Di Bartolomeo, Giovanni; Acocella, Nicola; Hallett, Andrew Hughes

Working Paper
Dynamic Controllability with Overlapping targets: A Generalization of the Tinbergen-Nash Theory of Economic Policy

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 130.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Di Bartolomeo, Giovanni; Acocella, Nicola; Hallett, Andrew Hughes (2005) : Dynamic Controllability with Overlapping targets: A Generalization of the Tinbergen-Nash Theory of Economic Policy, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 130.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74029

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Dynamic Controllability with Overlapping targets: 
A Generalization of the Tinbergen-Nash Theory of Economic Policy
Giovanni Di Bartolomeo, Nicola Acocella
and Andrew Hughes Hallett

NOTA DI LAVORO 130.2005

OCTOBER 2005

ETA – Economic Theory and Applications

Giovanni Di Bartolomeo, University of Rome I and University of Teramo
Nicola Acocella, University of Rome I
Andrew Hughes Hallett, Vanderbilt University and CEPR

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=847605

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Dynamic Controllability with Overlapping targets: A Generalization of the Tinbergen-Nash Theory of Economic Policy

Summary

We generalize some recent results developed in static policy games with multiple players, to a dynamic context. We find that the classical theory of economic policy can be usefully applied to a strategic context of difference games: if one player satisfies the Golden Rule, then either all other players’ policies are ineffective with respect to the dynamic target variables shared with that player; or no Nash Feedback Equilibrium can exist, unless they all share target values for those variables. We extend those results to the case where there are also non-dynamic targets, to show that policy effectiveness (a Nash equilibrium) can continue to exist if some players satisfy the Golden Rule but target values differ between players in the non-dynamic targets. We demonstrate the practical importance of these results by showing how policy effectiveness (a policy equilibrium) can appear or disappear with small variations in the expectations process or policy rule in a widely used model of monetary policy.

Keywords: Policy games, Policy ineffectiveness, Static controllability, Existence of equilibria, Nash feedback equilibrium

JEL Classification: C72, E52, E61

Address for correspondence:

Giovanni Di Bartolomeo
Department of Public Economics
Univeristy of Rome I and University of Teramo
via del Castro Laurenziano 9
00161 Rome
Italy
Phone: +39 0 64976 6329
Fax: +39 0 6446 2040
E-mail: giovanni.dibartolomeo@uniroma1.it
1. Introduction

The issue of the effectiveness of public policy is central to economic analysis. The initial contributions by Tinbergen, Theil and others stated the conditions for policy effectiveness, both static and dynamic, in a parametric context. In the last two decades a new approach to economic policy problems has developed, immune from the Lucas (1978) critique, which specifically models the strategic interactions between the government, central bank and other agents. However, abstract conditions for policy effectiveness have not been studied in that context until recently. Acocella and Di Bartolomeo (2004, 2005) provide general conditions for policy ineffectiveness and equilibrium existence in static LQ-games of the kind stated by the classical theory of economic policy, and show how this can be profitably used to define some general properties of policy games.

This paper extends the same line of reasoning to dynamic difference games, and in that context we consider the issue of target independence (as opposed to instrument independence) which has been a point of particular controversy in monetary policy design. Our approach is to consider the Nash Feedback Equilibrium for LQ-difference games, and derive conditions for policy ineffectiveness and the equilibrium existence for that case. We then demonstrate the usefulness of our results by showing how easily policy effectiveness, or a policy equilibrium, can appear or disappear with small variations in the expectations process or policy rule in a standard model of monetary theory – illustrating, as we do so, how certain variations in the problem can permit or take away the opportunity for policy makers to operate with differing target values for their policy objectives. To do this, we make use of some properties of sparse matrices since nearly all economic models display sparseness.

The rest of the paper is organized as follows. Section 2 defines basic concepts and introduces a formal framework to describe LQ-difference games. Section 3 derives two theorems stating a sufficient condition for policy ineffectiveness and a necessary condition for the equilibrium existence in the traditional Tinbergen framework. Section 4 provides a formal relaxation of the two theorems for the case of sparse economic systems. Section 5 illustrates the application of our results to one of the most widely used models in monetary theory. The paper ends with some conclusions and some ideas for further research.

---

2. The Basic Setup

We consider the problem where \( n \) players try to minimize their individual quadratic criterion. Each player controls a different set of inputs to a single system, which is described by the following difference equation:

\[
 x(t+1) = Ax(t) + \sum_{i \in N} B_i u_i(t)
\]

where \( N \) is the set of the players, \( x \in \mathbb{R}^M \), is the vector of the states of the system; \( u_i \in \mathbb{R}^{m(i)} \) is the (control variable) vector that player \( i \) can manipulate; and \( A \in \mathbb{R}^{M \times M} \) and \( B_i \in \mathbb{R}^{M \times m(i)} \) are full-rank matrices describing the system parameters which (for simplicity) are constant.

The criterion player \( i \in N \) aims to minimize is

\[
 J_i(u_1, u_2, \ldots, u_n) = \sum_{t=0}^{\infty} (x(t) - \bar{x}_i)^\prime \begin{bmatrix} Q_i \\ 0 & 0 & \cdots & 0 \end{bmatrix} (x(t) - \bar{x}_i)
\]

where \( \bar{x}_i \in \mathbb{R}^{M(i)} \) is a vector of target values. For player \( i \), the relevant sub-system of (1) is:

\[
 x_i(t+1) = A_i x_i(t) + \sum_{j \in N} B_{ij} u_j(t)
\]

where \( A_i \in \mathbb{R}^{M(i) \times M(i)} \) and \( B_{ij} \in \mathbb{R}^{M(i) \times m(j)} \) are appropriate sub-matrices of \( A \) and \( B_j \). We assume that all matrices are of full rank, and that \( M(i) \geq m(i) \).

The Nash Feedback Equilibrium can now be defined as follows.

**Definition (Nash Feedback Equilibrium):** A vector \( u^*(t) = (u_1^*(t), u_2^*(t), \ldots, u_n^*(t)) \) is a Nash Feedback Equilibrium if \( J_i(u^*(t)) \geq J_i(u_1^*(t), u_2^*(t), \ldots, u_i^*(t), \ldots, u_n^*(t)) \) for any \( u_i(t) \) and for any player \( i \), where \( u_i(t) \) is a feedback strategy.

Operationally, a feedback strategy means that a contingent rule (dependent on the system’s state vector) is provided for each player, and that the rules themselves can be obtained from the backward recursions of dynamic programming (Holly and Hughes Hallett, 1989: 176-179).
3. The Golden Rule and the Equilibrium Properties

In order to apply the traditional theory of economic policy to study the properties of Nash Feedback Equilibrium, we first recall the traditional Tinbergen idea of static controllability:

**Definition (Golden Rule):** A policymaker satisfies the golden rule of economic policy if the number of its independent instruments (at least) equals the number of its independent targets.

Second, we need to redefine policy ineffectiveness, since its classical definition\(^2\) cannot be maintained in the realm of multi-player policy games where policies become endogenous variables. Instead, the following definition of ineffectiveness can be applied.\(^3\)

**Definition (ineffectiveness):** A policy is ineffective if the equilibrium values of the targets are never affected by changes in the parameters of its criterion function.

Controllability, in the terms of the Golden Rule of economic policy, ineffectiveness and the Nash Feedback Equilibrium existence are related through the following two theorems.

**Theorem 1 (ineffectiveness):** Provided that an equilibrium exists, if one player satisfies the golden rule, all the other players’ policies are ineffective with respect to the target variables shared with that player.

**Proof.** We start by assuming that the policymakers’ value functions are quadratic,\(^4\)

\[ V_i(x) = (x(t) - \bar{x})' P_i(x(t) - \bar{x}) \]

where \( P_i \) are negative definite symmetric matrices so that there are no redundant targets (and for the sake of simplicity, time indexes are omitted). By using the transition law to eliminate the next period state, the \( n \) Bellman equations become:

\[
(x_j - \bar{x}_j)' P_j (x_j - \bar{x}_j) = \max_{u_j} \left\{ (x_j - \bar{x}_j)' Q_j (x_j - \bar{x}_j) + \left( A_j x + \sum_{j \in N} B_j u_j \right)' P_j \left( A_j x + \sum_{j \in N} B_j u_j \right) \right\}
\]

A Nash Feedback Equilibrium must satisfy the first-order conditions:

\[
(B_i' P_i B_i) u_j = -B_i' P_j \left( A_j (x_j - \bar{x}_j) + \sum_{j \in N \setminus i} B_j u_j \right)
\]

which yields the following policy rule:

\(^2\) The classical definition of policy ineffectiveness implies that autonomous changes in the policymaker’s instruments can have no influence on the targets (Hughes Hallett, 1989). However that does not allow for the possible blocking moves by other policy players in the game. We therefore adopt a more general definition here.

\(^3\) See Gylfason and Lindbeck (1994).

\(^4\) Indeed, we know that the value function must be convex for a solution to exist (see e.g. Basar and Olsder, 1995; Sargent, 1987: 42-48; Dockner et al., 2000). See also Engwerda (2000a, 2000b) for a more advanced exposition.
(6) \[ u_i = -(B_i^0P_iB_i)\cdot A_i x_i = (B_i^0P_iB_i)\cdot \sum_{j \in N \setminus i} B_j u_j \]

Now, to demonstrate Theorem 1, we focus (without loss of generality) on player 1. If player 1 satisfies the Golden Rule, then \( m(1) = M(1) \) and \( B_{1i} \in \mathbb{R}^{M(1) \times M(1)} \) is square and nonsingular. Equation (6) then becomes:

(7) \[ u_i = -B_{1i}^{-1} A_1 (x_i - \bar{x}_i) - B_{1i}^{-1} \sum_{j=2}^{n} B_{1j} u_j \]

since \( P_1 \) is also nonsingular. That implies:

(8) \[ x_i(t+1) = \bar{x}_i \text{ for all } t \in [0, +\infty] \]

Thus, if a Nash Feedback Equilibrium exists, the value of the target vector \( x_i \) is time invariant and only depends on the preferences of player 1, since in that case condition (7) will hold for all periods \( t \in [0, +\infty] \). This completes the proof of Theorem 1.

**Theorem 2 (non-existence):** The Nash Feedback Equilibrium of the policy game described does not exist if two or more players satisfy the Golden Rule and at least two of them share one or more target variables.

**Proof.** To prove Theorem 2 we only need to show that if also another player (e.g. player 2) satisfies his/her Golden Rule, the equilibrium does not exist. Assume a solution exists and that this solution implies the following optimal policy vector \( u^* = (u^*_1, u^*_2, \ldots, u^*_n) \) at time \( t \). Then, given \( u^*_1(t), u^*_2(t), \ldots, u^*_n(t) \) and \( u^*_i(t) \) must satisfy the following system (obtained from (5)):

(9) \[
\begin{bmatrix}
B_{11}^0 P_1 B_{11} & B_{12}^0 P_2 B_{12} \\
B_{21}^0 P_1 B_{21} & B_{22}^0 P_2 B_{22}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} = - \begin{bmatrix}
A_1 (x_1 - \bar{x}_1) + \sum_{j \in N \setminus 1} B_{1j} u^*_j \\
A_2 (x_2 - \bar{x}_2) + \sum_{j \in N \setminus 2} B_{2j} u^*_j
\end{bmatrix}
\]

Notice that the first-partitioned matrix of (9) is always square; and that if both players satisfy their golden rule, then all the matrices therein are also square. Now assume that both players share the same target variables, i.e. \( x_1 = x_2 \). In this case, we have \( A_1 = A_2 \) and \( B_{1j} = B_{2j} \) for \( i \in \{1, 2\} \) and \( j \in N \). The first-partitioned matrix of (9) therefore has a zero determinant \( (B_{11} = B_{21} \text{ and } B_{12} = B_{22}) \) and cannot be inverted. Hence, a couple \( (u^*_1, u^*_2) \) satisfying (9) does not exist and, therefore, \( u^* \) cannot be the solution, as claimed by the theorem.
Conversely, consider now target space instead of instrument space. If the first two players both satisfy the *Golden Rule*, it is easy to show that by substituting the first order condition for $u_2$ from (5) into (7) for $u_1$, the first order conditions for both players cannot both be satisfied unless they both share the same target values, i.e. unless the following holds:

\[(10) \quad A(x_1 - x_2) = 0 \quad \text{or} \quad x_1 = x_2.\]^5

Next, consider the case where the first two players do not share all their targets. When the system can be controlled, this case can be solved by decomposing the problem of each player into two mutually interdependent problems: (A) minimize the quadratic deviations of the shared targets from their shared target values using an equal number of (arbitrary selected) instruments from $u_1$, assuming that non-shared target values can be reached; (B) minimize the quadratic deviations of the non-shared targets from their target values with respect to the remaining instruments, assuming that the shared targets are satisfied (and equal to their target values because of the golden rule). Given (10), the impossibility of a solution now emerges from the first-order conditions for the first of the two problems (A).^6 Hence, as claimed, if at least two players control their sub-systems and share at least one target variable, the Nash Feedback Equilibrium cannot exist. ♦

**Comment 1:** Theorem 1 gives a sufficient condition for policy effectiveness. But this does not assure the existence of an equilibrium, which may fail to occur. By contrast, Theorem 2 gives a necessary condition for an equilibrium to exist since it states a sufficient condition for the opposite. However, it may not be sufficient for existence.^7 Note also that if Theorem 1 is satisfied, Theorem 2 is not (and vice versa).

**Comment 2:** The importance of these results for economic policy is shown by Theorem 2. It says that if two independent policy authorities, say fiscal policy makers and the Central Bank, decide to pursue different inflation targets, then the Nash equilibrium may not exist and the economy may not be able to reach an equilibrium when both policy makers try to optimize their policies. The conditions for this to happen are not particularly stringent. In other words, except for certain sparse economies discussed below, target independence is unhelpful – not

---

^5 $x_1 \neq x_2$ is not possible here because $A$ is of full rank. We consider the case where $r(A)<M$ in the next section.

^6 Notice that, because the targets are controllable, this result is independent of the assignment of the instruments.

^7 Existence is a rather complex matter in this context. For example, being in a dynamic system, stability is also required. See Engwerda (2000a, 2000b).
because fiscal and monetary policies cannot be coordinated properly, but because the underlying equilibrium cannot be reached if both policy makers try to optimize their policy choices independently.

4. A Generalization: Sparse Economic Systems

We now relax Theorems 1 and 2 in a way which may prove important in economic models, but which is less often observed in physical systems. Most economic models display sparseness. That is to say, when written in structural form, they typically relate each endogenous variable to just one or two other endogenous variables; and then to one or two lagged endogenous variables or control (predetermined) variables. In that case, the structural model from which (1) is derived can be written as

$$x(t + 1) = Cx(t + 1) + Dx(t) + \sum_{i \in N} F_i(t)$$

where $C$, $D$ and $F_i$ are sparse matrices (predominantly zero matrices, with just a few nonzero elements per row). For the sake of simplicity we assume that all the players share all the target variables (as discussed in the section above, this assumption can be easily relaxed). In that case, the index on matrices $A$ can be removed, as well the second index of the $B$ matrices. In this situation, (1) has

$$A = (I - C)^{-1} D$$
$$B_i = (I - C)^{-1} F_i$$

where $(I - C)^{-1}$ exists by virtue of the normalization in (11), irrespective of the definitions of $C, D$ and $F_i$. But $A$ and $B_i$ are now no longer of full rank. However, we can pre-multiply (11) by a permutation matrix $T_i$ and insert $T_i^{-1}T$ (where $T_i^{-1} = T_i'$, a property of permutation matrices) into the first two terms on the right of (11). This allows us to separate those target variables which are affected directly by dynamic adjustments over time, from those which are not. We get the reordered system:

$$\tilde{x}(t + 1) = \tilde{A}\tilde{x}(t) + \sum_{i \in N} \tilde{B}_i(t)$$

where $\tilde{x}(t) = Tx(t)$, $\tilde{A} = (I - TCT')^{-1} TDT'$ and $\tilde{B}_i = (I - TCT')^{-1} TF_iT'$. But this formulation then implies $\tilde{A} = \begin{bmatrix} A_{11} & 0 \\ A_{21} & 0 \end{bmatrix}$ where $A_{11}$ is a square full rank matrix of order $l$, $A_{21} \in \mathbb{R}^{(M-l) \times l}$,
and where \( l \) is the number of target variables in the system that are directly subject to dynamic adjustments (i.e. the rank of \( C \)). Hence \( M-l \) target variables are not directly subject to dynamic adjustments. They appear in the second sub-vector of \( \tilde{x}(t) \).

Now we can rework Theorem 2. We get:

**Theorem 3 (ineffectiveness and non-neutrality in sparse economies).** If the targets of one (and only one) player which are directly subject to dynamic adjustments also satisfy the Golden Rule among themselves, then the policies of all other players will be ineffective with respect to their dynamic targets. Conversely, no Nash feedback equilibrium exists in this policy game if two or more players satisfy the Golden Rule for their dynamic targets – unless they happen to share target values for those variables. But the Nash equilibrium may still exist if the golden rule is satisfied and the target values for the non-dynamic targets differ across players; and the policies of the other players will still be effective for those targets even if one (or some) player satisfies the Golden Rule.

**Proof.** Recall that, until now, if players 1 and 2 satisfy the Golden Rule, their reaction functions imply \( A(\overline{x}_1 - \overline{x}_2) = 0 \). In a sparse economic system, the equivalent condition is \( \tilde{A}(\overline{x}_1 - \overline{x}_2) = 0 \) (note that \( \tilde{B}_1^{-1} \) still exists if it is square, and the Golden Rule applies to player 1). We now write \( \overline{x}_{11} \) as the first \( l \) elements of \( \overline{x}_1 \) (corresponding to the first \( l \) elements, or dynamic targets, in \( \tilde{x} \)) and \( \overline{x}_{21} \) as the remaining \( M-l \) elements of \( \overline{x}_1 \). Similarly, we define \( \overline{x}_{12} \) and \( \overline{x}_{22} \) to be the associated sub-vectors of \( \overline{x}_2 \). These partitions conform to that in \( \tilde{A} \). Our theorem now follows from the fact that both \( A_{11}(\overline{x}_{11} - \overline{x}_{12}) = 0 \) and \( A_{21}(\overline{x}_{11} - \overline{x}_{12}) = 0 \), and hence \( \overline{x}_{11} = \overline{x}_{12} \) (since \( A_{11} \) and \( A_{21} \) differ in dimension and \( A_{11} \) is of full rank), will be needed to satisfy the replacement for (10) in this case: namely, \( \tilde{A}(\overline{x}_1 - \overline{x}_2) = 0 \). However \( \overline{x}_{21} - \overline{x}_{22} \neq 0 \) is consistent with \( \tilde{A}(\overline{x}_1 - \overline{x}_2) = 0 \). That completes the theorem.

**5. An Example**

We turn now to some simple examples to illustrate the usefulness of these results in practice. Consider an economy that can be described by the following well-known model:
Equation (14) is an elaboration of the standard workhorse which has been part of the theory of monetary policy since the Barro-Gordon model was introduced in 1983. It consists of a short run Phillips curve with persistence \( ? \? 0 \), set within a standard Lucas supply function (long run Phillips curve) and elaborated to include the effects of interest rate changes on output. It could therefore be interpreted as either a dynamic open economy Phillips curve; or a new Keynesian IS curve with dynamics. In that context, \( y_t \) is the deviation of output from its natural rate (the output gap); \( \pi_t \) is the rate of inflation, and \( \pi^*_t \) the expected rate of inflation in the private sector; \( i_t \) is the nominal rate of interest (\( i_t - \pi^*_t \), the corresponding real rate of interest); and \( \varepsilon_t \) a supply shock with mean zero and constant variance. The chief policy instrument (control variable) in this example will be \( i_t \). Equation (15) is therefore a Taylor rule: \( c_0 \) is a constant term, reflecting control errors or the equilibrium rate of interest; \( \pi^* \) is the target inflation rate, and determinacy (the Taylor principle) suggests \( c_1 > 1 \). Finally, (16) says that expectations are formed by the adaptive principle (we improve on that below); and all parameters, in all three equations, are defined to be positive. This model has lags in all three endogenous variables: \( y_t, \pi_t \) and \( \pi^*_t \).

To obtain the reduced form of (14)-(16), corresponding to (1), we renormalize (15) on \( \pi_t \). This then yields, corresponding to (11),

\[
\begin{bmatrix}
  1 & -\alpha & \alpha - \beta & y_t \\
  c_2c_1^{-1} & 1 & 0 & \pi_t \\
  0 & 0 & 1 & \pi^*_t
\end{bmatrix}
= 
\begin{bmatrix}
  \rho & 0 & 0 & 0 \\
  0 & 0 & 0 & 0 \\
  d & 1-d & 0 & 1
\end{bmatrix}
\begin{bmatrix}
  y_{t-1} \\
  \pi_{t-1} \\
  \pi^*_{t-1}
\end{bmatrix}
+ 
\begin{bmatrix}
  -\beta \\
  c_1^{-1} \\
  0
\end{bmatrix}
i_t
+ 
\begin{bmatrix}
  \varepsilon_t \\
  0
\end{bmatrix}
+ 
\begin{bmatrix}
  \pi^*_t - c_1^{-1}
\end{bmatrix}.
\]

From here we can determine the value of \( A \) for this model, using (12). It is

\[
A = \Delta^{-1}
\begin{bmatrix}
  \rho & -d(\alpha - \beta) & -(1-d)(\alpha - \beta) \\
  -\rho c_2c_1^{-1} & d(\alpha - \beta)c_2c_1^{-1} & (1-d)(\alpha - \beta)c_2c_1^{-1} \\
  0 & d(1+c_2c_1^{-1} \alpha) & (1+c_2c_1^{-1} \alpha)(1-d)
\end{bmatrix}
\]
where $\Delta = 1 + \alpha c_2 c_1^{-1}$, the determinant of the Jacobian matrix in (17), is nonzero if $\alpha c_2 + c_1 \neq 0$, a condition always satisfied. But (18) cannot be re-organized to deliver zeros in the right hand column. Hence, if there are multiple policy makers in this model, they would have to set identical target values for the output gap, the inflation rate, and the inflation expectations that they want the markets to have, if there is to be an equilibrium for the policy game; and if those targets are to be controllable. And there may well be competing policy makers, with the central bank using nominal interest rates to control inflation but another authority (the government) setting the long term inflation target $\pi^*$; or where fiscal policy makers try to moderate the effects of monetary policy by means of tax breaks or suitable budgetary policies; or where policy makers try to influence inflation expectations by setting intermediate targets, or by talking the exchange rate up or down (this would require an extra “constant” term in (16) and hence the third equation of (17)). These are all situations that are common in practice. The Bank of England is an example of the first case; the US, or Italy and France in the Euro is an example of the second; and Turkey or many high inflation countries of the third.

Now we consider a variant on this example. Suppose, because of data revisions, policy makers recognize that it is difficult to measure the current output gap accurately, and use a more reliable past measure $y_{t-1}$ in equation (15) instead. Suppose also that the private sector, perhaps for similar reasons, find that imperfect expectations introduce too much volatility into the system, and find it cheaper to use simple lagged expectations instead: $\pi_t = d \pi_{t-1}$. The model now has no lags in $\pi_t$. Solving through (11) and (12), we now get

$$
(16) \quad \tilde{A} = \Delta^{-1} \begin{bmatrix}
\rho & -d(\alpha - \beta) & 0 \\
-c_2 c_1^{-1} \rho & d(\alpha - \beta) c_2 c_1^{-1} & 0 \\
0 & d(1 + c_2 c_1^{-1} \alpha) & 0
\end{bmatrix}.
$$

This allows our potential policy makers to disagree on the (intermediate) inflation targets they announce to the markets ($\pi_t^*$), but still have controllable target variables and a reachable Nash equilibrium. This happens because there is now a delay before some of the target variables are affected by the policy instruments. So they can set policies to reach some agreed targets first,
allowing differences to persist elsewhere, and then use them again to reach the other target values later.

A stronger version of this result is obtained if the contemporaneous output gap is restored to the Taylor rule (15), but expectations are rational. That means (16) is replaced by

\[ \pi_t^e = \pi_t - \nu_t \tag{17} \]

where \( \nu_t \) is a random expectations error with mean zero. This is the form of the model that most theorists would favor. It implies that we now have no lags in either \( \pi_t \) or \( \pi_t^e \), and that

\[ \tilde{A} = \Delta^{-1} \Gamma^{-1} \begin{bmatrix} 1 & 0 & 0 \\ -c_2 c_1^{-1} & 0 & 0 \\ c_2 c_1^{-1} & 0 & 0 \end{bmatrix} \tag{18} \]

where \( \Gamma = (\Delta + c_2 c_1^{-1} (\alpha - \beta)) \rho^{-1} \). Evidently, in this model, the policy makers could have different target values for both \( \pi_t \) and \( \pi_t^e \) and still reach a Nash equilibrium outcome for their target variables. Once again, different policy makers (in government and the Central Bank) could have target independence (and different inflation targets) and still expect to reach an equilibrium position. But it may nevertheless prove to be a dream since if expectations are not rational (because it is too expensive to gather the necessary information accurately), or if it is difficult to measure the current output gap reliably, then they will not be able to reach this idealized equilibrium – or indeed any other solution which allows them both to optimize their policies.

6. Concluding Remarks

This paper represents an attempt to generalize some recent results developed in static policy games to a dynamic model. We find that the classical theory of economic policy can be usefully applied to a strategic context of difference games: namely, if one player satisfies the Golden Rule, either all the other players’ policies are ineffective with respect to their dynamic target variables shared with that player or no Nash Feedback Equilibrium exists without exact agreement on all the (dynamic) target values. We illustrate the usefulness of our results with reference to a model incorporating a Taylor rule, a description of expectations formation and a relation that can be interpreted as either a dynamic open economy Phillips curve or a New-
Keynesian IS curve with dynamics. Small variations in the model specification can bring, or take away, policy effectiveness – allowing the policy makers the latitude to disagree on none, one or several of the target values in their (common) objectives. Likewise, our general results show how easily target independence, in a world where institutional and policy independence are considered important, can prove to be counterproductive if policy makers try to optimize their choices.

Our theorems are based on the strong concept of static controllability; that is, the target values are intended to be reached in each time period. It is well known, in fact, that in general fewer instruments than targets are needed to control a dynamic system when the targets are to be reached only after a given number of time periods have elapsed. Once the theorems are reformulated in terms of dynamic controllability, it may be possible to define more general and less stringent conditions than those discussed here. This seems to be one profitable line for future research. A second is that the results here lend themselves to cases of devolved decision making in a single economy, where the government, central bank, employers and unions are concerned with output, employment, inflation for that economy and have a variety of fiscal, monetary and labour market instruments to reach their own targets. It would be interesting, therefore, to extend our analysis to a multi-country setting where some targets (for example, exchange rates, bilateral trade balances, and inflation if in a currency union) are held in common, but the other targets are not.

References


NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union


PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPERS (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPERS (lxv): Primary Market Design: Direct Mechanisms and Markets


PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSSEN (lxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

CCMP 16.2004 Marta STRYSZOWSKA (lxvi): Late and Multiple Bidding in Competing Second Price Internet Auctions

NRM 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angela ANTOCI, Simone BORGHESE and Paolo RUSSU (lxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice


NRM 21.2004 Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists


NRM 23.2004 Pius ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 24.2004 Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (lxvii): Tourism, Trade and Domestic Welfare


NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports


NRM 29.2004 Marian WEBER (lxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

NRM 30.2004 Trond BJØRNDAL, Phoebe KOUNDOURI and Sean PASCOE (lxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting


CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution


An Application to the Recreational Value of Forests

Gernot KLEPPER and Sonja PETERSON:

Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

E.C.M. RUIJGROK and E.E.M. NILLESEN:

Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Sergio CURRARINI and Marco MARINI:

Sebastian BEROYETS and Nicolas GRAVEL: Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach

Signe ANTHON and Bo JELLEMARK THORSEN: Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits

E.C.M. RUIJGROK and E.E.M. NILLESEN:

The Socio-Economic Value of Natural Riverbanks in the Netherlands: Institutional Analysis

E.M. RUIJGROK and F.E.M. NILLESEN: The Socio-Economic Value of Natural Riverbanks in the Netherlands


Gianmits VARDAS and Anastasios XEPAPAIDES: Uncertainty Aversion, Robust Control and Asset Holdings

Anastasios XEPAPAIDES and Constadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Michael FINUS: Modesty Pays: Sometimes!

Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Alessandro LANZA: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margherita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

Salvador BARBERA and Matthew O. JACKSON (lxx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union

Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lx): Optimal Information Transmission in Organizations: Search and Congestion

Francis BLOCH and Armando GOMES (lx): Contracting with Externalities and Outside Options

Rahab AMIR, Efrosyni DIAMANTOUDI and Licun XUE (lx): Merger Performance under Uncertain Efficiency Gains

Francis BLOCH and Matthew O. JACKSON (lx): The Formation of Networks with Transfers among Players

Daniel DIERMEIER, Hülya ERASLAN and Antonio MERLO (lx): Bicameralism and Government Formation

Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lx): Potential Maximization and Coalition Government Formation

Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lx): Group Decision-Making in the Shadow of Disagreement

Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lx): Economics: An Emerging Small World?

Edward CARTWRIGHT (lx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. FØRSTUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elissaios PAPYRakis and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

Marzo GALEOTTI and Claudia KEMFERT: Interactions between Climate and Trade Policies: A Survey

A. MARKANDYA, S. PEDROSO and D. STREIMIKIENE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

RoI GOLOMBek and Michael HOEL: Climate Agreements and Technology Policy

Sergei IZMALKOV (lx): Multi-Unit Open Ascending Price Efficient Auction

Gianmarco I.P. OTTAVIANO and Giovanni PERI: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Massimo DEL GATTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities. Centralisation versus devolution

Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits

Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BERGANTINOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIJKAMP: A Meta-Analysis of the Willingness to Pay for Reducing Pesticide Risk Exposure

Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

Massimo FLORIO and Mara GRASSENI: The Missing Shock: The Macroeconomic Impact of British Privatisation

John BENNETT, Saul ESTRIN, James MAW and Giovanni URGA: Privatisation Methods and Economic Growth in Transition Economies

Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo XUE: Merger Performance under Uncertain Efficiency Gains

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies
NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1.2005 Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change
CCMP 2.2005 Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China
CCMP 3.2005 Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level
CCMP 4.2005 Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice
ETA 5.2005 Hubert KEMPFF: Is Inequality Harmful for the Environment in a Growing Economy?
CCMP 9.2005 Angelo ANTOCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model
CTN 10.2005 Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers
NRM 11.2005 Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate
PRCG 14.2005 Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure
CSRM 15.2005 Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry
KTHC 16.2005 Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence
KTHC 17.2005 Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms
KTHC 18.2005 Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer
KTHC 19.2005 Mombert HOPPE: Technology Transfer Through Trade
PRCG 20.2005 Roberto ROSON: Platform Competition with Endogenous Multihoming
CCMP 21.2005 Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs, A Game Theoretic Perspective on Bottom-up Climate Regimes
CTN 23.2005 Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria
CTN 25.2005 Sondeb LAHRI: The Core of Directed Network Problems with Quotas
NRM 27.2005 Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities
CCMP 28.2005 Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information
NRM 29.2005 Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations
CCMP 30.2005 Andrea BIGANO, alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism
NRM 31.2005 Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies
NRM 32.2005 Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility
CCMP 33.2005 Joseph HUBER: Key Environmental Innovations
CTN 34.2005 Antoni CALVÓ-ARMENGOL and Rahmi İLKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation
CTN 35.2005 Francesco FERI (lxxii): Network Formation with Endogenous Decay
CTN 36.2005 Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
Alessandra CASELLA and Nobuyuki HANAKI: Information Channels in Labor Markets, On the Resilience of Referral Hiring

Matthew O. JACKSON and Alison WATTS: Social Games: Matching and the Play of Finitely Repeated Games

Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER: The Egalitarian Sharing Rule in Provision of Public Projects

Francesco FERI: Stochastic Stability in Network with Decay

Aart de ZEEUW: Dynamic Effects on the Stability of International Environmental Agreements

C. Martin van der HEIDE, Jeroen C.J.M. van den BERGH, Ekko C. van IERLAND and Paulo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Fragmentation Policy Scenarios for the Veluwe, The Netherlands

Carla VIEIRA and Ana Paula SERRA: Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms

Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice

Michael FINUS and Bianca RUNDSHAGEN: Participation in International Environmental Agreements: The Role of Timing and Regulation

Lorenzo PELLEGRINI and Reyer GERLAGH: Are EU Environmental Policies Too Demanding for New Members States?

Matteo MANERA: Modeling Factor Demands with SEM and VAR: An Empirical Comparison

Among Unionized Firms

Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in International Environmental Agreements

Valeria GATTAF: From the Theory of the Firm to FDI and Internationalisation: A Survey

Alireza NAGHAVI: Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the DoHa Proposal

Margaretha BREIL, Greetiel GAMBARELLI and Paulo A.L.D. NUNES: Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach

Alessandra del BOCA, Marizio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA: Investment and Time to Plan: A Comparison of Structures vs. Equipment in a Panel of Italian Firms

Gernot KLEPPER and Sonja PETERSON: Emissions Trading, CDM, JiI, and More – The Climate Strategy of the EU

Maia DAVID and Bernard SINCLAIR-DESGAGNÉ: Environmental Regulation and the Eco-Industry

Alain-Désiré NIMUBONA and Bernard SINCLAIR-DESGAGNÉ: The Pigouvian Tax Rule in the Presence of an Eco-Industry

Helmut KARL, Antje MÖLLER, Ximena MATUS, Edgar GRANDE and Robert KAISER: Environmental Innovations: Institutional Impacts on Co-operations for Sustainable Development

Dimitra YOUVAKI and Anastasios XEPAPADEAS: Criteria for Assessing Sustainable Development

Development: Theoretical Issues and Empirical Evidence for the Case of Greece

Gernot KLEPPER and Sonja PETERSON: Emissions Trading, CDM, JiI, and More – The Climate Strategy of the EU

Ariane T. de BLAEIJ, Paulo A.L.D. NUNES and Jeroen C.J.M. van den BERGH: Modeling ‘No-choice’ Responses in Attribute Based Valuation Surveys

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Applications of Negotiation Theory to Water Issues

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Advances in Negotiation Theory: Bargaining, Coalitions and Fairness

Sandra WALLMAN: The Pigouvian Tax Rule in the Presence of an Eco-Industry

Valentina BOSETTI and Gianni LOCATELLI: A Data Envelopment Analysis Approach to the Assessment of Impure Public Goods and Technological Interdependencies

Arianne T. de BLAEIJ, Paulo A.L.D. NUNES and Jeroen C.J.M. van den BERGH: Modeling ‘No-choice’ Responses in Attribute Based Valuation Surveys

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Applications of Negotiation Theory to Water Issues

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Advances in Negotiation Theory: Bargaining, Coalitions and Fairness

Sandra WALLMAN: The Pigouvian Tax Rule in the Presence of an Eco-Industry

Asimina CHRISTOFOROU: On the Determinants of Social Capital in Greece Compared to Countries of the European Union

Eric M. USLANER: Varieties of Trust


Grazziale BERTOCCI and Chiara STROZZI: Citizenship Laws and International Migration in Historical Perspective

Elizabeth van HYLCKAMA VLIJEG: Accommodating Differences

Renato SANS and Ercole SORI: Governance of Diversity Between Social Dynamics and Conflicts in Multicultural Cities, A Selected Survey on Historical Bibliography

Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship

Eumir D. GARCIA-VALIÑAS and Benno TORGLER: Hunting the Living Dead A “Peso Problem” in Corporate Liabilities Data

Hans-Peter WEIKARD and Matteo MANERA: Cartel Stability under an Optimal Sharing Rule

Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITTHAEGEN (lxvii): Local and Global Interactions in an Evolutionary Resource Game

Joëlle NOAILLY, Cees A. WITTHAEGEN and Jeroen C.J.M. van den BERGH (lxvii): Spatial Evolution of Social Norms in a Common-Pool Resource Game

Maximiliano MAZZANTI and Roberto ROBOLI: Economic Instruments and Induced Innovation: The Case of End-of-Life Vehicles European Policies

Anna LASUT: Creative Thinking and Modelling for the Decision Support in Water Management

Valentina BOSETTI and Barbara BUCHNER: Using Data Envelopment Analysis to Assess the Relative Efficiency of Different Climate Policy Portfolios

Ignazio MUSU: Intellectual Property Rights and Biotechnology: How to Improve the Present Patent System

Giulio CAINELLI, Susanna MANCI NELLI and Massimiliano MAZZANTI: Social Capital, R&D and Industrial Districts

Rosella LEVAGGI, Michele MORETTO and Vincenzo REBBA: Quality and Investment Decisions in Hospital Care when Physicians are Devoted Workers

Valentina BOSETTI and Laurent GILOTTE: Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?

Nicoletta FERRO: Value Through Diversity: Microfinance and Islamic Finance and Global Banking

A MARKANDYA and S. PEDROSO: How Substitutable is Natural Capital?

Anil MARKANDYA, Valeria COSTANTINI, Francesco GRACCEVA and Giorgio VICINI: Security of Energy Supply: Comparing Scenarios From a European Perspective

Vincent M. OTTO, Andreas LÖSCHEL and Rob DELLINK: Energy Biased Technical Change: A CGE Analysis

Carlo CAPUANO: Abuse of Competitive Fringe


Sabrina AUCI and Leonardo BECCETTI: The Stability of the Adjusted and Unadjusted Environmental Kuznets Curve

Francesco BOSELLO and Jian ZHANG: Assessing Climate Change Impacts: Agriculture

Alejandro CAPARRÓS, Jean-Christophe PEREAU and Tarik TAZDAIT: Bargaining with Non-Monolithic Players


Francesco BOSELLO, Roberto ROSON and Richard S.J. TOL (lxvii): Economy-Wide Estimates of the Implications of Climate Change: Human Health

Rob DELLINK, Michael FINUS and Niels OLJEMAN: Coalition Formation under Uncertainty: The Stability of Likelihood of an International Climate Agreement

Valeria COSTANTINI, Riccardo CRESCENZI, Fabrizio De FILIPPIS, and Luca SALVATICI: Bargaining Coalitions in the Agricultural Negotiations of the Doha Round: Similarity of Interests or Strategic Choices? An Empirical Assessment

Gigliola FREY and Matteo MANERA: Econometric Models of Asymmetric Price Transmission

Alessandro COLOGNI and Matteo MANERA: Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries

Chiarà M. TRAVISI and Roberto CAMAGNI: Sustainability of Urban Sprawl: Environmental-Economic Indicators for the Analysis of Mobility Impact in Italy

Livingstone S. LUBOOBI and Joseph Y.T. MUGISHA: HIV/AIDS Pandemic in Africa: Trends and Challenges

Anna ALBERINI, Erik LICHTENBERG, Dominic MANCINI, and Gregmar I. GALINATO: Was It Something I Ate? Implementation of the FDA Seafood HACCP Program


Michele BERNASCONI and Matteo GALIZZI: Coordination in Networks Formation: Experimental Evidence on Learning and Salience

Michele MORETTO and Sergio VERGALLI: Migration Dynamics

Antonio MUSOLESI and Mario NOSVELLI: Water Consumption and Long-Run Urban Development: The Case of Milan

Benno TORGLER and Maria A. GARCIA-VALIÑAS: Attitudes Towards Preventing Environmental Damage

Alberto LONGO and Anna ALBERINI: What are the Effects of Contamination Risks on Commercial and Industrial Properties? Evidence from Baltimore, Maryland

Anna ALBERINI and Alberto LONGO: The Value of Cultural Heritage Sites in Armenia: Evidence from a Travel Cost Method Study

Mikel GONZÁLEZ and Rob DELLINK: Impact of Climate Policy on the Basque Economy

Gilles LAFFORGUE and Walid OUESLATI: Optimal Soil Management and Environmental Policy
<table>
<thead>
<tr>
<th>Journal</th>
<th>Volume</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRM</td>
<td>116.2005</td>
<td>2005</td>
<td>Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas</td>
<td>Dan HOLLAND and Kurt SCHNIER</td>
</tr>
<tr>
<td>PRCG</td>
<td>118.2005</td>
<td>2005</td>
<td>Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas</td>
<td>Dan HOLLAND and Kurt SCHNIER</td>
</tr>
<tr>
<td>CTN</td>
<td>120.2005</td>
<td>2005</td>
<td>Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary</td>
<td>Martin D. SMITH and Larry B. CROWDER</td>
</tr>
<tr>
<td>KTHC</td>
<td>121.2005</td>
<td>2005</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
<td>Valeria GATTI and Corrado MOLTENI</td>
</tr>
<tr>
<td>KTHC</td>
<td>122.2005</td>
<td>2005</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
<td>Valeria GATTI and Corrado MOLTENI</td>
</tr>
<tr>
<td>CCMP</td>
<td>123.2005</td>
<td>2005</td>
<td>Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys</td>
<td>Federico ECHENIQUE and Melmet B. YENMEZ</td>
</tr>
<tr>
<td>CCMP</td>
<td>124.2005</td>
<td>2005</td>
<td>A Solution to Matching with Preferences over Colleagues</td>
<td>Federico ECHENIQUE and Melmet B. YENMEZ</td>
</tr>
<tr>
<td>CCMP</td>
<td>125.2005</td>
<td>2005</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
<td>Valeria GATTI and Corrado MOLTENI</td>
</tr>
<tr>
<td>CCMP</td>
<td>126.2005</td>
<td>2005</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
<td>Valeria GATTI and Corrado MOLTENI</td>
</tr>
<tr>
<td>PRG</td>
<td>127.2005</td>
<td>2005</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
<td>Valeria GATTI and Corrado MOLTENI</td>
</tr>
<tr>
<td>PRG</td>
<td>128.2005</td>
<td>2005</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
<td>Valeria GATTI and Corrado MOLTENI</td>
</tr>
<tr>
<td>PRCG</td>
<td>129.2005</td>
<td>2005</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
<td>Valeria GATTI and Corrado MOLTENI</td>
</tr>
<tr>
<td>ETA</td>
<td>130.2005</td>
<td>2005</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
<td>Valeria GATTI and Corrado MOLTENI</td>
</tr>
</tbody>
</table>

*Italic* indicates the title. *Bold* indicates the name of the journal. Regular text indicates the primary author and co-authors.
### 2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

### 2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>