Sano, Fuminori; Akimoto, Keigo; Homma, Takashi; Tomoda, Toshimasa

Working Paper
Analysis of Technological Portfolios for CO2 stabilizations and Effects of Technological Changes

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 124.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Sano, Fuminori; Akimoto, Keigo; Homma, Takashi; Tomoda, Toshimasa (2005) : Analysis of Technological Portfolios for CO2 stabilizations and Effects of Technological Changes, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 124.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/73978

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Analysis of Technological Portfolios for CO$_2$ stabilizations and Effects of Technological Changes
Fuminori Sano, Keigo Akimoto, Takashi Homma and Toshimasa Tomoda

NOTA DI LAVORO 124.2005

OCTOBER 2005
CCMP – Climate Change Modelling and Policy

Fuminori Sano, Keigo Akimoto, Takashi Homma and Toshimasa Tomoda, Research Institute of Innovative Technology for the Earth

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=841144

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
This paper is one of a series published by FEEM on the theme of innovation modeling in the context of the challenge of stabilising atmospheric concentrations of greenhouse gases, as part of the Innovation Modeling Comparison Project. This is an international project launched and overseen by the Steering Committee of the informal International Programme on the Economics of Atmospheric Stabilisation. The broad aim of the collaboration is to advance understanding of the economic issues surrounding atmospheric stabilisation, and the specific aims of the IMCP are to provide insights into the "state of the art" and implications of endogenous modeling of technical change in global energy-environment models when applied to various levels of atmospheric stabilisation.

Members of the Steering Committee provided review comments on earlier drafts and the paper has been forwarded to external review, the final results will be published as a Special Issue of the Energy Journal. The papers have all been encouraged to draw on a common baseline (the "Common Poles-Image baseline") and to report results in comparable formats, so as to facilitate intercomparison of the different modeling results. All the results and judgements expressed here remain the responsibility of the authors.

The work presented in this paper was partly supported by the New Energy and Industry Technology Development Organization (NEDO), Japan. FEEM fund the working papers series, and seed money for the coordination work of the Innovation Modeling Comparison Project was provided by UK Department of Environment, Food and Rural Affairs and the German Ministry of Environment.
Analysis of Technological Portfolios for CO₂ Stabilizations and Effects of Technological Changes

Summary

In this study, cost-effective technological options to stabilize CO₂ concentrations at 550, 500, and 450 ppmv are evaluated using a world energy systems model of linear programming with a high regional resolution. This model treats technological change endogenously for wind power, photovoltaics, and fuel-cell vehicles, which are technologies of mass production and are considered to follow the “learning by doing” process. Technological changes induced by climate policies are evaluated by maintaining the technological changes at the levels of the base case wherein there is no climate policy. The results achieved through model analyses include 1) cost-effective technological portfolios, including carbon capture and storage, marginal CO₂ reduction costs, and increases in energy system cost for three levels of stabilization and 2) the effect of the induced technological change on the above mentioned factors. A sensitivity analysis is conducted with respect to the learning rate.

Keywords: Energy systems model, Global warming, Technological portfolios, Technological changes

JEL Classification: C61, O33, Q41, Q42

Address for correspondence:

Fuminori SANO
Systems Analysis Group
Research Institute of Innovative Technology for the Earth
9-2 Kizugawadai, Kizu-cho
Soraku-gun, Kyoto 619-0292
Japan
Phone: +81 774 75 2304
Fax: +81 774 75 2317
E-mail: sanofumi@rite.or.jp
1. Introduction

It is important to consider technological change endogenously in evaluating strategies for global warming mitigation over the long term. This is because it is often observed that new technologies are usually too expensive to be practical during the initial stages; however, for some reasons, their adoption is accelerated once their costs decrease below certain thresholds. However, endogenous technological changes cannot be easily solved using optimization models because of their intrinsic nonconvex character. (Messner, 1997; Kypreous et al., 2000).

We developed a world energy systems model—DNE21+ (Akimoto et al., 2004 and 2005)—that considers the technological change endogenously for three technologies, namely, wind power, photovoltaics (PV), and fuel-cell vehicles (FCVs). These are technologies of mass production and are considered to follow the typical learning curve at a constant learning rate; they should thus be treated endogenously. On the other hand, it is not currently clear what laws quantitatively govern the technological changes in other large-scale technologies such as nuclear and carbon capture and storage (CCS); their technological changes are treated exogenously in this model. The DNE21+ is a linear programming model that employs a bottom-up approach for the technologies at the energy supply side and minimizes the total cost of world energy systems. Its high regional resolution enables a detailed analysis of the relatively high cost of energy transportation, regional differences in energy systems, and technology level. The cost minimization with endogenous technological changes can be solved by the model-run iteration.

Model analyses were conducted for the base case (no climate policy) and three levels of CO2 concentration stabilization. For each stabilization level, two cases—one with and the other without the induced technological change (ITC)—were studied in order to quantitatively analyze the effect of ITC. In addition, a sensitivity study was conducted with respect to the learning rate.

2. Model

2.1 Model Framework

The DNE21+ model was originally developed for the analysis of the post-Kyoto regime, which requires that major countries be treated separately, and it was extended to be used for the study of the ITC effect as well. It considers a time range that covers the entire 21st century with representative time points of 2000, 2005, 2010, 2015, 2020, 2025, 2030, 2040, 2050, 2075, and 2100. The model disaggregates the whole world into 77 regions, such as the U.S., Canada, the U.K., France, Japan, Australia, China, India, and Russia. For obtaining a detailed account of the transportations of energy and CO2, large countries such as the U.S., China, and Russia are further disaggregated into several regions. The model represents the energy supply sectors in a bottom-up fashion and the end-use energy sectors in
a top-down fashion similar to the DNE21 (Fujii and Yamaji, 1998) and LDNE21 (Yamaji et al., 2000) models, which are the precursors of this model. The total cost of energy systems between 2000 and 2100 is minimized.

2.2 Energy System Modeling

Primary energy sources of eight types are explicitly modeled: natural gas, oil, coal, biomass, hydro and geo-thermal, PV, wind, and nuclear power. Coal, oil, natural gas, methanol, hydrogen and biomass fired power plants, hydro & geo-thermal, wind, PV, and nuclear power plants are explicitly taken into account for electricity generation. The integrated coal gasification combined cycle (IGCC) with CO$_2$ recovery is also formulated. In addition, various types of energy conversion technologies such as oil refining, liquefaction of natural gas, and coal gasification are explicitly modeled as technological options. The model also has the historical vintages of these technology facilities. Regarding CO$_2$ recovery, both the chemical absorption from the flue gas of thermal power plants and physical absorption from the outlet gas of fossil fuel gasification plants are explicitly modeled. In connection with CO$_2$ recovery, two major CO$_2$ sequestration measures—ocean sequestration and underground sequestration—are explicitly formulated. Underground CO$_2$ sequestration is further divided into four types: injection into oil wells for EOR operation, storage in depleted natural-gas wells, injection into coal beds for ECBM operations, and sequestration in aquifers.

The end-use energy sector of the model is disaggregated into four types of secondary energy carriers: solid fuel, liquid fuel, gaseous fuel, and electricity. The liquid fuel demand is further segregated into three types of oil products: gasoline, light fuel oil, and heavy fuel oil. Electricity demand is expressed by load duration curves having four types of time periods: instantaneous peak, peak, intermediate, and off-peak periods. The future energy demand when no climate policy exists is exogenously provided by the energy type, region, and year. Energy savings in the end-use sectors are modeled in a top-down fashion by using the long-term price elasticity; the transportation technologies in end-use sectors, for example, are not explicitly formulated. However, the hydrogen energy economy has recently attracted considerable attention. In this regard, we attempted a simplified modeling of FCVs as one of the greatest hydrogen consumers. For this evaluation, it is assumed that the gasoline demand is partly substituted by hydrogen that is to be used in FCVs. While the production costs of both gasoline and hydrogen are endogenously determined by the model, a direct comparison of their costs does not provide the solution because of the cost difference between the two types of vehicles; we impose a cost penalty on hydrogen due to the higher cost of FCVs.

In the model, the disaggregated regions of the world are linked to each other by the interregional trading of eight items: coal, crude oil, synthetic oil, methane, methanol, hydrogen, electricity, and CO$_2$. The method of transportation, e.g., tanker or pipeline, is selected under the least cost criteria in the model.
3. Model Assumptions

3.1 Primary Energy

The potentials and costs of the eight types of primary energy are assumed as follows: Most of the assumed potentials are based on GIS data, which can be easily processed to obtain the corresponding potential of each region.

Fossil Fuel

The assumed potentials of conventional oil and natural gas are derived from USGS GIS data (USGS, 2000) and those of unconventional oil and gas are estimated countrywise using the data of Rogner (1997). The potential of coal is assumed using the country data provided by the WEC (World Energy Council, 2001). Error. L’origine riferimento non è stata trovata. summarizes the assumed world fossil fuel potentials. The production costs of the fossil fuels are estimated based on the study by Rogner and other studies.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Assumed fossil fuel potentials in the world</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anthracite and bituminous</td>
</tr>
<tr>
<td>Coal [Gtoe]</td>
<td>424</td>
</tr>
<tr>
<td>Conventional</td>
<td></td>
</tr>
<tr>
<td>Remaining reserves</td>
<td></td>
</tr>
<tr>
<td>Undiscovered (Onshore)</td>
<td></td>
</tr>
<tr>
<td>Undiscovered (Offshore)</td>
<td></td>
</tr>
<tr>
<td>Oil [Gtoe]</td>
<td>137</td>
</tr>
<tr>
<td>Natural gas [Gtoe]</td>
<td>132</td>
</tr>
</tbody>
</table>

Renewable Energy

The world hydropower potential is obtained from the WEC (2001) and is assumed to be 14,400 TWh/yr. The world potential of wind power, PV, and biomass are assumed to be approximately 12,000 TWh/yr, 1,271,000 TWh/yr, and 3,960 Mtoe/yr, respectively. These three types of energy potentials are estimated by combining some elements in the GIS data such as the wind speed, solar radiation power, and land use. The potentials of all the four types of renewables are classified into five cost grades. The costs by grade for the year 2000 are summarized in Table 2.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Cost of renewables by grade for the year 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>30 / 60</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>180</td>
</tr>
</tbody>
</table>

Nuclear Energy

In this study, only fission has been considered to model nuclear power. The facility cost in 2000 is assumed to be 1,900 $/kW for the U.S., while the costs for other regions and
time points are adjusted by using a certain location factor, which is a function of GDP per capita. The facility usage rate of nuclear power is assumed to be 85%. The variable cost of fuel and operation is assumed to be 10 $/MWh.

3.2 CO₂ Capture and Storage

Table 3 lists the assumed facility costs and the energy requirements for CO₂ capture technologies. The cost reduction and energy efficiency improvement of CO₂ capture technologies are exogenously assumed to proceed with time; this is based on several sources (David et al., 2000; Fujii et al., 1998). In this model, the cost of electricity generation is endogenously determined by the region, time point, and type of time period in the model, and therefore, costs per ton of avoided CO₂ emissions are also determined within the model, although the energy requirements are exogenous. Table 4 summarizes the assumptions of the potentials and costs of CO₂ sequestration. These data are estimated based on several reports, papers, etc. The details are provided by Akimoto et al., (2004).

Table 3 Assumed facility costs and energy required for CO₂ capture

<table>
<thead>
<tr>
<th>Technology</th>
<th>Facility cost (US$/tC/day)</th>
<th>Energy requirement (MWh/tC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ chemical recovery from coal-fueled power</td>
<td>59,100–52,000</td>
<td>0.792–0.350</td>
</tr>
<tr>
<td>CO₂ chemical recovery from gas-fueled power</td>
<td>112,500–100,000</td>
<td>0.927–0.719</td>
</tr>
<tr>
<td>CO₂ physical recovery in gasification plants</td>
<td>14,500</td>
<td>0.902–0.496</td>
</tr>
</tbody>
</table>

IGCC with CO₂ capture (physical recovery) 1,700–1,470 34.0–49.0

Note: Cost reduction and energy efficiency improvement are assumed to proceed with time.

Source: David et al. (2000); Fujii et al. (1998)

Table 4 Assumed CO₂ sequestration potentials and sequestration costs in the world

<table>
<thead>
<tr>
<th>Sequestration potential (GtC)</th>
<th>Sequestration cost† ($/tC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil well (EOR)</td>
<td>30.7</td>
</tr>
<tr>
<td>Depleted gas well</td>
<td>40.2–241.5††</td>
</tr>
<tr>
<td>Coal-bed (ECBM)</td>
<td>40.4</td>
</tr>
<tr>
<td>Aquifer</td>
<td>856.4†</td>
</tr>
<tr>
<td>Ocean</td>
<td>–</td>
</tr>
</tbody>
</table>

† Cost of CO₂ capture is excluded.
†† 40.2 is the initial value in 2000, and the capacity increases with natural gas production.
* The potential is the “practical” one, i.e., 10% and 20% of the “ideal” potentials for onshore and offshore, respectively.
** The cost includes the cost of CO₂ liquefaction.

3.3 Population, GDP, and Final Energy Demands

Future scenarios of population, reference GDP, and reference final energy demands are derived from the B2 Marker Scenario of IPCC SRES (Nakicenovic et al., 2000; TGCLA, 2000). However, we made some modifications to the original scenario data for consistency with the historical data (IEA, 2002; World Bank, 2002; OECD/IEA, 2000) and region division of this model. Energy savings in end-use sectors are modeled using the long-term price elasticity. The elasticities of electricity and non-electricity are assumed to be –0.3 and –0.4,
respectively. The model determines the least cost energy systems that meet the final energy demands in the reference case as well as in emission reduction cases, assuming that energy saving occurs based on the price elasticity.

3.4 Endogenous Technology Learning

The technological change is treated endogenously for wind power, PV, and FCVs, as described before. In this paper, the typical learning curve expressed by equation (1) is assumed for these technologies. C_y, FC, LR, and CI_y denote cost at year y, floor cost, learning rate, and cumulative installation at year y, respectively. The learning rate denotes the cost reduction ratio for doubling the cumulative installation. FC and LR are exogenously provided, while C_y and CI_y are endogenously determined by Eq. (1).

$$C_y = (C_{2000} - FC)(1 - LR)^{\log(CI_y/CI_{2000})/\log 2} + FC$$

The determination of C_y and CI_y is carried out through iterative model runs. For the first model run, the time series values of initial guess are used for C_y, while those of CI_y are determined through the model run. New time series values of C_y are determined by Eq. (1) using the obtained time series values of CI_y. These values of C_y are used for the second model run. This operation is iterated until the variations in the time series values of C_y and CI_y between two successive model runs become acceptably small for all the three technologies.

In order to obtain an approximate solution of the nonconvex problem, which is attributed to endogenous technology learning, Messner (1997) used a mixed integer programming model (MIP). However, the MIP is not practical in our case because of the huge model size. The assumed crucial parameters, such as learning rates, are described in the following paragraphs.

Wind Power and PV

Wind power and PV comprise mature technology components whose cost portions are regarded as fixed, and only the remaining portions undergo cost reduction according to learning rates. The assumed parameters are shown in Table 5.

The initial values of time series costs for the first model run were assigned based on the costs for the year 2000 that were listed in Table 2, along with the annual cost reduction rates. The annual reduction rates were assumed as 1.0 %/yr for wind power and 3.4 %/yr for PV, which were determined based on EPRI/DOE (1997). Figure 1 shows the convergence of the time series cost for the base case. Although the times required for the model run iterations vary depending on the circumstances, a good convergence is achieved by repeating the iterations several times.
Table 5 Assumed cost reduction for wind power and PV

<table>
<thead>
<tr>
<th></th>
<th>Wind power</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor cost ratio in 2000 [%]</td>
<td>36*</td>
<td>13**</td>
</tr>
<tr>
<td>Ratio of cost for learning in 2000 [%]</td>
<td>64</td>
<td>87</td>
</tr>
<tr>
<td>Learning rate*** [% for doubling]</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

* Costs of construction, electric facilities, road for access, etc.
*** Source: A. Grubler et al. (2002).

Figure 1 Convergence of time series cost for the base case

Wind power
PV

FCVs

The assumed cost reduction for FCVs is shown in Table 6. FCV technology was divided into four components. The initial values of cost for the first model run were assigned based on the study of Tsuchiya (IAE/NEDO, 2003). The cost difference between FCV and gasoline vehicles is imposed as a cost penalty on hydrogen, which substitutes for gasoline.

Table 6 Assumed cost reduction for FCVs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel cell</td>
<td>149,000</td>
<td>2,500</td>
<td>20</td>
</tr>
<tr>
<td>Hydrogen tank</td>
<td>3,300</td>
<td>420</td>
<td>10</td>
</tr>
<tr>
<td>Motor, battery controller</td>
<td>8,750</td>
<td>1,250</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Costs of gasoline vehicle and common components are 12,500 and 8,400 US$/vehicle, respectively. The energy efficiency of FCVs at wheel is 3.1 times that of gasoline vehicles.

4. Model Analysis Results

4.1 Simulation Cases

In this work, three CO₂ stabilization cases were studied with and without the ITC, besides the base case that has no CO₂ constraint. The CO₂ emissions paths for stabilization were determined based on diagrams in TAR WGIII Chapter 2. However, the DNE21+ model is an energy system model and does not explicitly treat the land use change or CO₂-emitting industries like cement. Therefore, the emissions from land use and cement production were determined exogenously based on SRES B2, and they were subtracted from the above determined CO₂ emissions paths to obtain the path of CO₂ emissions exclusively from energy systems. For the cases with the ITC, the technological changes of wind power, PV, and FCVs were treated endogenously in the same manner as in the base case using the same parameters, as shown in Tables 5 and 6. However, we obtain different time series costs, i.e., different cost...
reduction rates among the three constraint cases and the base case because the constraint cases demand more low-carbon technologies. Consequently, they accelerate their cost reductions according to the learning curves—the more stringent the constraint, the faster is the rate of the cost reduction. Thus, the ITC is considered as the acceleration of the “learning by doing” process in this study. On the other hand, for cases without the ITC, the time series costs that were obtained for the base case were retained as fixed values even for the emission constraint cases. A discount rate of 5% was adopted throughout the study.

4.2 Model Results and Discussions

Figure 2 shows the world primary energy productions for the base case and ITC cases. Nuclear and renewables are expressed in primary equivalent by using a conversion factor of 0.33. The utilization of non-fossil fuels, such as nuclear power, wind power, PV, and biomass, increases in the CO2-concentration stabilization cases. Figure 3 shows the CO2 emission and sequestration. Sequestration in aquifers and ocean sequestration play an important role in the stabilization of CO2 concentration; the lower stabilizations require the CO2 sequestration to be utilized earlier. Figure 4 shows the world final energy consumption. Gasoline is substituted by hydrogen for FCV use; the trend is especially clear in the 450-ppmv ITC case.
The following is a discussion of the effects of the ITC by a comparison of the results of all the cases. Figure 5 shows the achieved time series costs for the three technologies assuming endogenous learning for the base case and ITC cases. For wind power and PV, only the costs of grade 1 are shown. Although the cost for wind power in the base case is lower than that for the 550- and 500-ppmv ITC cases at some time points because of the competition among the technologies for the mitigation of global warming, the lower stabilization cases induce the early introduction of the three technologies. As a result, cost reductions are observed in the early time period. The cost differences between the base case and ITC cases are mainly observed during the short time period when substantial technology introduction occurs, while they are small after a certain number of installations; this means that the effect of the ITC manifests during a time period of a substantial initial introduction. For example, the largest difference in the cost of PV between the base case and the 450-ppmv ITC case is observed in 2040. The costs in 2040 and the averaged annual cost reduction rates between 2000 and 2040 are 208 US$/MWh and 0 %/yr for the base case and 34 US$/MWh and 4.4 %/yr for the 450-ppmv ITC case, respectively.

Figure 6 shows the changes in power generation by wind power and PV, in terms of hydrogen consumption (which substitutes for gasoline), in nuclear energy production and in CO2 sequestration that are caused by suspending the ITC. As seen in the figure, positive values indicate increases for non-ITC cases as compared to ITC cases and negative values indicate decreases for non-ITC cases. CO2 sequestration and nuclear energy production are presented as examples to indicate the effects of the ITC suspension on other technologies based on exogenous learning. The CO2 sequestration is the sum of the five types shown in Figure 3. Power generation by wind power and PV decreases due to the ITC suspension, especially around the middle of the 21st century. The highest decreases are approximately 400, 900, and 1400 Mtoe/yr for 550, 500, and 450 ppmv, respectively. These ratios are approximately 15%, 50%, and 60% relative to the cases with the ITC. The effect of the ITC suspension on wind power and PV production increases for lower stabilization. With regard to the hydrogen that substitutes for gasoline, the decreases in consumption due to the ITC suspension are small for the 550- and 500-ppmv stabilizations because hydrogen consumption...
in the base case is almost identical to that in the 550- and 500-ppmv ITC cases, as shown in Figure 4. For the 450-ppmv stabilization, the decrease in the hydrogen consumption and the ratio of the decrease are largest in 2015 and they become smaller with time.

Contrary to the decrease in the utilization of these three technologies, increased amounts of CO₂ sequestration and nuclear power are utilized around the middle of the century for stabilizing the CO₂ concentration. The largest increases and their ratios to those in the corresponding ITC cases are approximately 160 MtC/yr (6%) and 150 Mtoe/yr (10%) in 2050 for 550 ppmv, 200 MtC/yr (11%) and 440 Mtoe/yr (48%) in 2040 for 500 ppmv, 500 MtC/yr (14%) and 540 Mtoe/yr (20%) in 2040 for 450 ppmv, respectively.

Figure 7 shows the marginal CO₂ reduction costs and the increases in the discounted total system cost relative to those in the base case. The marginal reduction costs increase with decreasing concentration level. On the other hand, the increases in the marginal CO₂ reduction cost due to the ITC suspension are considerably smaller than those caused by the CO₂ stabilization level difference. The increase in the total system cost acquires an increasingly nonlinear characteristic as the stabilization level lowers, and the increase resulting from lowering the stabilization level is larger than that caused by the ITC suspension, as shown in the figure on the right.

Figure 5 Time series costs for three technologies with endogenous technology learning

Wind power

PV

FCVs
The above mentioned minor effects of the ITC suspension on the marginal CO₂ reduction costs and total system cost are considered to be caused by the small portion of endogenously treated technologies among the technologies considered in the model. If the technological change in new technologies such as CO₂ capture can be treated endogenously, the effect of ITC will become more conspicuous even in the marginal cost and the total system cost.

Sensitivity Analysis

A sensitivity analysis was conducted with respect to the learning rate; the learning
rates of the three technologies were changed by 5 percentage points simultaneously for the three CO₂ stabilization cases. Figure 8 shows the obtained time series costs for the two sets of learning rates and the three stabilization cases.

For wind power, the effects of the change in the learning rate are conspicuous throughout the time span. The differences in cost due to the CO₂ stabilization level are observed mainly between 2000 and 2040, which is identical to the results of the original learning rate shown in Figure 5.

On the other hand, the differences in the cost of PV due to the CO₂ stabilization level are very small and almost indiscernible. Only the changes caused by the learning rate are observed. This implies that the timing of the initial introduction of PV depends principally on the learning rate and not on the stabilization level. The initial cost of PV in 2000 is considerably higher than that of wind power, and the utilization in 2000 is very small. In general, the cost reduction, which takes place according to the learning curve in the initial period, is relatively large for the same ratio of increase in cumulative production.

For FCVs, a higher learning rate does not lead to a significant change in the utilization as compared to the original learning rate. The original learning rate seems to be so high that the higher learning rate does not accelerate the utilization of FCVs further. For cases involving a lower learning rate, a delayed cost reduction in FCVs is observed for the higher CO₂ stabilization levels.

Figure 8 Sensitivity to the learning rate
The impact of the learning rate is relatively large, especially for immature technologies that have high cost and small utilization at the initial time point.

5. CONCLUSION

A world energy systems model was developed to explore cost-effective measures for different levels of CO₂ stabilization and the effects of induced technological changes on them. This model treats technological changes endogenously only for wind power, PV, and FCVs, which are technologies of mass production and are expected to follow the typical learning curve at a constant learning rate; all other technologies are treated exogenously. Owing to its high regional resolution, the model is able to consider in detail the transportation cost of energies, regional differences in energy systems, and technology level in the exploration of cost-effective energy systems for both the no-policy case and stabilization cases of 550, 500, and 450 ppmv. The conclusions are as follows:

1) Endogenous technology learning is successfully resolved through iterative model runs.
2) More nuclear and renewables, less fossil fuels, and more CCS technologies are to be used for lower levels of stabilization. The total system cost increases in a non-linear fashion as the stabilization level becomes lower.
3) The effect of the induced technological change is significant in terms of the amount of technology utilization only during the time period of the initial substantial introduction of the technology.
4) The marginal CO₂ reduction costs and the total system cost are not influenced substantially by the ITC because the portion of endogenously treated technologies is not large in this study.
5) The values of the learning rate should be carefully determined because their impact may be relatively large.

REFERENCES

Task Group on Scenarios for Climate Impact Assessment (TGCIA). (2002). *Socioeconomic Data for TGCIA.*

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPERS (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPERS (lxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (lxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

CCMP 16.2004 Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angela ANTOCI, Simone BORGHESE and Paolo RUSSU (lxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports

NRM 29.2004 Marian WEBER (lxviii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

NRM 30.2004 Trond BJØRNDAHL, Phoebe KOUNDOURI and Sean PASCOE (lxviii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

An Application to the Recreational Value of Forests

Gernot KLEPPER and Sonja PETERSON:

Andrea BIGANO and Stef PROOST:

Francesco RICCI:

Ingo BRÄUER and Rainer MARGGRAF:

Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG:

Anastasios XEPAPADEAS and Constadina PASSA

Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA

E.C.M. RUIJGROK

Netherlands

Resources on Smallholder Farms in Hungary: Institutional Analysis

Technology-based Climate Protocol

Analysis of Extractive Reserves in the Brazilian Amazon

Analysis to Evaluate Environmentally Conscious Tourism Management

Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ

Ekin BIROL, Ágnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects

Scott BARRETT and Michael HOEL: Optimal Disease Eradication

Disco Dimitrov, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Ingo BRÄUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturalized Streams

Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance

Koen REHDANZ and David MADDISON: The Amenity Value of Climate to German Households

Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxviii): Modesty Pays: Sometimes

Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis

E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands

Gianmi VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings

Anastasios XEPAPADEAS and Constadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Michael FINUS: Modesty Pays: Sometimes!

Tord BJÖRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margherita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
CCMP 74.2004 Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

ETA 75.2004 Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

CTN 77.2004 Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMÈRA and Fernando VEGA-REDONDO (lxx): Optimal Information Transmission in Organizations: Search and Congestion

CTN 78.2004 Francis BLOCH and Armando GOMES (lxx): Contracting with Externalities and Outside Options

CTN 79.2004 Rabah AMIR, Efsynnui DIAMANTOU and Lüisc XUE (lxx): Merger Performance under Uncertain Efficiency Gains

CTN 80.2004 Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players

CTN 81.2004 Daniel DIERMEIER, Hýla ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation

CTN 82.2004 Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization and Coalition Government Formation

CTN 83.2004 Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

CTN 84.2004 Sanjeev GOTAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): Economics: An Emerging Small World?

CTN 85.2004 Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players

IEM 86.2004 Finn R. FØRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

KTHC 87.2004 Eliasiaos PAPYRakis and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

IEM 89.2004 A. MARANDIA, S. PEDROSIO and D. STREMIKIENE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

GG 90.2004 Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

PRA 91.2004 Sergei IZMALKOV (lxx): Multi-Unit Open Ascending Price Efficient Auction

KTHC 92.2004 Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures

CCMP 94.2004 Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits

CCMP 95.2004 Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

CCMP 96.2004 Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

CTN 97.2004 Gustavo BERGANTINOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

CTN 98.2004 Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

GG 99.2004 Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

SIEV 100.2004 Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

NRM 102.2004 Valentine BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

CCMP 103.2004 Alessandra GORIA e Gretel GambARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

PRA 106.2004 Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

PRA 107.2004 Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

SIEV 108.2004 Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo ROSSOLO: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective

CTN 109.2004 Somdeb LAHIRI: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results

NRM 110.2004 Giuseppe DI VITA: Natural Resources Dynamics: Another Look

SIEV 111.2004 Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

KTHC 112.2004 Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

SIEV 113.2004 Paulo A.L.D. NUNES and Laura ONOFRI: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications

IEM 114.2004 Patrick CAYRADE: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?

IEM 115.2004 Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies
Valeria COSTANTINI and Francesco GRACCEVA: Social Costs of Energy Disruptions
Christian EGENHOFER, Kyriakos GIALOGLOU, Giacomo LUCIANI, Maroessa BOOTS, Martin SCHEEPERS,
Valeria COSTANTINI, Francesco GRACCEVA, Anil MARKANDYA and Giorgio VICINI: Market-Based Options for Security of Energy Supply
David FISK: Transport Energy Security. The Unseen Risk?
Giacomo LUCIANI: Security of Supply for Natural Gas Markets. What is it and What is it not?
L.J. de VRIES and R.A. HAKVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets
Alberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open Economy
Carlo GIUPPONI, Jaroslaw MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application
Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited
Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta VALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach
Irene GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic
Maria BERRITELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism
Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy Savings
Elisatos PAPYRakis and Reyer GERLAGH: Natural Resources, Innovation, and Growth
Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization
Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A Latent-Class Approach Based on Intensity of Participation
Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited
Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma
Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys
Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy Prices
Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČÍK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game
ZhongXiang ZHANG: The World Bank’s Prototype Carbon Fund and China
Elisatos PAPYRakis and Reyer GERLAGH: Time Profile of Climate Change Stabilization Policy
Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis
Patrick BAJARI, Stephanie HOUTHON and Steven TADELIS (lxxi): Bidding for Incomplete Contracts
Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealed Bid Auctions: Theory and Evidence from Timber Auctions
David GOLDRICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions
Roberto BURGÜET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economics
Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUGUET (lxxi): How to Win Twice at an Auction. On the Incidence of Commissions in Auction Markets
Claudio MEZZETTI, Aleksandar PEKEČ and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price Auctions
John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions
François DEGEORGE, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why Bookbuilding is Dominating Auctions
Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification. Internal Institution and Pressure Groups in the Kyoto Protocol’s Adoption Process
Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model
Alejandro M. MANELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue Maximization and the Multiple-Good Monopoly
Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism in Stabilization Policies?
Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with Externalities
Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1.2005
Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change

CCMP 2.2005
Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

CCMP 3.2005
Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

CCMP 4.2005
Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

ETA 5.2005
Hubert KEMPFF: Is Inequality Harmful for the Environment in a Growing Economy?

CCMP 6.2005
Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change

IEM 7.2005

ETA 8.2005
Lorenzo PELLEGRINI and Reger GERLAGH: An Empirical Contribution to the Debate on Corruption

CCMP 9.2005
Angelo ANTOSC: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model

CTN 10.2005
Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers

NRM 11.2005
Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

KTHC 12.2005
Carla MASSIDDA: Estimating the New Keynesian Phillips Curve for Italian Manufacturing Sectors

KTHC 13.2005
Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

PRCG 14.2005
Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

CSRM 15.2005
Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry

KTHC 16.2005
Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

KTHC 17.2005
Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms

KTHC 18.2005
Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer

KTHC 19.2005
Mombert HOPPE: Technology Transfer Through Trade

PRCG 20.2005
Roberto ROSON: Platform Competition with Endogenous Multithoming

CCMP 21.2005
Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes

IEM 22.2005
Fausto CAVALLARO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method

CTN 23.2005
Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria

IEF 24.2005
Wieteze LISE: Decomposition of CO2 Emissions over 1980–2003 in Turkey

CTN 25.2005
Somdeb LAHRI: The Core of Directed Network Problems with Quotas

SIEV 26.2005
Suzanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: Perceived Realism, Threat and WTP Estimates for Biodiversity Protection

NRM 27.2005
Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

CCMP 28.2005
Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information

NRM 29.2005
Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations

CCMP 30.2005
Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism

NRM 31.2005
Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies

NRM 32.2005
Chiara DALPAOS, Cesare DOST and Michele MORETTO: Concession Length and Investment Timing Flexibility

CCMP 33.2005
Joseph HUBER: Key Environmental Innovations

CTN 34.2005
Antoni CALFO-ARMENGOL and Rahimi ILKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation

CTN 35.2005
Francesco FERI (lxxii): Network Formation with Endogenous Decay

CTN 36.2005
Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms

Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice

Michael FINUS and Bianca RUNDHAGEN: Participation in International Environmental Agreements: The Role of Timing and Regulation

Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Optimal Transfers and Participation Decisions in Networks

Valeria GATTAI: From the Theory of the Firm to FDI and Internationalisation: A Survey

Alessandra del BOCA, Marzio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA: Valuerelated Designs: A Characterization of Stochastically Stable Shocks

Carlo CARRARO, Johan EYCKMANS and Michael FINUS: Among Unionized Firms

Francesco FERI: Stochastic Stability in Network with Decay

Aart de ZEEUW (lxxii): Dynamic Effects on the Stability of International Environmental Agreements

C. Martijn van der HEIDEN, Jeroen C.J.M. van den BERGH, Ekko C. van IERLAND and Paulo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands

Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI: Information Channels in Labor Markets, On the Resilience of Referral Hiring

Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated Games

Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): The Egalitarian Sharing Rule in Provision of Public Projects

CTN 48.2005

CTN 46.2005

CTN 45.2005

NRM 42.2005

CCMP 52.2005

IEM 47.2005

CTN 49.2005

CTN 48.2005

CTN 47.2005

KTHC 66.2005

KTHC 65.2005

KTHC 64.2005

SIEV 63.2005

NRM 58.2005

CTN 64.2005

CTN 63.2005

KTHC 62.2005

KTHC 61.2005

NRM 57.2005

SIEV 53.2005

CTN 52.2005

CTN 50.2005

CTN 49.2005

IEM 46.2005

KTHC 51.2005

KTHC 50.2005

ET 46.2005

ET 45.2005

ET 44.2005

ET 43.2005

ET 42.2005
Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship

Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITTHAGEN (lxxvi): Local and Global Interactions in an Evolutionary Resource Game

Joëlle NOAILLY, Cees A. WITTHAGEN and Jeroen C.J.M. van den BERGH (lxxvi): Spatial Evolution of Social Norms in a Common-Pool Resource Game

Maximiliano MAZZANTI and Roberto ZOBOLI: Economic Instruments and Induced Innovation: The Case of End-of-Life Vehicles European Policies

Anna LASUT: Creative Thinking and Modelling for the Decision Support in Water Management

Valentina BOSETTI and Barbara BUCHNER: Using Data Envelopment Analysis to Assess the Relative Efficiency of Different Climate Policy Portfolios

Ignazio MUSU: Intellectual Property Rights and Biotechnology: How to Improve the Present Patent System

Giulio CAINELLI, Susanna MANCINELLI and Massimiliano MAZZANTI: Social Capital, R&D and Industrial Districts

Rosella LEVAGGI, Michele MORETTO and Vincenzo REBBA: Quality and Investment Decisions in Hospital Care when Physicians are Devoted Workers

Valentina BOSETTI and Laurent GILOTTE: Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?

Vincenzo FERRO: Value Through Diversity: Microfinance and Islamic Finance and Global Banking

Anil MARKANDYA, Valeria COSTANTINI, Francesco GRACCEVA and Giorgio VICINI: Security of Energy Supply: Comparing Scenarios From a European Perspective

Vincent M. OTTO, Andreas LÖSCHEL and Rob DELLINK: Energy Biased Technical Change: A CGE Analysis

Carlo CAPUANO: Abuse of Competitive Fringe

Sabrina AUCI and Leonardo BECCETTI: The Stability of the Adjusted and Unadjusted Environmental Kuznets Curve

Francesco BOSELLO and Jian ZHANG: Assessing Climate Change Impacts: Agriculture

Alejandro CAPARRÓS, Jean-Catherine PEREAU and Tarik TAZDAIT: Bargaining with Non-Monolithic Players

Rob DELLINK, Michael FINUS and Niels OLIEMAN: Coalition Formation under Uncertainty: The Stability of Likelihood of an International Climate Agreement

Valeria COSTANTINI, Riccardo CRESCENZI, Fabrizio De FILIPPI, and Luca SALVATICI: Bargaining in the Agricultural Negotiations of the Doha Round: Similarity of Interests or Strategic Choices?

An Empirical Assessment

Gilliola FREY and Matteo MANERA: Econometric Models of Asymmetric Price Transmission

Alessandro COLOGNI and Matteo MANERA: Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries

Chiara M. TRAVISI and Roberto CAMAGNI: Sustainability of Urban Sprawl: Environmental-Economic Indicators for the Analysis of Mobility Impact in Italy

Livingstone S. LUBOOBI and Joseph Y.T. MUGISHA: HIV/AIDS Pandemic in Africa: Trends and Challenges

Anna ALBERINI, Erik LICHTEenburg, Dominic Mancini, and Gregmar I. GALINATO: Was It Something I Ate? Implementation of the FDA Seafood HACCP Program

Anna ALBERINI and Aline CHIABAI: Urban Environmental Health and Sensitive Populations: How Much are the Italians Willing to Pay to Reduce Their Risks?

Michele BERNASCONI and Matteo GALIZZI: Coordination in Networks Formation: Experimental Evidence on Learning and Salience

Michele MORETTO and Sergio VERGALLI: Migration Dynamics

Antonio MUSOLESI and Mario NOSVELLI: Water Consumption and Long-Run Urban Development: The Case of Milan

Benno TÖRGLER and Maria A. GARCIA-VALIÑAS: Attitudes Towards Preventing Environmental Damage

Alberto LONGO and Anna ALBERINI: What are the Effects of Contamination Risks on Commercial and Industrial Properties? Evidence from Baltimore, Maryland

Anna ALBERINI and Alberto LONGO: The Value of Cultural Heritage Sites in Armenia: Evidence from a Travel Cost Method Study

Mikel GONZÁLEZ and Rob DELLINK: Impact of Climate Policy on the Basque Economy

Gilles LAFFORGUE and Walid OUESLATI: Optimal Soil Management and Environmental Policy
<table>
<thead>
<tr>
<th>Volume</th>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRM</td>
<td>115</td>
<td>Martin D. SMITH and Larry B. CROWDER</td>
<td>Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary</td>
</tr>
<tr>
<td>NRM</td>
<td>116</td>
<td>Dan HOLLAND and Kurt SCHNIER</td>
<td>Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas</td>
</tr>
<tr>
<td>PRCG</td>
<td>117</td>
<td>John NELLIS</td>
<td>The Evolution of Enterprise Reform in Africa: From State-owned Enterprises to Private Participation in Infrastructure — and Back?</td>
</tr>
<tr>
<td>PRCG</td>
<td>118</td>
<td>Bernardo BORTOLOTTI</td>
<td>Italy’s Privatization Process and Its Implications for China</td>
</tr>
<tr>
<td>SIEV</td>
<td>119</td>
<td>Anna ALBERINI, Marcella VERONESI and Joseph C. COOPER</td>
<td>Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys</td>
</tr>
<tr>
<td>CTN</td>
<td>120</td>
<td>Federico ECHENIQUE and Mehmet B. YENMEZ</td>
<td>A Solution to Matching with Preferences over Colleagues</td>
</tr>
<tr>
<td>KTHC</td>
<td>121</td>
<td>Valeria GATTAI and Corrado MOLTENI</td>
<td>Dissipation of Knowledge and the Boundaries of the Multinational Enterprise</td>
</tr>
<tr>
<td>KTHC</td>
<td>122</td>
<td>Valeria GATTAI</td>
<td>Firm’s Intangible Assets and Multinational Activity: Joint-Venture Versus FDI</td>
</tr>
<tr>
<td>CCMP</td>
<td>123</td>
<td>Socrates KYPREOS</td>
<td>A MERGE Model with Endogenous Technological Change and the Cost of Carbon Stabilization</td>
</tr>
<tr>
<td>CCMP</td>
<td>124</td>
<td>Fuminori SANO, Keigo AKIMOTO, Takashi HOMMA and Toshihisa TOMODA</td>
<td>Analysis of Technological Portfolios for CO₂-stabilizations and Effects of Technological Changes</td>
</tr>
</tbody>
</table>
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>