Gilotte, Laurent; de Lara, Michel

Working Paper
Precautionary Effect and Variations of the Value of Information

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 28.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Gilotte, Laurent; de Lara, Michel (2005) : Precautionary Effect and Variations of the Value of Information, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 28.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/74016
Precautionary Effect and Variations of the Value of Information
Laurent Gilotte and Michel de Lara

NOTA DI LAVORO 28.2005

FEBRUARY 2005

CCMP – Climate Change Modelling and Policy

Laurent Gilotte, CIRED and CERMICS
Michel de Lara, CERMICS

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=670236

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Precautionary Effect and Variations of the Value of Information

Summary
For a sequential, two-period decision problem with uncertainty and under broad conditions (non-finite sample set, endogenous risk, active learning and stochastic dynamics), a general sufficient condition is provided to compare the optimal initial decisions with or without information arrival in the second period. More generally the condition enables the comparison of optimal decisions related to different information structures. It also ties together and clarifies many conditions for the so-called irreversibility effect that are scattered in the environmental economics literature. A numerical illustration with an integrated assessment model of climate-change economics is provided.

Keywords: Value of Information, Uncertainty, Irreversibility effect, Climate change

JEL Classification: D62, D63, H23, Q29

Research reported in this paper has been supported by a grant from the Institut Français de l'Energie (IZE). Comments and suggestions by Philippe Ambrosi, Patrice Dumas, Minh Ha-Duong, Jean-Christophe Pereau and Neomal Silva are gratefully acknowledged.

Address for correspondence:
Laurent Gilotte
CIRED
Jardin Tropical
F-94736 Nogent-sur-Marne
Cedex
France
E-mail:gilotte@centre-cired.fr
1 Introduction

In relation to information, two issues are recurrent in the applied literature dealing with climate change\(^1\). Firstly, the degree to which the emissions of greenhouse gases should be reduced today will hinge on our assumption on the extent of our future knowledge about the climate. Secondly, how much should we be ready to pay now through, for example, investment in scientific research, in order to acquire information in the future?

The second of these questions relates to the value of information, or more explicitly the value of an information structure\(^2\). It is a familiar concept in the economics of uncertainty, which has been used for example in order to try and set an upper-bound to the value of a substantial research program to reduce climate-related uncertainties (Manne and Richels, 1992).

As for the first question, it is central to the theoretical literature on irreversibility and uncertainty\(^3\) and relates to the ‘irreversibility effect’ (Henry, 1974a). This effect states roughly that, when there is a source of irreversibility in the system we control, then the learning effect\(^4\) is precautionary. Most of the literature on the subject looks for conditions under which the effect holds. In one of the seminal papers, Arrow and Fisher (1974), noted the “increasing concentration of carbon dioxide in the global atmosphere” as an application for the reasoning. However, most of the theoretical findings, including theirs’, can hardly be used to help and interpret the results of integrated-assessment models (IAM) of climate and economics such as DICE (Nordhaus, 1994). In effect, analytical models usually involve simplifications that are extreme in regard to the climate change issue. For instance, environment is always captured by a scalar variable that follows a linear dynamic, whereas in DICE 98 (Nordhaus and Boyer, 2000) the environment is a five-component vector with a non-linear dynamic for the atmospheric temperature.

Moreover, as Ulph and Ulph (1997) noted, it is not possible to conclude in advance and “as a matter of principle” about the direction of the learning effect for the climate change issue. This would require the condition identified by Epstein (1980), which is not met even in the “simplest model of global warming” that they set out. It implies that, in complex numerical models that embed irreversibility sources, the direction of the learning effect may depend on the data. Moreover, it may depend on the prior beliefs of the decision maker. This idea is reinforced by more recent results by Gollier et al. (2000). In a two-period setting close to Ulph and Ulph’s, they show that the irreversibility effect is guaranteed for all risks if the utility function belongs to a restrictive class.

Concepts that can be used for interpreting (rather than conjecturing) the behaviour of complex models were sought. We found promising to follow Ha-Duong (1998), who proposed to rely on how, in the second-period problem, the value of information is modified by the initial decision. He argues it should be a better guide than the notion of quasi-option value, which is traditional to the irreversibility literature since introduced by Arrow and Fisher (1974). Moreover, results about quasi-option value do not hold in the general case (Hanemann, 1989). Ha-Duong implements this idea with a particular model: the initial decision is taken in a set of two elements (high or low abatement), uncertainty is described by two states of nature (dangerous or benign). Once the initial decision has been taken, he looks at the value of getting perfect information before the next decision and points that this value of information depends on the initial decision; the irreversibility effect takes place when the value of information, as a function of the initial decision, is greater for

\(^1\)See for example Manne and Richels (1992); Nordhaus (1994).
\(^2\) We shall keep the terminology expected value of information for the case where the value of the information structure is a random variable, see section 4.
\(^3\) Arrow and Fisher (1974); Henry (1974a,b); Freixas and Lafont (1984); Kolstad (1996); Ulph and Ulph (1997).
\(^4\) By learning effect we refer to how the first-period optimal decision is modified when the decision maker considers that information will arrive in the future.
Until recently, the irreversibility literature had not really taken advantage of the observation that, once an initial decision is made, the value of information can be defined as a function of that decision. Conrad (1980) emphasized the value of future information from the point of view of the next generation but did not make this dependency explicit. Hanemann (1989) calls it value of information conditional on the initial decision\(^5\), but even in the case where the set of admissible decisions is a real interval, he considers this value only for some particular initial decisions (the optimal decisions with and without information). More recently, however, Rouillon (2001) defined for a particular model of climate-change the value of information as a function of the greenhouse gases (GHG) concentration. He found in one of his cases that, when this value of information (after the initial decision) is a monotone function of the pollution stock, then the optimal emission levels with and without information can be ordered.

We show that this result is in fact very general and ties together different pieces of the literature on uncertainty and irreversibility. It can also be applied properly in integrated assessment models with few modifications and thus connects two themes of the climate change literature, namely, the value of information and the irreversibility effect.

Section 2 presents a standard model of sequential decision under uncertainty. Practically all the specific models studied in the irreversibility literature from Arrow and Fisher to Gollier et al. can be seen as particular instance of our model. Formally it is not restricted to environmental problems. We define the ‘subsequent’ value of information as the value of the information structure once the initial decision has been taken. In section 3, we show that, when value of information is a (partially) monotone function of the initial decision, then the optimal initial decisions with or without information can be compared. With two different information structures, the same result applies to the value of exchanging one information structure for the other. The result does not require any convexity conditions. It is extended in section 4 to sequential decision problems including endogenous risk, active learning and stochastic dynamic. Section 5 shows how our result unifies and provides an interpretation for the conditions for the irreversibility effect that are given in the literature. Finally, section 6 uses Nordhaus’ DICE model to provide a practical application.

2 The standard model of decision with learning

2.1 The decision problem

We consider in this section a rather general model of optimal control under uncertainty, where decisions are taken at two periods of time, namely, at \(t = 0\) and at \(t = 1\). The decision maker aims at maximizing the expected present benefit

\[
\max_{u_0, u_1} \mathbb{E} [l_0(u_0) + l_1(u_1, x_1, \gamma)] \\
\text{s.c. } x_1 = f(x_0, u_0) \quad \text{and} \quad u_t \in \mathcal{U}_t(x_t), \ t = 0, 1.
\]

\(x_t \in \mathbb{R}^n\) is the state of the system at time \(t\), which depends on the decisions \(u_t\) through the dynamics \(f\); its initial value \(x_0\) is known; the decision \(u_t\) must be chosen in an admissible set \(\mathcal{U}_t \subset \mathbb{R}^{m_t}\) that, in all generality, depends on \(t\) and on the state \(x_t\). We make the restriction that the initial decision is a scalar (\(\mathcal{U}_0 \subset \mathbb{R}\), i.e. \(m_0 = 1\)). Finally \(l_t(\cdot)\) is the benefit of decision \(u_t\) when the system is in the state \(x_t\). The function \(l_1(\cdot)\) depends on \(\gamma\), a parameter unknown at time \(t = 0\) that we represent

\(^5\)We shall avoid this terminology, which can be confusing. See footnote 2.
as a random variable over a probability space \((\Omega, \mathcal{F}, \mathbb{P})\), where the \(\omega \in \Omega\) are the states of the nature. Note that, at this stage, randomness appears only through \(\gamma\), though the dynamics may be taken as stochastic as we shall see in section 4.

We could actually write this standard model into a more compact form\(^7\) as it is the current practice in the literature on irreversibility and decision under uncertainty. However, the explicit distinction between state and control is convenient for handling the general model with stochastic dynamics presented in section 4.

In what follows, we shall always assume that, for the problems we consider, the \(\sup\) is attained and we shall use the notation \(\max\).

2.2 Information structure

The decision maker eventually obtains information at time \(t = 1\). A rather general way to describe information is to assume the reception at time \(t = 1\) of a signal\(^8\) that allows to improve on the law \(\mathbb{P}\) of the random variable \(\gamma\) by conditioning: in this case, \(\Phi\) is a random variable (over the same sample space as \(\gamma\)) so that when the decision maker observes \(\Phi\), she uses the conditional probability law \(\mathbb{P}_{\gamma}^\Phi\) of \(\gamma\) knowing \(\Phi\). More generally, information is a \(\sigma\)-algebra (the one generated by the signal, \(\sigma(\Phi)\) in the case hereabove).

‘No information’ at time \(t = 1\) can be represented by a constant signal over \(\Omega\) or, equivalently, by the trivial \(\sigma\)-algebra \(\{\Omega, \emptyset\}\). In the following, we shall denote by \(\perp\) a non-informative structure.

At time \(t = 1\), the decision maker receives a given realization \(\Phi(\omega)\) of the signal \(\Phi\) before her choice \(u_1\). For any state \(x_1\), the decision \(u_1\) can be seen as a function from \(\Omega\) to \(U_1(x_1)\) and should be measurable with respect to the \(\sigma\)-algebra induced by the signal function \(\Phi\). We denote this requirement by \(u_1 \perp \Phi\):

\[
u_1 \perp \Phi \iff \sigma(u_1) \subset \sigma(\Phi).\tag{2}\]

For the problem with information structure \(\Phi\), define the ‘expected optimal benefit in state \(x_1 = x\)’ as the value function at \(t = 1\):

\[
V_\Phi(x) \overset{\text{def}}{=} \mathbb{E} \left[\max_{u_1 \in U_1(x), \ u_1 \perp \Phi} \mathbb{E} [l_1(u_1, x, \gamma) \mid \Phi] \right] \tag{3}\]

which allows to rewrite the decision problem (1) at \(t = 0\) as:

\[
\max_{u_0 \in U_0(x_0)} [l_0(u_0) + V_\Phi(f(x_0, u_0))]. \tag{4}\]

\(^6\)In the irreversibility literature \(\Omega\) is a finite set of the possible values of \(\gamma\), \(\mathcal{F} = \mathcal{P}(\Omega)\), and \(\mathbb{P}\) is the prior used by the decision maker at time \(t = 0\).

\(^7\)Namely as:

\[
\max_{u_0 \in U_0, \ u_1 \in D(u_0)} \mathbb{E} [l_0(u_0) + L(u_1, u_0, \gamma)]
\]

where \(L(u_1, u_0, \gamma) \overset{\text{def}}{=} l_1(u_1, f(x_0, u_0), \gamma)\)

and \(D(u_0) \overset{\text{def}}{=} U_1(f(x_0, u_0))\).

\(^8\)The irreversibility literature (for instance Freixas and Laont, 1984; Kolstad, 1996) relies on a description of information through partitions. However partitions are less general in the non-finite case.
2.3 Subsequent value of the information structure

After any initial decision \(u_0 \), the decision maker knows from the deterministic dynamics \(f \) what subsequent state of the system, \(x_1 \), will enter her new decision problem at time \(t = 1 \). If she thinks she will not learn about \(\gamma \) (information structure \(\perp \)), she may be ready to pay to obtain information from a signal \(\Phi \). When buying \(\Phi \), she does not know which information she will receive, but she will be able to move from the expected benefit \(V_{\perp}(x_1) \) to the expected benefit \(V_{\Phi}(x_1) \). Let us define therefore\(^9\)

\[
I_{\Phi}(x) \stackrel{\text{def}}{=} V_{\Phi}(x) - V_{\perp}(x) \tag{5}
\]

as the subsequent value of the information structure \(\Phi \) when the system will be in state \(x \) in \(t = 1 \). This value is clearly always non-negative.

The definition makes clear that the value of the information is a function of the state of the system. In applications (Manne and Richels, 1992; Nordhaus, 1994), the value of information is usually defined before decision \(u_0 \) has been taken; therefore it can be considered to depend on \(x_0 \).

In order to distinguish between these two notions, initial value of information will refer to the usual definition, and subsequent value of information to definition by (5). In the following, we shall indifferently use the expressions ‘value of information’ or ‘value of the information structure’.

More generally, when the state of the system in \(t = 1 \) is \(x_1 = x \), the value of having an information structure \(\Psi \) rather than the information structure \(\Phi \) is:

\[
\Delta_{\Phi\Psi}(x) \stackrel{\text{def}}{=} I_{\Psi}(x) - I_{\Phi}(x) \tag{6}
\]

If \(\Psi \) is finer\(^10\) than \(\Phi \), this value is also positive.

3 Learning effect and value of information

3.1 How value of information enters the decision problem

From (4) applied to the non-informative structure \(\perp \), the program of the non-informed decision maker writes:

\[
\max_{u_0 \in U_0(x_0)} \left[l_0(u_0) + V_{\perp}(f(x_0, u_0)) \right] \tag{7}
\]

From (4) and (7) and the definition of the subsequent value of information in (5), the initial decision problem with information structure \(\Phi \) writes:

\[
\max_{u_0 \in U_0(x_0)} \left[l_0(u_0) + V_{\perp}(f(x_0, u_0)) + I_\Phi(f(x_0, u_0)) \right] \tag{8}
\]

Comparing programs (7) and (8), it appears that the decision maker who expects information optimizes the same objective as the uninformed decision maker plus the value of the information, which depends on her initial decision. Her optimal decision can achieve a trade-off: it can be suboptimal from the point of view of the non-informed decision maker but compensate for this by an increase of the value of information.

\(^9\)With general utility functions (instead of benefit functions), the value of information is measured in utility units. Equivalent or compensating variations in monetary values can also be defined (Laffont, 1989).

\(^{10}\)Meaning that the \(\sigma \)-algebra induced by \(\Phi \) is included in the one induced by \(\Psi \).
Note also that I_Φ, the subsequent value of information, depends on the initial decision even though there is no active learning, i.e. what one expects to learn does not depend on u_0.

More generally, replacing the information structure Φ by the information structure Ψ leads to a reformulation of the problem (4) as

$$\max_{u_0 \in \mathcal{U}_0(x_0)} [l_0(u_0) + V_\Phi(f(x_0, u_0)) + \Delta_\Psi(f(x_0, u_0))].$$

3.2 Comparison of initial and subsequent values of information

Before comparing first period optimal decisions with and without future information, it is easier to compare the subsequent values of information resulting from these decisions. The initial value of information enters the comparison laid out in the following proposition (the proof is in Appendix 8).

Proposition 1

Denote by I_0 the initial value of acquiring the information structure Φ before any decision u_0 is made:

$$I_0 \overset{\text{def}}{=} \max_{u_0 \in \mathcal{U}_0(x_0)} [l_0(u_0) + V_\perp(f(x_0, u_0)) + I_\Phi(f(x_0, u_0))] - \max_{u_0 \in \mathcal{U}_0(x_0)} [l_0(u_0) + V_\perp(f(x_0, u_0))].$$ \hspace{1cm} (9)

Let u_0^\perp be an optimal solution of (7), the problem without learning, and u_0^Φ be an optimal solution of (8), the problem with learning. Then,

$$I_\Phi(f(x_0, u_0^\perp)) \leq I^0 \leq I_\Phi(f(x_0, u_0^\Phi)).$$ \hspace{1cm} (10)

This comparison generalizes the relation between the initial value of information and the option value given by Hanemann (1989), who defines option value as $I_\Phi(f(x_0, u_0^\perp)) - I_\Phi(f(x_0, u_0^\perp))$ for a family of problems where $I_\Phi(f(x_0, u_0^\perp)) = 0$.

The hereabove inequalities show that a decision maker who knows she will receive information in the future chooses her first decision so as to increase the value of information, whereas a decision maker who neglects the fact that she will receive information makes a decision that reduces the value she would be ready to pay for information.

We next derive sufficient conditions for the comparison of initial optimal decisions, a problem at the centre of the literature on irreversibility and uncertainty.

3.3 Comparison of optimal solutions; the learning effect

From Proposition 1, we obtain immediately:

$$\forall u > u_0^\perp, I_\Phi(f(x_0, u)) < I_\Phi(f(x_0, u_0^\perp)) \Rightarrow u_0^\Phi \leq u_0^\perp.$$

Hence, a practical sufficient condition for comparison of optimal solutions is to know that $u_0 \mapsto I_\Phi(f(x_0, u_0))$ is a strictly decreasing or a strictly increasing function\(^{11}\).

Definition 2

The eventual difference between u_0^Φ and u_0^\perp is the learning effect.

More generally we have the following, which is our main result.

\(^{11}\)Note here that we adopt the following terminology: a function f defined on an ordered set is increasing if $x \geq y \Rightarrow f(x) \geq f(y)$, and is strictly increasing if $x > y \Rightarrow f(x) > f(y)$; the same convention holds for decreasing and strictly decreasing functions.
Proposition 3
Let Φ and Ψ be two information structures (not necessarily comparable in the sense that one is finer than the other).

Let u_0^Φ be any optimal initial decision with information structure Φ, that is

$$u_0^\Phi \in \arg \max_{u_0 \in U_0(x_0)} \left[l_0(u_0) + V_\Phi(f(x_0, u_0)) \right],$$

and let u_0^Ψ be any optimal initial decision with information structure Ψ:

$$u_0^\Psi \in \arg \max_{u_0 \in U_0(x_0)} \left[l_0(u_0) + V_\Psi(f(x_0, u_0)) \right].$$

If the value of substituting Ψ for Φ, $u_0 \mapsto \Delta_{\Phi\Psi}(f(x_0, u_0))$, is a strictly decreasing function, then

$$u_0^\Psi \leq u_0^\Phi.$$

The result is immediate from (13) in Appendix. The result holds in fact under the weaker assumption that $u_0 \mapsto \Delta_{\Phi\Psi}(f(x_0, u_0))$ is strictly decreasing (respectively strictly increasing) when $u_0 < u_0^\Psi$ (respectively when $u_0 > u_0^\Psi$).

A more general proposition can be made for non-strictly decreasing (or increasing) functions.

Proposition 4
If the value of substituting Ψ for Φ, $u_0 \mapsto \Delta_{\Phi\Psi}(f(x_0, u_0))$, is a decreasing function, then comparisons are still possible under the form

$$\sup \arg \max_{u_0 \in U_0(x_0)} \left[l_0(u_0) + V_\Psi(f(x_0, u_0)) \right] \leq \sup \arg \max_{u_0 \in U_0(x_0)} \left[l_0(u_0) + V_\Phi(f(x_0, u_0)) \right].$$

The proof derives from Proposition 8, see appendix section 9.

As a consequence, if u_0^Φ is unique, it is sufficient that $u_0 \mapsto \Delta_{\Phi\Psi}(f(x_0, u_0))$ be decreasing to conclude that $u_0^\Psi \leq u_0^\Phi$.

Before applications in Sections 5 and 6, the following definition relates the comparison of u_0^Φ and u_0^Ψ to the ‘irreversibility effect’ and more generally to the ‘precautionary effect of the learning’.

Definition 5
Precautionary effect of learning
In the case where

1. l_0 is an increasing function (i.e. increasing u_0 yields benefits in $t = 0$)
2. $u_0 \mapsto l_1(u_1, f(x_0, u_0), \gamma))$ is a decreasing function (i.e. u_0 implies some future costs)

then a decision $u_0^\Phi \leq u_0^\Psi$ is said to be ‘more precautionary’ than u_0^Ψ and the learning effect from Φ is said to be ‘precautionary’. This is also referred to as the ‘irreversibility effect’ in some specific cases.

\footnote{Freixas and Laffont (1984) give sufficient conditions for the monotonicity of $\Delta_{\Phi\Psi}$ in a setting where the dynamics is reduced to $x_{t+1} = u_t$ and where the state of the system does not enter the benefits l_t but only the admissibility set. However, they do not provide the interpretation of Δ in terms of value of substituting information structures. Kolstad (1996) obtains necessary and sufficient conditions for a problem which is actually a sub-case of Freixas and Laffont though this does not appear at first glance from his notations but has to be derived from his hypotheses.}

4 Extension to active learning and stochastic evolution

Possible extensions of the standard case appear in the literature. This section shows that the main result still apply in the general, extended case.

Stochastic dynamic. From period $t = 0$ on, the state of the system \tilde{x}_t is a random variable. Its evolution may depend on an other random variable w_t: $\tilde{x}_{t+1} = f(\tilde{x}_t, u_t, w_t)$. The model in Conrad (1980) is an occurrence of stochastic dynamic in the irreversibility literature.

Endogenous risk An example of endogenous risk can be found in Gjerde et al. (1999) where the law of the date of a climate catastrophe depends on the emission reductions. Endogenous risk arises when the random variable γ depends on the previous decisions, u_0 and u_1. In stochastic control theory, γ is treated as a state variable. Endogenous risk is thus viewed as a particular case of stochastic dynamic.

Active learning Active learning (or dependent learning) takes place when the initial decision can modify the signal the decision maker will receive. It means that in addition to ω, Φ depends on u_0, or more generally on \tilde{x}_1 (then the modification is also random). Rouillon (2001) studies a model of active learning in climate change economics and uses the variations of the value of information to conclude about the irreversibility effect.

Comparison in the general model

Consider the problem:

$$\max_{u_0,u_1} \mathbb{E} [l_0(u_0, \tilde{x}_0) + l_1(u_1, \tilde{x}_1)]$$

s.c. $\tilde{x}_1 = f(\tilde{x}_0, u_0, w_0)$ and $u_t \in U_t(y_t), t = 0, 1$

where w_t is a random variable (r.v.) and y_t a non-stochastic subcomponent of \tilde{x}_t, so that the decision maker knows the admissible set $U(y_t)$ when she makes her choice13 u_1.

At time $t = 1$, when the state of the system is the r.v. \tilde{x}, the information structure Φ delivers a signal that depends on \tilde{x}. We denote by $\Phi_{\tilde{x}}$ the corresponding signal function $\Phi_{\tilde{x}} : \omega \mapsto s(\omega, \tilde{x}(\omega))$. The decision-problem can be written as:

$$\max_{u_0 \in U_0(y_0)} \mathbb{E} [l_0(u_0, \tilde{x}_0) + V_{\Phi}(f(\tilde{x}_0, u_0, w_0))].$$

with $V_{\Phi}(\tilde{x}) \overset{\text{def}}{=} \mathbb{E} \left[\max_{u_1 \in U_1(y_0), u_1 \in \Phi_{\tilde{x}}} l_1(u_1, \tilde{x}) \mid \Phi_{\tilde{x}} \right].$

As in previous section, the decision problem with information can be put under the form:

$$\max_{u_0 \in U_0(x_0)} \mathbb{E} [l_0(u_0, \tilde{x}_0) + V_{\perp}(f(\tilde{x}_0, u_0, w_0)) + I_{\Phi}(f(\tilde{x}_0, u_0, w_0))]$$

and the comparisons of initial decisions now rely on the expectation of I_{Φ} or $\Delta_{\Psi,\Phi}$ as follows.

13It is sufficient to assume that the decision maker gets full information at time $t = 1$ on a stochastic subcomponent \hat{y}_1; then this information, \hat{y}_1, should be explicitly included for conditioning the problem, even in the case where no additional information arrives.
Proposition 6
If \(u_0 \rightarrow \mathbb{E} [\Delta_{\Phi}(f(x_0, u_0, w_0))] \) is monotone, comparison of the optimal decisions for the general problems with information structure \(\Phi \) and \(\Psi \) will be possible. Precise conditions are the same as in Proposition 3.

It is self-explanatory that \(\mathbb{E} I_{\Phi}(f(x_0, u_0, w_0)) \) is the expected value of information after decision \(u_0 \), and \(\mathbb{E} \Delta_{\Phi}(f(x_0, u_0, w_0)) \) the expected value of exchanging the information structure \(\Phi \) for \(\Psi \). It is also possible to define the value of information conditional on a realization of \(w_0 \) or of \(x_1 \).

5 Value of information as a key to the irreversibility literature

A goal of the literature on irreversibility and uncertainty consists in identifying hypotheses or conditions under which the ‘irreversibility effect’ holds. Two kinds of conditions can be examined. A first thread follows Epstein (1980) and concentrates on determining the direction of the learning effect for all possible random vectors \(\gamma \) over a finite sample set and for all comparable information structures. As Ulph and Ulph (1997) noted, this restricts the conclusion to limited classes of problems, for example those later identified by Gollier et al. (2000). An other thread looks for specific problems where the irreversibility effect is verified when Epstein conditions do not apply. This for example the case in Ulph and Ulph (1997).

Though monotonicity of the value of information is only necessary for the irreversibility effect, it turns out that Epstein necessary and sufficient conditions imply a monotone value of information. Besides, many of the specific (necessary) conditions found in the literature also do. In particular, we have already seen (section 3.2) that Proposition 1 generalizes Hanemann’s statement on the quasi-option value (Hanemann, 1989) and that Proposition 3 provides an interpretation for the conditions examined by Freixas and Laffont (1984) for a simple model (section 3.3). We shall see it is also the case for many others, and moreover, this monotonicity is often intuitive without fully-fledged mathematical demonstration.

5.1 Epstein’s Theorem and the value of information

Epstein (1980) gave necessary and sufficient conditions that allow to conclude about the direction of the learning effect for all prior beliefs. We show that they also imply a monotone value of information.

For any distribution law \(\rho \) on \(\Omega \), let us define

\[
J(x, \rho) \overset{\text{def}}{=} \max_{u_1 \in U_1(x)} \mathbb{E}_{\rho}(l_1(u_1, x, \gamma)) = \max_{u_1 \in U_1(x)} \int_{\Omega} l_1(u_1, x, \gamma(\omega)) \rho(d\omega) \tag{11}
\]

Epstein’s Theorem states that initial decisions may be compared for any comparable information structures (one being more informative than the other) when \(\frac{\partial J}{\partial x}(x, \rho) \) exists and is convex or concave in \(\rho \) varying among discrete probability laws.

We show that Epstein’s assumptions, extended to non-discrete probability and without necessarily differentiability in the first decision argument, are sufficient conditions for the value of information to be monotone and therefore to ensure the comparison of initial decisions.

Proposition 7
Assume that

1. for any \(u_+ \geq u_- \), \(J(f(x_0, u_+), \rho) - J(f(x_0, u_-), \rho) \) is convex (concave) in \(\rho \),
2. Ψ is finer than Φ.

Then the value of substituting Ψ for Φ, $u_0 \mapsto \Delta_{\Psi \Phi}(f(x_0, u_0))$, is an increasing (a decreasing) function.

Thus, initial decisions may be compared (see the remarks following Proposition 3). The proof is in appendix.

5.2 Linear dynamics and costs; ‘all or nothing’ decision set

The seminal literature as well as more recent contributions often considers linear dynamics and costs, which imply all or nothing decisions, or hinges directly on a binary decision set (see for instance Arrow and Fisher, 1974; Henry, 1974a; Ha-Duong, 1998; Fisher, 2000 and Henry, 1974b, part 2). With a binary decision set, the monotonicity of the value of information becomes trivial. Moreover, the direction of variation is easily determined under the hypothesis of total irreversibility, i.e. when one of the two possible initial decisions affects the state or the second period cost so that it does not depend any longer on the second period decision. This is for example the case with the model of Arrow and Fisher (1974).

5.3 Value of information in Ulph and Ulph, 1997

The model examined in (Ulph and Ulph, 1997) can be rewritten with our formalism as follows

$$\max_{u_0} \left[l_0(u_0) + \mathbb{E} \max_{u_1 \in \Phi} [l_1(u_1) - \mathbb{E}[\gamma | \Phi] D(\delta x_1 + u_1)] \right]$$

with $x_{t+1} = \delta x_t + u_t$ and $u_t \in [0, A_t], (12)$

where u are greenhouse gases (GHG) emissions, x GHG concentrations, l_t utilities, and D a damage function. A_t is the unrestricted level of emissions14. Functions l_t are assumed to be strictly increasing and strictly concave, and D strictly increasing and strictly convex. The r.v. γ is assumed to be non-negative.

The authors compare u_0^\dagger, the initial decision without information, and u_0^\ddagger, the initial decision with perfect information structure (for example $\Phi = \gamma$). With our notations, their theorem 3 states that:

if $(u_0^\dagger, u_0^\ddagger)$ is such that $u_1^\dagger = 0$, then $u_0^\dagger \leq u_0^\ddagger$.

Two features are essential to this result. On the one hand, the assumption that the optimal policy, $u_1^\dagger = 0$, is a corner solution in second period. On the other hand, the shape of the the payoff, which is linear in the random variable.

We show (see Annex 11 for the proof) that, under their hypothesis and their condition $u_1^\dagger = 0$, the conclusion about the irreversibility effect can be generalized to any information structure Φ because the second-period value of this information structure can be shown to be a decreasing function for $u_0 \geq u_0^\dagger$.

This generalized result can even been obtained intuitively, because, under their conditions, monotonicity of the value of information becomes intuitive. Ulph and Ulph’s condition implies that when the GHG concentration in $t = 1$, x_1, is above a certain level $\delta x_0 + u_0^\dagger$, then it is optimal.

14Ulph and Ulph do not make this hypothesis which is benign for the problem considered (greenhouse gases emissions cannot be infinite) and simplifies the demonstration.
to cut emissions to zero in \(t = 1 \) when no information is available. Therefore, if information is obtained when we are in the situation \(x_1 \), it might open the opportunity to emit. The value of the information is then equal to the benefit of additional emissions in \(t = 1 \) minus the expected additional damages. From the envelope theorem, these expected additional damages are strictly increasing at the margin for a small increase of the concentration \(x_1 \), whereas benefits do not depend directly of the concentration level. As a consequence, the value of information diminishes and the irreversibility effect applies.

6 Illustration with a modified stochastic version of dice

Here we produce a numerical illustration with a stochastic version of the standard integrated assessment model DICE 98 (Nordhaus et Boyer, 2000). Such a model is already complex compared to the analytical ones present in the literature. But it will appear that, strikingly, the value of information after initial policy choice behaves in a way that can support intuition.

The model is a stochastic optimal-growth model of the world economy. It is designed to maximize the discounted expected value of utility from consumption. The decisions variables are the rate of investment and the rate of emissions reductions in greenhouse gases. The model operates in time steps of 10 years. Perfect information about the uncertain climate parameter arrives in 2040. A simple adaptation of the original model ensures compatibility with the analytical framework of section 4. We make a parameterization of the paths of investment and abatement from now till 2030–2039 with a unique scalar. This scalar, the abatement rate targeted for 2030–2039, summarizes and entirely defines the policy choice in the initial period.

6.1 The climate-economy system

The dynamic evolution of the climate-economy system can be represented with the relation: \(z_{i+1} = g(z_i, v_i, \gamma) \) where \(i \in \{0, 1, \ldots, T\} \) is the 10-year interval spanning from year 2000 + 10\(i \) to year 2009 + 10\(i \); \(v_i \in [0, 1] \times [0, 1] \) is the couple of controls, which are the rate of reduction of greenhouse gases and the investment rate in time step \(i \); \(z_i \in \mathbb{R}^6 \) is the state of the climate-economy system in the beginning of period \(i \) comprising the stock of capital; concentrations of carbon in three reservoirs (atmosphere; biosphere and surface ocean; deep ocean); and oceanic and atmospheric global mean temperature rises with respect to pre-industrial times.

The temperature components of \(z \) are stochastic. Uncertainty enters their dynamics through the climate sensitivity \(\gamma \). This random variable is equal to the atmospheric temperature rise for a permanent doubling of the carbon concentration in the atmosphere. The r.v. \(\gamma \) is constant through time with values 2.5\(^\circ\)C, 3.5\(^\circ\)C and 4.5\(^\circ\)C and remains unobserved until year 2040. In the first step \(i = 0 \), the true atmospheric temperature rise with respect to pre-industrial times is also uncertain.

The detailed climate-economy equations are slightly changed from the original version of DICE. The temperature increase equation is an updated calibration that provides a better description of warming over forthcoming decades. A threshold damage function replaces the original quadratic one. Both modifications are taken from Ambrosi et al. (2003). The full description for the original DICE model can be found in Nordhaus (Nordhaus, 1994; Nordhaus and Boyer, 2000).

6.2 The decision problem

At each time step \(i \), a control \(v_i \) and a state of the system \(z_i \) result in a discounted random utility \(L_i(v_i, z_i) \). In fact we have two notions of time. The first notion, the time steps, describes the natural
time in the original problem. The second notion describes the decision periods. In accordance with
the framework of section 4, there are two decisions period \(t \in \{0; 1\} \). The initial period, \(t = 0 \),
covers the time steps before learning, \(i = 0, \ldots, 3 \); the next period, \(t = 1 \), covers the time steps
\(i = 4, \ldots, T \). The decisions \(u_t \) define the controls \(v_t \) as follows. The initial decision \(u_{t=0} \in [0, 1] \)
is the level of abatement targeted for 2030; it parameterizes the investment and abatement path for
time steps \(i < 4 \) through a function \(\varphi \) from \([0, 1]\) into \(\mathbb{R}^6 : (v_i)_{i \in \{0, \ldots, 3\}} \) is taken equal to \(\varphi(u_{t=0}) \).
The next decision, \(u_{t=1} \in [0, 1]^{2(T-3)} \), is the vector of investment and abatement rates for \(i \geq 4 \):
\((v_i)_{i \in \{4, \ldots, T\}} = u_{t=1} \). Details for the parameterization of the initial policy are in Appendix 12.

The decision problem is

\[
\max_{u_0} \mathbb{E} \left\{ \sum_{i < 4} L_i(v_i, z_i) + \mathbb{E} \left[\max_{u_1 < \gamma} \sum_{i = 4}^{T} L_i(v_i, z_i) \mid \gamma \right] \right\}
\]

with \((v_0, \ldots, v_3) = \varphi(u_0) \)
\((v_4, \ldots, v_T) = u_1 \in [0, 1]^{2(T-3)} \)
\(z_{i+1} = g(z_i, v_i, \gamma) \)

where the path of controls before information is constrained to belong to the family of curves defined
by \(\varphi \). This decision problem clearly pertains\(^{15}\) to the framework described in section 4 but as far
we know it is out of bounds for the rest of the analytical literature about irreversibility, learning
and climate change.

6.3 How policy affects the value of information on the climate

The figure 1 page 13 plots the expected value of information as a function of the initial policy. Available initial decisions range from no effort until 2030 (0% emissions reduction) to targeting
the maximum effort in 2030 (100% reduction). Three cases are presented corresponding to three
different probability distributions for \(\gamma \): optimistic case, centered case and pessimistic case (see
Appendix 12).

In all cases, the expected value of information is strictly decreasing. Consistently, in all cases,
the prospect of learning the true value of \(\gamma \) in 2040 is an opportunity to make initially less reduction
efforts (\(u_0^\perp \)) than in the never-learn situation (\(u_0^\parallel \)). This is also consistent with the simulations made
by Ulph and Ulph (1997). If no certainty can ever\(^{16}\) be obtained about the future evolution of the
climate, the more cautious emission policy \(u_0^\perp \) would be preferred. Here, the learning effect is not
precautionary.

In an analytical framework with a linear dynamic, Gollier et al. (2000) showed that logarithmic
utility implies that the structure of information has no effect on the initial decision. They wondered
whether this was the explanation for the little or nonexistent learning effect found in earlier results
by Nordhaus (1994), Manne and Richels (1992) and others\(^{17}\). Our model departs from Nordhaus' DICEx only with some specifications of the dynamics (see section 6.1). But the utility function of the model is logarithmic so it is in DICE. However, the ‘learning effect’ (the difference between
\(u_0^\perp \) and \(u_0^\parallel \)) ranges from 9 to 21%. In terms of abatement costs this is even larger due to the

\(^{15}\)With \(\bar{x}_0 = (z_0, \gamma) \) and \(\bar{x}_1 = (z_4, \gamma) \) so that
\(f(\bar{x}_0, u_0, \gamma) = [g(\ldots, g(\bar{x}_0, v_0, \gamma), \ldots, v_3, \gamma)] \cdot \gamma \). Similarly \(l_0 \) and \(l_1 \) are defined through \(L_i \) and compositions of \(g \).

\(^{16}\)Kelly and Kolstad (1999) suggest that certainty on the true value of the climate sensitivity with less than 5%
rejection might be available only after 2090.

\(^{17}\)Ulph and Ulph used a quadratic specification for their numerical simulations and found that, for most parameter
values, learning made little difference.
Figure 1: Variations of the expected value of information, $\text{EIs}(u_0)$, with u_0. In each case, the expected value of information has been normalized with $\text{El}(0)$, the expected value of information before any decision is made. Note that this normalization is different in each case.
specification of the abatement costs in DICE as a power function (with an exponent greater than 2). Clearly, learning has an effect on decision which is not negligible. Thus, our findings answer the question raised by Gollier et al. and show that the weak learning effect found by Nordhaus is also determined by his choice of a particular dynamic and not solely by his logarithmic objective function.

7 Conclusion

This article explored the role of the value of an information structure in analyzing general, sequential decision problems. The difference between value of future information before and after an initial decision is taken was made explicit. The monotonicity of the latter, the subsequent value of information, is sufficient for making a conclusion about the direction of the learning effect. Many of the conditions given in the literature as sufficient or as necessary and sufficient for the irreversibility effect can be understood as guarantees for this monotonicity. The present analysis shares a common limitation with the irreversibility literature: the initial decision is assumed to be scalar. But extension is readily available in theory. As long as the set of admissible initial decisions can be ordered even incompletely, Topkis’ theorem (Topkis, 1978) leads to a similar conclusion. Extension to multi-scalar decisions would help the interpretation of empirical integrated assessment models. For example in the original DICE model (Nordhaus and Boyer, 2000), assuming that information arrives in 2040, the initial decision vector has eight components (four abatement and investment decisions). However, the difficulty is to find a meaningful order over the decision set.

For communication with policy-makers, there is a practical advantage in analyzing the learning effect in terms of growing or strictly decreasing value of information because value of information is a relatively self-explanatory concept (Ha-Duong, 1998). Finally, the intuitive simplicity of the notion of value of information also suggests application in experimental economics. It should be possible to design experimental tests of rationality under uncertainty that are based on how and whether individuals modify their estimation of the value of improved future knowledge as a consequence of their current decisions.

8 Appendix: Proof of Proposition 1

By definition, the initial value of information is

$$J_0^{\text{def}} = \max_{u_0 \in \mathcal{U}(x_0)} \left[l_0(u_0) + V_\perp(f(x_0, u_0)) + I_\Phi(f(x_0, u_0)) \right]$$

$$J_\perp \quad \text{def} = \max_{u_0 \in \mathcal{U}(x_0)} \left[l_0(u_0) + V_\perp(f(x_0, u_0)) \right].$$

Since u_0^\perp is an optimal solution of the problem without information and since u_0^Φ is an optimal solution of the problem with information, we have, on the one hand,

$$J_\perp = l_0(u_0^\perp) + V_\perp(f(x_0, u_0^\perp)) \geq l_0(u_0^\Phi) + V_\perp(f(x_0, u_0^\Phi)) \quad \text{so that} \quad I_\Phi - I_\perp \leq I_\Phi(f(x_0, u_0^\Phi)).$$
On the other hand,
\[I_\Phi = l_0(u_\Phi^0) + V_\perp(f(x_0, u_\Phi^0) + I_\Phi(f(x_0, u_\Phi^0)) \geq l_0(u_\perp^0) + V_\perp(f(x_0, u_\perp^0) + I_\Phi(f(x_0, u_\perp^0)) \]
so that \(I_\Phi - I_\perp \geq I_\Phi(f(x_0, u_\perp^0)) \). Combining both inequalities, we obtain
\[I_\Phi(f(x_0, u_\perp^0)) \leq I^0 = J_\Phi - J_\perp \leq I_\Phi(f(x_0, u_\perp^0)) \]
which is Proposition 1.

Similarly we obtain easily:
\[\Delta_{\Phi \Phi}(f(x_0, u_\Phi^0)) \leq J_\Phi - J_\Phi \leq \Delta_{\Phi \Phi}(f(x_0, u_\Phi^0)) \tag{13} \]
where \(u_\Psi^0 \) (respectively \(u_\Phi^0 \)) is any optimal initial decision for the problem with the information structure \(\Psi \) (respectively \(\Phi \)). Note that, without specific hypothesis on the relative informativeness of \(\Phi \) and \(\Psi \), \(\Delta \) can assume negative values and \(J_\Phi - J_\Phi \) can be negative.

9 Appendix: Comparison of arg max

We recall here results on comparison between the arg max of two optimization problems. They may be seen as particular instances of results from a general theory with supermodular functions or functions with increasing differences as developed in Topkis (1998).

Proposition 8

Let \(D \subset \mathbb{R} \), let \(g : D \to \mathbb{R} \) and \(h : D \to \mathbb{R} \). We denote
\[D_g \overset{\text{def}}{=} \arg \max_{u \in D} g(u) \subset D \quad \text{and} \quad D_{g+h} \overset{\text{def}}{=} \arg \max_{u \in D} (g + h)(u) \subset D, \]
and we assume that \(D_g \neq \emptyset \) and \(D_{g+h} \neq \emptyset \).

1. If \(h \) is strictly increasing on \(]-\infty, \sup D_g[\), then
\[\sup D_g \leq \inf D_{g+h}. \]

2. If \(h \) is increasing on \(]-\infty, \sup D_g[\), then
\[\sup D_g \leq \sup D_{g+h}. \]

3. If \(h \) is strictly decreasing on \([\inf D_g, +\infty[\), then
\[\sup D_{g+h} \leq \inf D_g. \]

4. If \(h \) is decreasing on \([\inf D_g, +\infty[\), then
\[\inf D_{g+h} \leq \inf D_g. \]
Proof. We prove the first statement, the others being minor variations.
Let \(u^g \in D_g \). For any \(u \in D \), we have \(g(u) \leq g(u^g) \). For any \(u \in \mathbb{R} \), we have \(h(u) < h(u^g) \) if \(h \) is strictly increasing. Thus
\[
u \in \mathbb{R}, u^g \Rightarrow g(u) + h(u) < g(u^g) + h(u^g) .
\]
We conclude that \(D_{g+h} \subset [u^g, +\infty[\), so that
\[
D_{g+h} \subset \bigcap_{u^g \in D_g} [u^g, +\infty[= \sup D_g, +\infty[.
\]
This proves that \(\sup D_g \leq \inf D_{g+h} \). \(\square \)

The proof of Proposition 3 is a straightforward consequence with \(u_0 \mapsto l_0(u_0) + V\Phi(f(x_0, u_0)) + \Delta\Phi(f(x_0, u_0)) \) as function \(g \) and \(u_0 \mapsto -\Delta\Phi(f(x_0, u_0)) \) as function \(h \).

Freixas et Laffont (1984) propose a similar proof for a case with simplified dynamics and criteria (see section 3.3).

10 Appendix: Proof of Proposition 7

Let \(\mathcal{P}(\Omega) \) be the set of all distributions on \(\Omega \), the states of the world. By classical arguments (Breiman, 1993, p. 77) (as soon as \(\Omega \) is a complete separable metric space for instance), there exists a regular conditional probability of \(\mathbb{P} \) given \(\Phi \), denoted by \(\mathbb{P}^\Phi : \Omega \times \mathcal{F} \rightarrow [0,1] \) and characterized by:

1. \(\forall \omega \in \Omega, \mathbb{P}^\Phi(\omega, \cdot) \in \mathcal{P}(\Omega) \);
2. \(\forall A \in \mathcal{F}, \omega \mapsto \mathbb{P}^\Phi(\omega, \cdot) \) is measurable with respect to \(\Phi \);
3. for all bounded random variable \(Z, \mathbb{E}(Z \mid \Phi)(\omega) = \int_{\Omega} Z(\omega') \mathbb{P}^\Phi(\omega, d\omega') \), for \(\mathbb{P} \)-almost \(\omega \).

The sensor\(^{18}\) associated to \(\mathbb{P} \) and \(\Phi \) is the random measure \(S^\Phi \in \mathcal{P}(\mathcal{P}(\Omega)) \) defined by
\[
\forall M \in \mathcal{B}(\mathcal{P}(\Omega)), \quad S^\Phi(M) \overset{\text{def}}{=} \mathbb{P}\{ \omega \in \Omega, \quad \mathbb{P}^\Phi(\omega, \cdot) \in M \} . \tag{14}
\]
Equivalently, \(S^\Phi \) is also the image of the measure \(\mathbb{P} \) by the mapping
\[
\omega \in \Omega \mapsto \mathbb{P}^\Phi(\omega, \cdot) \in \mathcal{P}(\Omega) . \tag{15}
\]
It is shown in Artstein and Wets (1993) that
\[
\mathbb{E} \left(\max_{u_1 \in \mathcal{U}_1(\omega), u_1 \neq \Phi} \mathbb{E} \left[l_1(u_1, x, \gamma) \mid \Phi \right] \right) = \int_{\mathcal{P}(\Omega)} \mathbb{P}(d\omega) \left(\max_{u_1 \in \mathcal{U}_1(\omega), u_1 \neq \Phi} \int_{\Omega} l_1(u_1, x, \gamma(\omega')) \mathbb{P}^\Phi(\omega, d\omega') \right)
= \int_{\mathcal{P}(\Omega)} dS^\Phi(\rho) \left(\max_{u_1 \in \mathcal{U}_1(\omega)} \int_{\Omega} l_1(u_1, x, \gamma(\omega')) \rho(d\omega') \right)
= \int_{\mathcal{P}(\Omega)} dS^\Phi(\rho) J(x, \rho) .
\]

\(^{18}\)A sensor is a probability law on the set \(\mathcal{P}(\Omega) \) of all distributions on the states of the world, i.e. an element of \(\mathcal{P}(\mathcal{P}(\Omega)) \), the Borel space of probability measures on \(\mathcal{P}(\Omega) \). Following Artstein (1999), an information structure can be defined by a sensor since it governs which posterior beliefs will be materialized at the time of decision. Chapter ?? offers more recalls and developments on sensors. See especially section ?? page ??.
Thus, by (6) and (5), we have
\[
\Delta_{\Psi \Phi}(x) = \mathbb{E} \left(\max_{u_1 \in \mathcal{U}_1(x), u_1 \in \Psi} \mathbb{E} \left[l_1(u_1, x, \gamma) \mid \Psi \right] \right) - \mathbb{E} \left(\max_{u_1 \in \mathcal{U}_1(x), u_1 \notin \Phi} \mathbb{E} \left[l_1(u_1, x, \gamma) \mid \Phi \right] \right)
\]
\[
= \int_{\mathcal{P} \subseteq \mathbb{R}} dS^\Psi(\rho) J(x, \rho) - \int_{\mathcal{P} \subseteq \mathbb{R}} dS^\Phi(\rho) J(x, \rho).
\]

Still following Artstein and Wets (1993) and Artstein (1999), we have that if \(\Psi \) is finer than \(\Phi \), then \(S^\Psi \) is more refined than \(S^\Phi \) in the sense that for all \(\phi : \mathcal{P}(\Omega) \to \mathbb{R} \) convex,
\[
\int_{\mathcal{P} \subseteq \mathbb{R}} \phi(\rho) dS^\Psi(\rho) \geq \int_{\mathcal{P} \subseteq \mathbb{R}} \phi(\rho) dS^\Phi(\rho).
\]

Thus, under the assumptions, the value of substituting \(\Psi \) for \(\Phi \), \(u_0 \mapsto \Delta_{\Psi \Phi}(f(x_0, u_0)) \), is an increasing (a decreasing) function.

11 Appendix: Variations of the value of information in Ulph and Ulph, 1997

We express \(\frac{dV_\Phi}{dx_1} = \frac{dV_{\Psi \Phi}}{dx_1} - \frac{dV_\perp}{dx_1} \) for the problem (12).

Denote by \(\hat{u}_1(x_1) \) the optimal feedback without information:
\[
\hat{u}_1(x_1) \overset{\text{def}}{=} \arg \max_{u_1 \geq 0} l_1(u_1) - \mathbb{E}_\gamma D(u_1 + \delta x_1).
\]

Unicity of the \(\max \) results from the strict concavity of the mapping \(u_1 \mapsto l_1(u_1) - \mathbb{E}_\gamma D(u_1 + \delta x_1) \) since, by assumption, \(l_1 \) is strictly concave, \(D \) is strictly convex, and \(\gamma \geq 0 \).

Denoting \(x_1^+ \overset{\text{def}}{=} \delta x_0 + u_0^+ \), we have then \(u_1^+ = \hat{u}_1(x_1^+) \) by definition. From Euler’s characterization of the maximum of a concave function, the assumption \(u_1^+ = 0 \) implies that \(l'(0) - \delta \mathbb{E}_\gamma D'(\delta x_1^+) \leq 0 \). Now, for any \(x_1 \geq x_1^+ \), we have
\[
l'(0) - \delta \mathbb{E}_\gamma D'(\delta x_1) \leq l'(0) - \delta \mathbb{E}_\gamma D'(\delta x_1^+) \leq 0
\]
since \(-D' \) is decreasing (\(D \) is convex). Thus, by Euler’s condition, \(\hat{u}_1(x_1) = 0 \). Replacing in \(V_\perp(x_1) \) and differentiating with respect to \(x_1 \), we obtain
\[
\frac{dV_\perp}{dx_1}(x_1) = -\mathbb{E}[\gamma] \delta D'(\delta x_1).
\]

We now turn to \(\frac{dV_\Phi}{dx_1}(x_1) \). Let
\[
u_1^\Phi(x_1) \overset{\text{def}}{=} \arg \max_{u_1 \in \Phi} l_1(u_1) - \mathbb{E}[\gamma \mid \Phi] D(u_1 + \delta x_1)
\]
which is a random variable.

By the Danskin theorem (see Clarke, 1990)), we have that
\[
\frac{d}{dx_1} \max_{u_1 \in \Phi} l_1(u_1) - \mathbb{E}[\gamma \mid \Phi] D(u_1 + \delta x_1) = -\mathbb{E}[\gamma \mid \Phi] \delta D'(\delta x_1 + u_1^\Phi(x_1)).
\]

17
By differentiating under the integral sign, we get that
\[
\frac{dV_\Phi}{dx_1}(x_1) = \mathbb{E}[-\mathbb{E}[\gamma | \Phi] \Phi D'(\delta x_1 + u_1^\Phi(x_1))]
\]
Finally,
\[
\frac{dI_\Phi}{dx_1}(x_1) = \mathbb{E}[-\mathbb{E}[\gamma | \Phi] \Phi D'(\delta x_1 + u_1^\Phi(x_1))] + \mathbb{E}[\gamma] \delta D'(\delta x_1)
\]
\[
= \mathbb{E}[-\mathbb{E}[\gamma | \Phi] \Phi D'(\delta x_1 + u_1^\Phi(x_1))] + \mathbb{E}[\mathbb{E}[\gamma | \Phi]] \delta D'(\delta x_1)
\]
\[
= \mathbb{E}[\mathbb{E}[\gamma | \Phi](D'(\delta x_1) - D'(\delta x_1 + u_1^\Phi(x_1)))]
\]
which is non-positive since \(u_1^\Phi(x_1, s) \geq 0\) and \(D\) is convex. Therefore \(u_0 \mapsto I_\Phi(\delta x_0 + u_0)\) is decreasing for all \(u_0\) greater than \(u_0^\gamma\): the value of information diminishes with initial GHG emissions above their optimal level without information.

12 Appendix: Details for the numerical model

12.1 Summarized description of the modified dice model

The model solve the following problem.

\[
\max_{v_0, \ldots, v_T} \mathbb{E}\left\{ \sum_{i=0}^{d-1} L_i(v_i, z_i) + \mathbb{E}\left[\max_{(v_d, \ldots, v_T) \preceq \gamma} \sum_{i=d}^{T} L_i(v_i, z_i) | \gamma \right] \right\}
\]

\[
\text{with } z_{i+1} = g(z_i, v_i, \gamma)
\]

The time horizon is \(T = 40\). Time step \(i = 0\) corresponds to the period 2000–2009. The date of arrival of information, \(d\), belongs to \(\{0, \ldots, T + 1\}\).

Variables

<table>
<thead>
<tr>
<th>Controls</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_i)</td>
<td>(a_i) GHG reduction rate</td>
</tr>
<tr>
<td>(b_i)</td>
<td>investment rate</td>
</tr>
<tr>
<td>(z_i)</td>
<td>(K_i) Capital stock</td>
</tr>
<tr>
<td>(M_i \in \mathbb{R}^3)</td>
<td>Stocks of carbon in 3 reservoirs</td>
</tr>
<tr>
<td>(\theta_i \in \mathbb{R}^2)</td>
<td>Mean temperature rises for atmosphere and ocean</td>
</tr>
<tr>
<td>(\gamma) r.v. (\in {L, C, H})</td>
<td>Climate sensitivity</td>
</tr>
</tbody>
</table>

Intermediary, transfer variable

| \(Y\) | Available economic output |
The dynamics summarized by function g in Eq. (18) is composed with the four relations (19–22). Detailed functional forms can be found in Nordhaus (1994) or Nordhaus and Boyer (2000) except for two modifications from Ambrosi et al. (2003) — function Θ in Eq. (22) and damage function D in Eq. (19) — that are reproduced in section 12.5 below.

Random variable Three different distributions are used for the random variable $\gamma \in \{L, C, H\}$

<table>
<thead>
<tr>
<th>Climate sensitivity γ</th>
<th>Probability $L(2.5^\circ C)$</th>
<th>Probability $C(3.5^\circ C)$</th>
<th>Probability $H(4.5^\circ C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimistic</td>
<td>2/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>centered</td>
<td>1/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>pessimistic</td>
<td>1/3</td>
<td>1/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>

12.2 Parameterization of the controls in time steps 0 to 3

The goal is to compute the value of information in 2040 ($d = 4$) as a function of a scalar policy decision describing abatement and investment choices from 2000 to 2039. We chose the abatement rate targeted for 2030 as the key policy decision. The problem is to choose a sensible parameterization of investment and abatement before and up to 2030 with this scalar. We propose one that approximates for $i \in \{0, \ldots, 3\}$ the optimal trajectories of the model under the different hypotheses available on the climate sensitivity. Afterwards, the parameterization allows to describe a wider range of trajectories, including non-optimal ones (bad policy choices) in a coherent and continuous manner.

For calibration purposes, we have therefore computed the numerical optimal values for $(v_i)_{i \in \{0\ldots3\}}$ in problem (17) under four different hypotheses :

- H1: no uncertainty ($d = 0$) and $\gamma = L$
- H2: no uncertainty ($d = 0$) and $\gamma = C$
- H3: no uncertainty ($d = 0$) and $\gamma = H$
- H4: information in 2040 ($d = 5$). $\gamma \in \{L, C, H\}$, pessimistic probabilities (see above) are used.
<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>a₀</th>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>b₀</th>
<th>b₁</th>
<th>b₂</th>
<th>b₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>0.059</td>
<td>0.075</td>
<td>0.093</td>
<td>0.115</td>
<td>0.239</td>
<td>0.232</td>
<td>0.228</td>
<td>0.225</td>
</tr>
<tr>
<td>H2</td>
<td>0.092</td>
<td>0.123</td>
<td>0.163</td>
<td>0.215</td>
<td>0.239</td>
<td>0.231</td>
<td>0.227</td>
<td>0.224</td>
</tr>
<tr>
<td>H3</td>
<td>0.138</td>
<td>0.194</td>
<td>0.266</td>
<td>0.361</td>
<td>0.238</td>
<td>0.231</td>
<td>0.226</td>
<td>0.223</td>
</tr>
<tr>
<td>H4</td>
<td>0.121</td>
<td>0.168</td>
<td>0.230</td>
<td>0.310</td>
<td>0.238</td>
<td>0.231</td>
<td>0.226</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Table 1: Optimal abatement and investment rates under H1–4

The GAMS code for solving numerically problem (17) is ‘dice_response_art.gms’ provided in attachment. See also section ???. The numerical model has actually \(i = -1 \) as first time step corresponding to 1990–1999, but abatement is fixed to \(a_{-1} = 0 \). Investment is fixed as well with value \(b_{-1} = 0.250 \). We obtain the following results, displayed below in Table 1.

The parameterization chosen, \(\varphi : u_0 \mapsto (a_i, b_i)_{i \in \{0, \ldots, 3\}} \), is defined by

\[
a_i = \varphi^a_i(u) = \lambda u + \mu u^i + \nu u^2
\]

with \(\lambda = 0.3006 \), \(\mu = 0.0724 \), \(\nu = 0.0256 \)

and

\[
b_i = \varphi^b_i
\]

with \(\varphi^b_0 = 0.239 \), \(\varphi^b_1 = 0.231 \), \(\varphi^b_2 = 0.227 \), \(\varphi^b_3 = 0.224 \)

Both parameterizations are chosen to approximate the optimal numerical solutions of problem (??) under hypotheses H1–H4. Figure 2 displays how \(\varphi \) approximates the optimal decisions in Table 1.

![Figure 2: Parameterization of policy before 2040](image)

The left panel of figure 2 shows as dots the optimal abatement rates \(a_i \) in time steps \(i = 0, \ldots, 3 \) under hypotheses H1–4. The lines trace the corresponding parameterizations \(\varphi^a \) where \(u_0 \) assume in turn the preceding values of \(a_3 \) in hypotheses H1–4.

The right panel of Figure 2 displays the optimal investment rates \(b_i \) for \(i = 0 \ldots 3 \) under hypotheses H1–H4 and the parametrization \(\varphi^b_i \) as a line. Note that it depends only of the time step and not of \(u \).
12.3 Optimal initial policies with and without learning

After parameterization, the problem is simplified into

\[
\max_{0 \leq u_0 \leq 1} \mathbb{E} \left\{ \sum_{i=4}^{\nu} L_i(\varphi_i(u_0), z_i) + \mathbb{E} \left[\max_{(v_4, \ldots, v_T) \in \gamma} \sum_{i=d}^{T} L_i(v_i, z_i) \right] \right\}
\]

with \(z_{i+1} = g(z_i, \varphi_i(u_0), \gamma) \) for \(i < d \)
and \(z_{i+1} = g(z_i, v_i, \gamma) \) for \(i \geq d \)

This problem is solved with MINOS 5 using the GAMS code ‘u0opt_dice_sp.gms’. For each probability distribution, we obtain the following optimal values for \(u_0 \) with information arrival in 2040 or without arrival of information. We have computed the initial value of information, \(I^0 \) (the difference between the optimal value of the objective with \(d = 0 \) and with \(d = 4 \))

<table>
<thead>
<tr>
<th>Probability distribution</th>
<th>Information in 2040</th>
<th>Never learn</th>
<th>Initial value of information (in utility units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimistic</td>
<td>0.196</td>
<td>0.248</td>
<td>462</td>
</tr>
<tr>
<td>Centered</td>
<td>0.236</td>
<td>0.283</td>
<td>284</td>
</tr>
<tr>
<td>Pessimistic</td>
<td>0.308</td>
<td>0.338</td>
<td>193</td>
</tr>
</tbody>
</table>

Table 2:

The values for \(u_0^{**} \) and \(u_0^* \) are reported into Figure 1 of the main paper.

12.4 Computed value of information

By definition,

\[
I_s(u_0) = \mathbb{E} \left[\max_{(v_4, \ldots, v_T) \in \gamma} \sum_{i=d}^{T} L_i(v_i, z_i) \right] - \max_{(v_4, \ldots, v_T)} \mathbb{E} \sum_{i=d}^{T} L_i(v_i, z_i)
\]

with \(z_{i+1} = g(z_i, v_i, \gamma) \) for \(i \geq d \)
and the r.v. \(z_d \) determined by \(z_0, \gamma \) and \(u_0 \) through:

\(z_{i+1} = g(z_i, \varphi_i(u_0), \gamma) \) for \(i < d \)

We screen \([0, 1]\) for values of \(u_0 \). For each value of \(u_0 \), the problems in Eq. 24 are solved with MINOS 5 using the GAMS code ‘virinfo_dice_sp.gms’.

An extract of the results is given in the next table.

12.5 Detailed modifications to the original dice model

These modifications are taken and reproduced from Ambrosi et al. (2003)

Reduced-form climate model

We detail here the Eq. (22): \(\theta_{i+1} = \Theta(\theta_i, M_i, \gamma) \)

\[
\theta_{i+1} = \Sigma(\gamma) \theta_i + \sigma_1 \left[\begin{array}{c} F_i(M_i) \\ 0 \end{array} \right]
\]

21
Table 3: Initial policy is the abatement targeted for 2030

where

- $\theta_i = \{ \theta_i^{At}, \theta_i^{Oc} \}$ is the vector of global mean temperature rise (°C) with respect to pre-industrial times for the atmosphere and the ocean.

- $F_i(M_i)$ is the radiative forcing defined by

 $$F_i(M_i) = F_{2X} \log(M_i^{atm}/280)/\log 2$$

 where M_i^{atm}, subcomponent of M_i, is the CO$_2$ atmospheric concentration in time step i. M_{PI} is the CO$_2$ atmospheric concentration at pre-industrial times, set at 280 ppm. F_{2X} is the instantaneous radiative forcing for an atmospheric concentration of 2 \times M_{PI}, set at 3.71 W.m$^{-2}$.

- the transfer matrix $\Sigma(\gamma)$ is

 $$\Sigma(\gamma) = \begin{bmatrix} 1 - \sigma_1(F_{2X}/\gamma + \sigma_2) & \sigma_1\sigma_2 \\ \sigma_3 & 1 - \sigma_3 \end{bmatrix}$$

 with coefficient values $\sigma_1 = 0.479$ C.$W^{-1}.m^{-2}$, $\sigma_2 = 0.109$ C$^{-1}.W.m^{-2}$, $\sigma_3 = 0.131$ and γ is the climate sensitivity.
Damage function

We detail here the function D of Eq. (19) that defines the damages in share of GWP.

$$D(\theta_i) = b(\theta_i^{At} - \theta_0^{At}) + \frac{d}{1 + \exp \left[\frac{K+Z-2(\theta_i^{At} - \theta_0^{At})}{K-Z} \ln \left(\frac{2-e}{e}\right)\right]}$$

where $b = 0.005 \degree C^{-1}$ is the linear trend of the damage; $d = 0.03$ is the magnitude of the jump; $e = 0.1$ controls the steepness of the jump; $K = 1.3 \degree C$ and $Z = 2.7 \degree C$ are the temperatures where the non-linear transition begins and ends.

References

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 8.2000 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 10.2000 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

PRA 11.2000 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 12.2000 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 13.2000 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

PRA 14.2000 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 15.2000 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 16.2000 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

PRA 17.2000 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 18.2000 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
CCMP 74.2004 Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

ETA 75.2004 Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

CTN 77.2004 Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lxx): Optimal Information Transmission in Organizations: Search and Congestion

CTN 78.2004 Francis BLOCH and Armando GOMES (lxx): Contracting with Externalities and Outside Options

CTN 79.2004 Rabah AMIR, Efrosyni DIAMANTIDI and Liciu XUE (lxx): Merger Performance under Uncertain Efficiency Gains

CTN 80.2004 Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players

CTN 81.2004 Daniel DIERMEIER, Hülya ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation

CTN 82.2004 Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization and Coalition Government Formation

CTN 83.2004 Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

CTN 84.2004 Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): Economics: An Emerging Small World?

CTN 85.2004 Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players

IEM 86.2004 Finn R. FÖRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

KTHC 87.2004 Elissaios PAPYRAXIS and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

IEM 89.2004 A. MARKANDYA, S. PEDROSO and D. STREMIKIE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

GG 90.2004 Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

PRA 91.2004 Sergei IZMALKOV (lxx): Multi-Unit Open Ascending Price Efficient Auction

KTHC 92.2004 Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures

KTHC 93.2004 Massimo DEL GAITTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus devolution

CCMP 94.2004 Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Implications of Climate Change: Sea Level Rise

CCMP 95.2004 Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

CTN 96.2004 Gustavo BERGANTIÑOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

CTN 97.2004 Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

GG 98.2004 Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

SIEV 100.2004 Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

NRM 102.2004 Valentina BOSETTI and David TOMBERLIN: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

CCMP 103.2004 Alessandra GORIA e Gretel GAMBARELLI: The Economics of Warm Glow: A Note on Consumer’s Behavior

PRA 106.2004 Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

PRA 107.2004 Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

SIEV 108.2004 Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo REDONDO: Investment in Hospital Care Technology under Different Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

CTN 109.2004 Somdeb LAHIRE: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results

NRM 110.2004 Giuseppe DI VITA: Natural Resources Dynamics: Another Look

SIEV 111.2004 Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

KTHC 112.2004 Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

SIEV 113.2004 Paolo A.L.D. NUNES and Laura ONOFRI: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications

IEM 114.2004 Patrick CAYRIDE: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?

IEM 115.2004 Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies
IEM 116.2004 Valeria COSTANTINI and Francesco GRACCEVA: Social Costs of Energy Disruptions
Christian EGENHOFER, Kyriakos GIALOGLOU, Giacomo LUCIANI, Maroessa BOOTS, Martin SCHEEPERS,
IEM 117.2004 Valeria COSTANTINI, Francesco GRACCEVA, Anil MARKANDYA and Giorgio VICINI: Market-Based Options for Security of Energy Supply
IEM 119.2004 Giacomo LUCIANI: Security of Supply for Natural Gas Markets: What is it and What is it not?
IEM 120.2004 L.J. de VRIES and R.A. HAKVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets
KTHC 121.2004 Economic
NRM 122.2004 Carlo GIUPPONI, Jaroslav MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application
ETA 124.2004 Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited
NRM 125.2004 Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta IVALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach
PRA 126.2004 Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic
CCMP 127.2004 Maria BERRITTELLA, Andrea BIGANO, Roberto RISON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism
NRM 129.2004 Eliafas PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth
PRA 130.2004 Bernardo BORTOLOTTI and Mara FACCI: Reluctant Privatization
IEM 133.2004 Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited
ETA 134.2004 Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma
SIEV 135.2004 Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys
ETA 137.2004 Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČÍK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game
CCMP 139.2004 Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy
NRM 140.2004 Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis
PRA 141.2004 Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incomplete Contracts
PRA 143.2004 David GOLDREICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions
PRA 144.2004 Roberto BURGuet (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economics
PRA 147.2004 Claudio MEZZETTI, Aleksandar PEKEČ and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price Auctions
PRA 148.2004 John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
PRA 149.2004 Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions
PRA 150.2004 François DEGEORGE, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why Bookbuilding is Dominating Auctions
CCMP 151.2004 Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification, Internal Institution and Pressure Groups in the Kyoto Protocol’s Adoption Process
CCMP 152.2004 Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model
PRA 153.2004 Alejandro M. MANELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue Maximization and the Multiple-Good Monopoly
ETA 154.2004 Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism in Stabilization Policies?
CTN 155.2004 Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with Externalities
CCMP 156.2004 Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling

Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons

Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRIGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change

Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

Andrew BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

Hubert KEMPFF: Is Inequality Harmful for the Environment in a Growing Economy?

Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change

Lorenzo PELLEGRINI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption Democracy and Environmental Policy

Angelo ANTOCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model

Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers

Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

Carla MASSIDDA: Estimating the New Keynesian Phillips Curve for Italian Manufacturing Sectors

Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry

Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

Ali reza NAGHAV: Asymmetric Labor-Markets, Southern Wages, and the Location of Firms

Ali reza NAGHAV: Strategic Intellectual Property Rights Policy and North-South Technology Transfer

Mombert HOPPE: Technology Transfer Through Trade

Roberto ROSON: Platform Competition with Endogenous Multihoming

Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs: A Game Theoretic Perspective on Bottom-up Climate Regimes

Fausto CAVAL LADO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method

Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria

Wietze LIE: Decomposition of CO2 Emissions over 1980–2003 in Turkey

Somdeh LAHRF: The Core of Directed Network Problems with Quotas

Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: Perceived Realism, Threat and WTP Estimates for Biodiversity Protection

Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>