enforcers around the cluster are needed for its ‘protection’.

[INSERT Figure 4 about here]

These examples illustrates that the inclusion of a spatial dimension, or a more micro approach, leads to major differences when compared with Sethi and Somanathan’s results. While in their model only two equilibria, D and CE, occur, in the spatial model additional equilibria can be observed: namely, DE and CDE-equilibria. In Sethi and Somanathan’s game, enforcers always earn lower profits than cooperators as long as there are some defectors in the population, so that, ultimately, they will be completely eliminated. Instead, in the spatial game with micro-interactions, enforcers E1 to E4 can ‘survive’ in the long run by forming clusters. This is a crucial element for the occurrence of DE and CDE-equilibria.
With the sophisticated learning rule, however, the enforcement strategy earn less on average than the cooperative strategy. Indeed, the presence of punishing enforcers next to non-punishing ones renders the enforcement strategy less profitable for these non-punishing enforcers, who will eventually switch to cooperation. This explains intuitively why cooperative clusters can easily survive with a less naive learning rule.

3.4 Sensitivity analysis

In this section, we perform a sensitivity analysis of some central parameters, namely the sanction level δ, the parameter α that reflects harvest technology or resource price, and the population size m. Parameters are varied as follows: the level of sanctions is varied between $\delta = 0.1$ and $\delta = 1.5$; the parameter α is varied between $\alpha = 0.1$ and $\alpha = 0.7$ and the population size is varied between $m = 36$ and $m = 121$, using 5 different grids of 6x6, ..., 11x11.

For each possible parameter configuration, we performed 23,100 simulation runs as in Section 3.2. The results are given in terms of the average frequency of occurrence of a given equilibrium. Contour lines in Figure 5 delimit the set of parameters converging to D-equilibria at a given frequency. For instance, the set of parameter values for which D-equilibria are reached at an average frequency larger or equal to 90% is located below or on the contour line 0.9.

Figure 5a shows that D-equilibria are more easily achieved for low levels of sanctions. These findings make sense intuitively, and are similar to those of Sethi and Somanathan. Further, D-equilibria are more likely to be reached for a large α. An increase in the net return to harvesting, due to, for instance, an improvement in technology or an increase in the resource price, causes a rise in profits and gives an extra advantage to defectors. As a consequence, the set of D-equilibria expands. This is also in line with Sethi and Somanathan’s findings.

Figure 5b shows that D-equilibria are best reached for a low level of sanctions and a small population size. As population size falls, that is, as there are fewer harvesters with the given amount of resource, total effort decreases. This effect translates into a rise in net return to harvesting, causing the size of the set of D-equilibria to expand.

Sethi and Somanathan suggest that population growth tend to reduce the importance of sanctions. Their motivation is that as the group gets larger, it becomes more difficult for enforcers to detect defectors. They
coin this as an ‘anonymity’ effect which reduces the impact of individual sanctions. Since monitoring occurs
locally in the spatial model, defectors cannot possibly ‘hide’ from their direct neighbors. As a consequence,
there is no anonymity effect in our model. The explanation for the positive effect of population size on
cooperation is that in a larger population and associated large space there are more opportunities for pro-
tected groups of cooperators and defectors to survive. This conclusion is opposite to the one by Sethi and
Somanathan.

[INSERT Figure 5 about here]

4 Spatial evolutionary and resource dynamics

4.1 Resource stock equilibria

In the present section we analyse resource dynamics. Global factors enter the individual payoff functions
through both aggregate effort \(X_t \) and resource stock \(N_t \). Just like in the previous section, a large number of
defectors, i.e., a large \(X_t \), reduces individual payoffs. A large resource stock \(N_t \), on the other hand, increases
payoffs for all agents. The change in \(N_t \) in turn is influenced by the level of \(X_t \) and thus by the evolution of
strategies. Hence, system dynamics are governed by the interactions between changes in the resource stock
and the evolution of the distribution of strategies.

At the end of each round, the resource stock is increased according to the replenishment rate \(G(N_t) \) and
depleted by the total harvest \(H(X_t, N_t) \), i.e., the sum of individual harvests:

\[
N_{t+1} = N_t + G(N_t) - H(X_t, N_t).
\]

For our simulation purposes, we assume that the growth rate \(G(N) \) of the resource stock follows a
logistic pattern:

\[
G(N_t) = r N_t \left(1 - \frac{N_t}{N_K}\right),
\]

Here \(r \) is the intrinsic growth rate of the resource, and \(N_K \) its carrying capacity.

We follow Sethi and Somanathan by assuming that individual effort is increasing in \(N_t \). The motivation
for this assumption is that harvesters will intensify their effort level as the resource becomes more abundant. The effort function exhibits decreasing returns to scale in the resource stock, measured by $\theta (< 1)$:

$$
x_{H,t}(N_t) = \lambda x_H N_t^\theta
$$

$$
x_{L,t}(N_t) = \lambda x_L N_t^\theta.
$$

Here x_H and x_L are positive constants, with $x_H > x_L$, and λ is a positive constant.

An equilibrium of the game is a set of strategies over the torus and a resource stock, such that no player wants to change strategy, given the payoffs of neighboring players, and such that, given the strategies, the resource stock is constant. Three questions arise. The first question is: do equilibria exist? The second question is: which equilibria are stable? The third is: what is the role of resource dynamics?

The first question is relatively easy to answer. Equilibria do exist. A trivial example is the case of only defectors, with a resource stock satisfying $G(N) = H(m \lambda x_H N^\theta, N)$. But, many other equilibria exist. Note, however, that equilibrium resource stocks might be zero. This is, trivially, the case when the G and the H functions only intersect when the resource stock is zero. The resource stock will be inevitably depleted in the long run when aggregate harvest exceeds the replenishment rate of the resource for all stock levels. It is also possible that a D equilibrium will result in overexploitation of the resource for any stock level, ultimately giving rise to resource exhaustion, while a DE or a CDE-equilibrium is consistent with sustainable resource use and thus a positive equilibrium resource level. This partly answers the third question: resource regeneration characteristics may strongly affect the equilibrium.

It seems impossible to address the stability issue analytically. For that reason we have performed simulations, starting from a given distribution of shares, while varying their spatial distribution. We use the same parameters as in Section 3. In addition, we set $r = 0.5$, $N_K = 1000$, $N_0 = 500$, $\lambda = 0.05$, and $\theta = 0.5$. These parameters also satisfy condition (10). Figure 6 provides examples of different approach paths. Figure 6a displays the approach path to a D—equilibrium. The approach path shows non-monotonic behavior, for the resource stock, as well as for strategy shares. In figure 6b with a CDE-equilibrium this also holds, whereas in figure 6c monotonicity prevails. Therefore, approach paths may exhibit oscillating

Footnote 4: With resource dynamics, condition (10) is satisfied for all X_r, i.e. in every round τ, whenever:

$$
\left[\frac{1}{\alpha} \left(\frac{4\delta}{x_H - x_L} + w \right) \right]^{\frac{1}{\alpha+\gamma}} N_K < mx_H.
$$
behaviors. Even cycling toward equilibrium can occur.

Finally, some characterizations of the equilibria are given in Table 1, which presents statistics of the equilibrium resource stocks for 100 random runs, starting with $z_0 = (0.30; 0.40; 0.30)$. The resource equilibria for D and CE-equilibria are $N_H = 616.96$ and $N_L = 669.25$, respectively. Equilibrium resource stocks for DE and CDE-equilibria vary within this range. CDE-equilibria exist, in contrast with Sethi and Somanathan. On average, equilibrium resource stocks for CDE-equilibria are larger than equilibrium stocks for DE-equilibria. This makes sense, since CDE-equilibria are often characterized by a larger number of cooperative players. This diversity of stock equilibria contrasts with Sethi and Somanathan’s (1996) results. Indeed, in their model, only N_H and N_L are possible equilibrium resource stocks, given that only two types of equilibria, D and CE, exist.

Table 1. Final stock levels at $\tau = 50$ for different equilibria, with $z_0 = (0.30; 0.40; 0.30)$.

<table>
<thead>
<tr>
<th></th>
<th>N_D</th>
<th>N_{DE}</th>
<th>N_{CDE}</th>
<th>N_{CE}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>616.96</td>
<td>628.60</td>
<td>644.37</td>
<td>669.25</td>
</tr>
<tr>
<td>Min</td>
<td>616.96</td>
<td>618.61</td>
<td>622.40</td>
<td>669.25</td>
</tr>
<tr>
<td>Average</td>
<td>616.96</td>
<td>621.30</td>
<td>627.3</td>
<td>669.25</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0</td>
<td>2.22</td>
<td>4.58</td>
<td>0</td>
</tr>
</tbody>
</table>

5 Conclusions

A spatial common-pool resource game has been studied, where space is defined as a two-dimensional torus. The combination of evolution, space and resource combines in a unique way local and global interactions. This implies a complex system, which requires numerical simulation to be understood well. The results complement analytical results for a related model in a twin paper (Noailly et al., 2004). The numerical findings can be seen as a robustness test.

The main objective was to see if the findings in a non-spatial, but otherwise similar, game of Sethi and
Somanathan (1996) are robust against introducing spatial or microlevel interactions among agents. This turns out to be not the case. An important new finding is that indeed clusters of cooperators and enforcers can survive among large groups of defectors. In addition, all other strategy equilibria found by Sethi and Somathan were assessed here as well.

Because Sethi and Somanathan restrict themselves to aggregate population dynamics, all agents following the same strategy face the same punishment or sanctioning costs, and the same profits. The incorporation of local interactions in our approach means that the replicator dynamics in Sethi and Somathan is replaced by the explicit modeling of micro-interactions among individuals. A combination of local and global interactions results, where global interactions include feedback through both aggregate harvest and resource stock to profits associated with harvesting strategies. A difference with Sethi and Somathan is that in our setting it is possible for identical strategies to have different profits, due to the fact that local neighborhoods can be different. As a result, the evolutionary dynamics become difficult to predict. Such disaggregation evidently increases realism and accuracy of description, at the cost of analytical tractability.

The occurrence of equilibria with clusters of cooperators and enforcers, and in which all three strategies appear, can be explained as follows. Enforcers punishing defectors can survive in the long run, as long as no cooperators are located in their neighborhood. Second, cooperators are protected by the formation of clusters of cooperators and enforcers around enforcers who do not punish any defectors. As a result, the imitation effect of the high profit of enforcing can be regarded to diffuse through space. These results stress a general insight, namely that spatial interactions favor diversity.

Conditions for the emergence of cooperative equilibria are identified by performing a range of sensitivity analyses (not all shown here). For example, population growth is shown to enlarge the set of cooperative equilibria, because it negatively affects the net return to harvesting.

Finally, some results were obtained for the case with resource dynamics. The diversity of possible equilibria is not affected by it. For each strategy equilibrium an associated resource stock equilibrium can be found, as long as the aggregate harvest does not exceeds the replenishment rate of the resource for all stock levels. As a counterpart, with a low initial stock or a low replenishment rate, fewer strategy equilibria are possible. The equilibrium stock will be larger for a cooperative equilibrium than for a defecting one.
References

Figure 1. A neighborhood, indicated by light-colored cells.
Figure 2. Frequency of occurrence of each type of equilibrium for different initial strategy shares.
Figure 3. Evolution of strategy shares over time for four different initial spatial distributions of strategies, with $z_0 = (0.30, 0.40, 0.30)$.

Figure 4. Examples of clustering in CDE-equilibria, at $\tau = 50$, with $z_0 = (0.30; 0.40; 0.30)$.

(a) Cooperating group in a large population of defectors

(b) Defecting group in a large population of cooperators and enforcers
Figure 5. Range of convergence to D-equilibria (contour lines denote average frequencies of occurrence over all spatial configurations)

Figure 6. Evolution of strategies and resource stock dynamics toward an equilibrium.
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries
ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries
PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy
ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms
PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market
PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets
PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values
PRA 13.2004 Maarten C.W. JANSEN (lxv): Auctions as Coordination Devices
PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers
PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination
CCMP 16.2004 Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions
NRN 18.2004 Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (lxv): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics
SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice
NRN 21.2004 Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists
NRN 23.2004 Pius ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya
NRN 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach
NRN 27.2004 Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports
NRN 29.2004 Marian WEBER (lxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest
NRN 30.2004 Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE (lxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting
CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution
Franca ECKERT COEN and Claudio ROSSI (lxviii): Foreigners, Immigrants, Host Cities: The Policies of Multi-Ethnicity in Rome. Reading Governance in a Local Context

Kiflemariam HAMDE (lxviii): Mind in Africa, Body in Europe: The Struggle for Maintaining and Transforming Cultural Identity - A Note from the Experience of Eritrean Immigrants in Stockholm

Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

Andrea BIGANO and Sef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

Michael FINUS (lxix): International Cooperation to Resolve International Pollution Problems

Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies

Marc ESCRIBUELA-VILLAR: Cartel Sustainability and Cartel Stability

Sebastian BEROYETS and Nicolas GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach

Signe ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits

Ekri BIROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transitional Economy

Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects

Scott BARRETT and Michael HOEL: Optimal Disease Eradication

Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Ingo BRAÜER and Rainer MARGGRAF: Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturated Streams

Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance

Katrin REHDDANZ and David MADDISON: The Amenity Value of Climate to German Households

Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management

Timo GOESCHL and Danilo CAMARGO IGLOJRI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon

Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol

Eliasios PAPYRAKIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.

Györgyi BELA, György PATAKI, Melinda SMAIL and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis

E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands

Giannis YARDAS and Anastasios XEPAPEADEAS: Uncertainty Aversion, Robust Control and Asset Holdings

Anastasios XEPAPEADEAS and Constadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Michael FINUS: Modesty Pays: Sometimes!

Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margherita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

Salvador BARBERÀ and Matthew O. JACKSON (lxx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union

Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lxx): Optimal Information Transmission in Organizations: Search and Congestion

Francis BLOCH and Armando GOMES (lxx): Contracting with Externalities and Outside Options

Rahab AMIR, Efrasyni DIAMANTOUDI and Licun XUE (lxx): Merger Performance under Uncertain Efficiency Gains

Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players

Daniel DIERMEIER, Hiyà ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation

Rod GARRETT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization and Coalition Government Formation

Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): Economics: An Emerging Small World?

Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. FØRUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elisiasos PAPYRIS and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

Marzio GALEOTTI and Claudia KEMPFERT: Interactions between Climate and Trade Policies: A Survey

A. MARKANDYA, S. PEDROSO and D. STREMIKIENE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

Sergei IZMALKOV (lxx): Multi-Unit Open Ascending Price Efficient Auction

Gianmarco P.I. OTTAVIANO and Giovanni PERRI: Cities and Cultures

Massimo DEL GAITTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus devolution

Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits

Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BERGANTIÑOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIKKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIKKAMP: A Meta-Analysis of the Willingness to Pay for Reducing Pesticide Risk Exposure

Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

Massimo FLORIO and Mara GRASSENI: The Missing Shock: The Macroeconomic Impact of British Privatisation

John BENNETT, Saul ESTRIN, James MAW and Giovanni URGÀ: Privatisation Methods and Economic Growth in Transition Economies

Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo A. MAINARDI: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective

Somdeb LAHIRE: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results

Giuseppe DI VITA: Natural Resources Dynamics: Another Look

Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

Chiara M. TRAVISI, Raymond J.G.M. FLORAX and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Patrick CAYRADE: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?

Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies
IEM 116.2004 Valeria COSTANTINI and Francesco GRACCEVA: Social Costs of Energy Disruptions
Christian EGENHOFER, Kyriakos GIALLOGLOU, Giacomo LUCIANI, Maroessa BOOTS, Martin SCHEEPERS,
IEM 117.2004 Valeria COSTANTINI, Francesco GRACCEVA, Anil MARKANDYA and Giorgio VICINI: Market-Based Options
for Security of Energy Supply
IEM 119.2004 Giacomo LUCIANI: Security of Supply for Natural Gas Markets. What is it and What is it not?
IEM 120.2004 L.J. de VRIES and R.A. HAVVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets
KTHC 121.2004 Roberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open
Economy
NRM 122.2004 Carlo GIUPPONI, Jaroslaw MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water
Resources Management: A DSS Tool and a Pilot Study Application
NRM 123.2004 Margaretha BREIL, Anita FASSIO, Carlo GIUPPONI and Paolo ROSATO: Evaluation of Urban Improvement
on the Islands of the Venice Lagoon: A Spatially-Distributed Hедonic-Hierarchical Approach
ETA 124.2004 Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric
Information: The Differential Tax Revisited
NRM 125.2004 Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta VALDI, Valentina MARIN and Francesca
Palmisani: Integrated Environmental Study for Beach Management: A Methodological Approach
PRA 126.2004 Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence
from Poland and the Czech Republic
CCMP 127.2004 Maria BERRITTELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium
Analysis of Climate Change Impacts on Tourism
CCMP 128.2004 Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy
Savings
NRM 129.2004 Eliaostas PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth
PRA 130.2004 Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization
SIEV 131.2004 Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A
Latent-Class Approach Based on Intensity of Participation
for Public Goods: Finite Versus Continuous Mixing in Logit Models
IEM 133.2004 Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited
ETA 134.2004 Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma
SIEV 135.2004 Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys
CCMP 136.2004 Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The
Influence of World Energy Prices
ETA 137.2004 Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČÍK: Cheap Talk, Gullibility, and Welfare in an
Environmental Taxation Game
CCMP 139.2004 Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy
NRM 140.2004 Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A
Real Option Analysis
PRA 141.2004 Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incompete Contracts
PRA 142.2004 Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealecl Bid Auctions: Theory
and Evidence from Timber Auctions
PRA 143.2004 David GOLDBREICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions
PRA 144.2004 Roberto BURGUET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More
Simple Economics
Information and Strategic Behavior in the Government of Canada Securities Auctions
PRA 146.2004 Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUQUET (lxxi): How to Win Twice at an Auction. On
the Incidence of Commissions in Auction Markets
PRA 147.2004 Claudio MEZZETTI, Aleksandar PEKEČ and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price
Auctions
PRA 148.2004 John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
PRA 149.2004 Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-
Price Sealed-Bid Auctions
PRA 150.2004 François DEGEORGE, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why
Bookbuilding is Dominating Auctions
CCMP 151.2004 Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification. Internal Institution and
Pressure Groups in the Kyoto Protocol’s Adoption Process
CCMP 152.2004 Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate
Policy Analysis? A Robustness Exercise with the FEEM-RICE Model
PRA 153.2004 Alejandro M. MANELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue
Maximization and the Multiple-Good Monopoly
ETA 154.2004 Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism
in Stabilization Policies?
CTN 155.2004 Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with
Externalities
CCMP 156.2004 Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1.2005
Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

ETA 159.2004

ETA 159.2004
William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling

KTHC 160.2004
Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons

IEM 161.2004
Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRIGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1.2005
Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change

CCMP 2.2005
Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

CCMP 3.2005
Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

CCMP 4.2005
Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

ETA 5.2005
Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?

CCMP 6.2005
Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change

IEM 7.2005

ETA 8.2005
Lorenzo PELLEGRINI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption

CCMP 9.2005
Angelo ANTOCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model

CTN 10.2005
Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers

NRM 11.2005
Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

KTHC 12.2005
Carla MASSIDDA: Estimating the New Keynesian Phillips Curve for Italian Manufacturing Sectors

KTHC 13.2005
Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

PRCG 14.2005
Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

CSRM 15.2005
Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry

KTHC 16.2005
Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

KTHC 17.2005
Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms

KTHC 18.2005
Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer

KTHC 19.2005
Mombert HOPPE: Technology Transfer Through Trade

PRCG 20.2005
Roberto ROSON: Platform Competition with Endogenous Multithoming

CCMP 21.2005
Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs, A Game Theoretic Perspective on Bottom-up Climate Regimes

CCMP 22.2005
Fausto CAVALLARO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method

CTN 23.2005
Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria

CTN 24.2005
Wietze LISE: Decomposition of CO2 Emissions over 1980–2003 in Turkey

CTN 25.2005
Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: Perceived Realism, Threat and WTP Estimates for Biodiversity Protection

NRM 26.2005
Maximiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

CCMP 27.2005
Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information

NRM 29.2005
Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations

CCMP 30.2005
Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism

NRM 31.2005
Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies

NRM 32.2005
Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility

CCMP 33.2005
Joseph HUBER: Key Environmental Innovations

CTN 34.2005
Antoni CALVÓ-ARMENGOL and Rahmi ILKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation

CTN 35.2005
Francesco FERI (lxxii): Network Formation with Endogenous Decay

CTN 36.2005
Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
Alessandra CASELLA and Nobuyuki HANAKI (lxii): Information Channels in Labor Markets, On the Resilience of Referral Hiring

Matthew O. JACKSON and Alison WATTS (lxiii): Social Games: Matching and the Play of Finitely Repeated Games

Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxiii): The Egalitarian Sharing Rule in Provision of Public Projects

Francesco FERI: Stochastic Stability in Network with Decay

Aart de ZEEUW (lxiii): Dynamic Effects on the Stability of International Environmental Agreements

C. Martijn van der HEIDE, Jeroen C.J.M. van den BERGH, Ekko C. van IERLAND and Paulo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands

Carlo VIEIRA and Ana Paula SERRA: Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms

Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice

Michael FINUS and Bianca RUNDSHAGEN: Participation in International Environmental Agreements: The Role of Timing and Regulation

Lorenzo PELLEGRINI and Reyer GERLAGH: Are EU Environmental Policies Too Demanding for New Members States?

Matteo MANERA: Modeling Factor Demands with SEM and VAR: An Empirical Comparison

Olivier TERCIEUX and Vincent VANNETELBOSCH (lxii): A Characterization of Stochastically Stable Networks

Ana MÁULEON, José SEMPERE-MONERRIS and Vincent J. VANNETELBOSCH (lxii): R&D Networks Among Unionized Firms

Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in International Environmental Agreements

Valeria GATTAF: From the Theory of the Firm to FDI and Internalisation: A Survey

Alireza NAGHAVI: Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the Doha Proposal

Margaretha BREIL, Greet GAMBARELLI and Paulo A.L.D. NUNES: Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach

Alessandra da BOCA, Marzio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA: Investment and Time to Plan: A Comparison of Structures vs. Equipment in a Panel of Italian Firms

Gernot KLEPPER and Sonja PETERSON: Emissions Trading, CDM, JI, and More – The Climate Strategy of the EU

Maia DAVID and Bernard SINCLAIR-DESGAGNÉ: Environmental Regulation and the Eco-Industry

Alain-Désiré NIMUBONA and Bernard SINCLAIR-DESGAGNÉ: The Pigouvian Tax Rule in the Presence of an Eco-Industry

Helmut KARL, Antje MÖLLER, Ximena MATUS, Edgar GRANDE and Robert KAISSER: Environmental Innovations: Institutional Impacts on Co-operations for Sustainable Development

Dimitra VOUVAKI and Anastasios XEPAPADEAS (lxiii): Criteria for Assessing Sustainable Development: Theoretical Issues and Empirical Evidence for the Case of Greece

Andreas LÖSCHEL and Dirk T.G. RÜBBELKE: Impure Public Goods and Technological Interdependencies

Christoph A. SCHALTEGGER and Benno TORGLER: Trust and Fiscal Performance: A Panel Analysis with Swiss Data

Irene VALSECCHI: A Role for Instructions

Valentina BOSETTI and Gianni LOCATELLI: A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks

Valeria GATTAI: A Role for Instructions

Anna ALBERINI, Valentina ZANATTA and Paolo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Applications of Negotiation Theory to Water Issues

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Advances in Negotiation Theory: Bargaining, Coalitions and Fairness

Sandra WALLMAN (lxiv): Network Capital and Social Trust: Pre-Conditions for ‘Good’ Diversity?

Asimina CHRISTOFOROU (lxiv): On the Determinants of Social Capital in Greece Compared to Countries of the European Union

Eric M. USLANER (lxiv): Varieties of Trust

Graziazzella BERTOCCHI and Chiara STROZZI: Applications of Negotiation Theory to Water Issues

Renato SANSI and Ercole SORI (lxv): Governance of Diversity Between Social Dynamics and Conflicts in Multicultural Cities. A Selected Survey on Historical Bibliography

<table>
<thead>
<tr>
<th>Journal</th>
<th>Year</th>
<th>Authors/Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEM</td>
<td>75.2005</td>
<td>Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship</td>
</tr>
<tr>
<td>ETA</td>
<td>76.2005</td>
<td>Umberto CHERUBINI and Matteo MANERA: Hunting the Living Dead A “Peso Problem” in Corporate Liabilities Data</td>
</tr>
<tr>
<td>CTN</td>
<td>77.2005</td>
<td>Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule</td>
</tr>
<tr>
<td>ETA</td>
<td>78.2005</td>
<td>Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITHAGEN (lxxvi): Local and Global Interactions in an Evolutionary Resource Game</td>
</tr>
<tr>
<td>2004 SERIES</td>
<td>2005 SERIES</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td>CCMP</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td>SIEV</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td>NRM</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td>KTHC</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td>IEM</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td>CSRM</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td>PRA</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td>ETA</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td>CTN</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>