

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Carraro, Carlo; Eyckmans, Johan; Finus, Michael

Working Paper Optimal Transfers and Participation Decisions in International Environmental Agreements

Nota di Lavoro, No. 50.2005

Provided in Cooperation with: Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Carraro, Carlo; Eyckmans, Johan; Finus, Michael (2005) : Optimal Transfers and Participation Decisions in International Environmental Agreements, Nota di Lavoro, No. 50.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at: https://hdl.handle.net/10419/74060

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Optimal Transfers and Participation Decisions in International Environmental Agreements

Carlo Carraro, Johan Eyckmans and Michael Finus NOTA DI LAVORO 50.2005

APRIL 2005

CTN – Coalition Theory Network

Carlo Carraro, Fondazione Eni Enrico Mattei FEEM and University of Venice Johan Eyckmans, EHSAL- Europese Hogeschool Brussel and Katholieke Universiteit Leuven, Centrum voor Economische Studiën Michael Finus, Department of Economics, University of Hagen

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract=702761

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it

Optimal Transfers and Participation Decisions in International Environmental Agreements

Summary

The literature on international environmental agreements has recognized the role transfers play in encouraging participation in international environmental agreements (IEAs), but the few results achieved so far are overly specific and do not exploit the full potential of transfers for successful treaty-making. Therefore, in this paper, we develop a framework that enables us to study the role of transfers in a more systematic way. We propose a design for transfers using both internal and external financial resources and making "welfare optimal agreements" self-enforcing. To illustrate the relevance of our transfer scheme for actual treaty-making, we use a well-known integrated assessment model of climate change to show how appropriate transfers may be able to induce almost all countries into signing a self-enforcing climate treaty.

Keywords: Self-enforcing international environmental agreements, Climate policy, Transfers

JEL Classification: C72, H23, Q25, Q28

This paper has been written while M. Finus was a visiting scholar at the Katholieke Universiteit Leuven, Centrum voor Economische Studiën (K.U.Leuven-CES, Belgium). He acknowledges the financial support by the CLIMNEG 2 project funded by the Belgian Federal Science Policy Office and the kind hospitality of K.U.Leuven.

Address for correspondence:

Carlo Carraro Department of Economics University of Venice S. Giobbe 873 30121 Venice Italy Phone: +39 041 2349166 Secr. 173 Fax: +39 041 2349176 E-mail: ccarraro@unive.it

1. Introduction

Transfers play a prominent role in the analysis of self-enforcing international environmental agreements (IEAs). There are two reasons why this is not surprising. First, large asymmetries in the cost and benefit structure between countries may lead to a highly asymmetric distribution of the gains from cooperation that may hamper successful treaty-making. Second, IEAs provide a public good and therefore face strong free-rider incentives that might be mitigated through the use of transfers. A review of current literature (see Carraro and Siniscalco, 1998; Finus, 2001, 2003a and Tulkens, 1998) suggests that contributions in this field can be broadly divided into two categories.

The first category analyzes IEAs using the tools of cooperative coalition theory. The analysis is based on the characteristic function that assigns a worth to every coalition, which is calculated as the aggregate payoff that a coalition can secure for its members irrespective of the configuration of the players remaining outside this coalition. As well as testing whether the coalition including all players (grand coalition) is stable (in the sense of the core, for example), the main focus is on the axiomatic foundation of normatively motivated sharing schemes such as the Nash bargaining solution, the Shapley value and the Chander-Tulkens' transfer scheme. Applications are found in the context of global warming (Chander and Tulkens, 1995, 1997; Eyckmans and Tulkens, 2003; Germain et al., 1998), acid rain (Germain et al., 1996; Kaitala et al., 1995), high seas fisheries (Kaitala and Lindroos, 1998; Lindroos, 2004; Lindroos and Kaitala, 2001, Pintassilgo, 2003) and water management (Ambec and Sprumont, 2002; Lejano and Davos, 1999). This approach may be regarded as the classical cooperative method of studying coalitions. The strength of this approach lies in the generality

of results that can often be established on the basis of some standard properties, like superadditivity.⁵

The second category of contributions analyzes IEAs using the tools of non-cooperative coalition theory. The analysis is based on the valuation function that assigns an individual payoff to every coalition member. The value is calculated by taking into account the entire coalition structure, i.e. the partition of players inside and outside a coalition. The main focus is on explaining free-riding behavior in the context of externalities, identifying the main economic factors that determine the relative success of partial cooperation and suggesting instruments for discouraging free-riding. The advantage of the non-cooperative over the cooperative approach is that it better captures externalities between players and coalitions (Bloch 2003). However, this advantage comes at the cost of complexity, implying that results are usually less general.

In the context of the non-cooperative approach, transfers have been analyzed in their ex-ante and ex-post forms.⁶ Ex-ante means that countries commit to a certain transfer rule before they decide upon their participation in an IEA. Ex-post means that after an agreement has formed, transfers are used to broaden an existing coalition.

The first putative paper on transfers goes back to Carraro and Siniscalco (1993). In line with intuition, they prove that transfers have no effect in the standard model with symmetric countries, given the constraint that all IEAs must be self-enforcing and that transfers must be self-financed. They proceed to analyze various forms of commitment that will enable coalitions to expand via ex-post transfers. They suggest two directions of ex-post transfers that may improve upon the status quo: 1) insiders (coalition members) "bribing" outsiders (non-coali-

⁵ Roughly speaking, supperadditivity means that the worth of coalitions increases with increasing participation. See section 3 for a formal definition.

⁶ For an overview, see Finus (2003).

tion members) to join their coalition and 2) outsiders "bribing" other outsiders to join the coalition.

The idea of various forms of commitment and ex-post transfers was also pursued in later papers by Botteon and Carraro (1997), Jeppesen and Andersen (1998) and Petrakis and Xepapadeas (1996), though commitment is certainly not an assumption in line with the notion of self-interested players. Therefore, it was important to illustrate that expansions of coalitions via ex-post transfers may also be possible without commitment as this has been done by Botteon and Carraro (1997) in a simple empirical model with five heterogeneous countries. Moreover, the positive effect of ex-ante transfers was illustrated for the Nash bargaining solution and the Shapley value. A similar conclusion was confirmed by Barrett (1997) for the Shapley value using a stylized simulation model where heterogeneity was limited to two types of countries.

Later papers have looked at the effect of various ex-ante and ex-post transfers rules on the success of coalition formation and on the possibility of expanding stable coalitions (see Altamirano-Cabrera and Finus, 2004; Bosello et al., 2003, 2004; Carraro and Siniscalco, 2001; Eyckmans and Finus, 2003, 2004a; Finus et al., 2004; Weikart et al., 2004). Most of these papers used a more elaborate empirical model, looked not only at stylized transfer schemes derived from cooperative game theory, but also considered schemes that are based on various moral motives for "fair sharing", that considered transfers via permit trading and allowed for the possibility of multiple coalitions. Roughly speaking, all papers basically confirm earlier studies in concluding that transfers can be conducive to the success of self-enforcing agreements, but that outcomes crucially depend on the particular transfer rule, the model and the data set. For instance, Barrett (2001) draws a rather pessimistic picture of the Chander-Tulkens' transfer rule in the context of a non-cooperative coalition model, whereas Eyckmans and Finus (2003) come to a more optimistic conclusion. Moreover, Bosello et al.

(2003) find some evidence that equitable sharing rules can enhance efficiency by increasing the number of signatories of an environmental treaty, whereas Altamirano-Cabrera and Finus (2004) derive the exact opposite conclusion.

The mixed evidence and the specific results motivate us to look for a more general and rigorous approach to studying the role of transfers in the context of non-cooperative coalition theory. In particular, we want to determine the "full potential of transfers". To this end, we go back to the roots of the analysis of IEAs, removing in this paper any unnecessary complication as a first step. That is, we assume a simple cartel formation game and apply the concept of internal and external stability. We do not consider commitments or any complication like non-transferable utility (Buchholz and Konrad 1995), monitoring and moral hazard problems (Petrakis and Xepapadeas 1996); "reputation effects" (Jeppesen and Andersen; 1998; Hoel and Schneider 1997) are also discarded in favour of the notion of optimal transfer schemes. With optimal transfers we mean transfers designed to maximize global welfare under the constraint that the underlying IEA is self-enforcing.

In what follows, we present our model in section 2. This comprises not only a theoretical part but also an empirical part in order to illustrate the usefulness and practical application of our concepts. The empirical part is based on a modified version of RICE, a well-known integrated assessment model of climate change policy (Nordhaus and Yang, 1996). In section 3, we introduce two properties of coalition formation that are suitable for analyzing all aspects of transfers in section 4. Section 5 wraps up the main findings and highlights some directions for future research.

2. Model

2.1 Theoretical Background

Coalition formation is modeled as a two-stage game. There are n players $N = \{1, ..., n\}$ that are countries or world regions in our empirical model and which we simplify refer to as countries in the following discussion. In the first stage, countries choose their membership: a country can either join coalition S and become a signatory or remain a singleton and non-signatory. These decisions lead to coalition structure $C = \{S, \{\ell\}, ..., \{n\}\}, i.e., a partition of players, with s signatories (s denotes the cardinality of S) and n-s non-signatories. Given the simple structure of the first stage, a coalition structure C is fully characterized by coalition S.⁷$

In the second stage, countries choose their economic strategies. In the context of our empirical model, economic strategies are emission abatement and capital investment (see subsection 2.2 for details). At this stage, it suffices to denote the vector of economic strategies by $\omega(S) = (\omega_1(S), ..., \omega_n(S))$, given that a coalition S has formed in the first stage; we can also note that in the second stage countries receive individual payoffs $\pi_i(\omega(S))$ that depend on the economic strategies of all countries.⁸

We compute the subgame-perfect equilibria of this two-stage game by backward induction. To do this, it is sufficient for strategies to constitute a Nash equilibrium at every stage. For the

⁷ This simplification would not be possible if we were to allow for multiple non-trivial coalitions as for instance considered in Bosello et al. (2003, 2004), Carraro (2000), Eyckmans and Finus (2003) and Finus (2003b).

⁸ This simple theoretical framework has often been adopted in the literature on international environmental agreements where the assumption of a coalition structure with a single coalition is the most obvious and realistic and where the game is characterized by positive externalities. A more general framework is sometimes used in coalition theory (Bloch, 2003) but would not be useful for the purpose of showing our main results.

second stage, this entails that economic strategies form a Nash equilibrium between coalition S and the n-s non-signatories.⁹ That is:

$$\sum_{i\in S} \pi_i(\omega_S^*(S), \omega_{-S}^*(S)) \ge \sum_{i\in S} \pi_i(\omega_S(S), \omega_{-S}^*(S)) \quad \forall \omega_S(S) \text{ and}$$

$$\forall i \notin S \colon \pi_i(\omega_S^*(S), \omega_i^*, \omega_{-i}^*(S)) \ge \pi_i(\omega_S^*(S), \omega_i(S), \omega_{-i}^*(S)) \quad \forall \omega_i(S).$$
(1)

where $\omega_{S}(S)$ is the economic strategy vector of coalition S, $\omega_{-S}(S)$ the vector of all other countries not belonging to S, ω_i (S) the strategy of non-signatory i, and ω_{-i} (S) the strategy vector of all other non-signatories except i under coalition structure S. An asterisk denotes equilibrium strategies. Computationally, this implies that non-signatories $i \notin S$ will choose their economic strategies so as to maximize their individual payoff $\pi_i(\omega)$, whereas all signatories $i \in S$ jointly maximize $\sum_{i \in S} \pi_i(\omega)$, the aggregate payoff of their coalition. Strategically, this means that the behaviour of non-signatories towards all other countries is selfish and non-cooperative; signatories behave cooperatively towards their fellow members (otherwise cooperation would not be worthwhile analyzing), but non-cooperatively towards outsiders. Economically, this means strategies are group (but not globally) efficient within coalition S. Hence, the equilibrium economic strategy vector $\omega^*(S)$ corresponds to the classical "social or global optimum" if coalition S comprises all countries (S=N), i.e. the grand coalition forms, and corresponds to the classical "Nash equilibrium" if coalition S comprises only one member ($s=\{i\}$). Hence, any inefficiency, i.e., global welfare loss of coalition S compared to the global optimum stems from the fact that S is not the grand coalition.

⁹ This has been called a partial agreement Nash equilibrium by Chander and Tulkens (1997). Our assumption is in line with the mainstream of the literature on coalition theory. For an overview see Bloch (2003) and Yi (2003).

Given that the second stage of the game has been solved, we define $v_i(S) = \pi_i(\omega^*(S))$ as the valuation of country i if coalition S forms. This definition succinctly summarizes all information relevant to the second stage.

For the first stage, we define a Nash equilibrium in terms of participation.¹⁰ The following two conditions must be met:

internal stability:
$$v_i(S) \ge v_i(S \setminus \{i\}) \quad \forall i \in S.$$
 (2)

external stability: $v_i(S) \ge v_i(S \cup \{i\}) \quad \forall i \notin S.$ (3)

That is, in equilibrium, no signatory belonging to coalition S has an incentive to leave its coalition in order to become a non-signatory, given the participation decisions of all other countries. By the same token, no non-signatory has an incentive to join coalition S, given the decisions of all other countries.

Regardless of whether we consider ex-ante or ex-post transfers, in a TU-framework, optimal economic strategies are not affected by transfers. Thus, valuations with transfers $\hat{v}_i(S)$ are related to those without transfers $v_i(S)$ simply through the relation $\hat{v}_i(S) = v_i(S) + t_i$ where $t_i > 0$ means receiving and $t_i < 0$ means paying a transfer. We make the standard assumption that transfers balance, i.e., $\sum_{i \in N} t_i = 0$ and hence $\sum_{i \in N} \hat{v}_i(S) = \sum_{i \in N} v_i(S)$.¹¹ Note that in any case (with and without transfers), coalition S={i} is always internally stable and coalition S=N always externally stable, which simply follows by definition.

¹⁰ This definition of coalitional stability is due to d'Aspremont et al. (1983) and has been frequently applied in the literature on IEAs as for instance by Barrett (1994), Carraro and Siniscalco (1993), Hoel (1992) and by many scholars afterwards.

¹¹ The condition that transfers balance is equivalent to the self-financed transfer constraint in Carraro and Siniscalco (1993).

2.2 Empirical Background

In order to illustrate the importance of transfers for the success of coalition formation, we derive valuations from the CLIMNEG World Simulation Model (hereafter abbreviated as CWSM). CWSM is an integrated assessment, economy-climate model that extends the seminal RICE model by Nordhaus and Yang (1996).¹² It captures the endogenous feedback of climate change damages on production and consumption. The economic module of the CWSM consists of a dynamic, long-term, perfect foresight, Ramsey-type optimal growth model. The environmental module consists of a carbon cycle and temperature change module. The decision variables in the CWSM are investment and carbon emission reduction.

In the CWSM, the world is divided into six regions: USA, JPN (Japan), EU (European Union), CHN (China), FSU (Former Soviet Union) and ROW (Rest of the World). In every region i, and at every time t, the following budget equation describes how "potential GDP", $Y_{i,t}$, can be "allocated" to consumption, $Z_{i,t}$, investment, $I_{i,t}$, emission abatement costs, $Y_{i,t}C_i(\mu_{i,t})$, and climate change damages, $Y_{i,t}D_i(\Delta T_t)$:

$$Y_{i,t} = Z_{i,t} + I_{i,t} + Y_{i,t} C_i(\mu_{i,t}) + Y_{i,t} D_i(\Delta T_t)$$
(4)

Output $Y_{i,t}$ is produced with capital and labor. Capital is built up through investment and depreciates at some fixed rate. Labour supply is assumed to be inelastic. Therefore, investment $I_{i,t}$ is the only endogenous production input and constitutes the first choice variable in the model.

Abatement costs $Y_{i,t} C_i(\mu_{i,t})$ are expressed as "loss of potential GDP": C_i is the share of "potential GDP" devoted to abatement, which is a function of $\mu_{i,t} \in [0,1]$, a variable that

¹² An overview of the equations and parameters with a detailed exposition of the model can be found in Eyckmans and Tulkens (2003).

measures the relative emission reduction compared to the business-as-usual scenario without any abatement policy. Damages $Y_{i,t} D_i (\Delta T_t)$ are also expressed as "loss of potential GDP": D_i is the share of "potential GDP" destroyed by climate change damages, which is a function of temperature change ΔT_t . Temperature change depends on the stock of greenhouse gases, which in turn depends on emissions that accumulate in the atmosphere. Finally, emissions are proportional to production, but can be reduced by the abatement rate $\mu_{i,t}$. Hence, the second choice variable in this model is the emission abatement rate $\mu_{i,t}$.

Both choice variables (investment and abatement) affect output, abatement costs, damage costs and therefore also consumption, not only domestically but also abroad. This is immediately evident with regard to abatement because remaining emissions (after abatement) increases the stock of greenhouse gases, which affects environmental damages in every country. However, it is also true for investment, since capital is an input in the production process and emissions are proportional to production. Technological progress is captured by the CWSM in an exogenous fashion (the time path is taken from RICE). It increases production potential and decreases the emission-output ratio (i.e. increases energy effiency) over time.

Welfare is measured as total lifetime discounted consumption:

$$\pi_{i}(\omega) = \sum_{t=0}^{\Omega} \frac{Z_{i,t}}{\left[1 + \rho_{i}\right]^{t}}$$
(5)

where ρ_i stands for the discount rate of region i, Ω denotes the time horizon and ω is an economic strategy vector. Vector $\omega = \{I_{i,t}, \mu_{i,t}\}_{i \in N; t=0,...,\Omega}$ consists of a time path of 35 decades¹³ for emission abatement and investment for all six regions and hence its length is 2x35x6=420. For every possible coalition S, we compute the open-loop Nash equilibrium

¹³ We choose a sufficiently long time period to avoid "end point bias". However, due to discounting, only a shorter period is strategically relevant for players.

 $\omega^*(S)$ in order to derive valuations $v_i(S) = \pi_i(\omega^*(S))$ as described in subsection 2.1. Given that our empirical model comprises six players, we have 58 different coalitions and therefore a full table of valuation vectors of dimension 58x6. If valuations are modified through transfers, this happens in a one-shot fashion since it does not affect equilibrium economic strategies in the CWSM as proved in Eyckmans and Tulkens (2003). Thus, we are operating within a TU-framework.

We finish this section with five remarks about the basic incentive structure obtained by calibrating the CWSM. First, we assume a relatively low discount rate of 1.5 percent, except for CHN and ROW where we assume a discount rate of 3 percent in order not to "overestimate" the incentives for these regions to implement climate change policies. However, much higher discount rates would simply ignore the long term effects of climate change, providing no incentive for countries to cooperate and therefore would render our analysis uninteresting. The discount rates chosen are in line with the recommendations in Weitzman (2001).

Second, the parameters set for the CWSM imply that USA, JPN and EU face steep abatement cost curves, while CHN and ROW face flat ones. The regional differences in abatement costs mainly reflect differences in energy efficiency. Intuitively, energy efficient regions face higher marginal costs when cutting back emissions than regions characterized by low energy efficiency because they have already exploited the cheapest energy saving techniques.

Third, damage functions are particularly steep in EU and ROW, less steep in USA and JPN and relatively flat in FSU and CHN. The high damage estimate (as a percentage of "potential GDP") for ROW is due to the fact that climate change is believed to affect developing countries more strongly than industrialized countries, because their economies tend to depend more on climate related production processes like agriculture, fishery and forestry (IPCC 2001). The low damage estimate for FSU is due to some expected benefits from moderate temperature increase, like the increased availability of arable land.

Fourth, in a given coalition S, the steeper the marginal damage cost curves and the flatter the marginal abatement cost curves of the members of S are, the higher the optimal abatement of coalition members will be, which follows from the first-order conditions of joint welfare maximization of coalition S (see Barrett, 1994 and Eyckmans and Tulkens, 2003). It follows that in any period, coalition members should abate up to the point where their marginal abatement costs are equal to the discounted sum of all coalition members' avoided future marginal climate change damages.

Fifth, coalition members with a flatter marginal abatement cost curve have to contribute more than those with a steeper curve, all else being equal, which also follows from the first order conditions (cost efficiency) of coalition S.

3. Properties of Valuations

In this section, we discuss two important properties that hold for the valuations derived from our empirical model CWSM and which determine the general incentive structure of countries in the coalition formation game. The first property is called superadditivity and means that the aggregate valuation of country j and coalition S increases if country j joins coalition S.

Property 1: Superadditivity

A coalition game is superadditive if and only if for all $S \subset N$ and $j \notin S$:

$$\sum_{i\in S\cup\{j\}}v_i(S\cup\{j\})>\sum_{i\in S}v_i(S)+v_j(S).$$

That is, there is "coalitional gain" from cooperation and hence cooperation is "group rational" or "*coalitionally rational*". It is evident that superadditivity is a necessary condition to make

cooperation attractive for those countries participating in an IEA. This property means that starting from any coalition S and increasing the degree of cooperation by moving to $S \cup \{j\}$ or even larger coalitions, it is generally possible to allocate the coalition gain such that it constitutes a Pareto-improvement to all regions involved in cooperation.¹⁴

We can define the second property with the term positive externalities, meaning that if country j joins coalition S, all countries that do not belong to $S \cup \{j\}$ are better off.

Property 2: Positive Externalities

A coalition game exhibits positive externalities if and only if for all $S \subset N$, $j \notin S$ and all $\ell \notin S \cup \{j\}$: $v_{\ell}(S \cup \{j\}) > v_{\ell}(S)$.

Consequently, there is an "external gain" or a positive spillover from cooperation, making free-riding attractive. From a non-signatory's point of view, the most favorable condition is the one in which all other countries participate in the agreement.¹⁵

It is then clear that a region's decision to join a coalition – as well as the stability of an IEA – depends on the intensity of the superadditivity effect which, together with the sharing rule of the coalitional gain, determines the inside options of cooperation relative to the intensity of the positive externality effect which in turn determines the outside options of cooperation. We will study these effects in more detail in section 4, but note here that superadditivity and positive externality together imply that global welfare increases through cooperation. That is, given a coalition S, whenever a single or several countries join coalition S, global welfare is

¹⁴ Superadditivity is a property frequently encountered in cooperative coalition theory, but not much used in non-cooperative coalition theory, despite the fact that it helps to structure ideas immensely.

¹⁵ Positive (and negative) externalities is a property that plays an important role in recent literature on non-cooperative coalition theory. See for instance Bloch (2003), Yi (2003) and Maskin (2003).

raised. That is, cooperation is *globally rational* - a central property that motivates our effort of analyzing measures to mitigate the problems of free-riding in transboundary pollution control.

Table 1 illustrates the magnitudes at stake for our empirical application using the CWSM model. It displays – for a selection of coalitions – welfare (global welfare) and two environmental variables (carbon concentration and global emissions) in absolute (in the legend) and relative terms (in the table). The relative magnitudes can be interpreted as a "closing the gap index", measuring how close a coalition comes to the global optimum where the performance in the global optimum is 100 percent and the performance with no cooperation is 0 percent by definition. Apart from stressing that both full and partial cooperation, Table 1 illustrates that not only the size of a coalition matters for the global success of cooperation, but also the identity of its members. Put differently, the commonly held view that high participation automatically indicates the success of an IEA may be wrong. For instance, coalition no. 32 including five members (USA, JPN, EU, CHN, FSU) ranks lower than many coalition structures comprising coalitions of only three or four members and even lower than coalition no. 31 with only two members (JPN and ROW).

From Table 1, it is also clear that, as a general tendency, the importance for global welfare of participation of particular countries decreases with the following sequence: ROW, CHN, EU, USA, FSU and JPN. ROW's and CHN's important role stems from the fact that they can provide cheap abatement. Similarly, JPN's lesser importance is due to its steep marginal abatement cost curve. However, there is also an additional dimension related to environmental damages. If a given coalition maximizes its joint welfare, the higher the marginal damages of coalition members are, the higher joint abatement efforts will be, all else being equal. This explains the importance of EU for cooperation. These remarks also explain why the "old Kyoto coalition" – comprising USA, JPN, EU and FSU – in our model ranks relatively low

since the two key players – CHN and ROW – are outsiders. A similar conclusion applies to the "present Kyoto coalition", after the withdrawal of the USA in 2001. It is evident that the US decision implies a dramatic drop in welfare and environmental effectiveness, almost to non-cooperative levels. Thus, our model provides support for the efforts of many governments and non-governmental organization to convince the US to rejoin the Kyoto Protocol. However, it also provides support for the concern of the US and many others that an effective climate policy must include developing countries (i.e., ROW) and countries in transition (i.e., CHN).¹⁶

4. Stable Coalitions

In this section, we use the CWSM model to identify stable coalitions of the climate game under the alternative assumptions of no transfers and (various forms of) transfers. To gain an understanding of the driving forces, it is important to recall that stability is defined by two components – internal and external stability – and that valuations are characterized by superadditivity as well as positive externalities. Moreover, it is helpful to note that the positive externality property implies that a necessary condition for internal stability is individual rationality. *Individual rationality*, also sometimes called profitability (see Carraro and Siniscalco, 1993), means that every coalition member $i \in S$ receives at least the same valuation in coalition S as it does under conditions of no cooperation ($\forall i \in S : v_i(S) \ge v_i(\{i\})$). In other words, a minimum requirement for coalition S to be internally stable (and therefore stable) is that cooperation should, for all members of S, constitute a (weak) Paretoimprovement compared to no cooperation. The reason is simply explained. Suppose a

¹⁶ Similar conclusions can also be found in Buchner et al. (2002) where an integrated economyclimate model based on RICE is also used. The main difference is that in the model used by Buchner et al. (2002) technical change is endogenous.

member i in S would receive a lower valuation than under no cooperation, i.e., $v_i(S) < v_i(\{i\})$. If region i were to leave coalition S, it would receive valuation $v_i(S \setminus \{i\})$ for which $v_i(S \setminus \{i\}) \ge v_i(\{i\})$ holds (with strict inequality if $s \ge 3$) due to positive externalities. Consequently, leaving coalition S would always pay and therefore S could not be internally stable.

4.1 No Transfers

In the case of no transfers, only 11 out of 58 coalitions are individually rational in our CWSM model analysis (see Table 2). None of the top 20 ranked coalitions (in terms of global welfare) is individually rational. No coalition with 5 members and only one with 4 members is individually rational (see Table 2). Neither the "old" (no. 47) nor the present (no. 50) Kyoto coalition is individually rational. Notably, not a single coalition that includes China – the key player with cheap abatement options - is individually rational. Thus, in the absence of transfers, although cooperation may be coalitionally (because of superadditivity) and globally (because of superadditivity and positive externality) rational, it may not be individually rational to all coalition members. The reason is that an efficient allocation of abatement burdens within a coalition S would result in a highly asymmetric allocation of the net gains from cooperation among coalition members that face a markedly heterogeneous benefit and cost structure. For instance, the EU has a relatively steep marginal abatement and marginal damage cost curve. Therefore, if the EU is a member of a coalition S, it will be a major beneficiary of cooperation, because it contributes relatively little to cooperation, but in proportion benefits more. The opposite is true for China, which faces a flat marginal abatement cost and damage cost curve and which therefore is a typical loser from cooperation without transfers.

Thus, even a simple check for individual rationality indicates that without transfers a key player like China cannot be convinced to join a climate treaty. Moreover, we can already conjecture that without transfers even moderate partial cooperation will prove very difficult. This is confirmed by a detailed analysis of internal and external stability as shown in Table 2. The two individually rational coalitions with the highest global welfare (no. 21 and 22) are not internally stable, though all other individually rational coalitions are internally stable. However, none of the internally stable coalitions is also externally stable. Hence, there is no stable coalition without transfers when valuations are derived from the CWSM model (see also Table 3).

4.2 Ex-Ante Transfer Schemes

In the light of the above negative conclusion, we consider different ex-ante transfer schemes. That is, the membership decision in the first stage of the game is based on the assumption that coalition S will not only choose its optimal economic strategies in the second stage, but will also allocate the coalition gain from cooperation among its members with a particular transfer scheme. From section 2, we may recall that $\hat{v}_i(S) = v_i(S) + t_i$ and that transfers balance, i.e., $\sum_{i \in S} t_i = 0$ and hence $\sum_{i \in S} \hat{v}_i(S) = \sum_{i \in S} v_i(S)$.

We start by considering three transfer schemes that have played an important role in previous analyses of self-enforcing IEAs (see the literature cited in the Introduction). We call these schemes "simple" in order to distinguish them from our "optimal" transfer schemes that we introduce subsequently. Through the illustration of both optimal and simple transfer schemes, the full potential of an optimal design of transfers will become apparent.

4.2.1 Simple Transfer Schemes

All three simple transfer schemes that we consider originate from cooperative coalition theory. Nevertheless, they have been frequently adopted in the context of the valuation function approach. This requires only a slight modification of their original definitions to account for the fact that coalition S may not only be the grand coalition but can be any subcoalition of N. The following formulas describe valuations of player i being a member of a given coalition $S \subseteq N$.

The first transfer scheme is the Shapley Value and implies valuations of the following form:

$$\hat{\mathbf{v}}_{i}^{SV} = \sum_{\substack{T \subseteq S\\i \notin T}} \frac{t!(s-t-1)!}{s!} \left[\sum_{k \in T \cup \{i\}} \mathbf{v}_{k}(T \cup \{i\}) - \sum_{k \in T} \mathbf{v}_{k}(T) \right] \quad \forall i \in S$$
(6)

with coalition $SI \ N$, $T \subseteq S$ a subgroup of S and t and s the size of group S and T. Roughly speaking, the Shapley Value gives every country a valuation according to its marginal contribution to every possible subcoalition T of S (term between square brackets in (6)), weighted by the probability that this subpartition forms (first factor in (6)).

The second simple transfer scheme is the Nash Bargaining solution (with equal weights):

$$\hat{\mathbf{v}}_{i}^{\text{NB}} = \mathbf{v}_{i}(\{i\}) + \frac{1}{s} \left[\sum_{j \in S} \mathbf{v}_{j}(S) - \sum_{j \in S} \mathbf{v}_{j}(\{i\}) \right] \qquad \forall i \in S$$

$$(7)$$

Every member in S receives its valuation under no cooperation (first term) plus an equal share of the coalitional surplus compared to no cooperation (second term). Thus, no cooperation serves as the threat point.

The third simple transfer scheme is the *C*hander and *T*ulkens' transfer scheme in the version as applied in Eyckmans and Tulkens (2003):

$$\hat{\mathbf{v}}_{i}^{CT} = \mathbf{v}_{i}(\{i\}) + \frac{\mathbf{D}_{i}'}{\sum_{j \in S} \mathbf{D}_{j}'} \left[\sum_{j \in S} \mathbf{v}_{j}(S) - \sum_{j \in S} \mathbf{v}_{j}(\{i\}) \right] \qquad \forall i \in S$$

$$(8)$$

with D'_i discounted marginal damages of member i. It is evident that this scheme is a version of the Nash bargaining rule with unequal weights. This rule gives a higher share of the gains from cooperation to those that are most affected by climate change.

It is straightforward to show that all three simple transfer schemes are all coalitionally rational, i.e. $\forall S \subseteq N$: $\sum_{j \in S} \hat{v}_j(S) \ge \sum_{j \in S} v_j(S)$, and individually rational, i.e., $\forall i \in S$: $\hat{v}_i(S) \ge v_i(\{i\})$ since superadditivity holds.

Tables 2 and 3 confirm our intuition and also many previous studies on transfers: simple transfers improve upon the outcome without transfers. However, it is important to realize that this result is by no means general. Of course, all simple transfer schemes guarantee individual rationality, but individual rationality is only a necessary condition for internal stability. Though this is not the case for our data set, in a different model it may be possible that a coalition is stable without transfers and leads to a higher global welfare than any other stable coalition with a simple transfer scheme. Already from Table 2, it can be seen that there are three coalitions of size 3 that are internally stable without transfers, but none under the *S*hapley *V*alue and the *C*hander and *T*ulkens' transfer rule. Similarly, no general conclusion is possible with respect to external stability either.

Moreover, in our application, the Nash bargaining solution leads to a stable coalition (no. 16) with higher global welfare than in any other stable coalition under the other two transfer schemes. However, other models could yield different results. Finally, we have no information about whether we could do any better than the *N*ash *B*argaining solution and if so what the "best" transfer scheme would be and which coalition could be achieved.

4.2.2 Optimal Transfer Schemes¹⁷

In order to address the issues raised above in a systematic way, we first focus on internal stability. For this purpose, we introduce the concept of a "Potentially Internally Stable

¹⁷ Formal proofs of all theoretical claims in this subsection can be found in Eyckmans and Finus (2004b).

Coalition" (PISC) which we define as follows (see Eyckmans and Finus, 2004b and Botteon and Carraro, 1997 for a similar concept):

Definition 1: Potentially Internally Stable Coalition (PISC)

A coalition S is said to be potentially internally stable (PIS) if and only if $\sum_{i \in S} v_i(S) \ge \sum_{i \in S} v_i(S \setminus \{i\}).$

Thus, if a coalition S is not PIS, this simply means that there is no transfer scheme that can ensure internal stability to all members of S and hence this coalition cannot be stable. Conversely, if a coalition S is PIS, then this means that coalition S has sufficient resources to prevent a coalition member from leaving coalition S. Thus, what is required now is to construct a transfer scheme that ensures internal stability to all members of S, provided S is PIS. Given the design of most simple transfer schemes, it seems appropriate to construct a transfer scheme that gives every member of S its outside option $v_i(S \setminus \{i\})$ plus a share of the coalition surplus compared to the free-rider valuation:

Definition 2: Optimal Transfer Schemes (OPTS)

A transfer scheme can be termed optimal if it satisfies

$$\forall S \subseteq N, \forall i \in S : \hat{v}_i^{OP}(S) = v_i(S / \{i\}) + \lambda_i(S) \Big[\sum_{j \in S} v_j(S) - \sum_{j \in S} v_j(S \setminus \{i\}) \Big]$$

with $\lambda(S) \in \Delta^{s-1} = \Big\{ \lambda \in \mathbb{Z}_+^s \Big| \sum_{j \in S} \lambda_j = I \Big\}.$

By the construction of OPTS, it is easy to see that any transfer scheme that belongs to the class of OPTS will make any PISC internally stable. The design of OPTS suggests that we have much leeway in choosing weights $\lambda_i(S)$. What is important is to choose the "correct" threat point (first term of the definition of $\hat{v}_i^{OP}(S)$ in Definition 2) and define the coalition

surplus (second term of the definition of $\hat{v}_i^{OP}(S)$ in Definition 2) such that coalitional rationality holds, which is the case since $\sum_{i \in S} \hat{v}_i^{OP}(S) = \sum_{i \in S} v_i(S)$. Note that if S is not PIS, then total coalitional payoff is insufficient to satisfy the free-riding claims of all members of S and the transfer scheme becomes a loss sharing instead of a surplus sharing formula.

It is evident that any transfer scheme that belongs to the class of OPTS will lead to the same set of internally stable coalitions. Less evident but interesting is that this "robustness result" also carries over to the set of externally stable coalitions. This is because for any OPTS, either a coalition S is internally stable for all members (if it is PIS) or fails to be internally stable for all members (if it is not PIS).

More specifically, pick a coalition S and suppose S is PIS. Then, under any OPTS, S is internally stable for all coalition members, i.e., $\forall i \in S$: $\hat{v}_i^{OP}(S) \ge v_i(S \setminus \{i\})$ by the very definition of PIS and OPTS and regardless of the particular sharing vectors 1.

Suppose now that S is not PIS. Then, following a similar line of argument, under OPTS for all $i \in S$, all coalitions $S \setminus \{i\}$ are externally stable with respect to accession of region $i \in S$ because coalition members receive less than their free-riding payoff $v_i(S \setminus \{i\})$, regardless of the particular sharing vectors 1. Therefore, any family of weights of an OPTS will lead to the same set of internally and externally stable coalitions.

As is clearly confirmed by Table 2, every coalition that is internally stable under a simple transfer scheme will also be internally stable under an optimal transfer scheme, but not vice versa. This is not true however for external stability. For instance, coalition no. 16 is externally stable under Nash Bargaining, but is not externally stable under an optimal transfer scheme. Hence, one may wonder whether some effort should be made to search for a transfer scheme that achieves not only internal, but also external stability in an "optimal way". A closer inspection of the underlying fundamentals reveals that this is not necessary. First, if

coalition S is not externally stable against accession of player j, then coalition $S \cup \{j\}$ is internally stable with respect to a withdrawal of j. This follows simply from the definition of stability (see subsection 2.1). Second, we know from above that if $S \cup \{j\}$ is internally stable with respect to a withdrawal of j, it is also internally stable for all other members of $S \cup \{j\}$ under OPTS. Third, due to superadditivity and positive externalities, global welfare of coalition $S \cup \{j\}$ is higher than global welfare of coalition S. Thus, we do not need to worry about external stability from a global point of view. In particular, we can conclude that the coalition with the highest global welfare among all PISC, say S^{*}, is also externally stable. (If S^{*} were not externally stable, then there would exist a larger PISC with higher global welfare, violating the initial assumption that S^{*} generates the highest global welfare.)

To sum up, any transfer scheme that belongs to the class of OPTS leads to the same set of internally and externally stable coalitions. Thus, results are robust and independent of specific distributional weights. Moreover, any OPTS exploits the full potential of self-enforcing cooperation. The coalition with the highest global welfare among the potentially internal stable coalitions will be stable.

The importance of these findings are evident from Table 2 and 3. In our application, the three simple transfer schemes lead to very different equilibria. Under the simple transfer schemes, the Nash Bargaining solution generates the highest global welfare (with 68.2 percent of total maximum welfare), whereas OPTS achieves 94.5 percent of total maximum welfare for coalition no. 5 {USA, EU, CHN, ROW}, which is the coalition yielding the highest global welfare among all PIS coalitions.

We finish this subsection with two general observations. First, there always exists a stable non-trivial coalition under OPTS.¹⁸ In contrast, under no transfers or simple transfer schemes, a stable non-trivial coalition may fail to exist, though this applies only to the no transfer case in our application with the CWSM model. Second, there is no general guarantee that all coalitions are individually rational under OPTS, whereas this *is* the case for all simple transfer schemes. However, this poses no problem: (i) all coalitions that are PIS are internally stable under any OPTS and therefore individually rational due to the positive externality property and (ii) coalitions that are not PIS might not be individually rational but they cannot be stabilized anyway.¹⁹

4.3 Ex-Post Transfer Schemes

In this subsection, we consider ex-post transfers. This means that after a coalition has formed, transfers are used to modify the status quo. The status quo is a stable coalition that has emerged from the coalition formation process based either on no transfers or on some ex-ante transfer scheme.²⁰ In our application, the status quo is represented by the stable coalitions listed in Table 2 and 3. The status quo can be modified using transfers to expand a coalition S. Following Carraro and Siniscalco (1993), we cite two cases. In the first case, a coalition S uses transfers to expand its agreement by "bribing" outsiders to join the coalition (subsection

¹⁸ Due to superadditivity, all coalitions with two members are internally stable under OPTS. If one of them is externally stable, the claim is obvious. If none of them is externally stable, then there exist larger coalitions that are internally stable. Again, if they are externally stable, the claim is confirmed and if not, then there are even larger coalitions that are internally stable. The argument continues, noting that at least the grand coalition is externally stable by definition.

¹⁹ This explains why in the column denoted by "#IR" in Table 2, no exact numbers can be given under OPTS - this would require us to assume a particular set of weights.

²⁰ It will become evident below that our arguments also apply to a wider interpretation of the status quo, which also includes non-stable coalitions.

4.3.1); in the second case, an outsider $j \notin S$ uses transfers to bribe another outsider $k \notin S$ to join coalition S. Again, we impose budget neutrality, meaning that transfers must balance.

4.3.1 Expansion of Coalitions Through Internal Means

The standard procedure to analyze the expansion of coalitions through internal means is to pick a stable coalition (see Botteon and Carraro, 1997). For instance, in the case of the Nash Bargaining solution, one may pick coalition no. 16. Subsequently, we check to see whether expansion of coalition S is possible, where current members of S compensate an outsider j for joining their coalition. It can be argued that expansion is possible if and only if 1) the expansion constitutes a Pareto-improvement to all members of S and 2) the enlarged coalition $S \cup \{j\}$ is internally stable. The first requirement follows from the presumption that current members of S will only bribe outsider region j to join if they are better off once it does so. The second requirement simply follows from the definition of stability.

The first requirement means that

$$\forall i \in S: \qquad v_i(S \cup \{j\}) + t_i \ge v_i(S) \tag{9.a}$$

$$\mathbf{v}_{i}(\mathbf{S} \cup \{\mathbf{j}\}) + \mathbf{t}_{i} \ge \mathbf{v}_{i}(\mathbf{S}) \tag{9.b}$$

and the second requirement that

$$\forall i \in S: \qquad v_i(S \cup \{j\}) + t_i \ge v_i(S \cup \{j\} \setminus \{i\}) \tag{10.a}$$
$$v_j(S \cup \{j\}) + t_j \ge v_j(S) \tag{10.b}$$

must hold where typically $t_i \leq 0$ and $t_j \geq 0$. By adding (9.a) and (9.b), summing over all regions $S \cup \{j\}$ involved in the expansion and noting that $\sum_{i \in S \cup \{j\}} t_i = 0$, we get

$$\sum_{i\in S\cup\{j\}} v_i(S\cup\{j\}) \ge \sum_{i\in S\cup\{j\}} v_i(S)$$
(11)

Condition (11) is a necessary condition for (9) to hold and may be called Potentially Pareto-Improvement (PPI). However, by consulting Definition 1, it is evident that this condition is nothing else than the condition of superadditivity. Since we know that superadditivity holds in our global emission game, PPI is a non-binding constraint.²¹

A similar manipulation of the second requirement reveals that a necessary pre-requisite for condition (10) to hold is

$$\sum_{i \in S \cup \{j\}} v_i(S \cup \{j\}) \ge \sum_{i \in S \cup \{j\}} v_i(S \cup \{j\} \setminus \{i\})$$
(12)

which is nothing other than the condition of potential internal stability (PIS). Hence, expansion from coalition S is possible if there exists a coalition $S \cup \{j\}$ that is PIS.

Given these remarks, the analysis of coalition expansions is straightforward since all theoretically and empirically relevant information is already known from the previous subsection 4.2 on ex-ante transfers. More specifically, we can argue as follows.

Which coalitions qualify as potential candidates for expansion? All coalitions that are PIS and which are indicated in bold in Table 2 under OPTS. In contrast, under simple transfer schemes, not all potential candidates are known and the choice of the coalition from which expansion begins may be arbitrary.

From which of the potential candidates is expansion actually possible? From all that are not externally stable because this means that coalition $S \cup \{j\}$ is PIS. In contrast, under a simple transfer scheme, we cannot conclude that if S is externally unstable, then $S \cup \{j\}$ is internally or potentially internally stable. Of course, if we know that if $S \cup \{j\}$ is internally stable, $S \cup \{j\}$ is PIS and hence an expansion from S to $S \cup \{j\}$ is possible. However, if $S \cup \{j\}$ is

²¹ It is evident that this is also true for any $T \subseteq S$.

not internally stable, we cannot conclude anything under a simple transfer scheme, so we are required to make an additional check (12), namely whether $S \cup \{j\}$ is PIS.

Finally, and probably most importantly: should we be concerned about expansions from a global welfare point of view? Not really! The coalition with the highest global welfare among PISC is internally and externally stable as we argued in subsection 4.2. Hence, no expansion via internal means is possible from this coalition. Thus, the introduction of the concept of optimal transfer schemes renders the analysis of ex-post transfers via internal means redundant. As regards expansion via internal resources for our data set, it follows that we cannot do better than coalition no. 5.

4.3.2 Expansion of Coalition by External Means

We now turn to the question of whether the expansion of a coalition S is possible through external means. This means that an outsider $k \notin S$ "bribes" another outsider $j \notin S$ to join coalition S. Stable coalitions for which expansions via internal means are not possible are the best, although not exclusively, potential candidates for expansions via external means.²² From the previous subsection, we know that the condition of Pareto-improvement is not binding in the context of superadditivity. Therefore, we can concentrate on the condition of potential internal stability. By assumption, we know that if S is internally and externally stable, then under OPTS, $S \cup \{j\}$ is not PIS. Consequently, expansion is only possible if and only if the enlarged coalition receives sufficient transfers to compensate for the lack of PIS and, in addition, the external player is better off despite providing these resources. That is, the conditions:

²² Indeed, as long as expansion via internal means is possible, outsiders will benefit for free from expansion through positive spillovers, knowing that expansion is in the interest of all current members of coalition S.

$$\sum_{i\in S\cup\{j\}} v_i(S\cup\{j\}) + \sum_{i\in S\cup\{j\}} t_i \ge \sum_{i\in S\cup\{j\}} v_i(S\cup\{j\}\setminus\{i\})$$
(13.a)

$$\mathbf{v}_{\mathbf{k}}(\mathbf{S} \cup \{\mathbf{j}\}) + \mathbf{t}_{\mathbf{k}} \ge \mathbf{v}_{\mathbf{k}}(\mathbf{S}) \tag{13.b}$$

must hold where typically $t_i, t_j \ge 0$ and $t_k \le 0$ and due to budget neutrality $\sum_{i \in S \cup \{j\} \cup \{k\}} t_i$. That is, the positive externality effect accruing to region $k - v_k(S \cup \{j\}) - v_k(S) \ge 0$ – must be larger than the free-riding effect – $\sum_{i \in S \cup \{j\}} v_i(S \cup \{j\} \setminus \{i\}) - \sum_{i \in S \cup \{j\}} v_i(S \cup \{j\}) > 0$ – when coalition S is expanded to coalition $S \cup \{j\}$.

Figure 1 shows all possibilities of expansion from coalitions with four members that are stable in our application. Figure 1 illustrates that from coalition no. 5, which is the coalition with the highest global welfare under any ex-ante OPTS or that can be achieved via ex-post transfers using internal means, no expansion via external means is possible. However, from some other coalitions with four members, expansion that raises global welfare is possible. It is interesting to note that only the US and the EU are potential candidates that have sufficient resources to pursue a unilateral policy of "bribing" other countries to participate in a climate agreement. Given that coalition no. 5 can already be achieved without external means, it is only JPN, FSU and the US that should pursue such a policy in the interest of the global good, though among this group only the US has the means and the incentive to do so.

More generally, our results stress that - in the context of problems from free-riding - countries can play an important role, even if they do not actively participate in an IEA. By subsidizing emission abatement projects abroad, those outsiders might help the receiving country to comply with the requirements of the IEA and hence, to become a formal member of it. The results also question the standard classification of the "good" and "bad" guys in international environmental policy and open up the road for alternative efficient strategies. These results may be useful for the design of future IEAs and in particular for post-Kyoto negotiations. In our application, a "degree of optimality" of 95.6 percent (coalition no. 4 comprising all countries except USA) can be achieved by means of a clever transfer strategy - a far more optimistic result than the one obtained from most models, though, of course, full participation cannot be achieved since expansion via external means that there remains at least one outsider.

5. Summary and Conclusions

The recent literature on international environmental agreements has largely neglected the role of transfers as a tool to enhance participation in international treaties. The few existing results on transfers and international environmental agreements (IEAs) are very specific and do not exploit the full potential of transfers for successful treaty-making.

In this paper, we have proposed a transfer mechanism that is capable of maximizing global welfare provided the underlying IEA is self-enforcing. This result can be achieved by using either ex-ante or ex-post transfers where in the latter case we distinguished between internal and external transfers. We have also analyzed the relationships between different types of transfers and provided a comprehensive analytical framework to address the issue of transfer design in international agreements. For example, we have shown that ex-post internal transfers are redundant if ex-ante transfers are appropriately designed. By contrast, ex-post external transfers can help to achieve a welfare improving, self enforcing IEA (compared to a situation without ex-post transfers).

To show the relevance of the theoretical results and the feasibility of the transfer scheme in actual negotiations, we used a well-known integrated assessment model of climate change policy to identify the agreement that would emerge at the equilibrium and how the transfer scheme may be able to induce all or almost all countries to sign a climate treaty. Our empirical results highlight the difficulty of reaching an effective agreement on climate policy,

because of the large asymmetries across countries and of the incentives to free-ride on the provision of a public good like climate change control. However, we also showed that the situation can be largely improved by adopting an appropriate transfer scheme. After transfers, all countries are better off, global welfare is close to the optimum and emissions are drastically reduced. We highlighted that transfers may be paid both by signatories and by non-signatories. In the former case, we proposed an "optimal" transfer scheme that leads to far better results than the "simple" transfer schemes well-known in exisiting literature. In the latter case, we demonstrated that it is possible to reach a self enforcing agreement involving all but one country (e.g., USA in our empirical climate model) but where this outsider contributes financially, in its self interest, to stabilize a successful agreement.

The latter result has important implications for post-Kyoto climate policy negotiations. They highlight the important role that outsiders like the USA can play. Although they did not ratify the Kyoto Protocol and may not even join this agreement at a later stage, they might nevertheless be involved in future protocols via new financial mechanisms through which they could sponsor developing countries to assume quantitative emission ceilings and to become a full member of the Protocol. These transfers may well be in the interest of the USA if the resulting increase in global greenhouse gas emission control and ensuing reduction of climate change damages outweighs the cost of the transfers and the cost of taking domestic emission control measures.

Although our numerical results are obtained using a specific model of the global economy, in the paper we have also identified the theoretical mechanisms which explain our main conclusions. These results depend only on very general properties of the underlying valuation functions, in particular superadditivity and positive externalities. Therefore, we could claim that our theoretical results are likely to hold for most models of transboundary pollution control (indeed, this is the case for the model used in Bosello et al. 2003) or even for other types of international public good provision problems (like for instance disease control or fighting international terrorism). Of course, the particular coalition structures that can be made self enforcing will always depend on the parameterization of the simulation models.

The analysis of this paper could be extended both from a theoretical and an empirical viewpoint. A theoretical analysis would be necessary to analyze the role of transfers for example when multiple coalitions can form or when uncertainty characterizes the coalition formation game. The relationship between the optimal transfer scheme proposed in this paper and the transfers scheme implicit in the implementation of an emission trading market is also worth additional research (see Bosello et al. 2004 for some preliminary numerical results). An empirical analysis would be useful to test the robustness of our policy conclusions to other model specifications, different parameterizations or regional disaggregation.

References

- Altamirano-Cabrera, J.-C. and M. Finus (2004), Permit Trading and Stability of International Climate Agreements. Working Papers in Economics, No. 367, University of Hagen, Germany. Forthcoming *Journal of Applied Economics*.
- Ambec, S. and Y. Sprumont (2002), Sharing a River. *Journal of Economic Theory*, vol. 107, pp. 453-462.
- Barrett, S. (1994), Self-Enforcing International Environmental Agreements. *Oxford Economic Papers*, vol. 46, pp. 804-878.
- Barrett, S. (1997), Heterogeneous International Agreements. In: C. Carraro (ed.), International Environmental Negotiations: Strategic Policy Issues. Edward Elgar, Cheltenham, pp. 9-25.
- Barrett, S. (2001), International Cooperation for Sale. *European Economic Review*, vol. 45 (10), pp. 1835-1850.
- Bloch, F. (2003), Non-Cooperative Models of Coalition Formation in Games with Spillovers. In: Carraro, C. (ed.), *Endogenous Formation of Economic Coalitions*, Edward Elgar, Cheltenham, UK, ch. 2, pp. 35-79.
- Bosello, F., B. Buchner and C. Carraro (2003), Equity, Development, and Climate Change Control. *Journal of the European Economic Association*, vol. 1 (2-3), pp. 601-611.
- Bosello, F., B. Buchner, C. Carraro and D. Raggi (2004), Can Equity Enhance Efficiency? Some Lessons from Climate Negotiations. In: C. Carraro and V. Fragnelli (eds.), *Game Practice and the Environment*, E. Elgar, 2004.
- Botteon, M. and C. Carraro (1997), Burden-Sharing and Coalition Stability in Environmental Negotiations with Asymmetric Countries. In: Carraro, C. (ed.), *International Environmental Negotiations: Strategic Policy Issues*. Edward Elgar, Cheltenham et al., ch. 3, pp. 26-55.
- Buchholz, W. and K. A. Konrad (1995), Strategic Transfers and Private Provision of Public Goods. *Journal of Public Economics*, vol. 57, pp. 489-505.
- Buchner, B, Carraro, C. and I Cersosimo (2002), Economic Consequences of the US Withdrawal from the Kyoto Protocol, *Climate Policy*, 76(2002), 1-20.
- Carraro, C. (2000), Roads towards International Environmental Agreements. In Siebert, H. (ed.), *The Economics of International Environmental Problems*, Mohr Siebeck, Tübingen, pp. 169-202.
- Carraro, C. and D. Siniscalco (1993), Strategies for the International Protection of the Environment. *Journal of Public Economics*, vol. 52, pp. 309-328.
- Carraro, C. and D. Siniscalco (1998), International Environmental Agreements: Incentives and Political Economy", *European Economic Review*, 42, 561-572.

- Carraro, C. and D. Siniscalco (2001), Transfers, Commitments and Issue Linkage in International Environmental Negotiations. In: A. Ulph (ed.) *Environmental Policy, International Agreements and International Trade*, Oxford, Oxford University Press.
- Chander, P. and H. Tulkens (1995), A Core-Theoretic Solution for the Design of Cooperative Agreements on Transfrontier Pollution. *International Tax and Public Finance*, vol. 2, pp. 279-293.
- Chander, P. and H. Tulkens (1997), The Core of an Economy with Multilateral Environmental Externalities. *International Journal of Game Theory*, vol. 26, pp. 379-401.
- d'Aspremont, C., A. Jacquemin, J. J. Gabszewicz and J. A. Weymark (1983), On the Stability of Collusive Price Leadership. *Canadian Journal of Economics*, vol. 16 (1), pp. 17-25.
- Eyckmans, J. and Finus , M. (2004a), An Empirical Assessment of Measures to Enhance the Success of Global Climate Treaties (CLIMNEG Working Paper No. 61, University of Leuven (K.U.L.), Belgium.
- Eyckmans, J. and Finus, M. (2004b), An Almost Ideal Sharing Scheme for Coalition Games with Externalities. CLIMNEG Working Paper No. 62, University of Leuven (K.U.L.), Belgium.
- Eyckmans, J., and Finus, M. (2003), Coalition Formation in a Global Warming Game: How the Design of Protocols Affects the Success of Environmental Treaty-Making (CLIMNEG Working Paper No. 56, University of Leuven (K.U.L.), Belgium.
- Eyckmans, J. and H. Tulkens (2003), Simulating Coalitionally Stable Burden Sharing Agreements for the Climate Change Problem. *Resource and Energy Economics*, vol. 25, pp. 299-327.
- Finus, M. (2001), Game Theory and International Environmental Cooperation. Edward Elgar, Cheltenham.
- Finus, M. (2003a), Stability and Design of International Environmental Agreements: The Case of Transboundary Pollution. In: Folmer, H. and T. Tietenberg (eds.), *International Yearbook of Environmental and Resource Economics*, 2003/4, Edward Elgar, Cheltenham, UK, ch. 3, pp. 82-158.
- Finus, M. (2003b), New Developments in Coalition Theory: An Application to the Case of Global Pollution. In: Marsiliani, L., M. Rauscher and C. Withagen (eds.), *Environmental Policy in an International Perspective*, Kluwer, Dordrecht, Holland, pp. 19-49.
- Finus, M. E. Sáiz and E. M.T. Hendrix (2004), An Empirical Test of New Developments in Coalition Theory for the Design of International Environmental Agreements. Mansholt Working Paper Series, No. 14, University of Wageningen, The Netherlands.
- Germain, M., P. L. Toint and H. Tulkens (1996), International Negotiations on Acid Rains in Northern Europe: A Discrete Time Iterative Process. In: Xepapadeas, A. (ed.), *Economic Policy for the Environment and Natural Resources*, Edward Elgar, Cheltenham, UK, ch. 10, 217-236.

- Germain, M., P. L. Toint and H. Tulkens (1998), Financial Transfers to Sustain Cooperative International Optimality in Stock Pollutant Abatement. In: Faucheux, S., J. Gowdy and I. Nicolai (eds), *Sustainability and Firms: Technological Change and the Changing Regulatory Environment*. Edward Elgar, Cheltenham, UK, ch. 11, pp. 205-219.
- Hoel, M. (1992), International Environment Conventions: The Case of Uniform Reductions of Emissions. *Environmental and Resource Economics*, vol. 2, pp. 141-159.
- Hoel, M. and K. Schneider (1997), Incentives to Participate in an International Environmental Agreement. *Environmental and Resource Economics*, vol. 9, pp. 153-170.
- IPCC (2001), Climate Change 2001: Mitigation. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press.
- Jeppesen, T. and P. Andersen (1998), Commitment and Fairness in Environmental Games. In: Hanley, N. and H. Folmer (eds.), *Game Theory and the Environment*. ch. 4, pp. 65-83, Edward Elgar, Cheltenham et al.
- Kaitala, V. and M. Lindroos (1998), Sharing the Benefits of Cooperation in High Seas Fisheries: a Characteristic Function Game Approach. *Natural Resource Modeling*, vol. 11, pp. 275-299.
- Kaitala, V., K.-G. Mäler and H. Tulkens (1995), The Acid Rain Game as a Resource Allocation Process with an Application to the International Cooperation among Finland, Russia and Estonia. *Scandinavian Journal of Economics*, vol. 97, pp. 325-343.
- Lejano, R. P. and C. A. Davos (1999), Cooperative Solutions for Sustainable Resource Management. *Environmental Management*, vol. 24, pp. 167-175.
- Lindroos, M. (2004), Sharing the Benefits of Cooperation in the Norwegian Spring-Spawning Herring Fishery. *International Game Theory Review*, vol. 6, pp. 35-53.
- Lindroos, M. and V. Kaitala (2001), Nash Equilibria in a Coalition Game of the Norwegian Spring-spawning Herring Fishery. *Marine Resource Economics*, vol. 15, pp. 321-339.
- Maskin, E. (2003), Bargaining, Coalitions, and Externalities. Mimeo, paper presented at the EEA-ESEM Meeting in Stockholm, August 20-24, 2003.
- Nordhaus, W.D. and Z. Yang (1996), A Regional Dynamic General-equilibrium Model of Alternative Climate-change Strategies. *American Economic Review*, vol. 86, pp. 741-765.
- Petrakis, E. and A. Xepapadeas (1996), Environmental Consciousness and Moral Hazard in International Agreements to Protect the Environment. *Journal of Public Economics*, vol. 60, pp. 95-110.
- Pintassilgo, P. (2003), A Coalition Approach to the Management of High Seas Fisheries in the Presence of Externalities. *Natural Resource Modeling*, vol. 16 (2), pp. 175-197.
- Tulkens, H. (1998), Cooperation versus Free-Riding in International Environmental Affairs: Two Approaches. In: Hanley, N. and H. Folmer (eds.), *Game Theory and the Environment*. Edward Elgar, Cheltenham et al., ch. 2, pp. 30-44.

- Weikart, H.-P., M. Finus, J.-C. Altamirano-Cabrera (2004), The Impact of Surplus Sharing on the Stability of International Climate Coalitions. Fondazione Eni Enrico Mattei Working Paper Series, No.99.04, Milano, Italy.
- Weitzman, M.L. (2001), Gamma discounting. *American Economic Review*, vol. 91 (1), pp. 260-271.
- Yi, S.-S. (2003), Endogenous Formation of Economic Coalitions: A Survey of the Partition Function Approach. In: Carraro, C. (ed.), *Endogenous Formation of Economic Coalitions*, Edward Elgar, Cheltenham, UK, ch. 3, pp. 80-127.

Coalition			Welfare	Concen-	Cumulative
N°	Size	Membership		tration	Emissions
1	6	Grand Coalition (Full Cooperation)	100.0	100.0	100.0
2	5	USA, EU, CHN, FSU, ROW	99.1	92.2	93.0
3	5	USA, JPN, EU, CHN, ROW	96.6	90.0	91.1
4	5	JPN, EU, CHN, FSU, ROW	95.6	80.6	81.9
5	4	USA, EU, CHN, ROW	94.5	82.0	83.2
6	5	USA, JPN, CHN, FSU, ROW	93.2	73.2	74.8
7	4	EU, CHN, FSU, ROW	91.3	72.3	73.6
8	4	JPN, EU, CHN, ROW	89.6	69.8	71.5
9	4	USA, CHN, FSU, ROW	87.4	64.1	65.7
10	4	USA, JPN, CHN, ROW	85.9	61.8	63.9
11	3	EU, CHN, ROW	84.0	60.7	62.6
12	3	USA, CHN, ROW	78.8	52.0	54.3
13	4	JPN, CHN, FSU, ROW	78.4	50.3	52.6
14	5	USA, JPN, EU, FSU, ROW	70.3	66.0	67.1
15	4	USA, EU, FSU, ROW	69.1	61.0	62.0
31	2	JPN, ROW	46.4	24.7	26.8
32	5	USA, JPN, EU, CHN, FSU	31.0	26.9	27.5
33	4	USA, EU, CHN, FSU	29.0	24.5	25.0
47	4	USA, JPN, EU, FSU ("old Kyoto")	5.07	1.58	2.14
50	3	JPN, EU, FSU ("present Kyoto")	2.9	0.7	1.0
57	2	JPN, EU	0.6	0.2	0.3
58	1	Only Singleton Coalitions (No Cooperation)	0.0	0.0	0.0

Table 1: Welfare and Ecological Implications of Different Coalitions*

* N° : coalition number according to welfare ranking. *Size*: number of coalition members. *Membership*: composition of coalition. Welfare: global welfare expressed in relative terms: $\left(\sum_{i=1}^{N} (w_i(c^P) - w_i(c^N))\right) / \left(\sum_{i=1}^{N} (w_i(c^F) - w_i(c^N))\right)$ where welfare is discounted lifetime consumption integrated over 1990-2300, global welfare with full cooperation is $\sum_{i=1}^{N} w_i(c^F) = 339,831$ bill US\$₁₉₉₀ (billion US dollars expressed in 1990 levels), global welfare with no cooperation is $\sum_{i=1}^{N} w_i(c^N) = 338,060$ bill US $_{1990}$ and global welfare with partial cooperation is denoted by $\sum_{i=1}^{N} w_i(c^P)$. *Concentration*: atmospheric carbon concentration M at time t=2300 expressed in relative terms: $(M(c^{N}) - M(c^{P}))/(M(c^{N}) - M(c^{F}))$ where concentration with full cooperation is $M(c^{F})=1912.907$ GtC (giga tons carbon), concentration with no cooperation is $M(c^{N}) = 4550.202$ GtC and concentration with partial cooperation is denoted by $M(c^{P})$. Cumulative Emissions: cumulative emissions of carbon over time interval 1990-2300 expressed in relative terms: $(CE(c^{N}) - CE(c^{P}))/(CE(c^{N}) - CE(c^{F}))$ where cumulative emissions with full cooperation are $CE(c^{F}) = 772.529$ GtC, cumulative emissions with no cooperation are $CE(c^{N}) = 1593.398$ GtC and cumulative emissions with partial cooperation are denoted by $CE(c^{P})$.

Size	Coalitions	#S	#IR	#IS	#ES	
No Transfers						
6	1	1	0	0	1	
5	2, <u>3</u> ,4,6, <u>14,32</u>	6	0	0	3	
4	<i>5,7,8,9,10,13,15,<u>18</u>,19,21,33,<u>34</u>,35,37,<u>47</u></i>	15	1	0	3	
3	11,12,16,17,20,22,23, 24,25,28, 36,38,39,40,41,44, <u>48</u> ,49, <u>50,51</u>	20	4	3	3	
2	26 ,27, 29 , 30 , 31 ,42,43,45,46,52,53, <u>54</u> ,55, 56 , <u>57</u>	15	5	5	2	
1	58	1	1	1	0	
	Shapley Value					
6	1	1	1	0	1	
5	<u>2,3,4,6</u> ,14,32	6	6	0	4	
4	<u>5,7,8,9,10,13</u> ,15,18,19,21,33,34,35,37,47	15	15	0	6	
3	<u>11,12,16,17</u> ,20,22,23,24,25,28,36,38,39,40,41,44,48,49,50,51	20	20	0	4	
2	26, <u>27</u> ,29,30,31,42,43,45,46,52,53,54,55,56,57	15	15	15	1	
1	58	1	1	1	0	
	Nash Bargaining					
6	1	1	1	0	1	
5	<u>2,3,4,6</u> ,14,32	6	6	0	3	
4	5, <u>7</u> ,8, <u>9</u> ,10, <u>13</u> ,15,18,19,21,33,34,35,37,47	15	15	0	3	
3	11,12, <u>16,17</u> ,20,22,23,24,25, 28 ,36,38,39,40,41,44,48,49,50,51	20	20	2	2	
2	26,27,29,30,31,42,43,45,46,52,53,54,55,56,57	15	15	15	0	
1	58	1	1	1	0	
Chander-Tulkens						
6	1	1	1	0	1	
5	<u>2,3,4,6,14</u> ,32	6	6	0	6	
4	<u>5,7,8,9,10,13,15,18,19,21</u> ,33,34,35,37,47	15	15	0	10	
3	<u>11,12,16,17,20,22,23,24,25,28</u> ,36,38,39,40,41,44,48,49,50,51	20	20	0	10	
2	<u>26,27,29,30,31,42,43,45,46,52,53,54,55,56,57</u>	15	15	15	5	
1	58	1	1	1	0	
	AITS					
6	1	1	?	0	1	
5	2,3,4,6,14,32	6	?	0	6	
4	5,7,8,9,10,13,15,18,19,21 ,33,34,35,37,47	15	?	10	15	
3	11,12,16,17,20,22,23,24,25,28,36,38,39,40,41,44,48,49,50,51	20	?	18	0	
2	26,27,29,30,31,42,43,45,46,52,53,54,55,56,57	15	?	15	0	
1	58	1	?	1	0	

Table 2: Stable Coalition Structures Under Different Transfer Schemes

Bold faced means internally stable, <u>underlined</u> means externally stable, *italic* means NOT Individually Rational coalitions. Numbers refer to ranking according to global welfare. #S: number of coalitions of particular size, #IR: number of Individually Rational coalitions, #IS: number of Internally Stable coalitions, #ES: number of Externally Stable coalitions. For the AITS scenario, it is impossible to determine Individual Rationality without knowing the weights of the particular AITS transfer scheme.

	N°	Membership	Size	Welfare	Concen- tration	Cumulative Emissions
	1	Grand Coalition (Full Cooperation)	6	100.00	100.00	100.00
No Transfers	-	-	-	-	-	-
Shapley	27	CHN,ROW	2	54.57	21.36	25.19
Nash Bargaining	16	CHN,FSU,ROW	3	68.21	39.15	41.63
	26	EU,ROW	2	57.42	40.79	42.11
	27	CHN,ROW	2	54.57	21.36	25.19
Chander-Tulkens	29	USA,ROW	2	54.07	35.18	36.70
	30	FSU,ROW	2	47.18	26.75	28.41
	31	JPN,ROW	2	46.39	24.72	26.80
	5	USA,EU,CHN,ROW	4	94.50	81.96	83.18
	7	EU,CHN,FSU,ROW	4	91.17	72.26	73.61
	8	JPN,EU,CHN,ROW	4	89.41	69.75	71.53
	9	USA,CHN,FSU,ROW	4	87.31	64.08	65.75
AITS	10	USA,JPN,CHN,ROW	4	85.99	61.80	63.91
AIIS	13	JPN,CHN,FSU,ROW	4	78.28	50.29	52.58
	15	USA,EU,FSU,ROW	4	68.96	61.02	62.01
	18	USA,JPN,EU,ROW	4	66.80	59.47	60.54
	19	JPN,EU,FSU,ROW	4	66.12	53.62	54.78
	21	USA,JPN,FSU,ROW	4	64.67	48.90	50.21
	58	Only Singleton Coalitions (No Cooperation)	1	0.00	0.00	0.00

 Table 3: Stable Coalition Structures Under Different Transfer Schemes*

* The same legend as with Table 1 applies.

Figure 1: Enlarging Participation through External Means

Legend:

Bold numbers refer to the ranking of coalitions in terms of global welfare; description of coalition at level 5 means a coalition of 5 members, i.e., full participation without region j; description of coalition at level 4, the description includes the 4 coalition members that are listed; arrow means enlargement through bribing is possible from coalition at level 4 to coalition at level 5;

region i attached to an arrow is the region that can be bribed to join coalition at level 4 to form coalition at level 5 through region j listed under coalition structure at level 5 (i.e., "without j").

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

http://www.feem.it/Feem/Pub/Publications/WPapers/default.html http://www.ssrn.com/link/feem.html

http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM	1.2004	Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries
ETA	2.2004	Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries
PRA	3.2004	Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy
ETA	4.2004	Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
ETA	5.2004	Romano PIRAS: Growth, Congestion of Public Goods, and Second-Best Optimal Policy
CCMP	6.2004	Herman R.J. VOLLEBERGH: Lessons from the Polder: Is Dutch CO2-Taxation Optimal
PRA	7.2004	Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms
PRA	8.2004	<i>Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER</i> (lxv): <u>IPO Pricing with Bookbuilding, and a</u> <u>When-Issued Market</u>
PRA	9.2004	Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets
PRA	10.2004	Florian ENGLMAIER, Pablo GUILLEN, Loreto LLORENTE, Sander ONDERSTAL and Rupert SAUSGRUBER (lxv): The Chopstick Auction: A Study of the Exposure Problem in Multi-Unit Auctions
PRA	11.2004	Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi- Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
PRA	12.2004	Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values
PRA	13.2004	Maarten C.W. JANSSEN (lxv): Auctions as Coordination Devices
PRA	14.2004	Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers
	15 2004	Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible
FKA	15.2004	Good Auctions: An Experimental Examination
PRA	16.2004	Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions
CCMP	17.2004	Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade
NRM	18.2004	<i>Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU</i> (lxvi): <u>Biodiversity and Economic Growth:</u> Stabilization Versus Preservation of the Ecological Dynamics
SIEV	19.2004	Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice
NRM	20.2004	Guido CANDELA and Roberto CELLINI (lxvii): Investment in Tourism Market: A Dynamic Model of
NRM	21.2004	<u>Differentiated Oligopoly</u> Jacqueline M. HAMILTON (lxvii): <u>Climate and the Destination Choice of German Tourists</u>
		Javier Rev-MAOUIEIRA PALMER, Javier LOZANO IBÁÑEZ and Carlos Mario GÓMEZ GÓMEZ (Ixvii):
NRM	22.2004	Land, Environmental Externalities and Tourism Development
NRM	23.2004	<i>Pius ODUNGA and Henk FOLMER</i> (lxvii): <u>Profiling Tourists for Balanced Utilization of Tourism-Based</u> Resources in Kenya
NRM	24.2004	Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (lxvii):Tourism, Trade and Domestic Welfare
NRM	25.2004	Riaz SHAREEF (lxvii): Country Risk Ratings of Small Island Tourism Economies
111111	2012001	Juan Luis EUGENIO-MARTÍN Noelia MARTÍN MORALES and Riccardo SCARPA (Ixvii): Tourism and
NRM	26.2004	Economic Growth in Latin American Countries: A Panel Data Approach
NRM	27.2004	Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports
CSRM	28.2004	Nicoletta FERRO: Cross-Country Ethical Dilemmas in Business: A Descriptive Framework
Colum		Marian WEBER (Ixvi): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation:
NRM	29.2004	an Application to Canada's Boreal Mixedwood Forest
NRM	30.2004	<i>Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE</i> (lxvi): <u>Output Substitution in Multi-Species</u> <u>Trawl Fisheries: Implications for Quota Setting</u>
CCMP	31.2004	Marzio GALEOTTI, Alessandra GORIA, Paolo MOMBRINI and Evi SPANTIDAKI: <u>Weather Impacts on</u> Natural, Social and Economic Systems (WISE) Part I: Sectoral Analysis of Climate Impacts in Italy
	22 2004	Marzio GALEOTTI, Alessandra GORIA , Paolo MOMBRINI and Evi SPANTIDAKI: Weather Impacts on
CCMP	52.2004	Natural, Social and Economic Systems (WISE) Part II: Individual Perception of Climate Extremes in Italy
CTN	33.2004	Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution
KTHC	34.2004	<i>Gianmarco I.P. OTTAVIANO and Giovanni PERI</i> (Ixviii): <u>The Economic Value of Cultural Diversity: Evidence</u> from US Cities
KTHC	35.2004	Linda CHAIB (Ixviii): Immigration and Local Urban Participatory Democracy: A Boston-Paris Comparison

Our Note di Lavoro are available on the Internet at the following addresses:

KTHC	36.2004	Franca ECKERT COEN and Claudio ROSSI (Ixviii): Foreigners, Immigrants, Host Cities: The Policies of Multi-Ethnicity in Rome Reading Governance in a Local Context
		Kristine CRANE (lxviji): Governing Migration: Immigrant Groups' Strategies in Three Italian Cities – Rome.
KTHC	37.2004	Naples and Bari
ктнс	38 2004	Kiflemariam HAMDE (lxviii): Mind in Africa, Body in Europe: The Struggle for Maintaining and Transforming
	20.2001	Cultural Identity - A Note from the Experience of Eritrean Immigrants in Stockholm
ETA	39.2004	Andera BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental
PRA	40.2004	Policy: Does the Degree of Competition Matter?
CCMP	41.2004	Micheal FINUS (lxix): International Cooperation to Resolve International Pollution Problems
KTHC	42.2004	Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
CTN	43.2004	Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
CTN	44.2004	Marc ESCRIHUELA-VILLAR: Cartel Sustainability and Cartel Stability
NRM	45.2004	Sebastian BERVOETS and Nicolas GRAVEL (lxvi): <u>Appraising Diversity with an Ordinal Notion of Similarity</u> : An Axiomatic Approach
NRM	46.2004	Signe ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Afforestation Contracts with Asymmetric
NDM	47 2004	Information on Private Environmental Benefits Iohn MRUPU (lyvi): Wildlife Conservation and Management in Kenya: Towards a Co. management Approach
INKIM	47.2004	<i>Exin BIROL Ágnes GYOVAL and Melinda SMALE</i> (lyvi): Using a Choice Experiment to Value Agricultural
NRM	48.2004	Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
CCMP	49.2004	Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme. Allowance Prices, Trade Flows, Competitiveness Effects
GG	50.2004	Scott BARRETT and Michael HOEL: Optimal Disease Eradication
CTN	51.2004	Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
OIEV.	52 2004	Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the
SIEV	52.2004	Theory
SIEV	53.2004	Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: <u>Willingness to Pay for</u> Mortality Risk Reductions: Does Latency Matter?
NRM	54.2004	Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Repaturated Streams
NDM	55 2004	Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and
NKM	55.2004	Regulatory Choices
NRM	56.2004	Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
CCMP	57.2004	Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households
CCMP	58.2004	Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios
NRM	59.2004	Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (Ixvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
NDM	60 2004	Timo GOESCHL and Danilo CAMARGO IGLIORI (lxvi):Property Rights Conservation and Development: An
INKIVI	00.2004	Analysis of Extractive Reserves in the Brazilian Amazon
CCMP	61.2004	Barbara BUCHNER and Carlo CARRARO: <u>Economic and Environmental Effectiveness of a</u> Technology-based Climate Protocol
NRM	62.2004	Elissaios PAPYRAKIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.
NRM	63.2004	<i>Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ</i> (lxvi): <u>Conserving Crop Genetic</u> Resources on Smallholder Farms in Hungary: Institutional Analysis
NDM	(1.000.1	<i>E.C.M. RUIJGROK and E.E.M. NILLESEN</i> (lxvi): The Socio-Economic Value of Natural Riverbanks in the
NRM	64.2004	Netherlands
NRM	65.2004	<i>E.C.M. RUIJGROK</i> (lxvi): <u>Reducing Acidification: The Benefits of Increased Nature Quality. Investigating the</u> Possibilities of the Contingent Valuation Method
ETA	66.2004	Giannis VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
GG	67.2004	Anastasios XEPAPADEAS and Constadina PASSA: Participation in and Compliance with Public Voluntary
<u>cc</u>	<u>(8.2004</u>	Environmental Programs: An Evolutionary Approach Michael FINUS: Modesty Pays: Sometimes!
66	08.2004	<i>Thend P IAPNDAL</i> and Ang $PPASAO$ The Northern Atlantic Plusfin Tune Eicherice: Management and Policy
NRM	69.2004	Implications
CTN	70.2004	Alejandro CAPARROS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents
IEM	71.2004	Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional
IEM	72.2004	Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations
11/141	, 2.2004	in WTI Oil Forward and Futures Returns
SIEV	73.2004	An Application to the Recreational Value of Forests

CCMP	74 2004	Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General
ceim	74.2004	Equilibrium Assessment
ETA	75.2004	Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different
		Purchasing Rules: A Real Option Approach
CTN	76.2004	a Heterogeneous Union
		A neterogeneous omon
CTN	77.2004	Alex ARENAS, Antonio CABRALES, Albert DIAZ-GUILERA, Roger GUIMERA and Fernando VEGA-
CTN	78 2004	REDUNDO (IXX): Optimal information Transmission in Organizations: Search and Congestion
CIN	/8.2004	Prancis DLOCH and Armando GOMES (IXX): Contracting with Externatives and Outside Options Pabab AMIP Effrequent DIAMANTOLIDL and Lieur YUE (Ixx): Margar Parformance under Uncertain Efficiency
CTN	79.2004	Gains
CTN	80.2004	Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players
CTN	81.2004	Daniel DIERMEIER, Hülva ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation
	00 0004	Rod GARRATT, James E. PARCO, Cheng-ZHONG OIN and Amnon RAPOPORT (lxx): Potential Maximization
CIN	82.2004	and Coalition Government Formation
CTN	83.2004	Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement
CTN	84.2004	Sanjeev GOYAL, Marco van der LEIJ and José Luis MORAGA-GONZALEZ (lxx): Economics: An Emerging
	05 0004	Small World?
CIN	85.2004	Edward CARTWRIGHT (IXX): Learning to Play Approximate Nash Equilibria in Games with Many Players
IEM	86.2004	Finn R. FORSOND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by
VTUC	87 2004	<u>Elissaios PADVPAKIS and Payor CEDI ACH</u> : Natural Posources Investment and Long Term Income
CCMD	87.2004 88.2004	Maurio CALEOTTI and Claudia VEMEEDT: Interactions between Climete and Trade Delicios: A Survey
CCIVIF	00.2004	A MARKANDVA S PEDROSO and D STREIMIKIENE: Energy Efficiency in Transition Economies: Is There
IEM	89.2004	Convergence Towards the EU Average?
GG	90.2004	Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy
PRA	91.2004	Sergei IZMALKOV (lxv): Multi-Unit Open Ascending Price Efficient Auction
KTHC	92.2004	Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures
		Massimo DEL GATTO: Agglomeration Integration and Territorial Authority Scale in a System of Trading
KTHC	93.2004	Cities. Centralisation versus devolution
CCMP	94.2004	Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits
CCMD	05 2004	Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global
CCIVII	95.2004	Energy Supply
CCMP	96.2004	Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of
cenn	2001	the Implications of Climate Change: Sea Level Rise
CTN	97.2004	Gustavo BERGANTINOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through
		<u>Siddhautha</u> RANDVORADHVAV and Mandau OAV. Porty Formation and Coalitional Parasining in a Model of
CTN	98.2004	Proportional Representation
		Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus
GG	99.2004	Sharing on the Stability of International Climate Agreements
OTEV/	100 2004	Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence
SIEV	100.2004	from a Survey of Milan, Italy, Residents
SIEV	101 2004	Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIJKAMP: A Meta-Analysis of the Willingness to
SIL V	101.2004	Pay for Reductions in Pesticide Risk Exposure
NRM	102.2004	Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test
CCMP	103.2004	Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability
		in Italy Massime ELODIO and Mana CRASSENIE The Missing Sheeks The Massessenamic Impact of Duitich
PRA	104.2004	<i>Mussimo FLORIO unu Mara GRASSENI</i> . <u>The Missing Shock: The Mactoeconomic Impact of British</u>
		Invalisation
PRA	105.2004	in Transition Economies
PR A	106 2004	Kira RÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?
PRA	107.2004	Pehr-Johan NORBÄCK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets
	10/12001	Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo
SIEV	108.2004	MAINARDI: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by
		Using Ecosystem Indicators: An Ecological Economics Perspective
CTN	109 2004	Somdeb LAHIRI: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some
env	107.2004	Results
NRM	110.2004	Giuseppe DI VITA: <u>Natural Resources Dynamics: Another Look</u>
SIEV	111.2004	Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks:
VTUC	112 2004	Evidence from a Infee-Country Contingent Valuation Study
NIIL	112.2004	Paulo A L D NUNES and Laura ONOERI: The Economics of Warm Glowy A Note on Consumer's Behavior
SIEV	113.2004	and Public Policy Implications
	114 0004	<i>Patrick CAYRADE</i> : Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact
IEM	114.2004	on the Security of Supply?
IEM	115.2004	Valeria COSTANTINI and Francesco GRACCEVA: Oil Security. Short- and Long-Term Policies

IEM	116.2004	Valeria COSTANTINI and Francesco GRACCEVA: Social Costs of Energy Disruptions
		Christian EGENHOFER, Kyriakos GIALOGLOU, Giacomo LUCIANI, Maroeska BOOTS, Martin SCHEEPERS,
IEM	117.2004	Valeria COSTANTINI, Francesco GRACCEVA, Anil MARKANDYA and Giorgio VICINI: Market-Based Options
		for Security of Energy Supply
IEM	118.2004	David FISK: Transport Energy Security. The Unseen Risk?
IEM	119.2004	Giacomo LUCIANI: Security of Supply for Natural Gas Markets. What is it and What is it not?
IEM	120.2004	L.J. de VRIES and R.A. HAKVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets
KTHC	121.2004	Alberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open Economy
NRM	122 2004	Carlo GIUPPONI, Jaroslaw MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water
	122.2001	Resources Management: A DSS Tool and a Pilot Study Application
NRM	123.2004	Margaretha BREIL, Anita FASSIO, Carlo GIUPPONI and Paolo ROSATO: <u>Evaluation of Urban Improvement</u>
		on the Islands of the Venice Lagoon: A Spatially-Distributed Hedonic-Hierarchical Approach
ETA	124.2004	<i>Paul MENSIV</i> A: <u>Instant Efficient Politation Addictment Onder Non-Linear Taxation and Asymmetric</u> Information: The Differential Tax Devisited
		Mauro FARIANO Gabriella CAMARSA Rosanna DURSI Roberta IVALDI Valentina MARIN and Francesca
NRM	125.2004	PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach
		Irena GROSFELD and Irai HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence
PRA	126.2004	from Poland and the Czech Republic
CCMD	127 2004	Maria BERRITTELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium
CCMP	127.2004	Analysis of Climate Change Impacts on Tourism
CCMP	128 2004	Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy
CCIMI	120.2004	Savings
NRM	129.2004	Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth
PRA	130.2004	Bernardo BORTOLOTTI and Mara FACCIO: <u>Reluctant Privatization</u>
SIEV	131.2004	Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A
		Latent-Class Approach Based on Intensity of Participation
SIEV	132.2004	for Public Goods: Finite Versus Continuous Mixing in Logit Models
IFM	133 2004	Santiago I RURIO: On Capturing Oil Rents with a National Excise Tax Revisited
FTA	134 2004	Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates' Charisma
SIEV	135.2004	Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys
		Gernot KLEPPER and Sonia PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The
ССМР	136.2004	Influence of World Energy Prices
ETA	127 2004	Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an
LIA	137.2004	Environmental Taxation Game
CCMP	138.2004	ZhongXiang ZHANG: The World Bank's Prototype Carbon Fund and China
CCMP	139.2004	Reyer GERLAGH and Marjan W. HOFKES: <u>Time Profile of Climate Change Stabilization Policy</u>
NRM	140.2004	Chiara D'ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A
		Real Option Analysis
PRA	141.2004	Pairick BAJARI, Siepnanie HOUGHTON and Sieven TADELIS (1XX1). Bladnig tot incompete Contracts
PRA	142.2004	Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealed Bid Auctions: Theory and Evidence from Timber Auctions
PRA	143.2004	David GOLDREICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions
ΡΡΔ	144 2004	Roberto BURGUET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More
IKA	144.2004	Simple Economics
PRA	145,2004	Ali HORTACSU and Samita SAREEN (lxxi): Order Flow and the Formation of Dealer Bids: An Analysis of
	1.0.2001	Information and Strategic Behavior in the Government of Canada Securities Auctions
PRA	146.2004	Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUGUET (Ixxi): How to Win Twice at an Auction. On
		the Incidence of Commissions in Auction Markets
PRA	147.2004	Ciauaio MEZZETTI, Aleksanaar PEKEC and Ilia ISETLIN (IXXI): <u>Sequencial VS. Single-Kound Uniform-Price</u>
PR A	148 2004	<u>Additions</u> John ASKER and Estelle CANTILLON (lyxi): Fauilibrium of Scoring Auctions
I IQI	140.2004	Philip A HAILE Han HONG and Matthew SHUM (1xxi): Nonparametric Tests for Common Values in First-
PRA	149.2004	Price Sealed-Bid Auctions
	150 2004	François DEGEORGE, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why
PKA	150.2004	Bookbuilding is Dominating Auctions
CCMD	151 2004	Barbara BUCHNER and Silvia DALL'OLIO: Russia: The Long Road to Ratification. Internal Institution and
CUMP	131.2004	Pressure Groups in the Kyoto Protocol's Adoption Process
CCMP	152 2004	Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate
COM	152.2004	Policy Analysis? A Robustness Exercise with the FEEM-RICE Model
PRA	153,2004	Alejandro M. MANELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue
·		Maximization and the Multiple-Good Monopoly
ETA	154.2004	NICOLA ACOCELLA, GIOVANNI DI BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism
		In Stabilization Policies?
CTN	155.2004	Externalities
CCMP	156.2004	Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants

CCMP	157.2004	Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term
		Climate Policies with Long-Term Goals?
ETA	158.2004	Y. Hossein FARZIN and Ken-Ichi AKAO: Non-pecuniary Value of Employment and Individual Labor Supply
ETA	159.2004	William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative
EIA		Methods with Applications to Economic-Ecological Modelling
KTHC	160.2004	Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons
	161 2004	Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRÍGUEZ: Microsimulating the Effects of Household
IEWI	101.2004	Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

CCMP	1.2005	Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change
CCMP	2.2005	Qiang WU and Paulo Augusto NUNES: <u>Application of Technological Control Measures on Vehicle Pollution: A</u> Cost-Benefit Analysis in China
CCMP	3.2005	Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: <u>A Global</u> Database of Domestic and International Tourist Numbers at National and Subnational Level
CCMP	4.2005	Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: <u>The Impact of Climate on Holiday</u> Destination Choice
ETA	5.2005	Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?
CCMP	6.2005	<i>Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI:</i> <u>The Dynamics of Carbon and Energy Intensity</u> in a Model of Endogenous Technical Change
IEM	7.2005	David CALEF and Robert GOBLE: The Alure of Technology: How France and California Promoted Electric Vehicles to Reduce Urban Air Pollution
ETA	8.2005	Lorenzo PELLEGRINI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption Democracy and Environmental Policy
CCMP	9.2005	Angelo ANTOCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model
CTN	10.2005	Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers
NRM	11.2005	Francesco SINDICO: <u>The GMO Dispute before the WTO: Legal Implications for the Trade and Environment</u>
KTHC	12 2005	Carla MASSIDD 4: Estimating the New Keynesian Phillins Curve for Italian Manufacturing Sectors
KTHC	13.2005	Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms
PRCG	14.2005	Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure
CSRM	15.2005	Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed
VTUC	16 2005	Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel
KIIIC	10.2005	Technique for the Analysis of TFP Convergence
KTHC	17.2005	Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms
KTHC	18.2005	Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer
KTHC	19.2005	Mombert HOPPE: Technology Transfer Through Trade
PRCG	20.2005	Roberto ROSON: Platform Competition with Endogenous Multihoming
CCMP	21.2005	Barbara BUCHNER and Carlo CARRARO: <u>Regional and Sub-Global Climate Blocs</u> . A Game Theoretic Perspective on Bottom-up Climate Regimes
IEM	22.2005	<i>Fausto CAVALLARO</i> : <u>An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An</u> Application of the Promethee Method
CTN	23.2005	Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria
IEM	24.2005	Wietze LISE: Decomposition of CO2 Emissions over 1980–2003 in Turkey
CTN	25.2005	Somdeb LAHIRI: The Core of Directed Network Problems with Quotas
SIEV	26.2005	Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: Perceived Realism Threat and WTP Estimates for Biodiversity Protection
NRM	27.2005	Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities
CCMP	28.2005	Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information
NRM	29.2005	Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations
CCMP	30.2005	Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism
NRM	31.2005	Maria Angeles GARCIA-VALIÑAS: Decentralization and Environment: An Application to Water Policies
NRM	32.2005	Chiara D'ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility
CCMP	33.2005	Joseph HUBER: Key Environmental Innovations
CTN	34.2005	Antoni CALVO-ARMENGOL and Rahmi ILKILIÇ (Ixxii): Pairwise-Stability and Nash Equilibria in Network Formation
CTN	35.2005	Francesco FERI (lxxii): Network Formation with Endogenous Decay
CTN	36.2005	Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): <u>Strategic Basins of Attraction, the Farsighted Core, and</u> Network Formation Games

CTN	37 2005	Alessandra CASELLA and Nobuyuki HANAKI (lxxii): Information Channels in Labor Markets. On the
em	57.2005	Resilience of Referral Hiring
CTN	38 2005	Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated
env	30.2005	Games
CTN	39,2005	Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): <u>The Egalitarian</u>
0111	27.2000	Sharing Rule in Provision of Public Projects
CTN	40.2005	Francesco FERI: Stochastic Stability in Network with Decay
CTN	41.2005	Aart de ZEEUW (lxxii): Dynamic Effects on the Stability of International Environmental Agreements
		C. Martijn van der HEIDE, Jeroen C.J.M. van den BERGH, Ekko C. van IERLAND and Paulo A.L.D. NUNES:
NRM	42.2005	Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The
		<u>Netherlands</u>
PRCG	43 2005	Carla VIEIRA and Ana Paula SERRA: Abnormal Returns in Privatization Public Offerings: The Case of
mee	13.2003	Portuguese Firms
SIEV	44.2005	Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to
	1.12000	Estimate the Value of Sports Fishing in the Lagoon of Venice
CTN	45,2005	Michael FINUS and Bianca RUNDSHAGEN: Participation in International Environmental Agreements: The
0111	1012000	Role of Timing and Regulation
CCMP	46.2005	Lorenzo PELLEGRINI and Reyer GERLAGH: Are EU Environmental Policies Too Demanding for New
com	10.2000	Members States?
IEM	47.2005	<i>Matteo MANERA</i> : <u>Modelling Factor Demands with SEM and VAR: An Empirical Comparison</u>
CTN	48 2005	Olivier TERCIEUX and Vincent VANNETELBOSCH (lxx): A Characterization of Stochastically Stable
em	10.2005	Networks
CTN	49 2005	Ana MAULEON, José SEMPERE-MONERRIS and Vincent J. VANNETELBOSCH (lxxii): <u>R&D Networks</u>
em	19.2005	Among Unionized Firms
CTN	50 2005	Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in
0111	50.2005	International Environmental Agreements

(lxv) This paper was presented at the EuroConference on "Auctions and Market Design: Theory, Evidence and Applications" organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003

(lxvi) This paper has been presented at the 4th BioEcon Workshop on "Economic Analysis of Policies for Biodiversity Conservation" organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003

(lxvii) This paper has been presented at the international conference on "Tourism and Sustainable Economic Development – Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003

(lxviii) This paper was presented at the ENGIME Workshop on "Governance and Policies in Multicultural Cities", Rome, June 5-6, 2003

(lxix) This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference "The Future of Climate Policy", Cagliari, Italy, 27-28 March 2003 (lxx) This paper was presented at the 9th Coalition Theory Workshop on "Collective Decisions and

(lxx) This paper was presented at the 9th Coalition Theory Workshop on "Collective Decisions and Institutional Design" organised by the Universitat Autònoma de Barcelona and held in Barcelona, Spain, January 30-31, 2004

(lxxi) This paper was presented at the EuroConference on "Auctions and Market Design: Theory,

Evidence and Applications", organised by Fondazione Eni Enrico Mattei and Consip and sponsored by the EU, Rome, September 23-25, 2004

(lxxii) This paper was presented at the 10th Coalition Theory Network Workshop held in Paris, France on 28-29 January 2005 and organised by EUREQua.

	2004 SERIES
ССМР	Climate Change Modelling and Policy (Editor: Marzio Galeotti)
GG	Global Governance (Editor: Carlo Carraro)
SIEV	Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)
NRM	Natural Resources Management (Editor: Carlo Giupponi)
КТНС	Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM	International Energy Markets (Editor: Anil Markandya)
CSRM	Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)
PRA	Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)
ЕТА	Economic Theory and Applications (Editor: Carlo Carraro)
CTN	Coalition Theory Network

	2005 SERIES
ССМР	Climate Change Modelling and Policy (Editor: Marzio Galeotti)
SIEV	Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)
NRM	Natural Resources Management (Editor: Carlo Giupponi)
КТНС	Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM	International Energy Markets (Editor: Anil Markandya)
CSRM	Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)
PRCG	Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)
ЕТА	Economic Theory and Applications (Editor: Carlo Carraro)
CTN	Coalition Theory Network