Petrucci, Alberto

Working Paper
On the Incidence of a Tax on Pure Rent with Infinite Horizons

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 160.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

This Version is available at:
http://hdl.handle.net/10419/73988

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
On the Incidence of a Tax on Pure Rent with Infinite Horizons
Alberto Petrucci

NOTA DI LAVORO 160.2004

DECEMBER 2004
KTHC - Knowledge, Technology, Human Capital

Alberto Petrucci, Department of Economics LUISS G. Carli

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=644722

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
On the Incidence of a Tax on Pure Rent with Infinite Horizons

Summary
This paper studies the incidence of a tax on pure rent within an intertemporal optimizing model of capital accumulation and endogenous labor with infinite-lived agents. Two cases are considered for the labor market: the neoclassical theory, characterized by perfectly competitive wages and no unemployment, and the incentive-wage theory of the labor-turnover type, characterized by real wage rigidity and structural unemployment. In the neoclassical equilibrium, the land rent tax is unshifted when consumers are lump-sum compensated for the tax. If tax revenues are used to finance government spending, pure rent taxation increases employment, boosts capital accumulation and reduces real wage as well as land yield. In the incentive-wage economy, the land rent tax, regardless of the way in which tax proceeds are employed, always increases employment, capital stock, and land reward, but exerts an ambiguous effect on the wage rate.

Keywords: Pure rent taxation, Capital formation, Land, Structural unemployment

JEL Classification: E21, E62, H22

This paper was written while I was visiting the Economics Department of Stanford University. I am grateful to Ned Phelps for intellectual stimulation, and Alberto Pozzolo for useful comments. Financial support from CNR is gratefully acknowledged.

Address for correspondence:

Alberto Petrucci
Department of Economics
LUISS G. Carli
via Tommasini 1
00161 Rome
Italy
Phone: +39 06 8650 6770
Fax: +39 06 8650 6513
E-mail: albpetru@luiss.it
1 Introduction

Within a finite-lived economy with endogenous capital formation and inelastic labor supply, the Ricardian proposition that a tax on pure rent is unshifted does not hold. The imposition of a tax on land rental income, by reducing the value of unimproved land, diverts saving from the fixed asset toward reproducible capital, i.e. the alternative asset, spurring capital formation and raising output. The rate of interest falls, while the wage rate and the marginal productivity of land increase. The price of land, after the initial drop, may increase in the final equilibrium because of the interest rate decline. These results, discovered by Feldstein (1977), are very robust as they are independent of alternative uses of the land tax revenues.

The Feldstein results, however, hinge on the crucial assumption of non-altruistic overlapping-generations demographics. Calvo, Kotlikoff and Rodriguez (1979) (henceforth CKR) demonstrate that in an intertemporal optimizing model of saving and capital formation with Ricardian demographics, like a dynamic life-cycle model with bequests and intergenerational transfers (as in Barro, 1974), the Ricardian effects of a compensated rent tax are confirmed. Although the CKR analysis assumes that the tax revenues are returned to consumers in a lump-sum fashion, the way in which rent tax proceeds are employed is fundamentally immaterial for the incidence of the land rent tax.1

1This result (which holds provided that agent preferences are strongly separable in consumption and the utility of future generations) comes about because, as labor supply is inelastic, capital stock is pinned down by the "modified golden rule". See also Kotlikoff and Summers (1987).
Does an elastic labor supply or a variable employment level matter for the land rent tax shifting and the resource allocation in a Barro–Ramsey–Ricardo economy?

The purpose of this paper is to answer this question by investigating the effects of a rent tax in a model of optimal saving with infinite-lived agents and different labor market structures. Two cases are considered for the labor market: the neoclassical theory, characterized by perfectly competitive wages, variable labor hours and no unemployment, and the incentive-wage theory, characterized by real wage rigidity, fixed labor hours per worker and a structural rate of unemployment due to labor-turnover considerations.

In the neoclassical analysis, we show that the consequences of a rent tax depend on the way in which the tax proceeds are used by the government. A land rent tax is neutral for the macroeconomic equilibrium (except for the price of land) when consumers are lump-sum compensated for the tax, as in CKR. If the tax revenues are spent unproductively by the government, instead, a "Feldstein effect" on capital stock and output is obtained. We depart from CKR, as government spending, by changing consumption, affects labor-leisure choices and hence capital stock.

In a labor-turnover economy, where firms are motivated to adopt an incentive-wage policy to curtail labor-turnover costs (as in Hoon and Phelps, 1992, and Phelps, 1994), the imposition of a rent tax stimulates employment and boosts capital accumulation regardless of the use of the tax proceeds.

\(^2\)Since our objective is to study an economy that exhibits "Ricardian debt neutrality", we directly use a Ramsey-Ricardo immortal economy (instead of a life-cycle economy with intergenerational transfers à la Barro).
These effects stem from the fall in the land value induced by the tax, which, by decreasing income from wealth, dampens employee quittings and hence reduces the natural rate of unemployment. In the labor-turnover case, our findings differ substantially from the CKR ones.

The paper is organized as follows. Section 2 analyzes the implications of the land rent tax in the neoclassical economy. The effects of the rent tax within the labor-turnover economy are investigated in Section 3. Section 4 briefly concludes.

2 Neoclassical economy

2.1 The model

Consider a real economy populated by infinite-lived consumers that decide on consumption C, labor supply L, accumulation of nonhuman wealth W, and portfolio composition. Population is constant.

Assuming logarithmic preferences, the consumers’ behavior is described by the following set of relationships3

$$\frac{\dot{C}}{C} = r - \rho \quad (1a)$$

$$1 - L = \frac{(1 - \alpha)C}{\alpha v} \quad (1b)$$

$$C + W = rW + vL + S, \quad (1c)$$

3See, for example, Judd (1987).
where r is the rate of return on wealth, ρ the exogenous rate of time preference, v the real wage, S lump-sum transfers from the government and α a preference parameter. Equation (1a) is the Euler law of motion of consumption, (1b) is a Cobb-Douglas labor supply, and (1c) the consumers’ budget constraint.

Nonhuman wealth is composed of two perfectly substitutable assets, physical capital K and unimproved land T; that is, $W = K + qT$, where q is the price of land. Perfect asset substitutability requires

$$qr = (1 - \tau)R + \dot{q},$$

where R is the land reward, τ is a proportional tax rate on land rent and perfect foresight has been assumed.

Firms operate in competitive output and factor markets. They produce output X through capital, land and labor by means of a linearly homogeneous production function of the usual type: $X = F(K, T, L)$. Factors of production are Edgeworth complementary. Maximum profit requires that the factors of production are paid their marginal products

$$F_K(K, T, L) = r$$

(3a)

$$F_T(K, T, L) = R$$

(3b)

$$F_L(K, T, L) = v.$$

(3c)

The economy is endowed with a fixed quantity of unimproved land \tilde{T}, fully used in production. The normalization $\tilde{T} = 1$ is used.
The government maintains a balanced budget. Tax revenues are either rebated back to consumers or spent unproductively; that is

\[\tau RT = S + G, \quad (4) \]

where \(G \) represents unproductive government spending.

The good market equilibrium requires that output always equals consumption plus investment plus government spending; that is

\[Y = C + \dot{K} + G. \quad (5) \]

2.2 Effects of the tax on pure rent

Our analysis considers the comparative statics effects of an exogenous change in \(\tau \), accompanied alternatively, in order to preserve the government budget balance, by the compensatory accommodation of either \(S \) or \(G \).

Since in the long-run \(F_K(\bar{K}, \bar{L}) = \rho \) (overbars denote long-run variables), we can express capital as an implicit function of labor as follows

\[K = K(L), \quad K' = -\frac{F_{KL}}{F_{KK}} > 0. \quad (6) \]

Using (6), the core model of the economy can be specified as follows

\[1 - \bar{L} = \frac{(1 - \alpha)[Y(L) - G]}{\alpha v(L)}, \quad Y' > 0, \quad v' < 0 \quad (7a) \]

\[\bar{q} \rho = (1 - \tau)R(L), \quad R' > 0 \quad (7b) \]
\[\tau R(\bar{L}) = S + G, \]

where \(Y(\bar{L}) = F[K(\bar{L}), \bar{L}], \) \(v(\bar{L}) = F_L[K(\bar{L}), \bar{L}], \) and \(R(\bar{L}) = F_T[K(\bar{L}), \bar{L}]. \)

Consider the case in which consumers are lump-sum compensated for the rent tax, i.e. \(S = \bar{S} \) and \(G = \bar{G} \); \(\bar{G} \) is the exogenous level of government spending. The increase in the land tax leaves labor hours unchanged, as (7a), which uniquely determines \(\bar{L} \), is independent of \(\tau \) and \(\bar{S} \). Capital stock, consumption and factor prices are also unaltered. The sole effect of the rent tax is to reduce the price of land.

Thus, the tax on pure rental income is unshifted. This result, which confirms the CKR discovery, is not surprising since saving is not modified (because of the "Ricardian equivalence") and the land tax does not affect labor-leisure choices.

When the compensatory finance is based on the endogenous adjustment of government spending, i.e. \(G = \bar{G} \) and \(S = \bar{S} \) (where \(\bar{S} \) represents exogenous lump-sum transfers), the consequences of a rise in \(\tau \) on the allocation of resources differ. Substituting \(\bar{G} \) from (7c) into (7a) and totally differentiating, we get

\[
\frac{d \bar{L}}{d \tau} = \frac{(1 - \alpha) \bar{R}}{\Delta} > 0,
\]

where \(\Delta = (1 - \alpha)(Y' - \tau R') + \alpha[\bar{v} - (1 - \bar{L})v'] > 0. \)

\footnote{The derivatives of the functions \(Y(\bar{L}), v(\bar{L}) \) and \(R(\bar{L}) \) have the following expressions:

\(Y' = \frac{(F_L F_{KK} - F_K F_{KL})}{F_{KK}} > 0, \) \(v' = \frac{(F_{KK} F_{LL} - F_{KL}^2)}{F_{KK}} < 0, \) and

\(R' = -\bar{L} \frac{(F_{KK} F_{LL} - F_{KL}^2)}{F_{KK}} > 0. \)}
Thus, a rise in the land tax increases labor hours and, through (6), capital stock. Output is pulled up, while consumption is crowded out. The before-tax return on land increases and the wage rate falls. The price of land falls less than the capitalized amount of the tax, because of the rise in R.

When tax revenues are used to increase government spending, the consideration of an endogenous labor supply invalidates the Ricardian result on the incidence of a pure rent tax, giving support to a "Feldstein effect" on capital stock and output.\(^5\) The endogenous adjustment of government spending alters the allocation of resources and results in the land tax shifting because the induced change in consumption affects labor supply.\(^6\)

3 Labor-turnover economy

3.1 The model

In the neoclassical economy, there is no unemployment, since labor supply and demand instantaneously adjust, so as to eliminate any kind of disequilibrium that may arise in the labor market.

In this section, we consider a labor-turnover economy, which offers an explanation for the natural rate of unemployment. The analysis is based on the works of Hoon and Phelps (1992 and 1996) and Phelps (1994, ch. 7), which originate from Phelps (1968) and Salop (1979). According to such an

\(^{5}\) Contrary to Feldstein (1977), in this case the wage rate falls, while the interest rate remains constant.

\(^{6}\) If the government budget constraint were maintained balanced through the compensatory change in consumption taxation, the effects of a τ shock would be qualitatively the same as those obtained under the endogenous adjustment of government spending.
approach, firms find it optimal to set wages above the competitive level with the scope of raising the cost of employees being fired, as a result discouraging quittings among employees and reducing the firm’s labor-turnover costs. The firms’ incentive-wage policy results in involuntary unemployment.

Output X is produced by atomistic firms by means of the production function $X = F(K, T, N)$, where N represents the stock of employees. $F(\)$ retains all the properties postulated before.

Workers, who are prone to quit their work-place in order to find a ”better” job, base quitting decisions on the wage policy of the firm, the prospects of the labor market and their nonwage income. After the workers quit, firms face turnover costs for recruiting and training new employees. Suppose, as in Hoon and Phelps (1996), that the unit cost of training a new worker is βh, where β is a positive parameter and h the gross hiring rate as a fraction of the workforce; labor-turnover costs are given by βhN.

Each firm decides on hirings, wages and factor use by maximizing the present discounted value of its cash-flow subject to the accumulation constraint for the stock of employees. The relative change in the stock of employees is given by the difference between the number of workers hired, hN, and the number of workers that quit, ζN, where ζ is the quitting rate; that is

$$\dot{N} = N[h - \zeta(\bar{z}, \frac{y^W}{v})],$$

where z represents the expected value of real earnings of a quitting worker, v the real wage per worker and y^W nonwage income per capita. The quitting rate is assumed to be a positive convex function of the wage paid elsewhere in the economy in comparison with the wage paid by the firm and the nonwage
income in comparison with the firm’s wage, i.e. $\zeta_i > 0$, $\zeta_{ii} > 0$ for $i = 1, 2$; we assume for simplicity that $\zeta_{12} = 0$.

The representative firm’s intertemporal optimization problem is

$$\max \int_0^\infty \left[F(K, T, N) - rK - RT - vN - \beta hN \right] e^{-rt} dt$$

subject to (8) and the initial condition $N(0) = N_0$. z and y^W are taken as given by the firm. The first-order conditions for maximum profit imply7

$$F_K(K, T, N) = r \quad (9a)$$

$$F_T(K, T, N) = R \quad (9b)$$

$$b = \beta \quad (9c)$$

$$\dot{b} - rb = -F_N(K, T, N) + v + (\beta - b)h + b\zeta \left(\frac{z}{v}, \frac{y^W}{v} \right) \quad (9d)$$

$$1 = b \left(\zeta_1 \frac{z}{v^2} + \zeta_2 \frac{y^W}{v^2} \right), \quad (9e)$$

together with (8) and the transversality condition $\lim_{t \to \infty} bNe^{-rt} = 0$.

The shadow price of trained employees b is constant according to (9c). Equation (9d) represents the firm’s labor demand. Using (9c), the labor demand can be rewritten as

7The concavity of the production function and the assumed signs of the second derivatives of the quitting function ensure that the second-order conditions of the firm’s optimality problem are satisfied.
\[v = F_N(K, T, N) - \beta \left[\zeta \left(\frac{z}{v}, \frac{y^W}{v} \right) + r \right]. \quad (9d') \]

In a labor-turnover economy, the demand for labor depends on the marginal productivity of labor, the quitting rate and the rate of interest.

Equation (9e) represents the incentive-wage equation. It states that the optimal wage set by firms ensures that the marginal cost of a wage rise is just equal to the marginal benefit (in terms of reduced quitting-turnover costs).

According to Calvo (1979) and Salop (1979), the expected real wage of a quitting worker in (9d') and (9e) can be specified as \(z = Nv. \) Nonwage income is given by the interest income earned on wealth, i.e. \(y^W = rW. \) In this labor-turnover economy, wealth is given by the sum of physical capital, the value of land and the value of trained employees \(\beta N; \) that is, \(W = K + qT + \beta N. \)

The resource constraint implies that output less labor-turnover costs must be equal to aggregate demand; that is

\[X - \beta hN = C + \dot{K} + G. \quad (10) \]

The demand-side of the economy and the government budget constraint are the same as before, once \(L \) is replaced by \(N. \)

\[^8 \text{In the expression for } z, \text{ the labor force has been normalized to one and unemployment benefits have been disregarded.} \]

\[^9 \text{This is because } \beta \text{ can be interpreted as the value of one unit of labor asset and } N \text{ is the amount of an asset held by the average worker. See Hoon and Phelps (1992 and 1996).} \]
3.2 Effects of the tax on pure rent

The steady state model can be summarized as follows

\[\bar{v} = F_N(\bar{K}, \bar{N}) - \beta \zeta \left[\bar{N}, \frac{\rho(\bar{K} + \bar{q} + \beta \bar{N})}{\bar{v}} \right] - \beta \rho \]

\[\tilde{v} = \beta \left[\zeta_1(\cdot, \cdot) \bar{N} + \zeta_2(\cdot, \cdot) \frac{\rho(\bar{K} + \bar{q} + \beta \bar{N})}{\bar{v}} \right] \]

\[\tilde{q} \rho = (1 - \tau)F_T(\bar{K}, \bar{N}) \]

\[F_K(\bar{K}, \bar{N}) = \rho, \]

where the expression for \(\bar{z} = \bar{N} \bar{v} \), the definition of \(\bar{y}^W \) and \(\bar{T} = 1 \) have been used.

Consumption and, according to the compensatory public financing scheme, either lump-sum transfers or government spending can be computed residually through (10) or the government budget constraint (7c), respectively.

Using (11d), we can express capital stock as a function of the stock of the employees, i.e. \(\bar{K} = K(\bar{N}) \) (where \(K' = -\frac{F_{KN}}{F_{KK}} > 0 \)). Employing this relationship, we can eliminate capital from (11a)-(11c) and obtain\(^{10}\)

\(^{10}\)The expressions for the derivatives of the \(\Omega() \), \(\Gamma() \), and \(R() \) functions are given in the Appendix. Equation (12a) gives the demand price of labor. Given \(\bar{q} \), an increase in \(\bar{N} \) (and hence in \(\bar{K} \)), in raising quittings of employees (because of the improved labor market prospects and the higher nonwage income), decreases the demand wage. An increase in the land price, by increasing nonwage income and hence quittings, likewise reduces the demand wage at a given \(\bar{N} \) (and hence \(\bar{K} \)).

Equation (12b) represents the equilibrium labor supply price. The supply wage is increasing in \(\bar{N} \), given \(\bar{q} \), and in \(\bar{q} \), given \(\bar{N} \). An increase in employment pushes the supply
$\bar{v} = \Omega(\bar{N}, \bar{q}), \ \Omega_N < 0, \ \Omega_q < 0; \quad (12a)$

$\bar{v} = \Gamma(\bar{N}, \bar{q}), \ \Gamma_N > 0, \ \Gamma_q > 0; \quad (12b)$

$\bar{q} \rho = (1 - \tau)R(\bar{N}), \ R' > 0. \quad (12c)$

Differentiating (12a)-(12c) yields

$\frac{d}{d\tau} \bar{N} = \frac{\bar{R}(\Gamma_q - \Omega_q)}{\Pi} > 0,$

$\frac{d}{d\tau} \bar{v} = \frac{\bar{R}(\Gamma_q \Omega_N - \Gamma_N \Omega_q)}{\Pi} \leq 0,$

$\frac{d}{d\tau} \bar{q} = -\frac{\bar{R}(\Gamma_N - \Omega_N)}{\Pi} < 0,$

where $\Pi = (1 - \tau)R'(\Gamma_q - \Omega_q) + \rho(\Gamma_N - \Omega_N) > 0$.

A rise in the land rent tax stimulates employment, exerts an ambiguous effect on the wage rate, and lowers the land price. The rationale for these effects is as follows. The reduction of the land value, induced by the rent tax, causes a fall in nonwage income, thereby dampening quittings of employees. This stimulates the demand for labor and gives firms the incentive to pay lower wages. As a consequence, employment rises, while the wage rate may rise up since quittings are stimulated via the expected wage of quitting workers and nonwage income. \bar{v} is increasing in \bar{q} since a higher land value implies a higher nonwage income, which in stimulating quittings requires firms to raise their wage supply at a given \bar{N} (and \bar{K}).
rise or fall.11 Higher employment in turn implies higher capital stock from (11d) and hence output. The land reward is pulled up. Despite the rise in employment and capital, income from wealth drops unambiguously because of the fall in the land price.

These results hold independently of whether rent tax revenues are distributed to consumers or spent unproductively by the government. The compensatory financing scheme for the government budget, instead, matters for the consequence of the rent tax on consumption. If the tax revenues are rebated to consumers, consumption goes up; otherwise if tax revenues are employed to finance a rise in government spending, consumption falls.12

\section*{4 Conclusions}

We have studied the consequences of a land rent tax within an infinite-lived economy, paying special attention to the role of the labor market structure. Two types of labor market have been explored: one with competitive wages and no unemployment, and one with incentive-wages and structural unemployment.

In the case of an endogenous labor supply and competitive wages, we have shown that the connection between Ricardian demographics and the Ricardian incidence of a tax on pure rent, discovered by CKR, requires an

11The ambiguous effect on the wage rate is due to the upward shift of the labor demand and the simultaneous downward shift of the incentive-wage equation.

12A compensatory reduction of the consumption tax rate that may alternatively accompany the rise in τ would increase consumption, but leave the other qualitative effects of the rent tax unaffected.
additional element to be satisfied: a special compensatory financing scheme for the government budget. When tax revenues are transferred back to consumers, such a connection is preserved. If the higher land rent taxes are, instead, accompanied by a rise in government spending, capital stock, labor and output are spurred, the wage rate declines, and the pre-tax land reward is pulled up. In this case, the connection identified by CKR no longer holds.

In a model with structural unemployment, we have found that the land rent tax increases employment and capital stock, while it reduces income from wealth and the stock of nonhuman wealth because of the fall in the land value. Precisely, the mechanics of these effects are as follows. The tax-induced reduction in the price of land, by lowering income from wealth compared to the workers’ wage, decreases the quittings of employees. Firms then find it optimal to pay lower wages in order to dampen quittings and curtail labor-turnover costs. Lower wages and quittings stimulate labor demand. Employment is increased and therefore capital formation is spurred. The effect on the wage rate is ambiguous, while the land reward is increased.
References

APPENDIX

Derivatives of the $\Omega(,)$, $\Gamma(,)$ and $R(\cdot)$ functions

The derivatives of the $\Omega(,)$, $\Gamma(,)$ and $R(\cdot)$ functions in system (12) are given by the following expressions

$$\Omega_N = \left[\frac{\bar{v} \left(\frac{v'}{\beta} - \xi_1 \right) - \xi_2 \rho (K' + \beta)}{\xi_1 \tilde{N}}\right] < 0; \quad \Omega_q = -\frac{\xi_2 \rho}{\xi_1 \tilde{N}} < 0;$$

$$\Gamma_N = \left[\frac{(\xi_1 + \tilde{N} \xi_{11}) + \left(\frac{\xi_2}{\bar{v}} + \frac{y^W}{\bar{v}^2} \xi_{22}\right) \rho (K' + \beta)}{\frac{1}{\beta} + \left(\frac{\xi_2}{\bar{v}} + \frac{y^W}{\bar{v}^2} \xi_{22}\right) \frac{y^W}{\bar{v}^2}}\right] > 0;$$

$$\Gamma_q = \frac{\rho \left(\frac{\xi_2}{\bar{v}} + \frac{y^W}{\bar{v}^2} \xi_{22} \right)}{\left[\frac{1}{\beta} + \left(\frac{\xi_2}{\bar{v}} + \frac{y^W}{\bar{v}^2} \xi_{22}\right) \frac{y^W}{\bar{v}^2}\right]} > 0;$$

$$R' = -\frac{\tilde{N} (F_{KK} F_{NN} - F_{KN}^2)}{F_{KK}} > 0,$$

where $K' = -\frac{F_{KN}}{F_{KK}} > 0$ and $v' = \left(\frac{F_{KK} F_{NN} - F_{KN}^2}{F_{KK}}\right) < 0.$
NOTE DI LAVORO PUBLISHED IN 2003

PRIV 2.2003	Ilblya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV 3.2003	Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
KNOW 5.2003	Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA 6.2003	Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003	Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003	Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM 9.2003	A. CAPARRÓS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW 10.2003	Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM 11.2003	Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 12.2003	Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW 15.2003	Tuzin BAYCAN LEVENT, Ennio MASUREL and Peter NIJKAMP (lx): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003	Alexandra BITUSIKOVA (lx): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 17.2003	Billy E. VAUGHN and Katarina MLEKOV (lx): A Stage Model of Developing an Inclusive Community
KNOW 18.2003	Selma van LONDON and Arie de RUIJTER (lx): Managing Diversity in a Glocalizing World Coalition Network Theory
PRIV 20.2003	Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale
PRIV 22.2003	Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003	David ETTINGER (lx): Bidding among Friends and Enemies
PRIV 24.2003	Hannu VATTAJAINEN (lx): Auction Design without Commitment
PRIV 26.2003	Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs
PRIV 27.2003	Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes
PRIV 28.2003	Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
PRIV 30.2003	Emet MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities
ETA 31.2003	Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003	Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003	Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003	Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
ETA 35.2003	Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUKITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxiv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENENGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarni BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxvi): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (lxvi): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxvi): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly Sade, Charles SCHNITZLEIN and Jaime F. ZENDER (lxvi): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Mario STRYSZOWSKA (lxvii): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF: R&D and Cleaner Technology and International Trade

NRM 18.2004 Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (lxviii): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of s. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (lxviii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 24.2004 Jean-Jacques NOWAK, Monther SAHLI and Pasquale M. SGRO (lxvii): Tourism, Trade and Domestic Welfare

NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP, The Role of Imports

NRM 29.2004 Marian WEBER (lxv): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada's Boreal Mixedwood Forest

NRM 30.2004 Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE (lxvi): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CCMP 32.2004 Marzio GALEOTTI, Alessandra GORIA, Paolo MOMBRINI and Evi SPANTIDAKI: Weather Impacts on Natural, Social and Economic Systems (WISE) Part II; Individual Perception of Climate Extremes in Italy

CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

ETA 39.2004 Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

PRA 40.2004 Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP 41.2004 Michele FINUS (lxix): International Cooperation to Resolve International Pollution Problems

KTHC 42.2004 Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
Marc ESCRIHUELA-FILLAR: Cartel Sustainability and Cartel Stability
Sebastian BERVOETS and Nicolas GRAVEL: Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach
Signe ANTHON and Bo JELLESMARK THORSEN: Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
Ekim BIROL, Agnes GYOVAI and Melinda SMALE: Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme, Allowance Prices, Trade Flows, Competitiveness Effects
Scott BARRETT and Michael HOEL: Optimal Disease Eradication
Dinko DIMITROV, Peter BORM, Roud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory
Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?
Ingo BRAUER and Rainer MARGGRAF: Optimal Information Transmission in Organizations: Search and Congestion
Tino GOESCHL and Tun LIN: Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices
Tom DEDEURWAERDERE: Bioprospection: From the Economics of Contracts to Reflexive Governance
Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households
Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios
Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA: Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
Tino GOESCHL and Danilo CAMARGO IGLIORI: Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon
Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
Eliassos PAPYRAS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.
Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ: Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
E.C.M. RUIJGROK and E.E.M. NILLESEN: The Socio-Economic Value of Natural Riverbanks in the Netherlands
Giannis YARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
Anastasios XEPAPADEAS and Constantina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach
Michael FINUS: Modesty Pays: Sometimes!
Trond BJØRNDAL and Ana BRASÍO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
Alejandro CAPARRÒS, Abdelhakin HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents
Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
Margarita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
Salvador BARBERÀ and Matthew O. JACKSON: On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union
Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO: Optimal Information Transmission in Organizations: Search and Congestion
Francis BLOCH and Armando GOMES: Contracting with Externalities and Outside Options
Rabah AMIR, Effrosyni DIAMANTOUDI and Licun XUE: Merger Performance under Uncertain Efficiency Gains
Francis BLOCH and Matthew O. JACKSON: The Formation of Networks with Transfers among Players
Daniel DIEMEIER, Hülya ERASLAN and Antonio MERLO: Bicameralism and Government Formation
<table>
<thead>
<tr>
<th>Journal</th>
<th>Volume</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETA</td>
<td>160.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>159.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>158.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>157.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>156.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>155.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>154.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>153.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>152.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>151.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>150.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>149.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>148.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>147.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>146.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>145.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>144.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>143.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>142.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>141.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>140.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>139.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>138.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>137.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>136.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>135.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>134.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>133.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>132.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>131.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>130.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>129.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>128.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>127.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>126.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>125.2004</td>
<td>2004</td>
</tr>
<tr>
<td>ETA</td>
<td>124.2004</td>
<td>2004</td>
</tr>
</tbody>
</table>

Methods with Applications to Economic-Ecological Modelling

- **Labor Supply**
 - **Bookbuilding is Dominating Auctions**
 - **Sequential vs. Single-Round Uniform-Price Auctions**
 - **Equilibrium of Scoring Auctions**
 - **Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions**
 - **Quid Pro Quo in IPOs: Why Bookbuilding is Dominating Auctions**
 - **Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model**
 - **Multidimensional Mechanism Design: Revenue Maximization and the Multiple-Good Monopoly**
 - **How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?**
 - **Non-pecuniary Value of Employment and Individual Labor Supply**
 - **Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling**
 - **On the Incidence of a Tax on PureRent with Infinite Horizons**
2003 SERIES

<table>
<thead>
<tr>
<th>Series</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2004 SERIES

<table>
<thead>
<tr>
<th>Series</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>