Naghavi, Alireza; Leahy, Dermot

Working Paper

Intellectual Property Rights and Entry into a Foreign Market: FDI vs. Joint Ventures

Nota di Lavoro, No. 97.2006

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Naghavi, Alireza; Leahy, Dermot (2006) : Intellectual Property Rights and Entry into a Foreign Market: FDI vs. Joint Ventures, Nota di Lavoro, No. 97.2006, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/73970

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Intellectual Property Rights and Entry into a Foreign Market: FDI vs. Joint Ventures
Dermot Leahy and Alireza Naghavi

NOTA DI LAVORO 97.2006

JUNE 2006
KTHC – Knowledge, Technology, Human Capital

Dermot Leahy, School of Economics, University College Dublin
Alireza Naghavi, Università di Modena e Reggio Emilia, Dipartimento di Economia Politica

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=913924

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Intellectual Property Rights and Entry into a Foreign Market: FDI vs. Joint Ventures

Summary

We study the effect of the intellectual property rights (IPR) regime of a host country (South) on a multinational's decision between serving a market via greenfield foreign direct investment to avoid the exposure of its technology or entering a joint venture (JV) with a local firm, which allows R&D spillovers under imperfect IPRs. JV is the equilibrium market structure when R&D intensity is moderate and IPRs strong. The South can gain from increased IPR protection by encouraging a JV, whereas policies to limit foreign ownership in a JV gain importance in technology intensive industries as complementary policies to strong IPRs.

Keywords: Joint Ventures, Intellectual Property Rights, Technology Transfer, R&D Spillovers, FDI Policy

JEL Classification: O34, F23, O32, F13, L24, O24

Address for correspondence:

Alireza Naghavi
Dipartimento di Economia Politica
Università di Modena e Reggio Emilia
Viale Berengario 51
41100 Modena
Italy
Phone: +39 059 205 6843
Fax: +39 059 205 6947
E-mail: naghavi@unimore.it
1 Introduction

There is one aspect of globalization over which its advocates and critics agree: the increasingly important role of multinational enterprises (MNEs) in the global economy. The latter group criticizes the expanding market and political power of MNEs while the former is convinced of their contribution to growth and development. The organizational structure of MNEs can be a significant factor in determining whether they simply exploit their market power or truly contribute to the development of the host country. Foreign investment by MNEs can take several forms: one option is to directly set up a wholly owned subsidiary in order to have more control over and closer monitoring of its operations abroad; another is to enter an agreement such as licensing, acquisition, or a joint venture (JV) with an already existing foreign firm to serve a foreign market. The question comes to mind as to which form of investment MNEs prefer under different circumstances and whether their preferred market structure can be an equilibrium outcome.\footnote{Dunning (1981) studied different modes of entry by considering three advantages of investing into a foreign market. This is usually referred to as the OLI framework, which stands for ownership, locational and internalization advantage. The ownership advantage occurs as information (technology) can be transferred over border at low cost and can therefore be used in several facilities at no extra costs. Locational advantage comes from motives such as tariffs, transport costs, market size, lower wages and closeness to customers. Internalization advantage involves keeping crucial technology in-house by choosing FDI over licensing or JVs.}

Firm-specific assets may be knowledge based and can be protected by a patent. The patent grants the MNE technological superiority, which creates
incentives for it to move to a foreign market. When an enforcement mechanism to protect patents is absent in the target country, the firm’s desire to protect its knowledge based assets can influence how (if at all) it chooses to enter that foreign market. The IPR regime in the host country is hence likely to have an effect on this decision. If knowledge is valuable but can be copied, a MNE may not wish to reveal its technology to an unrelated Southern firm as it would lose absolute control over its know-how. This leads firms to seek a safer alternative and engage in greenfield foreign direct investment (FDI) in countries with weaker IPRs and contract enforcement mechanisms (Maskus, 1998). Subsequently, as IPR protection in a nation becomes stronger, i.e. Trade-Related Aspects of Intellectual Property (TRIPS) is enforced, firms would not need to rely as much on the direct form of FDI and tend to choose more licensing and JV agreements.

The relative R&D intensity of an industry also plays an important role in the decision of firms on how to enter a foreign market. For instance in low tech goods such as textile and apparel, distribution, hotel, etc. FDI depends relatively little on IPRs and more on input costs and market opportunities. Investments with technologies that are too costly to imitate likewise pay little attention to local IPR levels.2 It is particularly in industries with valuable, but easily copied technologies such as the pharmaceutical, chemical or the software industry where concern over the ability of local IPRs to deter imitation arises when making foreign investment decisions. Mansfield’s (1994) survey of intellectual property

2Note that the fact that imitation of complex technologies is getting easier with time gives rising importance to IPRs of the host country in FDI decisions.
executives in one hundred major US firms in six industries that had international operations found that JVs or licensing to unrelated firms is seen as riskier than FDI with a wholly owned subsidiary when IPRs are weak. This concern was higher for more R&D intensive sectors.\(^3\) This is because the risk at stake is much higher when technologies require higher amounts of R&D investment, making it more efficient to avoid potential losses by internalizing technology transfer through FDI. As the IPR regime in a developing country improves, i.e. it adopts TRIPS, we expect to see licensing and JVs displace FDI.

As technology transfer has proved to be necessary means of growth, it also has important welfare implications for developing countries that attempt to attract foreign capital. The illegitimate means of technology transfer can be achieved through imitation when MNEs choose the form of entry that is relatively more vulnerable to spillovers. However, it is less likely that a MNE makes such a choice when the IPR regime in the target country is loose. The legitimate (voluntary) form of technology transfer on the other hand can be processed through licensing or JV agreements. This form of transfer only occurs when firms see enough commitment to IPRs in the host country so that excessive leakage of its know-how outside the JV can be prevented. It will be seen that this form of technology transfer can be accelerated by an improvement in the level of IPR protection in the South. Hence the South can induce the Northern firm to undertake voluntary technology transfer when it sees JVs as the socially

\(^3\)The concern was also higher for all sectors when a higher stage of production was under question.
preferable form of inward investment. In fact, the TRIPS agreement includes provision such as the article 66.2 that requires Northern governments to provide incentives for their firms to transfer technology to the South in return for the protection of their IPRs.\footnote{See http://www.wto.org/english/tratop_e/trips_e/techtransfer_e.htm.} As there has been few signs of such move by the North, governments in the South demand that this requirement is made more effective and have sought a mechanism for ensuring this in the Doha round.

Policies that limit direct foreign investment in the South have been used as an indirect way to encourage inward technology transfer. Indeed, foreign investment policies that place limits on the direct form of FDI, or on the degree of foreign ownership in a JV are often observed in developing countries. Limitations on foreign investment still persist to a great extent in non-WTO members such as Iran. They can even be observed in several member countries such as China, which after joining the WTO has only raised its limits on foreign ownership of JVs in the telecommunications industry to 49\% and in insurance and automobile industries to 50\% . (Lin and Saggi, 2004). This motivates an investigation to see whether such policies are optimal for the South and if so how they could benefit the latter when technology transfer is taken into account.

The role of JVs have been surprisingly little explored in the IPR literature. Al-Saadon and Das (1996) for instance constructs a model of JVs in which ownership shares are endogenously determined through bargaining between a MNE and a single host firm. Only another handful of papers such as Das (1999) and Lin and Saggi (2004) dealt with different aspects of a JV such as
moral hazard problems and Southern policies on foreign ownership. Yet, IPR protection as a determinant of knowledge spillover and a firm's decision on the mode of entry have been absent from the discussion. Mattoo, Olarreaga and Saggi (2004) develop a model that differentiates between FDI and acquisition of existing domestic firms. They show circumstances where the preferences of the MNE and the host country government can be in conflict, justifying policy interventions through restrictions on FDI or JV to induce the foreign firm to choose the socially optimal mode of entry. While this paper is the closest work to ours that deals with technology transfer and the decision of firms about the mode of entry, it also leaves out matters concerning IPRs and technological spillovers.

Our paper is the first theoretical paper to our knowledge that looks at IPR issues surrounding JVs. First, we show that JVs are more likely to occur when the R&D intensity of an industry is at an intermediate range. We then show in line with empirical findings of Mansfield (1994) that an improved IPR regime can encourage JVs. We also analyze investment policies in the South and demonstrate that they are often ineffective from the perspective of the recipient country.

Saggi (1996) also examines the choice of a MNE between FDI and licensing when there are two firms in the host country with asymmetric costs. He finds that licensing is always chosen when the licensee is legally prevented from using the acquired technology to compete with the MNE in the rest of the world. When opportunism is allowed so that the licensee has the option to defect, FDI can become the preferred form of entry when licensing fees cannot recoup the damages to the MNE caused by the loss of its monopoly power in the rest of the world.
From the point of view of Southern welfare, strengthening the IPR regime instead serves as a priority to induce a JV and with it technology transfer. It will be seen that Southern policies on the extent of foreign ownership in a JV only become important as a complementary policy to full IPR protection for sectors with high R&D intensity.

The plan of the rest of the paper is as follows: Section 2 describes the basics of the model and looks into the FDI and JV modes of entry by the MNE. It discusses the production and the innovation stage for each case. Section 3 solves the bargaining game between the firms in the first stage. Section 4 calculates the equilibrium mode of entry. Section 5 studies the welfare implication for the host country and finds the socially optimal form of inward foreign investment. Policy recommendations on inward FDI follow in this section. Section 6 concludes.

2 The Model

2.1 Background

There are two countries: the North and the South. We assume one MNE that belongs to the North and two local firms operating in the South.\footnote{We use a three-firm framework as opposed to simply having one Northern and one Southern firm because we need a third firm in the South that stands to gain from spillovers in the JV case. It is also fairly straightforward to extend the model to allow for more Southern firms, but this does not yield significant additional insights. The attractiveness of a JV is simply reduced due to higher competition and a bigger loss from spillovers.} Firms produce a homogenous good and compete in a Cournot manner. We use an
oligopoly model as MNEs are usually found in concentrated industries. In addition, markets in which technology transfer plays an important role are usually not perfectly competitive. For simplicity and because we wish to focus on one industry we adopt a partial equilibrium approach.\(^7\) Firms face an aggregate world demand of

\[
p = A - Q, \tag{1}
\]

where \(A\) represents the size of the integrated world market and \(Q\) is the total quantity produced.

It is assumed that the Northern MNE has already decided to establish production in the South with cross-border trade being infeasible or too costly.\(^8\) The MNE must make a decision whether to enter the South through FDI or a JV agreement. It could establish a wholly owned subsidiary to protect its technology from exposure to Southern firms. In this case the MNE remains the only firm that has access to the superior technology generated by its R&D. Alternatively, it could form a JV agreement with an already existing Southern firm.\(^9\)

In this case, a potentially loose IPR policy in the South makes it possible for...

\(^7\)The literature in oligopoly in general equilibrium is very small but growing. See for instance Neary (2003) for recent work on "general oligopolistic equilibrium". In this and in related papers Neary treats firms as large in their own sectors yet small in the economy as a whole.

\(^8\)The trade-off between exporting and FDI in the context of IPRs has been explored in previous literature (see for example Naghavi, 2005) and is not the aim of this paper.

\(^9\)We rule out the possibility of the Northern firm entering a JV with more than one firm. We consider that to be a less realistic case.
local firms outside the JV to imitate the Northern technology at no extra cost.

When forming a JV, the firms bargain over their profit share. The outcome of the negotiations depends on the relative bargaining power and the outside option of the firms. Following Lin and Saggi (2004) we focus on the two extreme negotiated outcomes: when either the Northern or Southern partner has all the bargaining power. The firm with full bargaining power leaves itself the maximum rent it can achieve from a JV, while giving its partner just the equivalent of its outside option. A JV contract only goes through if it creates extra rents. Whether or not a JV is formed and thus the equilibrium market structure depends both on the level of IPR protection and the R&D intensity of the industry.

R&D investment takes place in the next stage. The level of this investment determines the potential quality of technology transfer to the South. R&D in this model is aimed at inventing more efficient production technologies and hence takes a cost-reducing form. The Northern MNE is assumed to be the sole firm that can invest in R&D as the South is considered less developed. The mode of entry along with other factors such as the level of IPR protection in the South determine the level of R&D investment. The model looks at a range of industries with different R&D intensities. The paper however leaves out extremely high technology intensive industries discussed in a somewhat similar framework in Chin and Grossman (1991) and Zigic (1998) where the Northern firm may be

10 Lin and Saggi (2004) actually look at three cases with the third being the share that maximizes their joint profits. As in our models firms produce to maximize joint profits, the shares in the JV does not affect total profits.
able to form a constrained or unconstrained monopoly.11 Such industries are not of interest in our discussion on JVs as they are infeasible and lie beyond the region where sharing ownership is a profitable option for the MNE.12 The cost functions for the Northern and the Southern firms respectively are

\[C = \alpha - \sqrt{g x} \]

and

\[c = \alpha - \beta \sqrt{g x}, \]

where \(x \leq \alpha^2/g \). \(x \) is the R&D investment, \(g \) is the effectiveness of R&D, \(\alpha \) is the pre-innovative production cost, and

\[\beta = b \nu \]

is the level of technology spillovers. The parameter \(\beta \) itself is a product of the absorptive capacity \(0 \leq b \leq 1 \) and \(\nu \), a measure of the weakness of IPR protection in the host country with \(\nu = 0 \) indicating full IPR protection and \(\nu = 1 \) the complete lack thereof.

11These models do not look at the possibility of a JV, but extend the analysis to more technology intensive sectors where the Northern firm can engage in strategic predation to deter entry or serve the market as a unconstrained monopoly. While an unconstrained monopoly clearly rules out the possibility of a JV, our model can be easily extended to include strategic predation by the Northern firm or the JV. This would however not bring any new insights into the model.

12Both theory (See Mattoo, Olarreaga and Saggi, 2004) and empirical evidence (Smarzynska Javorcik, 2000, Saggi and Smarzynska Javorcik 2004) prove that JVs do not occur for high technology intensive industries. Northern firms in such cases prefer to serve the foreign market through a wholly owned subsidiary abroad even when IPRs are fully protected.
Absorptive capacity b is the ease with which the outsider Southern firm can absorb the knowledge generated by the JV. This will depend on such factors as the complexity of the knowledge generated and the level of development of the Southern firm and country. The larger is b, the greater is the absorptive capacity. Thus when $b = 0$ it is impossible for the outsider Southern firm to learn anything from the JV while when $b = 1$ the firm is fully capable of making use of the available technology. When IPR protection is completely missing in the host country, spillovers amount to the natural level determined by how easy it is to copy the technology ($\beta = b$). In the rest of the paper, we focus the discussion on changes in the level of IPR protection and take b as given. Note that the former is a policy instrument whereas b is exogenous. Finally, $\beta = 0$ always holds under FDI as it is assumed that this form of subsidiary prevents any leakage/spillover of knowledge to competing firms operating in the South.13

We also compare the welfare implications of each mode of entry to find the socially optimal form of foreign investment for the host country. This allows us to see whether it is optimal for the South to upgrade its IPR protection regime and/or put restrictions on foreign ownership in a JV.

The timing of the game is as follows. Firms bargain in the first stage over their share in a potential JV, which in turn determines the market structure. If both firms are at least as well off with the bargaining outcome than competing on their own, the bargain is a success and the JV goes through. Otherwise

13Obviously, in practice, there can be some spillovers with FDI, although less than in a JV situation. For simplicity we just set the spillovers under FDI equal to zero. Results remain qualitatively the same for positive, but lower spillovers under FDI.
the MNE enters the South through FDI. The MNE then engages in R&D and firms compete in output in the final stage of the game. We now turn to the two modes of entry and look at production and R&D investment for each case before analyzing the bargaining game in the first stage.

2.2 FDI

When the Northern firm chooses to enter the South through FDI, it simply competes with active local firms in the host country that produce the homogeneous good. It is usually assumed that FDI incurs fixed costs that can be avoided by forming cross-border JVs to utilize already existing facilities of a foreign firm. Fixed costs of FDI are however left out of the model for simplicity. Adding them simply increases the attractiveness of JVs proportionally.\(^\text{14}\)

A marginal cost asymmetry arises as firms in the South do not have access to the Northern firm’s technology attained through its R&D efforts. Given that there are no spillovers with FDI \((c = \alpha)\), the profits of the Northern firm and the two Southern firms are respectively

\[
\pi_F = (p - C)q_F - x \quad (5)
\]

and

\[
\pi_{S_j} = (p - \alpha)q_{S_j}, \quad (6)
\]

where subscript \(F\) represents the Northern firm when it engages in FDI, \(S\) denotes a Southern firm and \(j = 1, 2\) identifies the latter. In the final stage of

\(^{14}\)It will be seen that although the model reflects a case with zero FDI fixed costs, a JV results in other advantages for the MNE such as sharing the fixed R&D investment cost.
the game, firms compete in quantity and find their optimal output using the first order conditions of (5) and (6) with respect to q:

\begin{align}
q_F &= a + 3\sqrt{gx} \cdot \frac{a}{4}, \\
q_{Sj} &= a - \sqrt{gx} \cdot \frac{a}{4},
\end{align}

for $j = 1, 2$. As $A - \alpha$ appears in all the upcoming equations, it is replaced by a to simplify the notation. Replacing the optimal quantities back into the Northern firm’s profit function and differentiating the latter with respect to x, we can derive the optimal level of R&D investment:

\begin{align}
x_F^* &= \frac{9a^2g}{(16 - 9g)^2}.
\end{align}

It can be seen that R&D effort is higher the more technology intensive is an industry (i.e. the higher is g). Finally replacing the optimal output and R&D investment back into (5) and (6), the optimal profits for each firm can be found:

\begin{align}
\pi_F^* &= \frac{a^2}{16 - 9g}, \\
\pi_{Sj}^* &= \frac{a^2(4 - 3g)^2}{(16 - 9g)^2}.
\end{align}

We assume that $g \leq 4/3$ to assure that all firms produce non-negative output and earn non-negative profits. A higher level of g would lead to the Southern firms being driven out of the market. In that case, neither Southern firm finds it profitable to enter the market and compete in technology intensive industries. We rule out this case.
2.3 Joint Venture

Now assume the Northern firm enters the South by forming a JV with a local firm in the host country.\footnote{There is a vast literature on JVs and R&D spillovers such as d’Aspremont and Jacquemin (1988), Suzumara (1992), Neary and O’Sullivan (1999), and Leahy and Neary (2004).} We assume a JV maximizes joint profits with a fixed share of profits going to each partner. The joint profits of the Northern firm and the Southern firm in a JV are

$$\pi_J = (p - C)q_J - x$$ \hspace{1cm} (12)

with subscript J representing a JV. Note that the MNE in this case gets the Southern partner to share its R&D costs. An agreed share of profits ϕ $(1 - \phi)$ goes to the Northern (Southern) partner where $0 \leq \phi \leq 1$. All production by the JV is assumed to take place in the South. It is in the interests of both firms in a JV to have full information sharing with respect to the results of the R&D undertaken as full 'internal spillover' is needed to maximize joint profits. Thus all output in the JV is produced at a marginal cost of C. The outsider firm in the South can gain partial access to the technology developed by the JV. How great a spillover it enjoys depends on the absorptive capacity and the weakness of IPR protection in the South, β. The profit of the outsider Southern firm is therefore

$$\pi_{SO} = (p - c)q_{S2},$$ \hspace{1cm} (13)

where the second subscript O stands for outsider. Solving for the optimal output by each firm yields

$$q_J = \frac{a + (2 - \beta)\sqrt{gx}}{3}$$ \hspace{1cm} (14)
and

\[q_{SO} = \frac{a - (1 - 2\beta)\sqrt{\gamma x}}{3} \]

(15)

for the JV and the outsider Southern firm respectively.

Subsequently, optimal R&D investment by the JV is

\[x_J^* = \frac{a^2 g(2 - \beta)^2}{[9 - g(2 - \beta)^2]^2}. \]

(16)

Comparing (9) and (16), it can be seen that the equilibrium R&D is higher under FDI than under a JV as long as R&D effectiveness is above the threshold level

\[\bar{\gamma} = \frac{5 - 16\beta}{3(2 - \beta)(1 + \beta)}. \]

(17)

This value starts at 5/6 for full protection (\(\beta = 0 \)) and is falling in \(\beta \) until it reaches 0 when \(\beta = 5/16 \).\(^\text{16}\) Looser IPR protection reduces R&D incentives of a JV due to higher spillovers, while not affecting that in the case of FDI. Notice that the R&D decision is independent of how profits are divided between the two partners in a JV as joint profits are maximized when solving for the optimal R&D investment.\(^\text{17}\)

\(^{16}\)Note that even with full IPR protection, the level of R&D is higher with FDI than a JV when \(g \geq 5/6 \). This is because the positive strategic effect of the cost asymmetry on output is stronger in the FDI case due to a higher number of rivals to compete against. When the cost difference is large enough, this effect outweighs the negative scale effect that FDI entails due to the smaller size of the MNE.

\(^{17}\)We can alternatively solve for the R&D investment that maximizes the Northern share of profits in a JV when it chooses to behave on pure self-interest. Our model is robust to such modifications as the nature of our results remain unchanged.
Substituting the optimal levels of output and R&D investment back into the profit function of each firm, optimal profits turn out to be

$$\pi_J^* = \frac{a^2}{9 - g(2 - \beta)^2}$$ \hspace{1cm} (18)

and

$$\pi_{SO}^* = \frac{a^2[3 - g(1 - \beta)(2 - \beta)]^2}{[9 - g(2 - \beta)]^2}$$ \hspace{1cm} (19)

for the JV and the outsider Southern firm respectively. The profit of the JV is always decreasing in spillovers, whereas that of the outsider Southern firm is always increasing with it. The advantage of the JV over a third firm decreases with a weaker IPR regime as the cost asymmetry that exists between the JV and the outsider firm is reduced.

3 Bargaining in the Joint Venture

Turning now to the bargaining between the two firms in the first stage of the game, a deal has to be reached in order to divide the joint profits in (18) between the two sides. The portion of profits that goes to the Northern and the Southern partner is $\phi \pi_J^*$ and $(1 - \phi) \pi_J^*$ respectively, where ϕ represents the Northern share in the JV. The size of this share depends on the bargaining power of each firm.

We look at the two extreme cases where either the Northern or the Southern firm holds full bargaining power. When a firm has all the bargaining power, it captures all rents from the JV and leaves its partner the minimum share that is just sufficient to convince the latter to participate.
When it is the Southern firm that has all the bargaining power, the MNE's profits are equal in the JV and FDI cases. Formally, the critical share is the ϕ which solves $\pi_F^P = \phi \pi_J^*$:

$$\phi^S = \frac{9 - g(2 - \beta)^2}{16 - 9g}.$$

(20)

The superscript indicates which side of the deal enjoys the bargaining power. The share that the Northern firm keeps starts at $9/16$ when $g = 0$ and is increasing in g until it reaches 1, that is when the Northern firm no longer finds it optimal to create a JV and share its technology. Meanwhile, the Southern firm would only enter a JV if the share $(1 - \phi^S)$ matches its profits in the FDI case, where it uses its old technology to compete with the Northern firm. A JV not being possible when g is above a critical threshold complies with empirical findings of Smarzynska Javorcik (2000) and Saggi and Smarzynska Javorcik (2004), which show that JVs in highly R&D intensive sectors present a lower potential for transfer of technology as Northern firms would be more likely to engage in wholly owned projects than to share ownership.

We turn now to the case in which the Northern firm has all the bargaining power. It offers a share to the Southern firm that would make the latter indifferent between the JV and FDI. The share that is retained by the Northern firm is denoted by ϕ^N and is the ϕ that solves $\pi_{Sj}^* = (1 - \phi)\pi_J^*$:

$$\phi^N = \frac{112 + 8g(2\beta^2 - 8\beta - 1) - g^2(24g - 9)(2 - \beta)^2}{(16 - 9g)^2}.$$

(21)

The profits of the Northern firm when it has full bargaining power in a JV is $\phi^N \pi_J^*$. Similar to the previous case, the Northern firm would clearly only
make the offer if $\phi^N \pi_j^* \geq \pi_F^*$. The share when the Northern firm has all the bargaining power is also increasing in g, but is now concave and is higher than ϕ^S in the relevant range. Figure 1 illustrates the share of profits that remains for the MNE in each case, namely ϕ^S and ϕ^N, for a situation when IPRs are fully protected.

4 The Equilibrium Mode of Entry

Based on the outcome of the bargaining process, the Northern firm makes a decision on how to enter the Southern market. If a JV is to generate additional profits for insiders then $\pi_j \geq \pi_F + \pi_Sj$. Also, recall that $\phi^S = \pi_{Sj}/\pi_j$ and $1 - \phi^N = \pi_F/\pi_j$. Substituting these in the above inequality gives $1 \geq (1 - \phi^N) + \phi^S$, which in turn implies

$$\phi^N \geq \phi^S$$ \hspace{1cm} (22)

if a JV is to take place. Note that ϕ^N is below ϕ^S at low g. A JV is not an equilibrium here because at low g total JV profits are smaller than the sum of
profits of the two participants in the absence of a JV, i.e. \(\pi_J < \pi_F + \pi_{Sj} \). As \(\pi_J \) initially rises faster in \(g \) than \(\pi_F + \pi_{Sj} \), the share offered by the Northern firm when it has full bargaining also increases faster than its share when the Southern partner has full bargaining power until \(\phi^N = \phi^S \). At this point, the maximum share that a firm can get in a JV is also the minimum share that it will accept, hence there are no rents from forming a JV that could be shared out among participants. After this threshold level of \(g \), \(\phi^N > \phi^S \) and JV brings extra rents until \(\phi^S > \phi^N \) again after a critical level of \(g \) (for positive \(\beta \)).

Proposition 1 JV is the equilibrium market structure when \(\phi^N \geq \phi^S \) so that the maximum potential Northern share when a JV is formed exceeds the minimum share it requires to form a JV. This condition assures that extra rents can be gained from a JV.

Looking back at figure 1, when the Southern firm has the bargaining power, looser IPR protection in the South leads to \(\phi^S \) reaching unity at a lower level of \(g \) because the relative profitability of the JV falls. The MNE instead chooses to protect itself from exposure to Southern firms by establishing its own subsidiary abroad. When the Northern firm has the bargaining power on the other hand, looser IPR protection lowers the share it keeps as JV profits are lower and a more generous offer must be made to persuade the Southern firm to enter a JV. As \(\beta \) increases, the \(\phi^S \) curve shifts to the left, while \(\phi^N \) slightly shifts down. Consequently, the first intersection between the \(\phi^S \) and \(\phi^N \) curves moves to the right and a second intersection eventually occurs and moves to the left, thus reducing the range of \(g \) over which a JV occurs. Finally, a level of \(\beta \) is reached
at which the ϕ^N curve lies below the ϕ^S curve everywhere, implying that a JV is no longer viable at any g.

There is a threshold level of β above which a JV is no longer profitable and hence cannot be an equilibrium. A JV will be formed below this threshold regardless of who holds the bargaining power. This critical level of spillovers can be derived by solving for the β at which $\pi^*_y = \pi^*_F + \pi^*_S$:

$$\tilde{\beta} = 2 - \sqrt{\frac{32 - 9g}{g(9g^2 - 33g + 32)}}.$$ \hspace{1cm} (23)

At $\tilde{\beta}$ there are just zero gains from a JV. The Southern firm is just indifferent between staying out of a JV and getting the maximum possible JV share consistent with the Northern firm taking part, $(1 - \phi^S)$. Likewise, the Northern firm is just as well off without a JV as forming one and getting the maximum share ϕ^N. This implies that the equilibrium form of foreign investment is the same regardless of which side holds the bargaining power as $\tilde{\beta}$ is identical for both cases.\footnote{It will be seen that the division of the bargaining power does make a difference in welfare implications as the share of profits by the Southern firm and hence producer surplus are different in the two cases.}

Lemma 1 \textit{The critical level of spillovers $\tilde{\beta}$ under which a JV is the equilibrium market structure is the same regardless of which side of the JV holds the bargaining power as $\phi^N = \phi^S$ always holds at $\tilde{\beta}$.}

Recall that this threshold determines whether a JV creates additional total profits for the insiders than when they remain on their own ($\pi_J \geq \pi_F + \pi_S$).
A JV can therefore only take place when the IPR regime in the South is strong enough so that \(\beta \leq \hat{\beta} \). When a technology is more complex and harder to copy (low \(b \)), the role of IPRs in the decision of the MNE about the mode of entry diminishes. The equilibrium market structure can be seen in figure 2, which depicts \(\hat{\beta} \) for different levels of R&D intensity.

The figure illustrates that JVs are only offered and accepted and hence an outcome when R&D intensity is in an intermediate range. They are not likely to occur when R&D effectiveness is low as the Southern firm has little to gain from forming a JV to get access to knowledge. Here, we are nearer to the simple merger case, in which a two-firm merger with identical firms will not be profitable. Similarly, it is not in the interest of the Northern firm to share ownership and its technology when R&D effectiveness is high, IPR protection low and the technology easy to copy. Under these circumstances it will dominate the market on its own. Also the equilibrium JV share of the Southern firm is tiny in this region causing little change in its market share and hence aggregate profits compared to the FDI case. R&D investment and profits are more convex.
in \(g \) under FDI than in the JV scenario. This means that on one hand JVs are more profitable in intermediate levels of \(g \). Therefore, they can also endure higher spillovers and still be profitable in this range (higher \(\tilde{\beta} \)). On the other hand at high \(g \), R&D investment \(x \) is increasing at a much faster rate for FDI than JV with the relative difference increasing in \(\beta \). This increases the relative profitability of FDI in high \(g \)'s causing \(\tilde{\beta} \) to eventually fall in \(g \) after reaching a maximum. We can conclude that a JV only takes place when the level of IPR protection in the South is sufficiently high so that the insiders can exploit the advantages of merging. The absolute maximum \(\beta \) consistent with a JV is \(\tilde{\beta} = 0.348 \). When the level of IPR protection is not sufficiently stringent, no JV can occur and the Southern firm remains an independent competitor that uses the old technology.

Proposition 2 Increasing the IPR protection level in the South (lowering \(\beta \)) reduces the losses due to imitation of the JV technology by the outsider firm and consequently increases the range of \(g \) over which a JV occurs. Lemma 1 reveals that this is the case regardless of which firm in the JV holds the bargaining power.

Looking at figures 1 and 2 simultaneously gives interesting new insights regarding the division of JV shares and the market equilibrium outcome. It is easy to see that a JV is hence only formed if condition (22) is satisfied. Notice that the intersections of \(\phi^N \) and \(\phi^S \) in figure 1 for different values of \(\beta \) sketches the \(\tilde{\beta} \) curve in figure 2. As \(\beta \) increases, the range of \(g \) for which (22) holds shrinks until it is never satisfied when the \(\phi^S \) curve moves completely above \(\phi^N \)
in figure 1 and \(\beta \) surpasses \(\tilde{\beta} \) in figure 2.

5 Southern Welfare

In this section we examine some policies that could be used by the Southern government to raise welfare. Southern welfare consists of consumer surplus and the profits of the two Southern firms. The welfare function can be written as

\[
W^F = CS^F + \pi_{S1} + \pi_{S2}
\]

and

\[
W^J = CS^J + \pi_{SI} + \pi_{SO},
\]

where the second subscripts \(I \) and \(O \) stand for insider and outsider, and superscripts \(F \) and \(J \) denote FDI and JV. Initially, we assume that all output is sold on the Southern market and Southern consumer surplus is:

\[
CS^i = \frac{Q^{i2}}{2} \text{ for } i = F, J.
\]

Solving for consumer surplus under each mode of entry, we obtain

\[
CS^F = \frac{(q_F + q_{S1} + q_{S2})^2}{2} = \frac{a^218(2 - g)^2}{(16 - 9g)^2}
\]

and

\[
CS^J = \frac{(q_{JV} + q_{SO})^2}{2} = \frac{a^2[6 - g(1 - \beta)(2 - \beta)]^2}{2[9 - g(2 - \beta)^2]^{\frac{2}{2}}}
\]

for FDI and JV respectively.
The other constituent of welfare is producer surplus which itself consists of the profits of the outsider and the insider Southern firms. The profits of the outsider firm not considered for the JV can be seen in equations (11) and (19) for FDI and JV respectively. The profit of the Southern firm potentially involved in the JV is given in (11) if the MNE chooses FDI, and is \((1 - \phi^S)\pi^*_J\) or \((1 - \phi^N)\pi^*_J\) in a JV depending on which side holds the bargaining power. Notice that if it is the Northern firm who has the bargaining power, the insider firm’s profit can be dropped from the welfare comparison as it is equal to FDI profits by the definition of \(\phi^N\).\(^{19}\) When the Southern firm holds the bargaining power on the other hand, its profits are

\[
(1 - \phi^S)\pi^*_J = \frac{a^2[g(\beta^2 - 4\beta - 5) + 7]}{(16 - 9g)[9 - g(2 - \beta)^2]}.
\] (29)

We now turn to the IPR and the foreign investment policies in the South and discuss how they can be optimally set to maximize Southern welfare.

5.1 The Political Economy of Intellectual Property Rights

We first analyze the relationship between the level of IPR protection in the South and each component of welfare individually. As no spillovers are assumed under FDI, changing \(\beta\) only affects welfare when JV is the market outcome.

The impact of \(\beta\) on consumer surplus can be found by looking at changes in equation (28). \(\beta\) increases consumer surplus until it reaches a peak, after

\(^{19}\)Keep in mind that these profits must however be added to both FDI and JV welfare when putting three scenarios in the same context.
which the detrimental effect of higher spillovers from lower incentives to innovate dominates and starts to harm consumers in the economy. For high levels of g where R&D is more intensive, consumer surplus is always falling with a higher β. Differentiating (28) with respect to β gives the optimal level of spillovers from the consumers’ perspective:

$$\hat{\beta} = 2 - \frac{3(1 - \sqrt{1 - g})}{g}.$$ (30)

The β that maximizes consumer surplus approaches $1/2$ as g tends to zero and falls in g until it reaches zero at $g = 3/4$. For higher g’s where R&D takes a meaningful role in the industry, consumers prefer full IPR protection ($\beta = 0$) to enjoy higher levels of innovation.

Next we turn to the effect of β on the profits of the two Southern firms. Equation (19) shows that the profits of the outsider firm is always increasing in β due to the benefits brought about by technological spillovers. Equation (29) shows that the profits of the insider firm is always decreasing in β when it has the bargaining power in the JV and is independent of β when the MNE has the bargaining power. Total Southern profits therefore also increases in β when the MNE has the bargaining power. On the other hand, when the Southern firm holds the bargaining power it increases with β at low levels of g, where the gains of the outsider from spillovers dominates the losses it brings to the insider. Total profits are decreasing in β at high g’s where the reverse is true.

We can now add up to derive the impact of β on total Southern welfare.

[20] Recall that the profits of the insider Southern firm is equal to its profits under FDI when the MNE has full bargaining power and is hence independent of β.

When the Northern firm has the bargaining power, \(\frac{\partial W^J(\phi^N)}{\partial \beta} > 0 \) implies that a higher level of spillovers always increases Southern welfare in the feasible range of \(g \) where JV is a possible outcome. While a higher \(\beta \) always increases total producer surplus, it also improves consumer surplus up to the point where \(\tilde{\beta} \) and \(\beta \) intersect (\(g \approx 1/2 \)) and reduces it thereafter.

The impact of \(\beta \) on welfare when the Southern firm possesses the bargaining power depends on \(g \), the R&D intensity of the industry. When \(g \) is low both consumer surplus and producer surplus are increasing in \(\beta \), while the opposite holds at high levels of \(g \). Welfare therefore increases in \(\beta \) for low \(g \), decreases in \(\beta \) for high \(g \), and is locally U-shaped around the critical value of \(\tilde{g} = 1 \) with local maxima at \(\beta = 0 \) and \(\beta = 1 \). The effect of spillovers is hence ambiguous on total welfare (\(\frac{\partial W^J(\phi^S)}{\partial \beta} \geq 0 \)). It is however possible to draw from the shape of \(W^J(\phi^S) \) that maximum welfare is reached at either the highest spillover rate in concurrence with a JV, \(\tilde{\beta} \), or at zero spillovers.

When the MNE has full bargaining power so that \(\beta \) always increases welfare, the optimal policy is the \(\iota \) that gives \(\tilde{\beta} \). To achieve this outcome, IPR protection needs to be stronger the easier it is to copy the technology of the MNE. When the Southern firm has the bargaining power, the optimal policy should give \(\tilde{\beta} \) for \(g \leq \tilde{g} \), but is \(\iota = \beta = 0 \) for \(g > \tilde{g} \). Recall that at high \(g \)'s total Southern welfare is at its maximum level with \(\beta = 0 \) as losses from lower incentives to innovate accompanied by higher spillovers are substantial.

Proposition 3 If a host country prefers a JV as the mode of inward investment, then subject to the JV constraint (\(\beta \leq \tilde{\beta} \)) the optimal IPR policy should

give \(\tilde{\beta} \) for \(g \leq \bar{g} \), and for \(g > \bar{g} \) when the MNE holds the bargaining power. When production is sufficiently R&D intensive \((g > \bar{g})\) and the Southern firm holds the JV bargaining power, it is in the interest of the South to fully protect IPRs \((\beta = 0)\).

After assessing how \(\beta \) affects Southern welfare in the presence of a JV, we turn to the comparison of welfare under the two market structures (with and without a JV). The South is able to manipulate the decision of the MNE on the mode of entry by choosing an IPR regime that assures the preferred form of inward investment.

Comparing (27) and (28) reveals that consumer surplus with FDI is higher than that under a JV. This is because the JV results in less competition and thus a higher price. Comparing the profits of the outsider firm under the two modes using (11) and (29), it is easy to see that it is always higher when a JV is formed. This gain comes from two sources: lower competition and spillovers. As for the insider firm, we have seen in the previous sections that its JV profits only differ from that under FDI when it holds the bargaining power. When IPRs are fully protected \((\beta = 0)\), the firms prefer a JV except for low levels of R&D intensity. When IPRs are less well protected on the other hand \((\beta > 0)\), the relative attractiveness of FDI increases.

Finally, adding up profits of the two Southern firms for each case reveals that total Southern profits are always higher with a JV than with FDI, i.e. \(\pi_{S1}^* + \pi_{SO}^* \geq \pi_{S1}^* + \pi_{S2}^* \). It can therefore be concluded that a JV always favors Southern firms and hurts consumers as it increases total profits in the expense
of lower consumer surplus. Hence if consumer surplus does not enter the welfare function, then a JV always yields higher Southern welfare. (This would be the case if all output was produced for export only.)

5.2 Intellectual Property Rights and the FDI Policy

Having calculated all the components of welfare, we can now analyze the optimal mode of inward investment from the point of view of the South and with it the implications for Southern investment policies that limit foreign share in a JV. We will now compare Southern welfare under FDI with the best attainable welfare under a JV. As we saw earlier, the latter reaches a constrained maximum at $\beta = 0$ or $\beta = \tilde{\beta}$ depending on the level of g. Recall also that the parity $\phi^N = \phi^S$ holds when spillovers are at the threshold level $\tilde{\beta}$, making the profits of the insider Southern firm equal under both bargaining power situations. Furthermore, consumer surplus and profits of the outsider firm are independent of the internal division of profits in a JV. Thus, at $\beta = \tilde{\beta}$, total welfare under a JV is independent of bargaining power.

Lemma 2 Southern welfare under a JV at $\tilde{\beta}$ is equal regardless of whether the Northern or the Southern firm holds the bargaining power.

Figure 3 illustrates Southern welfare under FDI and JV for both cases of $\beta = \tilde{\beta}$ and $\beta = 0$. The figure can be divided into three regions. In the first region on the left, which contains the lowest g’s where a JV is feasible ($g < g'$), the South prefers FDI. Here, spillovers allowed are not large enough to overcome the benefits of FDI.
The second region lies within the range $g^t \leq g \leq g''$, where $\beta = \tilde{\beta}$ is optimal and a JV is preferred to FDI regardless of who in the JV holds the bargaining power (see lemma 2).21 Thus, at $\tilde{\beta}$, policies aimed at increasing the Southern share in the JV do not affect welfare of recipient countries.22

Proposition 4 For a large mid-range of $g^t \leq g \leq g''$, it is optimal for the South to strengthen its IPR regime to the level that induces a JV ($\tilde{\beta}$). Foreign investment policies on the other hand prove irrelevant as welfare under $\tilde{\beta}$ is independent of the JV shares and thus the bargaining power in the JV (lemma 2).

For $g > g''$, strengthening IPRs to the level that eliminates spillovers altogether extends the desirability of a JV up to \tilde{g} when the Southern firm holds the bargaining power. Recall that the interests of firms also moves in this direction as a JV is the equilibrium outcome for a larger range of g when a more stringent IPR regime is enforced. Hence, a dual IPR/FDI policy increases the likelihood that a JV is formed and results in higher welfare when $g > \tilde{g}$.23

21Also these results are parallel to Smarzynska Javorcik (2000) and Saggi and Smarzynska Javorcik (2004) in which the South tends to favor JVs over other forms of FDI believing that local participation made possible by the former is a better way to facilitate absorption of new technologies.

22These results are in accordance with those in Mattoo, Olarreaga and Saggi (2004) regarding the interests of the MNE and the Southern government as long as there IPR protection is strong enough in this model. Both government and the firm would prefer JV over FDI in an intermediate range of R&D effectiveness, in their model, cost of technology transfer.

23Note that welfare is maximized at $\beta = 0$ for $g > \tilde{g}$ when the Southern firm has the bargaining power.
on the right hand side of figure 3 shows the welfare gains brought about by a dual policy, which represents a jump from $W^J(\tilde{\beta})$ to $W^J(\phi^S, \beta = 0)$.

Proposition 5 At higher levels of R&D effectiveness ($\tilde{g} < g \leq \hat{g}$), the South can attain maximum welfare through a dual policy that limits foreign shares in a JV and fully protects IPRs.

In the third region, where R&D intensity is at its highest level ($g > \hat{g}$), the Southern government prefers FDI as the mode of inward investment because it brings more competition, the share of the JV offered to the Southern firm is negligible, and spillovers are not attractive (discourage innovation). Similar to the first region with low g’s, interests here are in conflict as the MNE prefers a JV whereas the Southern government favors FDI.\(^{24}\)

Finally, it is never optimal for the South to fully protect IPRs allow a JV, which yields the entire bargaining power to the incoming MNE. This causes welfare to drop down to the $W^J(\phi^N, \beta = 0)$ curve in all three regions.\(^{25}\)

Proposition 6 The South never finds it optimal to fully protect IPRs and concedes all bargaining power in a JV to the Northern MNE.

\(^{24}\)A JV never occurs and is never preferred for lower values of g not depicted in the figure.\(^{25}\)Notice that these results resemble those in Mattoo, Olarreaga and Saggi (2004) which show that under no spillovers, the government in the South always prefers FDI when cost of technology transfer (R&D effectiveness in our case) is low. In their model the North has the full bargaining power as in the case being discussed here.
6 Conclusion

In this paper we have developed a North South model in which a Northern oligopolistic multinational firm that engages in R&D must decide how to serve a Southern market. We have made the assumption that the market can only be served locally and the firm must choose whether or not to collaborate with a local firm. Initially there are two Southern firms already established in the host country market and the multinational can choose whether or not to enter a JV with one of them. The basic ingredients that go into the model are fairly simple, but they nevertheless generate a rich set of results. The principal issue to which we have applied the model is to effects of the Southern IPR regime on a multinational firm’s decision between serving a market via an independent venture type FDI or by setting up a JV with a local firm. We assumed that entering a JV increases the exposure of the multinational firm’s technology to imitation by rival firms. To capture this effect we assumed that the local firm that does not enter the JV (the outsider) could benefit from R&D spillovers
from the JV when IPRs are imperfectly protected.

We demonstrated a precise set of conditions under which the JV will be established. When firms form a JV and coordinate their production they gain from reduced competition but tend to help their rivals gain market share. This, the well-known merger paradox, implies in our context that without R&D investment the JV is unprofitable. We showed that the level of R&D intensity must be sufficiently high to overcome the combined loss of market share that occurs as a result of the JV. Lower R&D spillovers also work towards JVs and we showed that the threshold spillover, below which it is an equilibrium, increases in the R&D intensity of the Multinational up to a maximum and then declines. It eventually declines because if the multinational has very effective R&D it gains little from sharing its superior technology. Thus we found that JVs are most likely when R&D intensity is at an intermediate level. The strengthening of IPRs reduces the losses due to imitation of the JV’s technology by the outsider firm and consequently increases the range of R&D intensities of production over which a JV occurs. This creates the possibility that the Southern policy can alter the way multinationals choose to serve the market. It can do this by joining up to TRIPS agreement of the WTO.

In addition to looking at the positive aspects of IPR protection we also employed our model to look at the effects on welfare in the Southern country and considered possible policy responses of the Southern government. We found that when a JV is viable, the sum of southern firms’ profits under a JV always exceed the corresponding levels under direct FDI. However this gain to firms
comes at the expense of the consumer who faces higher prices under the JV.

We found that if the Northern firm has all the bargaining power and IPRs are fully protected then a JV will be inferior to direct FDI from the point of view of Southern welfare. For a JV to dominate from a Southern welfare perspective we need some Southern bargaining power and/or imperfect IPR protection. We showed that for moderately R&D intensive industries the best possible policy is to set IPR protection at the level that will just induce a JV to occur. This result was shown to be independent of the bargaining power of the firms. For highly R&D intensive industries Southern welfare under a JV can be higher with full IPR protection, but only if the Southern bargaining power in the JV is positive. In particular, we demonstrated that this is the case when the Southern firm has all the bargaining power and the level of R&D effectiveness is above a threshold level. We also showed that there is also a higher threshold level of the effectiveness above which a JV always yields lower Southern welfare than direct FDI.

References

Monica BARNI

(1xxx): Measurement and Spatial Effects of the Immigrant Created Cultural Diversity in

Walter F. LALICH

(1xxx): Perceived Diversity of Complex

Ugo GASPARINO, Barbara DEL CORPO and Dino PINELLI

Sophie BADE, Guillaume HAERINGER and Ludovic RENOU

Graphs to Coalition Formation

Under Adverse Selection

Choice Modelling Analysis

Rinaldo BRAU and Matteo LIPPI BRUNI

Systems

The Netherlands and Belgium

(1xxx): Construction and Import of Ethnic Categorisations: “Allochthones” in

Situation

Migrants: The Case of Undocumented Poles and Bulgarians in Brussels

Ways and Methodologies for Mapping these Contexts?

Market in Belgium

Dialogue

Kiflemariam HAMDE

Diversity in the USA

Varied European Concepts of Diversity

Katherine MARQUAND FORSYTH and Vanja M. K. STENIUS

Polish Enterprises

Environmental Systems: Multidimensional Measurement and Synthetic Indicators

System Modelling and Decision Support: Economic Demand: A Contingent Behaviour Approach

Alvaro CALZADILLA, Francesco PAULI and Roberto ROSON

Climate Change and Extreme Events: An

Assessment of Economic Implications

Gianmarco I.P. OTTAVIANO and Giovanni PERI

Rethinking the Gains from Immigration: Theory and

Gianmarco I.P. OTTAVIANO

Carla BAGNA

(1xxx): Italian Schools and New Linguistic Minorities: Nationality Vs. Plurilingualism. Which

Choice Modelling Analysis

On The Economic Value of Repeated Interactions

Alberto GAGO, Xavier LABANDEIRA, Fidel PICOS And Miguel RODRÍGUEZ

Empirical Panel Analysis

Income Position on Social Capital

Andranik TANGIAN

Ottorino CHILLEM, Benedetto GUI and Lorenzo ROCCO

Maria SALGADO

(1xxix): Choosing to Have Less Choice

Justina A.V. FISCHER and Benno TORGLER: Does Envy Destroy Social Fundamentals? The Impact of Relative

Income Position on Social Capital

Benno TORGLER, Sascha L. SCHMIDT and Bruno S. FREY: Relative Income Position and Performance: An

Empirical Panel Analysis

Alberto GAGO, Xavier LABANDEIRA, Fidel PICOS And Miguel RODRÍGUEZ: Taxing Tourism In Spain: Results and Recommendations

Karl van BIERVLEIT, Dirk Le ROY and Paulo A.L.D. NUNES: An Accidental Oil Spill Along the Belgian Coast: Results from a CV Study

Rolf GOLOMBEK and Michael HOEL: Endogeneous Technology and Tradable Emission Quotas

Giulio CAI NELLI and Donato IACOBUCCI: The Role of Agglomeration and Technology in Shaping Firm

Strategy and Organization

Alvaro CALZADILLA, Francesco PAULI and Roberto ROSON: Climate Change and Extreme Events: An

Assessment of Economic Implications

Demand: A Contingent Behaviour Approach

C. GIUPPONI, R. CAMERA, A. FASSIO, A. LASUT, J. MYSIAK and A. SG OBBI: Network Analysis, Creative

System Modelling and Decision Support: The NetS/MoD Approach

Walter F. LALICH (1xxx): Measurement and Spatial Effects of the Immigrant Created Cultural Diversity in

Sydney

Elena PASPALANOVA (1xxx): Cultural Diversity Determining the Memory of a Controversial Social Event

Ugo GASP ARINO, Barbara DEL CORPO and Dino PINELLI (1xxx): Perceived Diversity of Complex

Environmental Systems: Multidimensional Measurement and Synthetic Indicators

Alek sandra HAUKE (1xxx): Impact of Cultural Differences on Knowledge Transfer in British, Hungarian and

Polish Enterprises

Katherine MARQUAND FORSYTH and Vanja M. K. STENIUS (1xxx): The Challenges of Data Comparison and

Varied European Concepts of Diversity

Gianmarco I.P. OTTAVIANO and Giovanni PERI (1xxx): Rethinking the Gains from Immigration: Theory and

Evidence from the U.S.

Monica BARNI (1xxx): From Statistical to Geolinguistic Data: Mapping and Measuring Linguistic Diversity

Lucia TAIOLI and Lucia DE BENEDICTIS (1xxx): Economic Integration and Similarity in Trade Structures

Suzanna CHAN (1xxx): “God’s Little Acre” and “Belfast Chinatown”: Diversity and Ethnic Place Identity in

Belfast

Diana PETKOVA (1xxx): Cultural Diversity in People’s Attitudes and Perceptions

John J. BETANCUR (1xxx): From Outsiders to On-Paper Equals to Cultural Curiosities? The Trajectory of

Diversity in the USA

Kiffemarium HAMDE (1xxx): Cultural Diversity A Glimpse Over the Current Debate in Sweden

Emilio GREGORI (1xxx): Indicators of Migrants’ Socio-Professional Integration

Christa-Maria LERM HAYES (1xxx): Unity in Diversity Through Art? Joseph Beuys’ Models of Cultural

Dialogue

Sara VERTOMMEN and Albert MARTENS (1xxx): Ethnic Minorities Rewarded: Ethnostratification on the Wage

Market in Belgium

Nicola GENOVESE and Maria Grazia LA SPADA (1xxx): Diversity and Pluralism: An Economist’s View

Carla BAGNA (1xxx): Italian Schools and New Linguistic Minorities: Nationality Vs. Plurilingualism. Which

Ways and Methodologies for Mapping these Contexts?

Fedran OMANOVIC (1xxx): Understanding “Diversity in Organizations” Paradigmatically and Methodologically

Milka PASPALANOVA (1xxx): Identifying and Assessing the Development of Populations of Undocumented

Migrants: The Case of Undocumented Poles and Bulgarians in Brussels

Roberto ALZETTA (1xxx): Diversities in Diversity: Exploring Moroccan Migrants’ Livelihood in Genoa

Monika SEDE NKOVA and Jiri HORAK (1xxx): Multivariate and Multicriteria Evaluation of Labour Market

Situation

Dirk JACOBS and Andrea REA (1xxx): Construction and Import of Ethnic Categorisations: “Allochthones” in

The Netherlands and Belgium

Eric M. USLANER (1xxx): Does Diversity Drive Down Trust?

Paula MOTA SANTOS and João BORGES DE SOUSA (1xxx): Visibility & Invisibility of Communities in Urban

Systems

Rinaldo BRAU and Matteo LIPPI BRUNI: Eliciting the Demand for Long Term Care Coverage: A Discrete

Choice Modelling Analysis

Dinko DIMITROV and Clas JOCHEN HAAK E: Coalition Formation in Simple Games: The Semistrict Core

Ottorino CHILLEM, Benedetto GUI and Lorenzo ROCCO: On The Economic Value of Repeate d Interactions

Under Adverse Selection

Sylvain BEAL and Nicolas QUÉROU: Bounded Rationality and Repeated Network Formation

Sophie BADE, Gaillaume HAERINGER and Ludovic RENOU: Bilateral Commitment

Andranik TANGIAN: Evaluation of Parties and Coalitions After Parliamentary Elections

Rudolf BERGHAMMER, Agnieszka RUSINOWSKA and Harrie de SWART: Applications of Relations and

Graphs to Coalition Formation

Paolo PIN: Eight Degrees of Separation

Roland AMANN and Thomas GALL: How (not) to Choose Peers in Studying Groups
Maria MONTERO: Inequity Aversion May Increase Inequity

Vincent M. OTTO, Andreas LÖSCHEL and John REILLY: Directed Technical Change and Climate Policy

Nicoletta FERRO: Riding the Waves of Reforms in Corporate Law, an Overview of Recent Improvements in Italian Corporate Codes of Conduct

Siddhartha BANDYOPADHYAY and Mandar OAK: Coalition Governments in a Model of Parliamentary Democracy

Raphael SOUBEYRAN: Valence Advantages and Public Goods Consumption: Does a Disadvantaged Candidate Choose an Extremist Position?

Eduardo L. GIMÉNEZ and Miguel RODRÍGUEZ: Pigou’s Dividend versus Ramsey’s Dividend in the Double Dividend Literature

Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate Change on Domestic and International Tourism: A Simulation Study

Fabio SABATINI: Educational Qualification, Work Status and Entrepreneurship in Italy: An Exploratory Analysis

Philippe TULKENS and Henry TULKENS: The White House and The Kyoto Protocol: Double Standards on Uncertainties and Their Consequences

Andrea M. LEITER and Gerald J. PRUCKNER: Proportionality of Willingness to Pay to Small Risk Changes – The Impact of Attitudinal Factors in Scope Tests

Raphäel SOUBEYRAN: When Inertia Generates Political Cycles

Alireza NAGHAVI: Can R&D-Inducing Green Tariffs Replace International Environmental Regulations?

Xavier PAUTREL: Reconsidering The Impact of Environment on Long-Run Growth When Pollution Influences Health and Agents Have Finite-Lifetime

Corrado Di MARIA and Edwin van der WERF: Carbon Leakage Revisited: Unilateral Climate Policy with Directed Technical Change

Paolo A.L.D. NUNES and Chiara M. TRAVISI: Comparing Tax and Tax Reallocations Payments in Financing Rail Noise Abatement Programs: Results from a CE valuation study in Italy

Timo KUOSMANEN and Mika KORTELAINEN: Valuing Environmental Factors in Cost-Benefit Analysis Using Data Envelopment Analysis

Dermot LEAHY and Alireza NAGHAVI: Intellectual Property Rights and Entry into a Foreign Market: FDI vs. Joint Ventures

(lxxviii) This paper was presented at the Second International Conference on “Tourism and Sustainable Economic Development - Macro and Micro Economic Issues” jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005.

(lxxix) This paper was presented at the International Workshop on “Economic Theory and Experimental Economics” jointly organised by SET (Center for advanced Studies in Economic Theory, University of Milano-Bicocca) and Fondazione Eni Enrico Mattei, Italy, Milan, 20-23 November 2005. The Workshop was co-sponsored by CISEPS (Center for Interdisciplinary Studies in Economics and Social Sciences, University of Milan-Bicocca).

(lxxx) This paper was presented at the First EURODIV Conference “Understanding diversity: Mapping and measuring”, held in Milan on 26-27 January 2006 and supported by the Marie Curie Series of Conferences “Cultural Diversity in Europe: a Series of Conferences.

2006 SERIES

CCMP Climate Change Modelling and Policy (Editor: Marzio Galeotti)

SIEV Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)

NRM Natural Resources Management (Editor: Carlo Giupponi)

KTHC Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)

IEM International Energy Markets (Editor: Anil Markandya)

CSRM Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)

PRCG Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)

ETA Economic Theory and Applications (Editor: Carlo Carraro)

CTN Coalition Theory Network