A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Ronneberger, Kerstin; Berrittella, Maria; Bosello, Francesco; Tol, Richard S.J. #### **Working Paper** Klum@Gtap: Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling Experiment Nota di Lavoro, No. 102.2006 #### **Provided in Cooperation with:** Fondazione Eni Enrico Mattei (FEEM) Suggested Citation: Ronneberger, Kerstin; Berrittella, Maria; Bosello, Francesco; Tol, Richard S.J. (2006): Klum@Gtap: Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling Experiment, Nota di Lavoro, No. 102.2006, Fondazione Eni Enrico Mattei (FEEM), Milano This Version is available at: https://hdl.handle.net/10419/74005 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. # Klum@Gtap: Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling Experiment Kerstin Ronneberger, Maria Berrittella, Francesco Bosello and Richard S.J. Tol NOTA DI LAVORO 102.2006 #### **AUGUST 2006** CCMP - Climate Change Modelling and Policy Kerstin Ronneberger, Deutsches Klimarechenzentrum GmbH and Research Unit Sustainability and Global Change, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg Maria Berrittella, Centro Interdipartimentale di Ricerche sulla Programmazione Informatica dell'Economia e delleTecnologie (CIRPIET), University of Palermo Francesco Bosello, Fondazione Eni Enrico Mattei and International Centre for Theoretical Physics Richard S.J. Tol, Research Unit Sustainability and Global Change, Hamburg University and Centre for Marine and Atmospheric Science, Institute for Environmental Studies, Vrije Universiteit and Engineering and Public Policy, Carnegie Mellon University This paper can be downloaded without charge at: The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract=927431 The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei # Klum@Gtap: Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model. A Coupling Experiment #### **Summary** In this paper the global agricultural land use model KLUM is coupled to an extended version of the computable general equilibrium model (CGE) GTAP in order to consistently assess the integrated impacts of climate change on global cropland allocation and its implication for economic development. The methodology is innovative as it introduces dynamic economic land-use decisions based also on the biophysical aspects of land into a state-of-the-art CGE; it further allows the projection of resulting changes in cropland patterns on a spatially more explicit level. A convergence test and illustrative future simulations underpin the robustness and potentials of the coupled system. Reference simulations with the uncoupled models emphasize the impact and relevance of the coupling; the results of coupled and uncoupled simulations can differ by several hundred percent. **Keywords:** Land-Use Change, Computable General Equilibrium Modeling, Integrated Assessment, Climate Change **JEL Classification:** C68, Q15 We like to thank Katrin Rehdanz for many valuable discussions and helpful comments. Hom Pant and Andrzej Tabeau as well as the other participants of the CGE-Fest held in Hamburg in June 2005 helped to improve the coupling by relevant comments and questions. The Volkswagen Foundation and the Michael Otto Foundation provided welcome financial support. *Address for correspondence:* Kerstin Ronneberger Deutsches Klimarechenzentrum GmbH Bundesstrasse 55 20146 Hamburg Germany Phone: +49 40 41173 322 Fax: +49 40 41173 270 E-mail: ronneberger@dkrz.de # KLUM@GTAP: INTRODUCING BIOPHYSICL ASPECTS OF LAND-USE DECISIONS INTO A GENERAL EQUILIBRIUM MODEL #### A COUPLING EXPERIMENT Kerstin Ronneberger*a,b, Maria Berrittella^c, Francesco Bosello^{d,e}, and Richard S.J. Tol^{b,f,g} ^aDeutsches Klimarechenzentrum GmbH, Hamburg, Germany ^bResearch Unit Sustainability and Global Change, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg, Germany ^cCentro Interdipartimentale di Ricerche sulla Programmazione Informatica dell'Economia e delle Tecnologie (CIRPIET), University of Palermo, Palermo, Italy ^dFondazione Eni Enrico Mattei, Venice, Italy ^eInternational Centre for Theoretical Physics, Trieste, Italy ^fInstitute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands ^gEngineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA #### April 2006 #### Abstract In this paper the global agricultural land use model KLUM is coupled to an extended version of the computable general equilibrium model (CGE) GTAP in order to consistently assess the integrated impacts of climate change on global cropland allocation and its implication for economic development. The methodology is innovative as it introduces dynamic economic land-use decisions based also on the biophysical aspects of land into a state-of-the-art CGE; it further allows the projection of resulting changes in cropland patterns on a ^{*}Corresponding author: Deutsches Klimarechenzentrum GmbH; Bundesstrasse 55, 20146 Hamburg, Germany; e-mail: ronneberger@dkrz.de; Phone: +49 40 41173 322; Fax: +49 40 41173 270 spatially more explicit level. A convergence test and illustrative future simulations underpin the robustness and potentials of the coupled system. Reference simulations with the uncoupled models emphasize the impact and relevance of the coupling; the results of coupled and uncoupled simulations can differ by several hundred percent. **Keywords:** Land-use change, computable general equilibrium modeling, integrated assessment, climate change #### 1 Introduction Land use is one of the most important links of economy and biosphere, representing a direct projection of human action on the natural environment. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Among these, agricultural production is still the dominant land use accounting for 34% of today's land surface (Leff et al., 2004), compared to forestry covering 29% (FAO, 2003) and urban area which is taking less than 1% of the land surface (Grübler, 1994). On the one hand, agricultural management practices and cropping patterns have a vast effect on biogeochemical cycles, freshwater availability and soil quality; on the other hand, the same factors govern the suitability and productivity of land for agricultural production. Changes in agricultural production directly determine the development of the world food situation. Thus, to consistently investigate the future pathway of economic and natural environment, a realistic representation of agricultural land-use dynamics on the global perspective is essential. Traditionally, land-use decisions are modeled either from an economic or geographical perspective. Geographical models focus on the development of spatial patterns of land-use types by analyzing land suitability and spatial interaction. Allocation of land use is based either on empirical-statistical evidence or formulated as decision rules, based on case studies and "common sense". They add information about fundamental constraints on the supply side, but they lack the potential to treat the interplay between supply, demand and trade endogenously. Economic models focus on drivers of land-use change on the side of food production and consumption. Starting out from certain preferences, motivations, market and population structures, they aim to explain changes in land-intensive sectors. The biophysical aspects of land as well as the spatial explicitness of land-use decisions are commonly not captured in such models. A new branch of integrated models seek to combine the strengths of both approaches in order to make up for their intrinsic deficits. This is commonly done by coupling existing models, which describe the economy to a biosphere model, or by improving the representation of land in economic trade models. For a more detailed discussion of different approaches to large scale land-use modeling, see Heistermann *et. al.* (2006). We present here the coupled system KLUM@GTAP of the global agricultural land-use model KLUM (*Kleines* Land Use Model, (Ronneberger et al., 2005)) with GTAP-EFL model, which is an extended version of the Global Trade Analysis Project model GTAP (Hertel, 1997). The main aim of the coupled framework is to improve the representation of the biophysical aspects of land-use decisions in the computable general equilibrium model (CGE). This is the first step towards an integrated assessment of climate change impacts on economic development and future crop patterns. A similar approach was realized in the
EURURALIS project (Klijn et al., 2005), where the Integrated Model to Assess the Global Environment IMAGE (Alcamo et al., 1994; Zuidema et al., 1994; RIVM, 2001) has been coupled to a version of GTAP with extended land use sector (van Meijl et al., 2006, in press). In this coupling, the change in crop and feed production, determined by GTAP, is used to update the regional demand for crops and pasture land in IMAGE. Then IMAGE allocates the land such as to satisfy the given demand, using land productivities, which are updated by management induced yield changes as determined by GTAP. The deviation of the different changes in crop production determined by the two models is interpreted as yield changes resulting from climatic change and from changes in the extent of used land¹. These yield changes together with an endogenous feed conversion factor are fed back to GTAP. The land allocation is modeled on grid level by means of specific allocation rules based on factors such as distance to other agricultural land and water bodies. Our approach differs in several ways. In our coupling, the land allocation is exogenous in GTAP-EFL and replaced by KLUM. The land-use decisions are limited to crops, excluding livestock. Instead of crop production changes, we directly use the crop price changes determined in GTAP-EFL. Our allocation decisions are not based on allocation rules aiming to satisfy a defined demand, but are modeled by a dynamic allocation algorithm, which is driven by profit maximization under the assumption of risk aversion and decreasing return to scales. This ensures a strong economic background of the land allocation in KLUM. ¹A change in the extent implies a change in the yield structure of the used land Another approach to introduce biophysical aspects of land into economic model is the so called Agro-Ecological Zones (AEZ) methodology (Darwin et al., 1995; Fischer et al., 2002). According to the dominant climatic and biophysical characteristics, land is subdivided into different classes, reflecting the suitability for and productivity of different uses. GTAP is currently extending its databases and models to include such an improved representation of land, known as GTAP-AEZ (Lee et al., 2005). From this our approach differs in three crucial ways. The standard version of GTAP has one type of land, whereas the land use version has 18 types of land. The 18 land types are characterized by different productivities. Each GTAP region has a certain amount of land per land type, and uses part of that. The first difference is that we have a more geographically explicit representation of land. Like GTAP-AEZ, KLUM@GTAP has aggregate land use; but unlike GTAP-AEZ, KLUM@GTAP has spatially disaggregated land use as well. The allocation algorithm of KLUM is scale-independent. In the present coupling, KLUM is calibrated to country-level data, but Ronneberger et al. (2006) use KLUM on a 0.5×0.5 degree grid (for Europe only). The second difference is that KLUM@GTAP does not have land classified by different productivity, but that productivities vary continuously over space, again allowing the direct coupling to large scale crop growth models (Ronneberger et al., 2006) to simulate implications of environmental changes. In GTAP-AEZ, a change in e.g. climate or soil quality requires an elaborate reconstruction of the land database. A third difference is that KLUM@GTAP has consistent land transitions. In GTAP and GTAP-AEZ, a shift of land from crop A to crop B implies a (physically impossible) change in area; this drawback is the result from calibrating GTAP to value data (KLUM@GTAP uses area) and from normalizing prices to unity and using arbitrary units for quantities. In the next section we outline the basics of GTAP-EFL and KLUM and describe the coupling procedure. The greatest challenge of the coupling is to guarantee the convergence of the two models to a common equilibrium. In section 3 we discuss the convergence conditions and present the results of a convergence testing with the coupled system. The system is used to simulate the impact of climate change; the influence of a baseline scenario and the coupling on the results are highlighted by reference situations. Section 4 outlines the different simulation setups. The results of these simulations are presented in section 5. Section 6 summarizes and concludes. #### 2 The models #### 2.1 GTAP-EFL In order to assess the systemic general equilibrium effects of climate change on agriculture and land use, we use a multi-region world CGE model called GTAP-EFL, which is a refinement of the GTAP model² (Hertel, 1997) in the GTAP-E version, modified by Burniaux and Truong (2002)³. Basically, in the GTAP-EFL model finer industrial and regional aggregation levels are considered (17 sectors and 16 regions, reported in Table A1 and A2). Furthermore, in GTAP-EFL a different land allocation structure has been modeled for the coupled procedure. As in all CGE frameworks, the standard GTAP model makes use of the Walrasian perfect competition paradigm to simulate adjustment processes. Industries are modeled through a representative firm, which maximizes profits in perfectly competitive markets. The production functions are specified via a series of nested Constant Elasticity of Substitution (CES) functions (Figure A1). Domestic and foreign inputs are not perfect substitutes, according to the so-called Armington assumption, which accounts for product heterogeneity. A representative consumer in each region receives income, defined as the service value of national primary factors (natural resources, land, labor and capital). Capital and labor are perfectly mobile domestically, but immobile internationally. Land (imperfectly mobile) and natural resources are industry-specific. The national income is allocated between aggregate household consumption, public consumption and savings (Figure A2). The expenditure shares are generally fixed, which amounts to saying that the top level utility function has a Cobb-Douglas specification. Private consumption is split in a series of alternative composite Armington aggregates. The functional specification used at this level is the Constant Difference in Elasticities (CDE) form: a non-homothetic function, which is used to account for possible differences in income elasticities for the various consumption goods. A money metric measure of economic welfare, the equivalent variation, can be computed from the model output. ²The GTAP model is a standard CGE static model distributed with the GTAP database of the world economy (www.gtap.org). For detailed information see Hertel (1997) and the technical references and papers available on the GTAP website. ³The GTAP variant developed by Burniaux and Truong (2002) is best suited for the analysis of energy markets and environmental policies. There are two main changes in the basic structure. First, energy factors are separated from the set of intermediate inputs and inserted in a nested level of substitution with capital. This allows for more substitution possibilities. Second, database and model are extended to account for CO2 emissions related to energy consumption. In the standard GTAP model land input is exogenously fixed at the regional level; it is imperfectly substitutable among different crops or land uses. Indeed a transformation function distributes land among 5 sectors (rice, wheat, other cereals, vegetables & fruits and animals) in response to changes in relative rental rates. Substitutability is equal among all land-use types. Only for the coupled procedure, in the GTAP-EFL model sectoral land allocation becomes exogenous and consequently the total land supply change becomes endogenous. The latter is defined as the sum of the land allocation change per sector weighted by the share of the value of purchases of land by firms in sector j on the value of land in region r, all evaluated at market prices. #### 2.2 KLUM The global agricultural land-use model KLUM is designed to link economy and vegetation by reproducing the key-dynamics of global crop allocation (see Ronneberger et al. (2005) for a detailed description of the model and its evaluation). For this, the maximization of achievable profit under risk aversion is assumed to be the driving motivation underlying the simulated land-use decisions. In each spatial unit, the expected profit per hectare, corrected for risk, is calculated and maximized separately to determine the most profitable allocation of different crops on a given amount of total agricultural area (see the Appendix for a mathematical formulation). Additionally, decreasing returns to scale is assumed. Mathematically the sum of these local optima is equivalent to the global optimum, assuring an overall optimal allocation. Profitability of a crop is determined by its price and yield, which are the driving input parameters to the model. Furthermore, a cost parameter per crop and a risk aversion factor for each spatial unit are calibrated according to observed data. Risk is quantified by the variance of profits. For the coupling, we calibrate KLUM to 4 crop aggregates: wheat, rice, other cereal crops and vegetables & fruits so as to match the crop aggregation of GTAP-EFL. For the calibration we use data of the FAOSTAT (2004) and World Bank (2003). Yields are specified for each country, prices instead are defined for the 16 different regions equivalent to the regional resolution of GTAP-EFL. Missing data points are adopted from adjacent and/or similar countries of the same region, where similar is defined according to the yield structure of the respective countries. Costs are adjusted for the total amount of agricultural area to guarantee the consistency of results on different scales (see Appendix B for further details). For all countries the cost parameters as well as the risk aversion factor are determined in the calibration and are hold constant during all simulations. #### 2.3
The coupling procedure The coupling of the two models is established by exchanging crop prices and management induced yield changes, as determined by GTAP-EFL, with land allocation changes, as calculated by KLUM. In the coupled framework the crop allocation in KLUM is determined on country level. Aggregated to the regional resolution the percentage change of allocated area shares is fed into GTAP-EFL. Based on this the resulting price and management induced yield changes are calculated by GTAP-EFL and used to update prices and yields in KLUM. In GTAP-EFL management changes are modeled as the substitution among primary and among intermediate inputs. By using, for instance, more labor than capital or more machines than fertilizer, the per-hectare productivity of the land is changed. We determine the management induced changes in yield $\partial \alpha_i$ by adjusting the change qo_i of the total production of crop i by the change in its harvested area $qoes_i$, according to: $$\partial \alpha_i = \frac{qo_i - qoes_i}{1 + qoes_i} \tag{1}$$ The coupling can be divided into 3 methodologically different procedures: a convergence test, a baseline simulation transferring both model to the future and the simulation of the impact of climate change (see Figure 1). Convergence test The convergence test aims to investigate the convergence of the coupled system and, in case a divergence is detected, to adjust accordingly the key parameters in order to reach convergence. The productivity of land for all crops in all regions in GTAP-EFL is shocked with an uniform increase of 2%⁴. Resulting price and yield changes ⁴The chosen quantity of change is arbitrary. Indeed any perturbation to the initial GTAP equilibrium would have originated a set of changes in crops prices that could have been used as the first input in KLUM to start the convergence test. including the original land productivity changes are applied to KLUM. The land allocation changes as calculated by KLUM are appended to the original productivity changes and reimposed on GTAP-EFL. This loop is repeated for ten iterations. This procedure is run with different elasticities of substitution for primary factors in GTAP-EFL. The determined elasticity for which the coupled model converges is then used in the succeeding simulations (see section 3 for further details). Baseline simulation The baseline simulation transfers both models to a consistent benchmark of the future. The values of key economic variables shaping the 1997 equilibrium in GTAP are updated according to likely future changes. This step is done with the GTAP model with endogenous land allocation. The resulting changes thus also imply land allocation changes with respect to 1997. Crop price and land productivity changes are imposed onto KLUM, which also determines land allocation changes relative to 1997. It should be noted that only the deviations from the mean change in land productivity are applied to KLUM; the general mean change implies an increase in costs and riskiness common to all crops and is thus effectless for the simulation results. The differences of land allocation changes in KLUM relative to GTAP-EFL are applied to GTAP-EFL with exogenous land allocation on top of the new benchmark; the land allocation in the benchmark is thus adjusted to that in KLUM. The results of this simulation mark the final benchmark of the future situation. Corresponding price and yield changes are used to adjust prices and yields in KLUM to the final situation consistent with the benchmark. To test the consistency a similar loop as in the convergence testing is started. The allocation changes of KLUM relative to the primarily calculated future allocation is fed back to GTAP-EFL in the final benchmark. The resulting price and yield changes are again imposed on KLUM in its final benchmark. Consistency is assured if prices, yields and allocation changes eventually converge to zero. Climate change simulation To simulate the relative impact of climate change we impose a climate change scenario over an afore established benchmark. We start by applying to KLUM climate-induced yield changes on country level. Resulting allocation changes and the regionally aggregated yield changes are applied to GTAP-EFL and exchanged with crop price and management changes for ten iterations. It should be noted that we correct the management changes of GTAP-EFL (equation 1) for the before imposed climateinduced yield changes. The mean value of the last four iterations is fed back to both models to reach the final results. The convergence path is audited in order to guarantee the consistency of the modeling framework. #### 3 Convergence To assure the consistency of the coupled system the convergence of the exchanged values to stable and defined quantities needs to be guaranteed. Running the coupled models with their original parameterization shows that the two systems diverge. Not only land quantities and prices diverge, but also, after the 4th iteration, the GTAP-EFL model is unable to find a meaningful economic equilibrium: some variables decrease by more than 100%. This is the consequence of two main problems. The first results from the different initial land allocations assumed in the two models; the second is due to the general constraint imposed by the structure of the CGE model itself. The problem of the different initial situations seems like a minor challenge from the conceptual side; however, in combination with the "rigid structure" of the CGE model it poses a great practical problem. The difficulty originates from the fact that all equilibrium equations in GTAP are formulated in terms of value, instead of quantities (Hertel, 1997). During the solving procedure the changes are distinguished into changes in quantity and changes in price, so that the imposition of quantity changes, as calculated in KLUM, is conceptually consistent. But since prices are set to unity in the benchmark, implicitly the quantity of land is equaled to the value of land. In the absence of data on the price of land, this makes land quantity data incomparable between GTAP and FAOSTAT (2004), to which KLUM is calibrated. #### - insert Table 1 around here - The different initial situation of harvested area in 1997 of GTAP-EFL and KLUM are presented in Table 1. Since the units used in the GTAP model are not specified, we present the allocation as shares of the total crop area of the respective region in the respective model. The global totals per region and crop are given as share of total global cropland in the respective model (stated in the lower right corner of the Table). Obviously, regional and crop specific values as well as the global totals of regions and crops differ tremendously. The global share of land used for wheat production in GATP-EFL is only half of the share used in KLUM. Contrary, vegetables & fruits use twice as much global cropland in GTAP-EFL than in KLUM. Considering that the quantities in GTAP-EFL originally represent the monetary value of cropland this distortion is understandable. But for the coupled framework this means that e.g. small absolute changes in the area share of vegetables & fruits of KLUM translate into large absolute changes in GTAP-EFL. Also the shares of total area used in the different regions differ notably. Whereas in GTAP-EFL large shares of total global cropland are situated in Western Europe, South Asia and the USA, only the largest areas of cropland in KLUM is also harvested in South Asia; other major shares can be found in China, Subsaharan Africa and the Former Soviet Union. These differences are of less importance in the KLUM model where each spatial unit is optimized independently. In GTAP-EFL, however, e.g. the trade structure is impacted by the regional distribution of resources. Thus, relatively small changes of aggregated absolute allocation in e.g. Western Europe can cause large shocks in GTAP-EFL. In principle the optimal solution would be to recalibrate the GTAP-EFL model according to the observed land allocation consistent with KLUM. However, this would entail a complete recalibration of all model parameters in order to re-establish a new initial stable equilibrium consistent with the entire observed situation of 1997. This would be a major task due to the "rigid structure" of the model, and it would be arbitrary without land price data. The "structural rigidity" of CGE models follows from their theoretical structure. Economic development is simulated by equating all markets over space and time, assuming that a general economic equilibrium is the best guess possible to describe economic patterns and to project their development for different scenarios. All markets are assumed to clear, and the equilibrium is assumed to be unique and globally stable. Guaranteeing these assumptions while assuring applicability to a wide range of economies and policy simulation implies that a number of regularity conditions and functional specifications need to be imposed. Accordingly, such models generally may find difficulties in producing sound economic results in the presence of huge perturbations in the calibration parameters or even in the values of exogenous variables characterizing their initial equilibrium. We replace GTAP endogenous land allocation mechanism with exogenous information provided by the land use model. This new allocation is not driven by optimal behavior consistent with the GTAP framework and can thus distort the system in such a way that convergence can no longer be guaranteed. This is also the reason why we use GTAP with **endogenous** land allocation to establish the first instance of the baseline benchmark. Combining the large shocks of the baseline scenario with the **exogenous** land allocation mechanism determined by KLUM would overstrain the solving algorithm of GTAP-EFL To assure convergence, the land-use model would need to be formulated as a consistent part of the CGE - assuring
all markets to be in equilibrium. This, however, would be difficult to combine with the intention of replacing the purely economic allocation decisions by a more flexible model, which takes into account the biophysical aspects of land-use decisions on a finer spatial resolution. Thus, for the moment – to lower the influence of the initial situation on the one hand, and to promote convergence on the other hand – we simply decrease the responsiveness of GTAP-EFL to changes in land allocation. The key parameter governing this is the sectoral elasticity of substitution among primary factors ESBV. This parameter describes the ease with which the primary factors (land, labor and capital) can be replaced by one another for the production of the value-added (see e.g. (Hertel, 1997) for more details). We conduct convergence loops with ten iterations each for the original and appropriately increased elasticities ESBV. #### Results of the convergence test A first set of simulations (not presented here) revealed that price, yield and area-share-changes for the region *Rest of the world* diverged quickly and distorted the performance of the complete system, preventing the existence of a common equilibrium. This region encompasses the "remaining" countries not included in any of the other regions. The composition slightly differs between the two models on the one hand and this region is of minor importance on the other hand. Thus we completely exclude this region from the coupling experiment. No data is exchanged between KLUM and GTAP-EFL for this region in any of the presented simulations. - insert Figure 2 around here - Figure 2 depicts the iteration process for doubled and tripled elasticity for North Africa and South Asia. We chose these regions as representatives, because they best show all the dominant behavior observed also in the other regions. For doubled elasticity a strong divergence of the iterating values can be observed in both regions for all crops. Only the results for wheat in North Africa reveals converging behavior, as can be seen from the markers tightly clustered around the mean value. This corresponds to the initial differences in land allocation: in both regions for nearly all crops the initial area shares for the different crops differ considerably between the two models (Table 1); only wheat in North Africa shows similar shares in both models. Generally, the divergence is much stronger in South Asia than in North Africa. This indicates that the influence of trade emphasizes the observed changes: according to GTAP-EFL South Asia holds about a sixth of total global cropland, making it one of the potentially largest crop producers. North Africa instead is one of the smallest producers in term of harvested area (compare Table 1). Of course the described trends cannot be mapped linearly to all regions and crops. But the general tendency is visible throughout the results. Convergence is clearly improved with tripled elasticity. Whereas the spread of exchanged values for the double-elasticity simulations is increasing with increasing iteration number, the data points of the tripled-elasticity simulations are tightly clustered, approaching the marked mean (the empty red marker) with proceeding iteration step. Yet, it should be noted, that the absolute values of exchanged quantities are generally smaller for tripled elasticity due to the lowered responsiveness of GTAP-EFL. Thus, identical relative changes of the exchanged values appear larger in Figure 2 for the doubled-elasticity case than for the tripled-elasticity one. Still, an investigation of the relative changes (not shown here) underpins the impression given in the presented graphs. With tripled elasticity the standard deviation of the last four iterations is less than 5% of the respective mean value for 85% of all exchanged quantities, confirming the observed convergence. # 4 Experimental design KLUM@GTAP was developed to assess the impact of climate change on agricultural production and the implications for economic development. We first apply an economic baseline scenario, which describes a possible projection of the world in 2050 without climate change; this simulation is referred to as *baseline* in the following. On top of that we impose estimates of climate change impacts so as to portray the situation in 2050 with climate change, the respective simulation is called *cc* 2050. The convergence of the system is highly influenced by the "starting point". Thus to clarify the impacts of the baseline on our climate change assessment and to confirm the stability of the coupled system we perform also a reference simulation: the climate change scenario is directly applied onto the 1997 benchmark; this simulation is referred to as *cc* 1997. The effect of the coupling on the results is highlighted, by estimating the climate change impacts also with the uncoupled models (referred to as the *uncoupled* simulations). In both models we use the benchmark equilibrium 2050 of the *baseline* simulation as the starting point and apply the climate change scenario. The GTAP-EFL model is used with endogenous land allocation. Country-level allocation shares of the KLUM benchmark 2050 are used to aggregate the yield changes of the climate change scenario to the regional level. KLUM standalone is driven by the climate change scenario and exogenous price and management changes according to the *uncoupled* GTAP-EFL. Like this the KLUM model describes a partial equilibrium situation. The different scenarios are summarized in Table 2. More detail on the explicit assumptions and used data are given in Appendix C. - insert Table 2 around here - #### 5 Results The simulation results can be divided into general changes of the economy and those directly affecting the coupled crop sector. As general economic changes we study changes in GDP, welfare, CO2 emissions and trade. Changes in the crop sector are described by changes in crop prices and production and in the allocation of cropland. #### Baseline scenario The changes according to the baseline scenario in CO2 emissions and GDP (Table 3) and crop production (Table 4) are positive in the order of several hundred percent for all regions. For emissions, GDP and crop production the growth is up to 1.5-4 times stronger in currently developing regions, such as Subsaharan Africa and China, than in developed regions, such as the USA and Western Europe. These results directly reflect the scenario assumptions of a long-term convergence of developing to developed regions. Between 1997 and 2050 the trade balance changes only slightly (Table 3). Negative changes appear in Africa, the Middle East, South America, the Former Soviet Union and Europe. They are largest for Western Europe. The reason may be found in the fact that in Western Europe the land productivity increases much less than in the other countries; in fact, it is nearly one order of magnitude smaller than in the other regions. Crop prices generally decrease by around 20-60% for all regions and crops (Table 5). This is a result of the assumed increase of the productivity of land and labor, leading to lower production costs, which more than offset the increased demand due to population growth. Accordingly, also these trends are greater for the developing than the developed regions, but less pronounced than for the parameters discussed above. - insert Table 3, 4 and 5 around here - Impact on the cropland allocation are pictured in Figure 3. The plots suggest that vegetables & fruits are largely replaced by wheat and other cereals. Only in South Asia and some countries of Central America and North Africa the area share for vegetables & fruits is increased. Also rice cropland is strongly reduced in most countries. Only in the Former Soviet Union, South East Asia and a number of Subsaharan countries an increase in area for rice is visible. Wheat and other cereals show an increase in harvested area for nearly all the countries. Only in the Eastern part of the Asian continent wheat is planted less, the area for cereals is decreased in North America; Argentinia decreases its area share for both crops. - insert Figure 3 around here - #### Climate change in 2050 (cc 2050) The climate impacts are several orders of magnitude smaller than the baseline changes. This is the result of the comparably small climate-induced yield changes (see Appendix C). We thus concentrate on the trends and intercomparison of changes, rather than on the absolute extent. - insert Figure 4 around here - The impact of a changing climate on land allocation and the crop sector, according to KLUM@GTAP are shown in Figure 4 and Table 4 and 5. We observe increases in the area share and price for rice production in nearly all countries and regions; production instead is decreasing. Obviously the losses in yield are counteracted by an increase of the area share, increasing the prices. Also for several other regions and crops, such as other cereals in China and USA or wheat in South America, yield losses are compensated by area gains and prices rise. Only for vegetables & fruits this pattern is not observable; as the yields are unaffected in our climate change scenario, this is not surprising. In general, for the majority of regions the production of rice and vegetables & fruits is decreasing, whereas for wheat and other cereals more regions increase the production (Table 4); price changes show an opposite pattern. The cropland changes of wheat and other cereals reveal an interesting scheme: they are of opposed signs in nearly all countries. As we do not observe the same pattern in the imposed yield changes, this can be interpreted as direct competition of these crops. The similar price, allocation and yield structure of wheat and other cereals makes their relative allocation changes sensitive to small perturbations: according to minor price and yield changes either one or the other is preferred in production. #### -
insert Figure 5 around here - The crop production changes by and large explain the pattern of losses and gains observed for GDP and welfare (Figure 5, red bars). Losses in GDP and welfare are present in most, but not all the regions. We observe strong gains in Central America and South Asia and smaller gains in Subsaharan Africa, Canada and Western Europe: all regions where also for crop production the increases prevail. Generally CO2 emissions change in accordance with GDP. Only the USA, the Former Soviet Union, and Eastern Europe are notable exceptions. In these regions, the "composition" effect dominates the "size" effect; that is, in terms of emissions the change in the production mix to more carbon intensive goods dominates the total loss in production. Also the trade balance reveals a clear connection to GDP and welfare changes: for nearly all regions gains in GDP and welfare are accompanied by losses in the trade balance and vice versa. In terms of trade, WEU shows the highest losses. #### The effect of the baseline on the climate change simulation (cc 1997) We assess the effect of the baseline scenario on the estimations of climate impacts by comparing results of scenario *cc* 1997 (where the climate scenarios is imposed on the current situation) to those of scenario *cc* 2050 (where the climate change scenario is applied to the baseline benchmark of 2050). Figure 6 shows that excluding the baseline generally leads to an increase in allocation changes. Contrary, crop prices and production changes exceed the climate impacts with the baseline in the order of some ten percent (Table 4 and 5). This reflects the way land is treated in the CGE. In the baseline scenario the productivity of land increases, causing an increase of land value. In the climate simulations starting from the baseline thus due to the unity prices in the benchmark the land quantities increase as well. An introduced percentage change in land hence translates to a much larger absolute change in the 2050 benchmark situation than in the 1997 benchmark situation. Principally, however, the pattern of changes in crop prices, productions and land allocation is conserved, indicating the stability of the coupled system. #### - insert Figure 6 around here - The same is true for the economic changes of the cc 1997 simulation (green bars in Figure 5). For almost all regions and indicators the sign as well as the relative extent of the changes are similar to those projected relative to the baseline (red bars). The trade balance in Eastern Europe and the USA are the only exceptions; in Eastern Europe, the impact on the trade balance is very small in each case; in the baseline scenario, the USA loses its competitive advantage in agriculture to other regions, which explains the reversal in sign. Evidently, the changes in welfare are much smaller, if no baseline is applied. This, however, only reflects the initial welfare difference of the 1997 and the 2050 benchmark as welfare changes are expressed in US dollar equivalents rather the percentages. Qualitatively, the welfare impacts are very similar. #### The effect of the coupling on the climate change simulation (uncoupled) Also for the coupling we assess the effect on the results by studying differences of uncoupled to coupled simulation. GTAP-EFL standalone is driven only by the regionally aggregated climate-induced yield changes; land allocation is endogenous. KLUM standalone is driven by the climate change scenario and crop prices and management-induced yield changes of GTAP-EFL standalone; feedbacks, though, are excluded. #### GTAP-EFL - standalone The resulting land allocation changes of GTAP-EFL standalone differ from the results of the coupled system simulation by several hundred up to thousand percent (shown in Table 6); in some cases even the signs differ. We see the highest differences for other cereals and rice, indicating that greater yield changes emphasize the gap between coupled and uncoupled simulation. Also crop prices and productions differ notably between the coupled and the uncoupled simulation: differences are in the order of some ten up to several hundred percent. For rice GTAP-EFL standalone underestimates most of the changes in prices and productions, whereas for vegetables & fruits overestimations prevail. Some few estimates even change sign due to the coupling. Whereas for the coupled simulation e.g. prices of cereal crops increase in Western Europe and fall in the Former Soviet Union, they show the opposite behavior in the uncoupled scenario. The largest differences between the simulations can be seen for vegetables & fruits. Note that vegetables and fruits are assumed not be affected by climate change directly; these changes result from the indirect impacts on allocation. Even though the region Rest of the world was excluded from the coupling, we reveal large differences between the coupled and the uncoupled simulation for the price changes in this regions. These are purely indirect effects. #### - insert Table 6 around here - The economic changes in GTAP-EFL standalone (Figure 5, yellow bars) differ from those in KLUM@GTAP in extent but not in sign. The differences are generally low, only for China they reach up to several hundred percent; again the effect is strongest on the trade balance. The low differences reflect the general low responsiveness of these indicators in GTAP-EFL to land allocation changes, which is even damped in our simulations by the increased elasticity. #### KLUM - standalone The percentage differences of land allocation changes in KLUM standalone to KLUM@GTAP are in the range of $\pm 10 - 100\%$, reaching up to several hundred percent (Figure 7). We see even a change of sign in some countries, especially for the case of vegetables & fruits; generally the differences for vegetables & fruits are largest and mainly positive. Again, these changes are solely triggered by price and management changes or indirect allocation effects. Obviously, these factors are strongly impacted by the coupling procedure: in the general equilibrium setting of the coupled simulation these factors are dampened by inter sectoral effects and trade. We see that KLUM standalone tends to overestimate decreases and underestimate increases of area changes in rice production; the total area share of rice is thus underestimated. The pattern of deviations for wheat and other cereals are rather similar but with generally stronger deviations for other cereals. This underpins the observation that the coupling effect grows stronger with larger scenario changes. - insert Figure 7 around here - ## 6 Summary and Conclusion We present in this paper the coupling of a global computable general equilibrium model with a global agricultural land-use model in order to consistently assess the integrated impacts of climate change on global cropland allocation and the implication for economic development. The linking of the models is established, by exogenizing the land allocation mechanism of GTAP-EFL and by replacing it with the dynamic allocation module KLUM. Price and management changes, according to GTAP-EFL and country specific yield values drive KLUM; regionally aggregated area changes determined by KLUM are used to update the cropland shares in GTAP-EFL. This intimate link allows a direct and spatially more explicit projection of biophysical aspects of land-use decisions onto economic crop production; the effects of economic trade and production decisions are projected back onto country specific crop patterns. By this the framework provides a consistent picture of the economy and of agricultural land cover. In the first part of the paper we investigated the convergence behavior of the coupled system. We identified as key problem of an ensured convergence the initial situation of land allocation in GTAP-EFL combined with the "rigid structure" of the model. The initial cropland shares in GTAP-EFL are given in "value added of production". But due to the assumptions of unity prices in the benchmark, the same numbers are treated as quantity values during the simulations and are updated by the changes determined by KLUM. KLUM on the other hand calculates allocation changes based on observed area shares of FAOSTAT (2004), which differ tremendously from the values used in GTAP. This difference causes a distortion of the introduced changes and can lead to divergence. As a workaround we lowered the responsiveness of the CGE to the introduced cropland share changes by increasing the sectoral elasticity of substitution for primary factors. By means of a convergence test with the coupled framework we were able to show a clear improvement of the convergence behavior due to this tactic. Moreover the test confirmed the connection of the discriminative initial situations and the convergence behavior. With a tripled elasticity convergence was reached in all regions for all crops. The change in results caused by the new elasticity are acceptable considering the general uncertainties underlying the values of elasticities (Hertel, 1997). Moreover the initial elasticity was rather low (Hertel, 2006, personal communication). The tripled elasticity was used in the succeeding simulations and convergence was audited for the performed experiments. However, a general guarantee of convergence for the coupled system cannot be established by means of the convergence test. The complex system of the CGE is distorted by the inclusion of the land-use model that is not formulated consistently with the general equilibrium framework. Above this, the offset caused by setting land values to quantities in the benchmark is even enhanced when land becomes scarce and thus more valuable, as in our baseline scenario. One way to solve the convergence problem is to use constant elasticity of substitution (CES) production functions in KLUM, and to take intermediate inputs to agriculture from GTAP-EFL as well. This would tighten the
interaction between GTAP-EFL and KLUM. Yet, it would also imply that KLUM can no longer be run as a standalone model, hampering model validation and the coupling to biophysical models at a finer geographical resolution. In the second part of the paper we illustrate that plausible estimations of climate change impacts are still feasible under the afore mentioned uncertainties. Crop production changes according to the pattern of induced yield changes. Yield losses are often compensated by area increases, causing prices to rise. A negative impact of climate change for nearly all regions in terms of GDP and welfare was revealed. Only Central America and South Asia show strong gains and some smaller gains are revealed in Subsaharan Africa, Canada and Western Europe. This also reflects the pattern of induced yield changes. The remaining economic indicators follow the pattern of GDP and welfare. Emission and crop production changes are in line with GDP and welfare changes; trade balance and crop price changes are of opposite sign. The convergence of the system is highly influenced by the starting point. The effect of the baseline scenario on the results as well as the stability of the coupled system was thus studied by a reference scenario in which the climate impacts were directly introduced to the current situation. The baseline assumptions influence the extent but not the general pattern of the results, reflecting the robustness of the model. Crop prices and production changes are enhanced by the baseline scenario; crop allocation changes instead are dampened in nearly all countries. This demonstrates the above said: the increased value of land in the baseline scenario (due to productivity improvements) rises the responsiveness of GTAP to the land allocation changes. The effect of the coupling on the results of the climate change simulation was studied by reference simulations with the uncoupled models. With both models the climate impacts relative to the afore established benchmark of 2050 were estimated. A clear impact of the coupling can be revealed for both models. The results of standalone simulations generally differ from those of the coupled simulation by some ten up to several hundred percent and show opposite signs for some cases. The differences are lower for the general economic indicators, reflecting the damped responsiveness to land-use changes of the GTAP-EFL due to the tripled elasticity. Land allocation changes in GTAP-EFL standalone and KLUM@GTAP differ by several hundred up to thousand percent. This clearly demonstrates the relevance of the improved allocation mechanism. Moreover the differences are larger for greater yield changes - indicating that the effect of the coupling will be even more pronounced for extreme scenarios. All this strongly supports the hypothesis that a purely economic, partial equilibrium analysis of land use is biased; general equilibrium analysis is needed, taking into account spatial explicit details of biophysical aspects. Concluding, the presented approach is a step in the right direction to reach an integrated modeling framework for the estimation of the mutual impacts of economic and environmental changes such as climate change. It establishes a dynamic and close link between the two models, bearing the potential of consistently integrating the biophysical aspects of land-use decisions into the economic model. The flexible spatial resolution of KLUM additionally facilitates the use of a spatial resolution needed for a meaningful biophysical analysis of the environmental aspects. Yet, to really establish a satisfactory modeling framework that allows reliable projections of the integrated changes of the natural and economic system a long way is still ahead. Most pressingly, the presented convergence problems and inconsistency in the interpretation of land quantity need to be resolved. This requires an elaborative revision of some mechanisms in the general equilibrium model and - in all likelihood - a recalibration of the model. A dynamic formulation of GTAP-EFL would help to simulate future pathways with the coupled framework without relying on a baseline scenario with heavy shocks. This would further improve the conditions for convergence. Apart from that, the allocation algorithm of KLUM needs to be extended to include other agricultural sectors such as animal production and finally also forestry and industrial land. The coupling of the land use model to a dynamic vegetation model is already performed for the European level (Ronneberger et al., 2006). To reach full integration both couplings need to be consolidated on the global level. Besides competition for land, the model should be extended to include competition for water resources. All in all the presented work should be seen as a feasibility study pointing out the direction of further work to be done. #### Acknowledgements We like to thank Katrin Rehdanz for many valuable discussions and helpful comments. Hom Pant and Andrzej Tabeau as well as the other participants of the CGE-Fest held in Hamburg in June 2005 helped to improve the coupling by relevant comments and questions. The Volkswagen Foundation and the Michael Otto Foundation provided welcome financial support. #### References - Alcamo, J., Kreileman, G.J.J., Krol, M., & Zuidema, G. 1994. Modelling the Global Society-Biosphere-Climate System: Part 1: Model Description and Testing. Water, Air, and Soil Pollution, 76, 1–35. - Burniaux, J.-M., & Truong, T.P. 2002. GTAP-E: An energy environmental version of the GTAP model. GTAP Technical Paper 16. - Darwin, R., Tsigas, M., Lewandrowski, J., & Raneses, A. 1995. World Agriculture and Climate Change: Economic Adaptations. Agricultural Economic Report 703. Natural Resources and Environment Division, Economic Research Service, U.S. Department of Agriculture, Washington, D.C., USA. - Dixon, P, & Rimmer, M. 2002. Dynamic General Equilibrium Modeling for Forecasting and Policy. Tech. rept., Amsterdam: North Holland. - FAO. 2002. World agriculture: towards 2015/2030. Tech. rept. FAO, Rome. - FAO. 2003. State of the world's forests 2003. Tech. rept. FAO, Rome. Electronic version at [Accessed 2003]. - FAOSTAT. 2004. data. - Fischer, G., van Velthuizen, H., Shah, M., & Nachtergaele, F. 2002. Global Agro-ecological Assessment for Agriculture in the 21st Century: Methodology and Results. Tech. rept. IIASA Research Report. International Institute for Applied Systems Analysis, Laxenburg, Austria. Electronic version at http://www.iiasa.ac.at/Publications/Documents/RR-02-002.pdf [Accessed: March, 2005]]. - Grübler, A. 1994. Technology. Pages 287–328 of: Meyer, WB, & II, BL Turner (eds), Changes in Land Use and Land Cover: A Global Perspective. Global Change Institute, vol. 4. Press Syndicate of the University of Cambridge. - Heistermann, M., Müller, C., & Ronneberger, K. 2006. Land in Sight? Achievements, Deficits and Potentials of Continental to Global Scale Land-Use Modeling. *Agriculture Ecosystems and Environment*, **114**(2-4), 141–158. - Hertel, T. W. 1997. Global trade analysis. Cambridge.: Cambridge University Press. - IMAGE. 2001. The IMAGE 2.2 Implementation of the SRES Scenarios. - Klijn, J.A., Vullings, L.A.E., van den Berg, M., van Meijl, H., van Lammeren, R., van Rheenen, T., Veldkamp, A., & Verburg, P.H. 2005. *The EURURALIS study: Technical document*. Alterra-rapport 1196., Alterra, Wageningen. - Lee, H.-L., Hertel, T.W., Sohngen, B., & Ramankutty, N. 2005. Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation. GTAP Technical Paper 25. - Leff, B., Ramankutty, N., & Foley, J.A. 2004. Geographic distribution of major crops across the world. *Global Biogeochemical Cycles*, **18**(1), GB1009. - McKibbin, W. J., & Wilcoxen, P.J. 1998. The Theoretical and Empirical Structure of the GCubed Model. *Economic Modelling*, **16**(1), 123–148. - RIVM. 2001. The IMAGE 2.2 model documentation. Tech. rept. National Institute of Public Health and the Environment, Bilthoven, NL. Electronic version at http://arch.rivm.nl/image/ [Accessed Mar. 2005]. - Ronneberger, K., Tol, R.S.J., & Schneider, U.A. 2005. *KLUM: A simple model of global agricultural land use as a coupling tool of economy and vegetation*. FNU Working paper 65. Hamburg University and Centre for Marine and Atmospheric Science, Hamburg, Germany. Electronic version at http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/KLUM_WP.pdf]. - Ronneberger, K., Criscuolo, L., Knorr, W., & Tol, R.S.J. 2006. KLUM@LPJ: Integrating dynamic land-use decisions into a dynamic global vegetation and crop growth model to assess the impacts of a changing climate. A feasibility study for Europe. - Rosenzweig, C., Parry, M.L., Fischer, G., & Frohberg, K. 1993. Climate Change and World Food Supply. Research Report 3. Environmental Change Unit, University of Oxford, Oxford. - Tan, G., & Shibasaki, R. 2003. Global estimation of crop productivity and the impacts of global warmings by GIS and EPIC integration. *Ecological Modeling*, **168**, 357–370. van Meijl, H., van Rheenen, T., Tabeau, A., & Eickhout, B. 2006, in press. The impact of different policy environments on agricultural land use in Europe. *Agriculture Ecosystems and Environment*. World Bank. 2003. World Development Indidcators CD ROM. Zuidema, G., van den Born, G.J., Alcamo, J., & Kreileman, G.J.J. 1994. Simulating changes in global land-cover as affected by economic and climatic factors. Water, Air, and Soil Pollution, 76, 163–198. # A Aggregations Figure A1. Industrial Production: Nested tree structure for industrial production processes in GTAP-EFL Table A1. Regional aggregation of the coupled model | \mathbf{USA} | USA | |----------------|-------------------------------| | CAN | Canada | | \mathbf{WEU} | Western Europe | | \mathbf{JPK} | Japan and South Korea | | \mathbf{ANZ} | Australia and New Zealand | | \mathbf{EEU} | Central
and Eastern Europe | | \mathbf{FSU} | Former Soviet Union | | \mathbf{MDE} | Middle East | | \mathbf{CAM} | Central America | | \mathbf{SAM} | South America | | \mathbf{SAS} | South Asia | | \mathbf{SEA} | Southeast Asia | | \mathbf{CHI} | China, North Korea & Mongolia | | \mathbf{NAF} | North Africa | | SSA | Subsaharan Africa | | \mathbf{ROW} | Rest of the World | Figure A2. Final demand: Nested tree structure for final demand in GTAP-EFL Table A2. Sectoral aggregation of GTAP-EFL | ${f Rice}$ | Rice | |---|--| | $\mathbf{W}\mathbf{heat}$ | Wheat | | $\mathbf{CerCrops}$ | Other cereals and crops | | $\mathbf{VegFruits}$ | Vegetable, Fruits | | Animals | Animals | | Forestry | Forestry | | Fishing | Fishing | | Coal | Coal Mining | | Oil | Oil | | Gas | Natural Gas Extraction | | ${f Oil_Pcts}$ | Refined Oil Products | | Electricity | Electricity | | Water | Water collection, purification and distribution services | | $\mathbf{En}_{-}\mathbf{Int}_{-}\mathbf{ind}$ | Energy Intensive Industries | | ${\bf Oth_ind}$ | Other industry and services | | \mathbf{MServ} | Market Services | | \mathbf{NMServ} | Non-Market Services | | | | #### B Mathematical formulation of the KLUM model The total achievable profit π per hectare of one spatial unit is assumed to be: $$\pi = \sum_{k=1}^{n} \left(p_k \alpha_k - \tilde{c_k} \bar{L} l_k \right) l_k - \gamma \mathbb{V} \operatorname{ar} \left[\sum_{k=1}^{n} (p_k \alpha_k - \tilde{c_k} \bar{L} l_k) l_k \right]$$ (B1) The first part of the equation describes the expected profit, where p_k is the price per product unit, α_k is the productivity per area and l_k denotes the share of total land \bar{L} allocated to crop $k \in \{1...n\}$ of n crops. $\tilde{c_k}$ is the cost parameter for crop k. Total costs are assumed to increase in land according to $C = \sum_{k=1}^{n} \tilde{c_k} L_k^2$ where $L_k = l_k \bar{L}$ denotes the total area allocated to crop k. The second term of the equation represents the risk aversion of the representative landowner. Risk perception is quantified by the variance of the expected profit, weighted by a risk aversion factor $0 < \gamma \le 1$. Maximizing π under the constraint that all land shares need to add up to a total not greater than one: $1 \leq \sum_{k} l_k$, an explicit expression for each land-share l_i allocated to crop $i \in \{1 \dots n\}$ can be derived: $$l_i = \frac{\frac{1}{2} \sum_k \frac{\beta_i - \beta_k}{c_k + \gamma \sigma_k^2} + 1}{\sum_k \frac{c_i + \gamma \sigma_i^2}{c_k + \gamma \sigma_k^2}}$$ (B2) where for simplicity β_k displaces the profitability of crop k, σ_k^2 displaces the respective variance and $c_k = \bar{L}\tilde{c_k}$. The temporal variability of total costs is assumed to be negligible compared to the variability of prices and productivities (see Ronneberger *et al* (2005) for a detailed description of model development and evaluation). #### Adjustment of the cost parameters in KLUM The assumption of decreasing returns to scale underlying the cost structure of KLUM has consequences for the interpretation and transferability of the calibrated cost parameters. We interpret the increasing cost with increasing area share such that the most suitable land is used first and with further use more and more unsuitable land is applied. This implies that the calibrated cost parameters are depending on the total amount of agricultural area assumed in the calibration and on its relative distribution of quality concerning crop productivity. Thus, the cost parameters calibrated for one country cannot simply be adopted in other countries. Instead these values need to be adjusted according to the differences in total agricultural area. Assuming that the relative quality distribution does not change, a doubling of the total area would imply an bisection of the cost, since the double amount of suitable area would be available. So, the cost parameter c_a of country a is adjusted for country b by scaling it according to: $$c_a = c_b \frac{L_b}{L_a} \tag{B3}$$ where L_b and L_a represent the total agricultural area of country b and of the original country a, respectively. This procedure assures that under identical conditions, the size of a country (or rather the amount of agricultural area) does not impact the result. ### C Scenario assumptions The economic baseline scenario describes the essential changes of key economic variables for 2050 without climate change (see Table C1). Instead of relying on current calibration data, we base our exercise on a benchmark forecast of the world economy structure. To this end, we derive hypothetical data-sets for 2050 using the methodology described in Dixon and Rimmer (2002). This entails imposing forecasted values for some economic variables on the model calibration data to identify a hypothetical general equilibrium state in the future. Since we are working on the medium to long term, we focus primarily on the supply side: forecasted changes in the national endowments of labor, capital and population as well as variations in factor-specific and multi-factor productivities. Most of these variables are naturally exogenous in CGE models. For example, the national labor force is usually taken as given. In the baseline scenario, we shock the exogenous variable labor stock, changing its level from that of the initial calibration year (1997) to 2050. In the model, simulated changes in primary resources and productivity induce variations in relative prices and a structural adjustment for the entire world economic system. The model output describes the hypothetical structure of the world economy, which is implied by the selected assumptions of growth in primary factors. We obtain estimates of the regional labor and capital stocks by running the G-Cubed model (McKibbin & Wilcoxen, 1998). This is a rather sophisticated dynamic CGE model of the world economy, which could have been used - in principle - to directly conduct our simulation experiments. However, we prefer to use this model as a data generator for GTAP, because the latter turned out to be much easier to adapt for our purposes, in terms of disaggregation scale and changes in the model equations. We get estimates of agricultural land productivity from the IMAGE model version 2.2 (IM-AGE, 2001). IMAGE is an integrated assessment model, with a particular focus on land use, reporting information about seven crop yields in 13 world regions, from 1970 to 2100. We run this model by adopting the most conservative scenario about climate change (IPCC B1), implying minimal temperature variations. In our climate change scenario we reduce the effect of a changing climate to its impact on crop yields. The scenario is based on yields presented in Tan & Shibasaki (2003), who provide estimates of changes in yield due to climate change of the major crops for several countries around the world. They utilize climate change data from the first version of the Canadian Global Coupled Model (CGCM1)⁵ to quantify monthly minimum and maximum temperature and precipitation. Adaptation is taken into account by means of changing planting dates. The assumed yield changes are relatively small in extent, but similar in sign when compared to estimates of as e.g. Rosenzweig et al. (1993) and FAO (2002). We chose the presented source as it offers estimates for a larger amount of countries than the other sources. Based on these estimates for 2050 we determine potential yields under climate change of wheat, rice and other cereals (see Figure C1). We use the predictions of yield changes in maize to adjust potential production of other cereals, even though this is an aggregate of many different cereal crops weighted differently in different countries. However, in around half of the simulated countries maize production makes more than half of the total production of cereal crops and only for around 20% of all countries this share is below 30%. Thus, we conclude that the applied simplification is accepTable. Potential productions of the vegetables & fruits aggregates are assumed to stay on the level of 1997. In all simulations the variances σ^2 (compare equation B2), reflecting the riskiness of a certain crop in KLUM, are set to the temporal average of past variances and held constant. Throughout all simulations we exclude the region *Rest of the World* from the coupling and assume the elasticity of substitution for primary factors to be $ESBV \approx 0.711$, which is the triple of the original value. ⁵Provided by the Intergovernmental Panel on Climate Change (IPCC) **Table C1.** Baseline scenario: Exogenous changes in key macroeconomic variables applied in the 2050 baseline. Values are expressed as percentage changes relative to 1997 quantities. With LUS we refer to the land-using sectors Rice, Wheat, CerCrops, VegFruits and Animals; Energy comprise the energy sectors Coal, Oil, Gas and Oil_Pcts. Labor refers to "effective labor", that is: number of workers times the average productivity per worker. | | % change in stocks | | | % change | % change | | | | |-------------|--------------------|---------|-------|------------|----------|-------------|----------|-----------| | | population | capital | labor | LUS, | Energy | Electricity | Water, | land pro- | | | | | | Forestry, | | | Oth_ind, | ductivity | | | | | | Fishing, | | | MServ, | LUS | | | | | | En_Int_ind | | | NMServ | | | USA | 30.4 | 253.7 | 249.6 | 120.1 | 0.0 | 69.5 | 100.0 | 114.0 | | CAN | 15.6 | 186.3 | 263.7 | 134.1 | 6.1 | 80.1 | 157.6 | 225.5 | | WEU | -3.7 | 164.0 | 266.6 | 140.8 | 9.4 | 85.3 | 177.2 | 52.8 | | $_{ m JPK}$ | -11.6 | 177.5 | 214.5 | 133.6 | 0.0 | 79.8 | 163.1 | 162.5 | | ANZ | 18.7 | 184.8 | 263.7 | 133.0 | 6.1 | 79.4 | 156.3 | 225.5 | | EEU | -2.7 | 260.1 | 257.0 | 221.9 | 47.5 | 148.3 | 267.1 | 267.3 | | FSU | -2.7 | 275.5 |
257.0 | 235.0 | 50.3 | 157.1 | 282.9 | 267.3 | | MDE | 107.7 | 373.7 | 324.2 | 227.3 | 48.7 | 151.9 | 276.2 | 379.9 | | CAM | 54.9 | 375.4 | 352.4 | 287.8 | 72.8 | 197.1 | 353.2 | 379.9 | | SAM | 51.0 | 411.4 | 352.4 | 315.4 | 79.7 | 216.0 | 207.0 | 379.9 | | SAS | 72.6 | 500.8 | 254.4 | 346.3 | 75.0 | 237.1 | 330.0 | 339.5 | | SEA | 68.9 | 336.7 | 352.4 | 258.2 | 65.3 | 176.8 | 316.8 | 379.9 | | CHI | 29.4 | 463.4 | 254.4 | 251.2 | 63.5 | 172.0 | 306.7 | 339.5 | | NAF | 127.0 | 235.1 | 352.4 | 180.2 | 45.6 | 123.4 | 221.2 | 379.9 | | SSA | 135.8 | 375.9 | 352.4 | 288.2 | 72.9 | 197.4 | 353.7 | 379.9 | | ROW | 49.1 | 419.9 | 352.4 | 321.9 | 81.4 | 220.4 | 332.6 | 379.9 | Figure C1. Climate change scenario: Yield changes assumed in the climate change scenarios. Values are adopted from (Tan & Shibasaki, 2003). # Tables and Figures Table 1. Initial shares of harvested areas in GTAP and KLUM. The emphasized totals are relative to total global cropland (as quoted in the lower right corner, KLUM's quantity is given in 1000 ha). The region specific crop shares relate to total cropland in the respective region. | Crop | R | ice | Wł | neat | Cereal | Crops | Vegies 6 | & Fruits | To | tal | |-------------|-------|-------|-------|-------|--------|-------|----------|----------|--------|----------------------| | Region | GTAP | KLUM | | USA | 0.011 | 0.017 | 0.172 | 0.336 | 0.546 | 0.495 | 0.271 | 0.153 | 0.147 | 0.078 | | CAN | 0.000 | 0.000 | 0.336 | 0.447 | 0.244 | 0.305 | 0.419 | 0.249 | 0.007 | 0.026 | | WEU | 0.003 | 0.007 | 0.323 | 0.302 | 0.345 | 0.374 | 0.329 | 0.317 | 0.196 | 0.060 | | $_{ m JPK}$ | 0.369 | 0.573 | 0.005 | 0.030 | 0.146 | 0.057 | 0.480 | 0.340 | 0.066 | 0.005 | | ANZ | 0.016 | 0.008 | 0.210 | 0.533 | 0.293 | 0.353 | 0.480 | 0.106 | 0.006 | 0.020 | | EEU | 0.004 | 0.001 | 0.121 | 0.273 | 0.295 | 0.480 | 0.580 | 0.246 | 0.016 | 0.030 | | FSU | 0.182 | 0.005 | 0.068 | 0.420 | 0.106 | 0.370 | 0.644 | 0.206 | 0.011 | 0.113 | | MDE | 0.030 | 0.018 | 0.116 | 0.477 | 0.134 | 0.269 | 0.720 | 0.236 | 0.012 | $\boldsymbol{0.042}$ | | CAM | 0.025 | 0.023 | 0.038 | 0.047 | 0.466 | 0.703 | 0.470 | 0.227 | 0.040 | 0.017 | | SAM | 0.042 | 0.086 | 0.074 | 0.145 | 0.230 | 0.392 | 0.654 | 0.377 | 0.075 | 0.060 | | SAS | 0.243 | 0.324 | 0.085 | 0.208 | 0.166 | 0.213 | 0.506 | 0.255 | 0.156 | 0.187 | | SEA | 0.350 | 0.564 | 0.000 | 0.000 | 0.148 | 0.227 | 0.502 | 0.209 | 0.108 | 0.075 | | CHI | 0.166 | 0.225 | 0.058 | 0.209 | 0.121 | 0.239 | 0.655 | 0.326 | 0.096 | 0.151 | | NAF | 0.001 | 0.047 | 0.357 | 0.379 | 0.184 | 0.306 | 0.458 | 0.268 | 0.008 | 0.015 | | SSA | 0.171 | 0.064 | 0.023 | 0.019 | 0.427 | 0.587 | 0.379 | 0.330 | 0.016 | 0.115 | | ROW | 0.127 | 0.083 | 0.082 | 0.000 | 0.246 | 0.163 | 0.545 | 0.754 | 0.039 | 0.004 | | Total | 0.133 | 0.157 | 0.129 | 0.231 | 0.276 | 0.346 | 0.462 | 0.266 | 965573 | 268948 | Table 2. Overview over the different simulations: benchmark denotes the initial situation of the model; starting point is the model on which the initial change, described in column imposed changes is imposed. | | model | benchmark | imposed changes | starting point | |-----------|-----------|-----------|-----------------------------------|----------------| | baseline | KLUM@GTAP | 1997 | baseline scenario (see Table C1) | GTAP-EFL | | cc 2050 | KLUM@GTAP | 2050 | climate change scenario (see Fig- | KLUM | | | | | ure C1) | | | cc 1997 | KLUM@GTAP | 1997 | climate change scenario (see Fig- | KLUM | | | | | ure C1) | | | uncoupled | GTAP | 2050 | climate change scenario aggre- | GTAP-EFL | | | | | gated to the regional level | | | | KLUM | 2050 | climate change scenario (see fig- | KLUM | | | | | ure C1) + price and management | | | | | | induced yield changes of uncou- | | | | | | pled GTAP-EFL simulation | | $\begin{tabular}{ll} \textbf{Table 3. Changes in the economy until 2050:} Percentage changes in economic key indicators in the baseline scenario according to $KLUM@GTAP$.} \end{tabular}$ | Region | CO2 emissions | GDP | trade balance | |--------|---------------|-------|---------------| | NAF | 448.1 | 659.2 | -55079 | | EEU | 429.2 | 621.6 | -177502 | | ANZ | 269.1 | 444.3 | 10644 | | ROW | 576.3 | 865.9 | -40101 | | CAN | 304.1 | 489.6 | 30906 | | CAM | 511.2 | 689.9 | 9703 | | SSA | 618.4 | 950.2 | -95355 | | SAS | 641.1 | 733.2 | 96738 | | FSU | 381.9 | 706.5 | -112725 | | MDE | 495.5 | 698.0 | -176199 | | SEA | 468.7 | 740.8 | 338141 | | CHI | 656.4 | 783.7 | 347770 | | SAM | 539.5 | 732.9 | -17941 | | JPK | 283.0 | 436.1 | 263582 | | USA | 304.6 | 444.2 | 22448 | | WEU | 273.9 | 466.9 | -445029 | **Table 4.** Impacts on crop production For the baseline and the cc 2050 scenario the percentage changes according to KLUM@GTAP are given. Column cc 1997 and uncoupled state the effect on the climate impacts of the baseline assumption and the coupling, respectively. In both cases the differences are given in percent of cc 2050. | crop | scenario | USA | CAN | WEU | JPK | ANZ | EEU | FSU | MDE | CAM | SAM | SAS | SEA | $_{\mathrm{CHI}}$ | NAF | SSA | ROW | |---------|---------------|---------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|-------------------|--------|---------|--------| | Rice | baseline | 269.8 | 199.5 | 180.2 | 346.6 | 343.4 | 370.8 | 472.1 | 481.4 | 448.1 | 504.9 | 294.5 | 604.2 | 674.5 | 230.0 | 729.0 | 486.8 | | | cc 1997 | 4.95 | 41.72 | -65.80 | -51.43 | -33.93 | -69.51 | -15.15 | -64.29 | 26.17 | 0.00 | -21.05 | -27.59 | 0.00 | -31.58 | 60.00 | -66.67 | | | $\it cc~2050$ | -0.202 | 0.163 | -0.193 | -0.035 | -0.056 | -0.082 | -0.033 | 0.014 | 0.149 | -0.011 | 0.038 | -0.058 | -0.002 | 0.133 | -0.005 | 0.003 | | | uncoupled | 0.50 | -0.61 | -15.54 | -5.71 | -3.57 | 21.95 | -21.21 | -7.14 | -18.79 | -9.09 | -13.16 | -18.97 | 50.00 | -12.03 | -20.00 | 0.00 | | Wheat | baseline | 307.9 | 363.9 | 347.1 | 364.6 | 433.6 | 423.1 | 426.3 | 502.5 | 610.2 | 595.6 | 260.9 | 733.5 | 568.5 | 343.0 | 835.4 | 567.3 | | | cc 1997 | -15.22 | -18.35 | -22.22 | -8.81 | -14.33 | 45.45 | 7.69 | 63.64 | -32.53 | -11.48 | -29.89 | -42.99 | -71.43 | -53.13 | -43.24 | -18.18 | | | $\it cc~2050$ | -0.184 | 0.632 | 0.045 | -0.159 | -0.656 | -0.022 | 0.013 | -0.022 | -0.083 | -0.061 | 0.087 | 0.107 | 0.014 | 0.032 | 0.074 | 0.011 | | | uncoupled | 2.72 | 0.16 | -11.11 | 4.40 | -4.73 | -27.27 | -69.23 | -45.45 | 1.20 | -9.84 | -6.90 | 14.95 | -7.14 | 6.25 | 0.00 | 0.00 | | Cereals | baseline | 271.9 | 289.3 | 233.9 | 232.1 | 306.8 | 406.7 | 329.6 | 530.6 | 539.1 | 552.7 | 510.3 | 542.8 | 728.7 | 337.3 | 587.3 | 567.1 | | | cc 1997 | -26.15 | 6.44 | 0.96 | -5.45 | -6.92 | -393.33 | 208.33 | -1.42 | -22.98 | 10.10 | -46.24 | -43.18 | -20.25 | -70.00 | -12.83 | -8.93 | | | $\it cc~2050$ | -0.325 | 0.807 | 0.104 | -0.110 | -0.289 | 0.015 | 0.012 | 0.212 | 1.075 | -0.307 | 0.372 | -0.044 | -0.242 | 0.010 | 0.187 | 0.056 | | | uncoupled | -2.46 | -10.90 | -19.23 | 13.64 | -15.57 | 53.33 | -358.33 | -14.15 | -2.33 | -13.03 | -10.48 | 15.91 | -21.49 | -40.00 | -25.13 | -8.93 | | Veg.& | baseline | 233.0 | 298.3 | 193.4 | 165.4 | 278.9 | 322.7 | 384.8 | 454.9 | 410.1 | 457.4 | 444.9 | 475.2 | 619.0 | 467.0 | 605.2 | 486.6 | | Fruits | cc 1997 | -100.00 | -29.17 | -42.86 | -33.33 | 33.33 | 87.50 | 100.00 | -60.00 | -44.44 | 0.00 | 100.00 | -12.50 | 28.57 | 300.00 | 300.00 | -50.00 | | | $\it cc~2050$ | -0.002 | 0.024 | 0.007 | -0.027 | -0.006 | -0.008 | 0.002 | 0.005 | 0.009 | -0.001 | 0.010 | -0.040 | -0.007 | -0.001 | -0.001 | 0.002 | | | uncoupled | 1900.0 | 212.5 | 128.6 | 114.8 | 33.3 | 0.0 | -1000.0 | 180.0 | 144.4 | 0.0 | 20.0 | 50.0 | -71.4 | -300.0 | -1600.0 | 150.0 | Table 5. Impacts on crop prices. For the baseline and the cc 2050 scenario the percentage changes according to KLUM@GTAP are given. Column cc 1997 and uncoupled state the effect on the climate impacts of the baseline assumption and the coupling, respectively. In both cases the differences are given in percent of cc 2050.n.a. marks cases where the prices only change in the reference simulations. | scenario | USA | CAN | WEU | JPK | ANZ | EEU | FSU | MDE | CAM | SAM | SAS | SEA | CHI | NAF | SSA | ROW | |---------------|---|--|---
--|--|--
--
--|--

--|---
---|---|---|---|---| | baseline | -24.46 | -33.82 | -36.24 | -27.33 | -32.89 | -27.77 | -32.28 | -41.97 | -51.88 | -43.24 | -61.60 | -43.48 | -40.78 | -42.47 | -52.63 | -47.81 | | cc 1997 | -33.47 | 31.75 | -21.36 | -25.04 | -27.79 | -18.78 | -24.01 | -22.67 | 22.44 | -12.45 | 80.17 | -21.23 | -26.47 | 7.10 | -2.56
 -33.33 | | $\rm cc~2050$ | 0.475 | 0.063 | 0.220 | 0.699 | 0.511 | 0.362 | 1.266 | -0.075 | -0.205 | 0.257 | -0.116 | 0.796 | 0.136 | 0.183 | 0.039 | 0.009 | | uncoupled | -0.84 | -3.17 | -15.00 | -10.30 | -10.76 | 0.00 | -30.57 | -13.33 | -37.07 | -17.12 | -18.97 | -27.39 | -21.32 | -20.77 | -10.26 | 111.11 | | baseline | -27.73 | -33.14 | -31.80 | -34.11 | -36.28 | -33.32 | -31.67 | -45.59 | -45.65 | -45.56 | -58.32 | -43.75 | -50.84 | -40.76 | -48.80 | -45.76 | | cc 1997 | -26.39 | -8.99 | -7.69 | -16.36 | -16.52 | -11.43 | -23.81 | -10.20 | -25.71 | -21.85 | 22.99 | -12.50 | -50.75 | 3.70 | -200.00 | -18.75 | | $\it cc~2050$ | 0.216 | -0.089 | -0.013 | 0.220 | 0.339 | 0.105 | 0.021 | 0.098 | 0.140 | 0.151 | -0.087 | 0.088 | -0.067 | 0.027 | -0.013 | 0.016 | | uncoupled | -1.39 | 4.49 | -100.00 | -0.91 | -4.42 | -6.67 | 104.76 | -15.31 | 0.71 | -8.61 | -12.64 | -11.36 | 22.39 | -22.22 | 7.69 | 25.00 | | baseline | -27.78 | -33.60 | -35.03 | -35.19 | -39.89 | -42.21 | -34.75 | -45.35 | -54.12 | -48.83 | -59.25 | -48.35 | -48.89 | -41.11 | -51.41 | -46.43 | | cc 1997 | -30.32 | -19.06 | 150.00 | -15.61 | -11.80 | 120.31 | -31.82 | -5.26 | 30.22 | -4.71 | 34.53 | -23.05 | -26.48 | 6.58 | -314.29 | -22.58 | | $\rm cc~2050$ | 0.663 | -0.278 | 0.004 | 0.506 | 0.695 | 0.064 | -0.022 | 0.019 | -0.321 | 0.446 | -0.278 | 0.308 | 0.759 | 0.152 | 0.007 | 0.062 | | uncoupled | -11.31 | -6.12 | -150.00 | -11.46 | -19.86 | -51.56 | -127.27 | -57.89 | 9.03 | -16.82 | -4.32 | -17.21 | -22.27 | -15.79 | 14.29 | -50.00 | | baseline | -25.49 | -33.24 | -32.90 | -35.75 | -33.43 | -35.18 | -34.57 | -43.03 | -42.44 | -40.23 | -30.31 | -40.57 | -38.64 | -36.75 | -45.86 | -46.90 | | cc 1997 | -33.33 | -16.67 | 0.00 | -34.04 | -5.26 | 30.00 | n.a. | 0.00 | -16.67 | -200.00 | -25.00 | 5.13 | -12.50 | 0.00 | 9.09 | -25.00 | | $\rm cc~2050$ | 0.015 | 0.012 | 0.004 | 0.047 | 0.019 | 0.020 | 0.000 | 0.003 | 0.024 | 0.002 | 0.012 | 0.039 | 0.016 | 0.003 | 0.011 | 0.008 | | uncoupled | 406.7 | 91.7 | 250.0 | 163.8 | 189.5 | 70.0 | n.a. | 166.7 | 91.7 | 1050.0 | 33.3 | 184.6 | -12.5 | 133.3 | 63.6 | 150.0 | | | baseline cc 1997 cc 2050 uncoupled baseline cc 1997 cc 2050 uncoupled baseline cc 1997 cc 2050 uncoupled baseline cc 1997 cc 2050 cc 1997 cc 2050 | baseline -24.46 cc 1997 -33.47 cc 2050 0.475 uncoupled -0.84 baseline -27.73 cc 1997 -26.39 cc 2050 0.216 uncoupled -1.39 baseline -27.78 cc 1997 -30.32 cc 2050 0.663 uncoupled -11.31 baseline -25.49 cc 1997 -33.33 cc 2050 0.015 | baseline -24.46 -33.82 cc 1997 -33.47 31.75 cc 2050 0.475 0.063 uncoupled -0.84 -3.17 baseline -27.73 -33.14 cc 1997 -26.39 -8.99 cc 2050 0.216 -0.089 uncoupled -1.39 4.49 baseline -27.78 -33.60 cc 1997 -30.32 -19.06 cc 2050 0.663 -0.278 uncoupled -11.31 -6.12 baseline -25.49 -33.24 cc 1997 -33.33 -16.67 cc 2050 0.015 0.012 | baseline -24.46 -33.82 -36.24 cc 1997 -33.47 31.75 -21.36 cc 2050 0.475 0.063 0.220 uncoupled -0.84 -3.17 -15.00 baseline -27.73 -33.14 -31.80 cc 1997 -26.39 -8.99 -7.69 cc 2050 0.216 -0.089 -0.013 uncoupled -1.39 4.49 -100.00 baseline -27.78 -33.60 -35.03 cc 1997 -30.32 -19.06 150.00 cc 2050 0.663 -0.278 0.004 uncoupled -11.31 -6.12 -150.00 baseline -25.49 -33.24 -32.90 cc 1997 -33.33 -16.67 0.00 cc 2050 0.015 0.012 0.004 | baseline -24.46 -33.82 -36.24 -27.33 cc 1997 -33.47 31.75 -21.36 -25.04 cc 2050 0.475 0.063 0.220 0.699 uncoupled -0.84 -3.17 -15.00 -10.30 baseline -27.73 -33.14 -31.80 -34.11 cc 1997 -26.39 -8.99 -7.69 -16.36 cc 2050 0.216 -0.089 -0.013 0.220 uncoupled -1.39 4.49 -100.00 -0.91 baseline -27.78 -33.60 -35.03 -35.19 cc 1997 -30.32 -19.06 150.00 -15.61 cc 2050 0.663 -0.278 0.004 0.506 uncoupled -11.31 -6.12 -150.00 -11.46 baseline -25.49 -33.24 -32.90 -35.75 cc 1997 -33.33 -16.67 0.00 -34.04 cc 2050 0.015 0.012 0 | baseline -24.46 -33.82 -36.24 -27.33 -32.89 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 cc 2050 0.475 0.063 0.220 0.699 0.511 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 baseline -27.73 -33.14 -31.80 -34.11 -36.28 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 cc 2050 0.216 -0.089 -0.013 0.220 0.339 uncoupled -1.39 4.49 -100.00 -0.91 -4.42 baseline -27.78 -33.60 -35.03 -35.19 -39.89 cc 1997 -30.32 -19.06 150.00 -15.61 -11.80 cc 2050 0.663 -0.278 0.004 0.506 0.695 uncoupled -11.31 -6.12 -150.00 -11.46 -19.86 baseline -25.49 -33.24 | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 uncoupled -1.39 4.49 -100.00 -0.91 -4.42 -6.67 baseline -27.78 -33.60 -35.03 -35.19 -39.89 -42.21 cc 1997 -30.32 -19.06 150.00 -15.61 -11.80 120.31 cc 2050 0.663 -0.278 0.004 0.506 0.695 0.064 </td <td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 uncoupled -1.39 4.49 -100.00 -0.91 -4.42 -6.67 104.76 baseline -27.78 -33.60 -35.03 -35.19 -39.89 -42.21 -34.75 cc 1997 -30.32 -19.06 150.00 -15.61 -11.80</td> <td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 uncoupled -1.39 4.49 -100.00 -0.91 -4.42 -6.67 104.76 -15.31 baseline -27.78 -33.60 -35.03 -35.19 -39.89 -42.21<!--</td--><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 0.140 uncoupled -1.39 4.49 -10.000 -0.91 -4.42 -6.67 104.76 -15.31 0.71<td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 0.140 0.151 uncoupled -1.39 4.49<</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 -12.50 cc 2050 0.216 <t< td=""><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 cc 1997 -26.39 -8.99 -7.69 -16.52 -11.43 -23.81 -10.09 0.140 0.151 -0.087</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 0.183 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 -50.84 40.76 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 <</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 -52.68 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 -2.56 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.133 0.399 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 -10.26 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 -40.76 -48.80 cc 1997 -26.39</td></t<></td></td></td> | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78
-24.01 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 uncoupled -1.39 4.49 -100.00 -0.91 -4.42 -6.67 104.76 baseline -27.78 -33.60 -35.03 -35.19 -39.89 -42.21 -34.75 cc 1997 -30.32 -19.06 150.00 -15.61 -11.80 | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 uncoupled -1.39 4.49 -100.00 -0.91 -4.42 -6.67 104.76 -15.31 baseline -27.78 -33.60 -35.03 -35.19 -39.89 -42.21 </td <td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 0.140 uncoupled -1.39 4.49 -10.000 -0.91 -4.42 -6.67 104.76 -15.31 0.71<td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 0.140 0.151 uncoupled -1.39 4.49<</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 -12.50 cc 2050 0.216 <t< td=""><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 cc 1997 -26.39 -8.99 -7.69 -16.52 -11.43 -23.81 -10.09 0.140 0.151 -0.087</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 0.183 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 -50.84 40.76 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 <</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 -52.68 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 -2.56 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.133 0.399 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 -10.26 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 -40.76 -48.80 cc 1997 -26.39</td></t<></td></td> | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 0.140 uncoupled -1.39 4.49 -10.000 -0.91 -4.42 -6.67 104.76 -15.31 0.71 <td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 0.140 0.151 uncoupled -1.39 4.49<</td> <td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0</td> <td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 -12.50 cc 2050 0.216 <t< td=""><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 cc 1997 -26.39 -8.99 -7.69 -16.52 -11.43 -23.81 -10.09 0.140 0.151 -0.087</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 0.183 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 -50.84 40.76 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 <</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 -52.68 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 -2.56 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.133 0.399 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 -10.26 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 -40.76 -48.80 cc 1997 -26.39</td></t<></td> | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0.098 0.140 0.151 uncoupled -1.39 4.49< | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 cc 2050 0.216 -0.089 -0.013 0.220 0.339 0.105 0.021 0 | baseline -24.46 -33.82 -36.24
-27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 -11.43 -23.81 -10.20 -25.71 -21.85 22.99 -12.50 cc 2050 0.216 <t< td=""><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 cc 1997 -26.39 -8.99 -7.69 -16.52 -11.43 -23.81 -10.09 0.140 0.151 -0.087</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 0.183 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 -50.84 40.76 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 <</td><td>baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 -52.68 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 -2.56 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.133 0.399 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 -10.26 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 -40.76 -48.80 cc 1997 -26.39</td></t<> | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 cc 1997 -26.39 -8.99 -7.69 -16.52 -11.43 -23.81 -10.09 0.140 0.151 -0.087 | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.136 0.183 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.65 -45.56 -58.32 -43.75 -50.84 40.76 cc 1997 -26.39 -8.99 -7.69 -16.36 -16.52 < | baseline -24.46 -33.82 -36.24 -27.33 -32.89 -27.77 -32.28 -41.97 -51.88 -43.24 -61.60 -43.48 -40.78 -42.47 -52.68 cc 1997 -33.47 31.75 -21.36 -25.04 -27.79 -18.78 -24.01 -22.67 22.44 -12.45 80.17 -21.23 -26.47 7.10 -2.56 cc 2050 0.475 0.063 0.220 0.699 0.511 0.362 1.266 -0.075 -0.205 0.257 -0.116 0.796 0.133 0.399 uncoupled -0.84 -3.17 -15.00 -10.30 -10.76 0.00 -30.57 -13.33 -37.07 -17.12 -18.97 -27.39 -21.32 -20.77 -10.26 baseline -27.73 -33.14 -31.80 -34.11 -36.28 -33.32 -31.67 -45.59 -45.56 -45.56 -58.32 -43.75 -50.84 -40.76 -48.80 cc 1997 -26.39 | Table 6. Effect of the coupling on climate change impacts on cropland allocation The results of the GTAP-EFL standalone (uncoupled) and the KLUM@GTAP simulation (cc 2050) are compared; differences are expressed in percent of the latter. n.a. marks cases where the allocation changes only in GTAP-EFL standalone. n.a. marks cases where the allocation changes only in GTAP-EFL standalone. | | Rice | Wheat | CerCrops | VegFruits | |-------------|----------|---------|----------|-----------| | USA | -7.52 | 6.30 | 137.23 | 457.89 | | CAN | 7.69 | 172.73 | 1500.00 | -1500.00 | | WEU | 301.10 | -123.53 | -105.26 | -97.22 | | $_{ m JPK}$ | 138.82 | 17.05 | -860.00 | 177.39 | | ANZ | 40.79 | -105.56 | 768.00 | 4233.33 | | EEU | 10.55 | 107.69 | -140.00 | -10.00 | | FSU | n.a. | n.a. | 16800.00 | n.a. | | MDE | 125.00 | 2316.67 | -728.57 | -1700.00 | | CAM | -3100.00 | -27.66 | -372.73 | -218.75 | | SAM | 422.22 | -376.47 | 1826.67 | 220.00 | | SAS | -559.09 | 194.44 | 205.71 | -4.55 | | SEA | 283.05 | -81.05 | -74.07 | 40.63 | | CHI | 260.00 | -15.49 | 245.10 | -14.71 | | NAF | 405.08 | -146.43 | 1040.91 | 640.00 | | SSA | 127.27 | 1.37 | -500.00 | -260.00 | | ROW | n.a. | n.a. | n.a. | n.a. | Figure 1. The coupling scheme of KLUM@GTAP: The coupling can be divided into 3 different procedures. For further details see the description in the text. Figure 2. Results of the convergence test for North Africa and South Asia: The plots depict the space spanned by the percentage changes in price, yield and area-share. Round markers: results under doubled elasticity; Square markers: results under tripled elasticity. With proceeding iteration size and darkness of the markers gradually increase. The empty red marker marks the mean value of the last four iterations; the length of the axes crossing at this point mark the total spread of all iteration states. The perspective of the coordinate system differs among plots to allow an optimal view on the respective data. Figure 3. Cropland allocation changes until 2050: Percentage changes in cropland allocation in the baseline simulation according to KLUM@GTAP. In gray countries the crop is either not planted or no data is present. Figure 4. Climate change impacts on cropland allocation: Percentage changes in cropland allocation in the climate change scenario relative to 2050 (cc 2050) according to KLUM@GTAP. In gray countries the crop is either not planted or no data is present. Figure 5. Climate change impacts on the economy: Changes in economic indicators according to the different climate change simulations. The cc 2050 and cc 1997 simulations are performed with the coupled system. The uncoupled simulation is performed with GTAP-EFL standalone. Figure 6. Effect of the baseline scenario on simulated climate impacts: Climate impacts relative to the current situation (cc 1997) are compared to those estimated relative to the baseline (cc 2050). The differences are expressed in percentage of the latter. In gray countries the crop is either not planted or no data is present. Figure 7. Effect of the coupling on simulated climate impacts: Climate impacts according to KLUM standalone (uncoupled) are compared to those of KLUM@GTAP (cc 2050). The differences are expressed in percentage of the latter. In gray countries the crop is either not planted or no data is present. ## NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI ## Fondazione Eni Enrico Mattei Working Paper Series ## Our Note di Lavoro are available on the Internet at the following addresses: http://www.feem.it/Feem/Pub/Publications/WPapers/default.html http://www.ssrn.com/link/feem.html http://www.repec.org http://agecon.lib.umn.edu ## NOTE DI LAVORO PUBLISHED IN 2006 | | | A ALDEDDILD | |---|--|---| | SIEV | 1.2006 | Anna ALBERINI: Determinants and Effects on Property Values of Participation in Voluntary Cleanup Programs: | | | | The Case of Colorado Well-with a POSETTI Court CARRADO and Manufacture CALEOTTI. Stabilization Transactor Traducial Changes and the | | CCMP | 2.2006 | Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: Stabilisation Targets, Technical Change and the | | CCMP | 3.2006 | Macroeconomic Costs of Climate Change Control Roberto ROSON: Introducing Imperfect Competition
in CGE Models: Technical Aspects and Implications | | KTHC | 4.2006 | Sergio VERGALLI: The Role of Community in Migration Dynamics | | KIIIC | | Fabio GRAZI, Jeroen C.J.M. van den BERGH and Piet RIETVELD: Modeling Spatial Sustainability: Spatial | | SIEV | 5.2006 | Welfare Economics versus Ecological Footprint | | | | Olivier DESCHENES and Michael GREENSTONE: The Economic Impacts of Climate Change: Evidence from | | CCMP | 6.2006 | Agricultural Profits and Random Fluctuations in Weather | | PRCG | 7.2006 | Michele MORETTO and Paola VALBONESE: Firm Regulation and Profit-Sharing: A Real Option Approach | | SIEV | 8.2006 | Anna ALBERINI and Aline CHIABAI: Discount Rates in Risk v. Money and Money v. Money Tradeoffs | | CTN | 9.2006 | Jon X. EGUIA: United We Vote | | CTN | 10.2006 | Shao CHIN SUNG and Dinko DIMITRO: A Taxonomy of Myopic Stability Concepts for Hedonic Games | | NRM | 11.2006 | Fabio CERINA (Ixxviii): Tourism Specialization and Sustainability: A Long-Run Policy Analysis | | NDM | 12.2006 | Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (Ixxviii): Benchmarking in Tourism | | NRM | 12.2006 | Destination, Keeping in Mind the Sustainable Paradigm | | CCMP | 13.2006 | Jens HORBACH: Determinants of Environmental Innovation - New Evidence from German Panel Data Sources | | KTHC | 14.2006 | Fabio SABATINI: Social Capital, Public Spending and the Quality of Economic Development: The Case of Italy | | KTHC | 15.2006 | Fabio SABATINI: The Empirics of Social Capital and Economic Development: A Critical Perspective | | CSRM | 16.2006 | Giuseppe DI VITA: Corruption, Exogenous Changes in Incentives and Deterrence | | CCMP | 17.2006 | Rob B. DELLINK and Marjan W. HOFKES: The Timing of National Greenhouse Gas Emission Reductions in | | | | the Presence of Other Environmental Policies | | IEM | 18.2006 | Philippe QUIRION: Distributional Impacts of Energy-Efficiency Certificates Vs. Taxes and Standards | | CTN | 19.2006 | Somdeb LAHIRI: A Weak Bargaining Set for Contract Choice Problems | | CCMP | 20.2006 | Massimiliano MAZZANTI and Roberto ZOBOLI: Examining the Factors Influencing Environmental | | CIEM | 21 2004 | Innovations N. H. H. G. H. | | | | | | SIEV | 21.2006 | Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Work Incentive and Labor Supply Marrie GAL FOTTI Matter MANERA and Aleggandre LANZA: On the Polyutness of Robustness Cheeks of the | | CCMP | 21.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the | | CCMP | 22.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve | | CCMP
NRM | 22.2006
23.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? | | CCMP | 22.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource | | CCMP
NRM
NRM | 22.2006
23.2006
24.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction | | CCMP
NRM | 22.2006
23.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic | | CCMP
NRM
NRM | 22.2006
23.2006
24.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective | | CCMP
NRM
NRM | 22.2006
23.2006
24.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to | | CCMP
NRM
NRM
SIEV | 22.2006
23.2006
24.2006
25.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective | | CCMP NRM NRM SIEV | 22.2006
23.2006
24.2006
25.2006
26.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes | | CCMP
NRM
NRM
SIEV | 22.2006
23.2006
24.2006
25.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland | | CCMP NRM NRM SIEV | 22.2006
23.2006
24.2006
25.2006
26.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical | | CCMP NRM NRM SIEV SIEV KTHC CCMP | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a
Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM KTHC | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
29.2006
30.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
29.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy Andrea GALLICE (lxxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM KTHC ETA | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
29.2006
30.2006
31.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy Andrea GALLICE (Ixxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM KTHC | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
29.2006
30.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy Andrea GALLICE (Ixxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM KTHC ETA | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
30.2006
31.2006
32.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy Andrea GALLICE (Ixxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy Rinaldo BRAU and Davide CAO (Ixxviii): Uncovering the Macrostructure of Tourists' Preferences. A Choice | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM KTHC ETA IEM | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
29.2006
30.2006
31.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy Andrea GALLICE (Ixxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy Rinaldo BRAU and Davide CAO (Ixxviii): Uncovering the Macrostructure of Tourists' Preferences. A Choice Experiment Analysis of Tourism Demand to Sardinia | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM KTHC ETA IEM | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
30.2006
31.2006
32.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN
and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy Andrea GALLICE (Ixxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy Rinaldo BRAU and Davide CAO (Ixxviii): Uncovering the Macrostructure of Tourists' Preferences. A Choice Experiment Analysis of Tourism Demand to Sardinia Parkash CHANDER and Henry TULKENS: Cooperation, Stability and Self-Enforcement in International | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM KTHC ETA IEM NRM CTN | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
30.2006
31.2006
32.2006
33.2006
34.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy Andrea GALLICE (Ixxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy Rinaldo BRAU and Davide CAO (Ixxviii): Uncovering the Macrostructure of Tourists' Preferences. A Choice Experiment Analysis of Tourism Demand to Sardinia Parkash CHANDER and Henry TULKENS: Cooperation, Stability and Self-Enforcement in International Environmental Agreements: A Conceptual Discussion | | CCMP NRM NRM SIEV SIEV KTHC CCMP IEM KTHC ETA IEM NRM | 22.2006
23.2006
24.2006
25.2006
26.2006
27.2006
28.2006
30.2006
31.2006
32.2006
33.2006 | Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource Extinction Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes Evidence from the Rural Environment Protection Scheme in Ireland Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Estimating Feedback Effect in Technical Change: A Frontier Approach Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries Fabio SABATINI: Social Capital and Labour Productivity in Italy Andrea GALLICE (Ixxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy Rinaldo BRAU and Davide CAO (Ixxviii): Uncovering the Macrostructure of Tourists' Preferences. A Choice Experiment Analysis of Tourism Demand to Sardinia Parkash CHANDER and Henry TULKENS: Cooperation, Stability and Self-Enforcement in International | | ETA | 37.2006 | Maria SALGADO (lxxix): Choosing to Have Less Choice | |------------|--------------------|--| | ETA | 38.2006 | Justina A.V. FISCHER and Benno TORGLER: Does Envy Destroy Social Fundamentals? The Impact of Relative Income Position on Social Capital | | ETA | 39.2006 | Benno TORGLER, Sascha L. SCHMIDT and Bruno S. FREY: Relative Income Position and Performance: An
Empirical Panel Analysis | | CCMP | 40.2006 | Alberto GAGO, Xavier LABANDEIRA, Fidel PICOS And Miguel RODRÍGUEZ: <u>Taxing Tourism In Spain:</u> Results and Recommendations | | IEM | 41.2006 | Karl van BIERVLIET, Dirk Le ROY and Paulo A.L.D. NUNES: An Accidental Oil Spill Along the Belgian Coast: Results from a CV Study | | CCMP | 42.2006 | Rolf GOLOMBEK and Michael HOEL: Endogenous Technology and Tradable Emission Quotas | | KTHC | 43.2006 | Giulio CAINELLI and Donato IACOBUCCI: The Role of Agglomeration and Technology in Shaping Firm | | | | Strategy and Organization Alvaro CALZADILLA, Francesco PAULI and Roberto ROSON: Climate Change and Extreme Events: An | | CCMP | 44.2006 | Assessment of Economic Implications | | SIEV | 45.2006 | M.E. KRAGT, P.C. ROEBELING and A. RUIJS: Effects of Great Barrier Reef Degradation on Recreational Demand: A Contingent Behaviour Approach | | NRM | 46.2006 | C. GIUPPONI, R. CAMERA, A. FASSIO, A. LASUT, J. MYSIAK and A. SGOBBI: <u>Network Analysis, Creative</u>
System Modelling and DecisionSupport: <i>The NetSyMoD Approach</i> | | KTHC | 47.2006 | Walter F. LALICH (lxxx): Measurement and Spatial Effects of the Immigrant Created Cultural Diversity in | | KTHC | 48.2006 | Sydney Elena PASPALANOVA (lxxx): Cultural Diversity Determining the Memory of a Controversial Social Event | | KTHC | 49.2006 | Ugo GASPARINO, Barbara DEL CORPO and Dino PINELLI (lxxx): Perceived Diversity of Complex Environmental Systems: Multidimensional Measurement and Synthetic Indicators | | KTHC | 50.2006 | Aleksandra HAUKE (lxxx): Impact of Cultural Differences on Knowledge Transfer in British, Hungarian and Polish Enterprises | | KTHC | 51.2006 | Katherine MARQUAND FORSYTH and Vanja M. K. STENIUS (lxxx): The Challenges of Data Comparison and | | | | <u>Varied European Concepts of Diversity</u> Gianmarco I.P. OTTAVIANO and Giovanni PERI (lxxx): Rethinking the Gains from Immigration: Theory and | | KTHC | 52.2006 | Evidence from the U.S. | | KTHC | 53.2006 | Monica BARNI (lxxx): From Statistical to Geolinguistic Data: Mapping and Measuring Linguistic Diversity | | KTHC | 54.2006 | Lucia TAJOLI and Lucia DE BENEDICTIS (lxxx): Economic Integration and Similarity in Trade Structures Suzanna CHAN (lxxx): "God's Little Acre" and "Belfast Chinatown": Diversity and Ethnic Place Identity in | | KTHC | 55.2006 | Belfast | | KTHC | 56.2006 | Diana PETKOVA (lxxx): Cultural Diversity in People's Attitudes and Perceptions | | KTHC | 57.2006 | John J. BETANCUR (lxxx): From Outsiders to On-Paper Equals to Cultural Curiosities? The Trajectory of Diversity in the USA | | KTHC | 58.2006 | Kiflemariam HAMDE (lxxx): Cultural Diversity A Glimpse Over the Current Debate in Sweden | | KTHC | 59.2006 | Emilio GREGORI (lxxx): Indicators of Migrants' Socio-Professional Integration Chairm Maria LERM HAVES (large) Having Discrete Thomash Art? Leagh Barrel, Maria of Caltural | | KTHC | 60.2006 | Christa-Maria LERM HAYES (lxxx): Unity in Diversity Through Art? Joseph Beuys' Models of Cultural Dialogue
NEDTONICEN AND TO MARTENIA (L. N. A. M. | | KTHC | 61.2006 | Sara VERTOMMEN and Albert MARTENS (lxxx): Ethnic Minorities Rewarded: Ethnostratification on the Wage Market in Belgium | | KTHC | 62.2006 | Nicola GENOVESE and Maria Grazia LA SPADA (lxxx): Diversity and Pluralism: An Economist's View | | KTHC | 63.2006 | Carla BAGNA (lxxx): <u>Italian Schools and New Linguistic Minorities</u> : <u>Nationality Vs. Plurilingualism</u> . <u>Which</u> Ways and Methodologies for Mapping these Contexts? | | KTHC | 64.2006 | Vedran OMANOVIĆ (lxxx): Understanding "Diversity in Organizations" Paradigmatically and Methodologically | | KTHC | 65.2006 | Mila PASPALANOVA (lxxx): <u>Identifying and Assessing the Development of Populations of Undocumented Migrants</u> : The Case of Undocumented Poles and Bulgarians in Brussels | | KTHC | 66.2006 | Roberto ALZETTA (lxxx): Diversities in Diversity: Exploring Moroccan Migrants' Livelihood in Genoa | | KTHC | 67.2006 | Monika SEDENKOVA and Jiri HORAK (lxxx): Multivariate and Multicriteria Evaluation of Labour Market | | KTHC | 68.2006 | Situation Dirk JACOBS and Andrea REA (lxxx): Construction and Import of Ethnic Categorisations: "Allochthones" in | | KTHC | 69.2006 | The Netherlands and Belgium Eric M. USLANER (lxxx): Does Diversity Drive Down Trust? | | KTHC | 70.2006 | Paula MOTA SANTOS and João BORGES DE SOUSA (lxxx): Visibility & Invisibility of Communities in Urban | | | | Systems Rinaldo BRAU and Matteo LIPPI BRUNI: Eliciting the Demand for Long Term Care Coverage: A Discrete | | ETA | 71.2006 | Choice Modelling Analysis | | CTN | 72.2006 | Dinko DIMITROV and Claus-JOCHEN HAAKE: Coalition Formation in Simple Games: The Semistrict Core Ottorino CHILLEM, Benedetto GUI and Lorenzo ROCCO: On The Economic Value of Repeated Interactions | | CTN | 73.2006 | <u>Under Adverse Selection</u> | | CTN | 74.2006 | Sylvain BEAL and Nicolas QUÉROU: Bounded Rationality and Repeated Network Formation | | CTN
CTN | 75.2006
76.2006 | Sophie BADE, Guillaume HAERINGER and Ludovic RENOU: Bilateral Commitment Andranik TANGIAN: Evaluation of Parties and Coalitions After Parliamentary Elections | | | 77.2006 | Rudolf BERGHAMMER, Agnieszka RUSINOWSKA and Harrie de SWART: Applications of Relations and | | CTN | | Graphs to Coalition Formation | | CTN
CTN | 78.2006
79.2006 | Paolo PIN: Eight Degrees of Separation Roland AMANN and Thomas GALL: How (not) to Choose Peers in Studying Groups | | | | | | CTN | 80.2006 | Maria MONTERO: Inequity Aversion May Increase Inequity | |--------|----------|---| | CCMP | 81.2006 | Vincent M. OTTO, Andreas LÖSCHEL and John REILLY: Directed Technical Change and Climate Policy | | CSRM | 82.2006 | Nicoletta FERRO: Riding the Waves of Reforms in Corporate Law, an Overview of Recent Improvements in | | CSKWI | 02.2000 | <u>Italian Corporate Codes of Conduct</u> | | CTN | 83.2006 | Siddhartha BANDYOPADHYAY and Mandar OAK: Coalition Governments in a Model of Parliamentary | | CIII | 03.2000 | <u>Democracy</u> | | PRCG | 84.2006 | Raphaël SOUBEYRAN: Valence Advantages and Public Goods Consumption: Does a Disadvantaged Candidate | | rnee | 01.2000 | Choose an Extremist Position? | | CCMP | 85.2006 | Eduardo L. GIMÉNEZ and Miguel RODRÍGUEZ: Pigou's Dividend versus Ramsey's Dividend in the Double | | 001.11 | | <u>Dividend Literature</u> | | CCMP | 86.2006 | Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate Change on | | | | Domestic and International Tourism: A Simulation Study | | KTHC | 87.2006 | Fabio SABATINI: Educational Qualification, Work Status and Entrepreneurship in Italy an Exploratory Analysis | | CCMP | 88.2006 | Richard S.J. TOL: The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of | | | | Fund | | CCMP | 89.2006 | Philippe TULKENS and Henry TULKENS: The White House and The Kyoto Protocol: Double Standards on | | | | Uncertainties and Their Consequences | | SIEV | 90.2006 | Andrea M. LEITER and Gerald J. PRUCKNER: Proportionality of Willingness to Pay to Small Risk Changes – | | PRCG | 91.2006 | The Impact of Attitudinal Factors in Scope Tests Raphäel SOUBEYRAN: When Inertia Generates Political Cycles | | | | • | | CCMP | 92.2006 | Alireza NAGHAVI: Can R&D-Inducing Green Tariffs Replace International Environmental Regulations? | | CCMP | 93.2006 | Xavier PAUTREL: Reconsidering The Impact of Environment on Long-Run Growth When Pollution Influences | | | | Health and Agents Have Finite-Lifetime Corrado Di MARIA and Edwin van der WERF: Carbon Leakage Revisited: Unilateral Climate Policy with | | CCMP | 94.2006 | Directed Technical Change | | | | Paulo A.L.D. NUNES and Chiara M. TRAVISI: Comparing Tax and Tax Reallocations Payments in Financing | | CCMP | 95.2006 | Rail Noise Abatement Programs: Results from a CE valuation study in Italy | | | | Timo KUOSMANEN and Mika KORTELAINEN: Valuing Environmental Factors in Cost-Benefit Analysis Using | | CCMP | 96.2006 | Data Envelopment Analysis | | | | Dermot LEAHY and Alireza NAGHAVI: Intellectual Property Rights and Entry into a Foreign Market: FDI vs. | | KTHC | 97.2006 | Joint Ventures | | | | Inmaculada MARTÍNEZ-ZARZOSO, Aurelia BENGOCHEA-MORANCHO and Rafael MORALES LAGE: The | | CCMP | 98.2006 | Impact of Population on CO2 Emissions: Evidence from European Countries | | PD GG | 00.2006 | Alberto CAVALIERE and Simona SCABROSETTI: Privatization and Efficiency: From Principals and Agents to | | PRCG | 99.2006 | Political Economy | | NDM | 100 2006 | Khaled ABU-ZEID and Sameh AFIFI: Multi-Sectoral Uses of Water & Approaches to DSS in Water | | NRM | 100.2006 | Management in the NOSTRUM Partner Countries of the Mediterranean | | NRM | 101.2006 | Carlo GIUPPONI, Jaroslav MYSIAK and Jacopo CRIMI: Participatory Approach in Decision Making Processes | | IMMI | 101.2006 | for Water Resources Management in the Mediterranean Basin | | | | Kerstin RONNEBERGER, Maria BERRITTELLA, Francesco BOSELLO and Richard S.J. TOL: Klum@Gtap: | | CCMP | 102.2006 | Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling | | | | <u>Experiment</u> | | | | | (lxxviii) This paper was presented at the Second International Conference on "Tourism and Sustainable Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005. (lxxix) This paper was presented at the International Workshop on "Economic Theory and Experimental Economics" jointly organised by SET (Center for advanced Studies in Economic Theory, University of Milano-Bicocca) and Fondazione Eni Enrico Mattei, Italy, Milan, 20-23 November 2005. The Workshop was co-sponsored by CISEPS (Center for Interdisciplinary Studies in Economics and Social Sciences, University of Milan-Bicocca). (lxxx) This paper was presented at the First EURODIV Conference "Understanding diversity: Mapping and measuring", held in Milan on 26-27 January 2006 and supported by the Marie Curie Series of Conferences "Cultural Diversity in Europe: a Series of Conferences. | | 2006 SERIES | |------|---| | CCMP | Climate Change Modelling and Policy (Editor: Marzio Galeotti) | | SIEV | Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini) | | NRM | Natural Resources Management (Editor: Carlo Giupponi) | | KTHC | Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano) | | IEM | International Energy Markets (Editor: Matteo Manera) | | CSRM | Corporate Social Responsibility and Sustainable Management (Editor: Giulio Sapelli) | | PRCG | Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti) | | ETA | Economic Theory and Applications (Editor: Carlo Carraro) | | CTN | Coalition Theory Network |