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Abstract

We present a taxonomy of myopic stability concepts for hedonic games in terms
of deviations, and discuss the status of the existence problems of stable coalition
structures. In particular, we show that contractual strictly core stable coalition
structures always exist, and provide su¢ cient conditions for the existence of con-
tractually Nash stable and weak individually stable coalition structures on the class
of separable games.
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1 Introduction

One possibility to study the process of coalition formation is to model it as a hedonic

coalition formation game. In such a model each player�s preferences over coalitions depend

only on the composition of members of her coalition. The formation of societies, social

clubs and groups are examples in which the hedonic aspect of coalition formation (cf. [11])

plays an important role. Given a hedonic game, the main interest is then in the existence

of outcomes (partitions of the set of players) that are stable in some sense. For example,

�Thanks are due to Anne van den Nouweland for helpful comments. D. Dimitrov gratefully aknowl-
edges �nancial support from the Alexander von Humboldt Foundation.
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the focus in [1], [3], [5], [6], [7], [8], and [10] is on the existence of core stable partitions,

while [4] and [5] contain su¢ cient conditions for the existence of Nash and individually

stable partitions as well.

Most of the stability concepts studied in the literature presuppose that the players in

the game are myopic in the sense that they do not take into account how their decisions to

form a coalition will a¤ect in the future the decisions of other players. Furthermore, these

stability concepts are based either on coalitional deviations (core and strict core stability)

or on individual deviations (Nash, individual, and contractual individual stability).

In this paper we suggest a uni�ed look at the nature of the possible deviations from a

given coalition structure, and o¤er a taxonomy of myopic stability concepts for hedonic

games. In doing so, we require, no matter how the additional properties of the deviation

look like, that there should always exist at least one player who has a strong incentive to

move. In this way we describe, including the �ve stability notions mentioned above, ten

di¤erent stability concepts for hedonic games. However, not all of these ten notions deserve

a special attention because, as it can be shown, there are always coalition structures that

are stable in the sense of four of these stability concepts and, moreover, without any

preference restrictions. This is the reason why we focus mainly on the existence of two of

the new stability concepts - contractual Nash stability and weak individual stability.

The paper is organized as follows. We introduce in Section 2 some preliminaries on

hedonic games and di¤erent stability concepts that can be found in the literature. A

taxonomy of myopic stability concepts is then presented in Section 3, where di¤erent

implications between the stability notions are discussed as well. Sections 4, 5, and 6 are

devoted to contractual strict core stability, contractual Nash stability and weak individual

stability, respectively. We show that contractual strictly core stable coalition structures

always exist. Moreover, on the class of separable games, a weak mutuality condition

su¢ ces for the existence of contractual Nash stable partitions, while a solidarity property

guarantees the existence of weak individually stable coalition structures. We conclude in

Section 7 with some �nal remarks.

2 Preliminaries

Consider a �nite set of players N = f1; 2; : : : ; ng. A coalition is a non-empty subset of N .
For each player i 2 N , we denote by Ai = fX � N j i 2 Xg the collection of all coalitions
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containing i. A collection � of coalitions is called a coalition structure if � is a partition

of N , i.e., the coalitions in � are pairwise disjoint and
S
X2�X = N . For each coalition

structure � and each player i 2 N , by �(i) we denote the coalition in � containing i, i.e.,
�(i) 2 � and i 2 �(i).
We assume that each player i 2 N is endowed with a preference �i over Ai, i.e.,

a binary relation over Ai which is re�exive, complete, and transitive. We denote by
�= (�1;�2; : : : ;�n) a pro�le of preferences �i for all i 2 N . Moreover, we assume that
the preference of each player i 2 N over coalition structures is purely hedonic, i.e., it is

completely characterized by �i in such a way that, for each coalition structure � and �0,
each player i weakly prefers � to �0 if and only if �(i) �i �0(i). A hedonic game hN;�i
is a pair of a �nite set N of players and a preference pro�le �.
Now we de�ne stability concepts based on coalitional deviations and on individual

deviations, which can be found in the literature. Let hN;�i be a hedonic game and let
� be a coalition structure. We say that

� � is core stable if there does not exist a coalition X such that

�X �i �(i) for all i 2 X;

� � is strictly core stable if there does not exist a coalition X such that

�X �i �(i) for all i 2 X, and

�X �j �(j) for some j 2 X;

� � is Nash stable if there does not exist a pair (i;X) of i 2 N and X 2 �[f;g such
that

�X [ fig �i �(i);

� � is individually stable if there does not exist a pair (i;X) of i 2 N and X 2 �[f;g
such that

�X [ fig �i �(i), and

�X [ fig �j X for all j 2 X;
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� � is contractual individually stable if there does not exist a pair (i;X) of i 2 N and

X 2 � [ f;g such that

�X [ fig �i �(i),

�X [ fig �j X for all j 2 X, and

��(i) n fig �j �(i) for all j 2 �(i) n fig.

Observe that strict core stability implies core stability, Nash stability implies individual

stability, and individual stability implies contractual individual stability. Moreover, strict

core stability implies individual stability as well.

3 Taxonomy and interpretations

In this section, we �rst de�ne several sets of coalitions capturing the nature of deviating

coalitions for those stability concepts introduced in the previous section. Then, in terms

of these sets, some new stability concepts are introduced.

Let hN;�i be a hedonic game, and let � be a coalition structure. By all(�) we

denote the set of all possible deviations from �, i.e.,

all(�) = 2N n (� [ f;g):

We next de�ne the sets weak(�), strong(�), nash(�), and cont(�) as follows:

strong(�) = fX 2 all(�) j 8i 2 X [X �i �(i)]g;

weak(�) = fX 2 all(�) j 8i 2 X [X �i �(i)] and 9i 2 X [X �i �(i)]g;

nash(�) = fX 2 all(�) j 9i 2 X [X n fig 2 � [ f;g and X �i �(i)]g;

cont(�) = fX 2 all(�) j 8i 2 N nX [�(i) nX �i �(i)]g:

Then, we have the following observation.

Observation 1 The stability concepts introduced in the previous section can be described

in terms of weak(�), strong(�), nash(�), and cont(�) as follows:

� is core stable , strong(�) = ;;
� is strictly core stable , weak(�) = ;;
� is Nash stable , nash(�) = ;;
� is individually stable , nash(�) \weak(�) = ;;
� is contractual individually stable , nash(�) \ cont(�) \weak(�) = ;:

4



Our �rst example is meant to illustrate the usefulness of de�ning stability concepts in

terms of the above sets of deviations.

Example 1 Consider a hedonic game hN;�i with N = f1; 2; 3g and �= (�1;�2;�3)
de�ned as follows:

f1; 2g �1 f1g �1 f1; 2; 3g �1 f1; 3g;
f1; 2; 3g �2 f1; 2g �2 f2; 3g �2 f2g;
f1; 2; 3g �3 f1; 3g �3 f2; 3g �3 f3g:

From jN j = 3, there are �ve possible coalition structures, and according to the preference
pro�le �, the sets weak(�), strong(�), nash(�), and cont(�) for each coalition
structure � are as follows.

� weak(�) strong(�)
ff1g; f2g; f3gg ff1; 2g; f2; 3gg ff1; 2g; f2; 3gg
ff1; 2g; f3gg ff2; 3gg ;
ff1; 3g; f2gg ff1g; f1; 2g; f2; 3g; f1; 2; 3gg ff1g; f1; 2g; f1; 2; 3gg
ff1g; f2; 3gg ff1; 2gg ;
ff1; 2; 3gg ff1gg ff1gg

� nash(�) cont(�)
ff1g; f2g; f3gg ff1; 2g; f1; 3g; f2; 3gg ff1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg
ff1; 2g; f3gg ff1; 2; 3gg ff1; 2; 3gg
ff1; 3g; f2gg ff1g; f1; 2g; f1; 2; 3gg ff3g; f2; 3g; f1; 2; 3gg
ff1g; f2; 3gg ; ff1; 2; 3gg
ff1; 2; 3gg ff1gg ff2; 3gg

For this hedonic game, we have

� two core stable coalition structures ff1; 2g; f3gg and ff1g; f2; 3gg,

� no strictly core stable coalition structure,

� one Nash stable coalition structure ff1g; f2; 3gg,

� two individually stable coalition structures ff1; 2g; f3gg and ff1g; f2; 3gg,

� three contractual individually stable coalition structures ff1; 2g; f3gg, ff1g; f2; 3gg,
and ff1; 2; 3gg.
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all(�) weak(�) strong(�)

all(�)
strict core
stability core stability

nash(�) Nash stability individual
stability

weak
individual
stability

cont(�)
contractual
strict core
stability

contractual
core stability

nash(�) \ cont(�) contractual
Nash stability

contractual
individual
stability

weak
contractual
individual
stability

Table 1: Correspondences between stability concepts and sets of coalitions

From the other combinations of weak(�), strong(�), nash(�), and cont(�), we

obtain several other stability concepts, namely

� is weak individually stable , nash(�) \ strong(�) = ;;
� is contractual strictly core stable , cont(�) \weak(�) = ;;
� is contractually core stable , cont(�) \ strong(�) = ;;
� is contractually Nash stable , nash(�) \ cont(�) = ;;
� is weak contractual individually stable , nash(�) \ cont(�) \ strong(�) = ;:

The correspondences between the stability concepts and the sets of coalitions all(�),

weak(�), strong(�), nash(�), and cont(�) are shown in Table 1.

For example, � is weak individually stable if nash(�)\strong(�) = ;, which means
that there does not exist a pair (i;X) of i 2 N and X 2 � [ f;g such that every player
j 2 X [ fig is strictly better o¤ when player i joins X (i.e., X [ fig �j �(j) for all
j 2 X [ fig). Clearly, weak individual stability is implied by core stability, because
nash(�) \ strong(�) = ; when strong(�) = ;. On the other hand, weak individual
stability is also implied by individual stability, because strong(�) � weak(�) and

hence nash(�) \ strong(�) = ; when nash(�) \weak(�) = ;.

Example 2 Consider the hedonic game hN;�i de�ned in Example 1. For this game, we
have

6



� two weak individually stable coalition structures ff1; 2g; f3gg and ff1g; f2; 3gg;

� three contractual strictly core stable coalition structures ff1; 2g; f3gg, ff1g; f2; 3gg,
and ff1; 2; 3gg;

� three contractually core stable coalition structures ff1; 2g; f3gg, ff1g; f2; 3gg, and
ff1; 2; 3gg;

� two contractually Nash stable coalition structures ff1g; f2; 3gg, and ff1; 2; 3gg;

� three weak contractual individually stable coalition structures ff1; 2g; f3gg, ff1g; f2; 3gg,
and ff1; 2; 3gg.

Observe that, for every coalition structure �, we have the following inclusions:

strong(�) � weak(�) � all(�):

Hence, in each row of Table 1, the stability notion in the �rst column implies the oth-

ers, and the stability notion in the second column implies the one in the third column.

Moreover, the following inclusions also hold:

nash(�) \ cont(�) � nash(�)
� �

cont(�) � all(�):

Hence, in each column of Table 1, the stability notion in the �rst row implies the others,

the stability notion in the second row implies the one in the fourth row, and the stability

notion in the third row implies the one in the fourth row as well.

Now let us explain why there are two empty cells in Table 1. The �rst empty cell

corresponds to all(�)\all(�) = all(�) = ;. Observe that we have all(�) = ; if and
only if jN j = 1, which is the trivial case with the unique coalition partition � = fNg. The
second empty cell corresponds to a coalition structure � such that cont(�) \ all(�) =
cont(�) = ;. Notice that in this case it is not even indicated why a coalition X 2
cont(�) deviates from a coalition structure �, and hence, the notion of a deviation does

not make sense. Indeed, cont(�) = ; only if � = fNg; otherwise, N 2 cont(�).

4 Contractual strict core stability

We start our study of the new stability notions presented in the previous section by show-

ing that a contractual strictly core stable coalition structure always exists. As a related
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result, it was shown in [2] that, on any preference domain, a contractual individually stable

coalition structure always exists, where a coalition structure � is contractual individually

stable if and only if nash(�) \ cont(�) \weak(�) = ;. Here, we slightly extend this
result. Namely, we show that, on any preference domain, a contractual strictly core stable

coalition structure always exists. Recall that a coalition structure � is contractual strictly

core stable if

cont(�) \weak(�) = ;;

i.e., there does not exist a coalition X such that X �i �(i) for all i 2 X, X �j �(j) for
some j 2 X, and �(i) nX �i �(i) for all i 2 N nX.
According to the arguments in the previous section, for every coalition structure �,

we have the following inclusions:

nash(�) \ cont(�) \ strong(�) � nash(�) \ cont(�) \weak(�)
� �

cont(�) \ strong(�) � cont(�) \weak(�):

Hence, contractual strict core stability implies contractual core stability, contractual in-

dividual stability, and weak contractual individual stability. Our result implies that,

on any preference domain, there always exists a coalition structure which is contractual

strictly core stable, contractually core stable, contractual individually stable, and weak

contractual individually stable.

Proposition 1 A contractual strictly core stable coalition structure always exists.

Proof. A contractual strictly core stable coalition structure can be constructed by the

following algorithm:

Step 1. Set � := fNg.

Step 2. Repeats the following until cont(�) \weak(�) = ;:

� Find an X 2 cont(�) \weak(�).

� Set � := fY nX j Y 2 � and Y 6� Xg [ fXg.

Step 3. Return �.
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Let � be an arbitrary coalition structure such that cont(�)\weak(�) 6= ;, and let
X 2 cont(�) \weak(�). Then consider �0 = fY nX j Y 2 � and Y 6� Xg [ fXg.
Observe that �0 is a coalition structure as well. Thus, by starting with the coalition

structure fNg, a coalition structure will be obtained when the algorithm halts. Since the
algorithm halts when cont(�) \ weak(�) = ;, the outcome � of the algorithm is a

contractual strictly core stable coalition structure.

Moreover, for each i 2 N ,

� if �(i) \X = ;, we have �0(i) = �(i),

� if �(i) \X 6= ; and i 2 X, we have �0(i) = X �i �(i) from X 2 weak(�), and

� if �(i) \X 6= ; and i 62 X, we have �0(i) = �(i) nX �i �(i) from X 2 cont(�).

In other words, no player i is worse o¤ being in �0(i) than being in �(i). From

X 2 weak(�), there is at least one i 2 X such that �0(i) = X �i �(i). Observe that,
without being worse o¤, each player i can be better o¤ at most jAij � 1 = 2n�1� 1 times.
It follows then that Step 2 in the algorithm repeats at most n2n�1�n times, and therefore,
the algorithm halts.

Remark 2 Indeed, in [2] a similar algorithm was proposed for showing the existence of a

contractual individually stable coalition structure. Here we essentially show that a similar

argument works for a stronger stability concept as well.

5 Contractual Nash stability

The notion of contractual Nash stability applies to situations in which, in order to move

to another coalition, the corresponding player needs only the permission of her current

coalition to leave. Imagine for example a criminal society that is already partitioned into

groups. In such an environment it seems very plausible that it is easier for someone to

join a criminal group than to get a permission to leave an already existing group she is a

member of.

More formally, let hN;�i be a hedonic game, and let � be a coalition structure. As
de�ned previously, a partition � is contractually Nash stable if

nash(�) \ cont(�) = ;;
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i.e., there does not exist a pair (i;X) of i 2 N and X 2 �[f;g such that X[fig �i �(i),
and �(i) n fig �j �(i) for all j 2 �(i) n fig.
Before we precede to our result on contractual Nash stability, let us introduce the

domain of separable preferences and additive preferences.

De�nition 1 A preference pro�le �= (�1;�2; : : : ;�n) is separable if, for every i; j 2 N
with i 6= j and for each X 2 Ai with j 62 X,

� fi; jg �i fig if and only if X [ fjg �i X, and

� fi; jg �i fig if and only if X [ fjg �i X.

De�nition 2 A preference pro�le �= (�1;�2; : : : ;�n) is additive separable if, for
every i 2 N , there exists a real-valued function vi : N ! R such that for every X;Y 2 Ai

� X �i Y if and only if
P

j2X vi(j) �
P

j2Y vi(j).

For further purposes in this paper, we will rede�ne separability in the following manner.

For each i 2 N , let Gi, Ui, and Bi be the sets of desirable, neutral, and undesirable

coalitional partners, respectively, of player i, i.e.,

� Gi = fj 2 N n fig j fi; jg �i figg,

� Ui = fj 2 N n fig j fi; jg �i figg, and

� Bi = fj 2 N n fig j fi; jg �i figg.

Obviously, (Gi; Ui; Bi) is a partition of N n fig. Then, separability can be de�ned in
terms of (Gi; Ui; Bi) as follows. A preference pro�le �= (�1;�2; : : : ;�n) is separable if,
for every i; j 2 N with i 6= j and for each X 2 Ai n Aj,

� j 2 Gi if and only if X [ fjg �i X,

� j 2 Ui if and only if X [ fjg �i X, and

� j 2 Bi if and only if X [ fjg �i X.
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Let us now redirect our attention to the existence of contractually Nash stable coalition

structures. First, as a related result, it was shown in [4] that if the additive separable

preference domain is under consideration, then imposing symmetry (i.e., vi(j) = vj(i) for

every i; j 2 N) on players�preferences guarantees the existence of a Nash stable coalition
structure. Moreover, symmetry is a critical condition for this result in the sense that a

Nash stable coalition structure may fail to exist by weakening symmetry to mutuality.

Recall that a preference pro�le satis�es mutuality if, for every i; j 2 N , i 6= j,

� j 2 Gi if and only if i 2 Gj,

� j 2 Ui if and only if i 2 Uj, and

� j 2 Bi if and only if i 2 Bj.

Clearly, under additive separability, mutuality means that, for every i; j 2 N , i 6= j,

� vi(j) � 0 if and only if vj(i) � 0.

Notice further that, even with mutuality and on the additive separable preference do-

main, contractual Nash stability is strictly weaker than Nash stability. This is illustrated

by our next example containing a game for which a contractual Nash stable coalition

structure exists and no Nash stable coalition structure exists. This example is given in [3]

and used in [4] to show the nonexistence of individually stable coalition structures, which

implies the nonexistence of Nash stable coalition structures.

Example 3 Consider the hedonic game hN;�i with N = f1; 2; 3; 4; 5g and an additive
separable preference pro�le � de�ned by the following vis.

v1(1) = 0; v1(2) = 1; v1(3) = �4; v1(4) = �4; v1(5) = 2;
v2(1) = 2; v2(2) = 0; v2(3) = 1; v2(4) = �4; v2(5) = �4;
v3(1) = �4; v3(2) = 2; v3(3) = 0; v3(4) = 1; v3(5) = �4;
v4(1) = �4; v4(2) = �4; v4(3) = 2; v4(4) = 0; v4(5) = 1;
v5(1) = 1; v5(2) = �4; v5(3) = �4; v5(4) = 2; v5(5) = 0:

It can easily be veri�ed that vi(j) � 0 if and only if vj(i) � 0 for each i; j 2 N , i.e.,
mutuality is satis�ed. Observe that, for each coalition structure �, nash(�) 6= ; if jXj � 3
or jXj = 1 for some X 2 �. In fact, each coalition structure � contains at least one such
a coalition X. Therefore, a Nash stable coalition structure does not exist.
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Now consider the coalition structure � = fNg, and we show that � is contractually Nash
stable. Observe that nash(�) = ff1g; f2g; f3g; f4g; f5gg. Further, for each i 2 N , there
exists j 2 N such that j 6= i and vj(i) > 0. It follows that �(j) n fig = N n fig �j
N = �(i) for some j 2 N n fig. Hence, fig 62 cont(�) for each i 2 N . Therefore,
nash(�) \ cont(�) = ;, i.e., � is contractually Nash stable.

The next example shows that, again on the additive separable preference domain, con-

tractual Nash stability is strictly stronger than contractual individual stability. Namely,

for the hedonic game shown in the example, no contractual Nash stable coalition structure

exists and a contractual individual stability exists.

Example 4 Consider the hedonic game hN;�i with N = f1; 2; 3; 4g and an additive
separable preference pro�le � de�ned by the following vis.

v1(1) = 0; v1(2) = 0; v1(3) = �2; v1(4) = 1;
v2(1) = �2; v2(2) = 0; v2(3) = 0; v2(4) = 1;
v3(1) = 0; v3(2) = �2; v3(3) = 0; v3(4) = 1;
v4(1) = 0; v4(2) = 0; v4(3) = 0; v4(4) = 0:

As mentioned in the previous section, on any preference domain, a contractual individ-

ually stable coalition structure always exists. Let � = ff1g; f2g; f3; 4gg. Then, we have
weak(�) = ff1; 4g; f2; 4gg, but f1; 4g; f2; 4g 62 cont(�) from f3g �3 f3; 4g. Thus,
nash(�) \ cont(�) \weak(�) = ;, i.e., � is contractual individually stable.
Now we show that a contractually Nash stable coalition structure does not exist. Ob-

serve that we have v1(3) = v2(1) = v3(2) = �2 and
P

j2X vi(j) � 1 for each i 2 N and

for each X 2 Ai. Thus, for each coalition structure �,

� f2g 2 nash(�) \ cont(�) if �(1) = �(2),

� f1g 2 nash(�) \ cont(�) if �(1) = �(3),

� f3g 2 nash(�) \ cont(�) if �(2) = �(3),

and hence, � is contractually Nash stable only if �(1), �(2), �(3) are three di¤erent

coalitions. Let � be a coalition structure for which this is indeed the case. Then, we have

� f1; 4g 2 nash(�) \ cont(�) if �(4) = f4g,

� f1; 3; 4g 2 nash(�) \ cont(�) if �(4) = f1; 4g,
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� f1; 2; 4g 2 nash(�) \ cont(�) if �(4) = f2; 4g,

� f2; 3; 4g 2 nash(�) \ cont(�) if �(4) = f3; 4g.

Therefore, nash(�)\cont(�) 6= ; for each coalition structure �, i.e., a contractually
Nash stable coalition structure does not exist for this game.

We are ready now to provide a su¢ cient condition for the existence of a contractu-

ally Nash stable coalition structure. In order to state our result, we allow for a larger

domain, namely the domain of separable preference pro�les, and impose a weaker version

of mutuality.

Let �= (�1;�2; : : : ;�n) be a preference pro�le. We say that � is weakly mutual if,

for each i 2 N ,

� i 2 Gj for some j 2 N if Gi 6= ;.

Clearly, weak mutuality is implied by mutuality.

Proposition 2 Let hN;�i be a separable hedonic game satisfying weak mutuality. Then,
a contractually Nash stable coalition structure exists.

Proof. Let hN;�i be as above and let S =
S
i2N Gi. By de�nition, for each i 2 S, there

exists j 2 N such that i 2 Gj, and conversely, for each i 2 N nS, we have i 62 Gj for each
j 2 N . Then, let � be a coalition structure de�ned as follows:

� =

�
fSg [ ffig j i 2 N n Sg if S 6= ;;
ffig j i 2 Ng otherwise.

Observe that we have �(i) = S if i 2 S, and otherwise �(i) = fig. In the following, we
show that � is contractually Nash stable if � satis�es weak mutuality, i.e., i 2 Gj for
some j 2 N if Gi 6= ;. By de�nition of nash(�), it su¢ ces to show that fig [ �(j) 62
nash(�) \ cont(�) for each i; j 2 N .
Let i 2 N n S. By de�nition, we have �(i) = fig (no matter S is empty or not).

Moreover, we have i 62 Gj for each j 2 N , and by weak mutuality, we have Gi = ; (i.e.,
j 2 Ui [Bi for each j 2 N). It follows that fig [�(j) �i fig = �(i) for each j 2 N , and
therefore, fig [ �(j) 62 nash(�) for each j 2 N .
Let i 2 S. By de�nition, we have �(i) = S, and there exists k 2 N such that i 2 Gk,

and thus, Gk 6= ;. By weak mutuality, we have k 2 G` for some ` 2 N , and thus, k 2 S
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as well. From i 2 Gk and i 2 S = �(k), we have �(k) n (fig [ �(j)) �k �(k) for each
j 2 N n S, and thus, fig [ �(j) 62 cont(�) for each j 2 N n S. Moreover, we have
fig [ �(j) = �(i) 62 cont(�) for each j 2 S. Therefore, fig [ �(j) 62 cont(�) for each
j 2 N .

Remark 3 Observe that players�preferences in the hedonic game of Example 4 are sepa-

rable (more precisely, additive separable), but they do not satisfy weak mutuality. Hence,

weak mutuality is a critical condition for the existence of contractually Nash stable coali-

tion structures.

6 Weak individual stability

We turn now to the study of weak individual stability. Recall that a coalition structure

� is weak individually stable if

nash(�) \ strong(�) = ;;

i.e., there does not exist a pair (i;X) of i 2 N and X 2 �[f;g such that X[fig �j �(j)
for all j 2 X [ fig.
Notice that, as it can be illustrated by means of Example 3 (cf. [4]), there are additive

separable hedonic games satisfying mutuality with no weak individually stable coalition

structures. It follows that even if preferences are additive separable, requiring mutuality

does not su¢ ce for the existence of weak individually stable coalition structure.

In order to present an existence result for weak individually stable coalition structures,

we introduce a solidarity condition. It has a very intuitive interpretation and says that if

a player j likes another player i, then all �undesirable�players for i are also �undesirable�

for j.

Let �= (�1;�2; : : : ;�n) be a preference pro�le. We say that � satis�es solidarity if,
for all i; j 2 N ,

� i 2 Gj implies Bi � Bj [ fjg.

In our next lemma, we show an important implication of this condition.

Lemma 4 Let hN;�i be a hedonic game satisfying solidarity. For every i; j 2 N with

i 6= j, Gi [ Ui [ fig = Gj [ Uj [ fjg if i 2 Gj and j 2 Gi.
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Proof. Let hN;�i be as above, and let i; j 2 N be such that i 6= j, i 2 Gj, and j 2 Gi. By
solidarity, we have Bi � Bj[fjg and Bj � Bi[fig. It follows that Gj[Uj � Gi[Ui[fig
and Gi [ Ui � Gj [ Uj [ fjg. Therefore, Gi [ Ui [ fig = Gj [ Uj [ fjg.
As it turns out, this implication of the solidarity condition guarantees the existence

of weak individually stable coalition structures on the class of separable games.

Proposition 3 Let hN;�i be a separable hedonic game satisfying solidarity. Then, a
weak individually stable coalition structure exists.

Proof. Let hN;�i be as above and let � be the coalition structure constructed by the
following algorithm.

Step 1. Set � := ; and R := N .

Step 2. Repeats the following until R = ;:

� Find one of the largest coalitions X � R such that for each nonempty proper
subset Y of X, there exists pair (i; j) of i 2 Y and j 2 X n Y satisfying i 2 Gj
and j 2 Gi.

� Set � := � [ fXg and R := R nX.

Step 3. Return �.

In graph theoretical terms, each X 2 � is a connected component of the undirected
graph G = (N;E) with node set N and edge set E = ffi; jg � N j i 6= j; i 2 Gj; j 2
Gig. Hence, � is the unique partition of N into connected components of G = (N;E).

Obviously, � constructed by this algorithm is a coalition structure. By applying Lemma

4 it can be easily shown that Gi [ fig = Gj [ fjg for each X 2 � and for every i; j 2 X,
which implies that X � Gi [ fig for each i 2 X.
Now we show that � is weak individually stable by contradiction. Suppose there is a

pair (i;X) of i 2 N and X 2 � [ f;g such that X [ fig �j �(j) for all j 2 X [ fig, i.e.,
X [ fig 2 nash(�) \ strong(�). For each i 2 N , we have �(i) � Gi [ fig from the

construction of �, which implies �(i) �i fig. Therefore, fig 62 nash(�), i.e., X 6= ;.
Let X 2 �. From X [ fig �i �(i), it is obvious that X 6= �(i), and by separability,

there exists k 2 X such that k 2 Gi. From X [fig �j X for each j 2 X and separability,

we have i 2 Gk. Thus, X [ �(i) is such that, for each nonempty proper subset Y of
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X [ �(i), there exists pair (i; j) of i 2 Y and j 2 (X [ �(i)) n Y satisfying i 2 Gj and
j 2 Gi, which contradicts to the largestness of each coalition in �.
Notice �nally that if we narrow the domain of separable preferences by requiring that

each player views every other player either as a desirable or as a undesirable coalitional

partner (i.e., Ui = ; for all i 2 N), then the solidarity condition guarantees the existence
of individually stable coalition structures as well. This is due simply to the fact that in

such an environment weak individual stability and individual stability coincide.

7 Conclusion

The taxonomy of stability concepts for hedonic games o¤ered in this paper relies on

the simple observation that each deviation from a coalition structure re�ects di¤erent

degrees of social intervention in one�s strong wish to migrate to another group of players.

The di¤erences in the social intervention were taken into account when constructing the

di¤erent sets of coalitional deviations that, in turn, led to several new stability notions.

It was shown that contractual strictly core stable coalition structures always exist, while

on the class of separable games one needs additional conditions in order to assure the

existence of contractually Nash stable and weak individually stable coalition structures.

As mentioned in the Introduction, our taxonomy considers only myopic stability con-

cepts. However, it would be worthy to place the newly introduced stability notions in a

framework in which players are farsighted in the sense that they take into account how

their decisions to form a coalition will a¤ect in the future the decisions of other play-

ers. If players�preferences are strict, it was shown in [9] that all core stable structures

are coalitional farsightedly stable as well, and that a corresponding result holds true for

Nash stability but neither for individual stability nor for contractual individual stability.

Since both contractual strict core stability and weak individual stability are weaker con-

cepts than individual stability, one would expect that the corresponding farsighted notions

would re�ne their myopic counterparts. On the other hand, contractual Nash stability is

weaker than Nash stability and stronger than contractual individual stability. Hence, one

needs further investigations on how the relationship between the corresponding farsighted

and myopic counterparts of this stability notion would look like.
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