Bella, Giovanni

Working Paper

Transitional Dynamics Towards Sustainability: Reconsidering the EKC Hypothesis

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 129.2006

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Bella, Giovanni (2006) : Transitional Dynamics Towards Sustainability: Reconsidering the EKC Hypothesis, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 129.2006, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/73960
Transitional Dynamics Towards Sustainability: Reconsidering the EKC Hypothesis
Giovanni Bella

NOTA DI LAVORO 129.2006

OCTOBER 2006

CCMP – Climate Change Modelling and Policy

Giovanni Bella, Department of Economics, University of Cagliari

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=938927

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Transitional Dynamics Towards Sustainability: Reconsidering The EKC Hypothesis

Summary
The Environmental Kuznets Curve (EKC) hypothesis is one of the most debated economic issues. Despite its fascinating appeal for any policy maker, neither theoretical nor certain empirical evidence has been found to clean up all doubt. The aim of this paper is to present an economy where environmental quality and polluting emissions do enter the maximisation problem, and provide a transitional dynamics analysis to pursue a new different version of the EKC, depending on the level of development finally achieved.

Keywords: Environmental Quality, Endogenous Economic Growth, Sustainable Development.

JEL Classification: O41, Q01, Q32

Address for correspondence:
Giovanni Bella
Department of Economics
University of Cagliari
Viale Sant.Ignazio, 84
09123 Cagliari
Italy
Phone: +39 070 675 3405
E-mail: bella@unica.it
1 Introduction

A key problem environmental economists are always concerned with is to determine whether pollution loads do necessarily decrease as nations develop, and societies demand that more attention be paid to environmental issues.

The bulk of literature on this field has attempted to find an empirical justification to this thesis by means of the so-called “Environmental Kuznets Curve” (EKC, henceforth).\(^1\) Although this intriguing hypothesis has immediately had great success amongst researchers and policy-makers, many authors still seriously doubt on the evidence in favour of it.

The EKC is a hypothetical relationship between some measures of environmental degradation and per capita income. In the first stages of economic growth, degradation and pollution are supposed to increase, but beyond some turning-point level of income, to be determined for each environmental indicator, this trend reverses, such that economic growth might lead to environmental improvement, and depict the so-common inverted U-shaped function.

Basically, the EKC concept first emerged in the early 1990s with Grossman and Krueger’s (1991) seminal study, which encouraged folks of economists and policy-makers not to take so serious consideration of the recurrent alarmist environmental cries, as future development would necessarily “clear” the problem afterwards. In this light, the EKC has been always seen as an essentially empirical phenomenon to deal with, despite the need of a robust

\(^1\)The EKC is so named after the Nobel Prize economist Simon Kuznets (1955) who first argumented that income inequality first rises and then falls as economies develop.
theoretical support cannot be ignored.

Moreover, empirical evidence has never shown that the EKC hypothesis can be applied to all pollutants, thus forcing recent contributions to consider the theory itself somewhat doubtful. For example, river-basins' quality unambiguously worsen with increasing income, or rather both concentration of municipal waste and carbon dioxide emissions tend to increase when income rises (see, for example, Perman and Stern, 2003; Day and Grafton, 2003).\footnote{Lopez (1994) points out that in the EKC studies local pollutants are more likely to display an inverted U-shape relation with income, while global impacts such as carbon dioxide emissions do not.}

The problem is that, as countries develop, they never become completely clean, despite more stringent environmental regulations might be adopted. In fact, as the older pollutants are cleaned up, new ones emerge, such that the environmental impact as a whole is not reduced. And even when an inverted U-shaped curve is empirically observed, the quarrel turns on the turning-point income level at which the concentration of pollutants starts decreasing.

As a matter of fact, the new EKC scenario does not reject the inverted U-shaped curve at all, but does find evidence of an N-shaped curve instead for some indicators, such that as income grows environmental degradation increases in a first stage, then decreases, and finally rises again (see, for example, Grossman and Krueger, 1991; Shafik, 1994; Grossman, 1995). In this light, the inverted-U function does simply represent the first stage of a more complex behaviour.
It is then commonly assumed nowadays that the classic EKC hypothesis is neither theoretically nor empirically adequate to model the existence of a relationship between pollution and per capita income (see, for example, Copeland-Taylor, 2004). In other words, the new economic literature is moving beyond the usual EKC.

The aim of this paper is to provide a theoretical support to a new version of the EKC hypothesis to better explain why may economic systems still perform differently when environmental concerns are taken into account. To do so, we consider an economy populated by infinitely-lived agents of two types: families of consumers and producing firms. The former are supposed to care about the environment they live in, though the latter do not. We assume also that households own both physical and human capital they provide to the producing sector, and are always willing to pay something to overcome a potential loss in environmental quality. On the contrary, firms aim only at producing final output, despite the damages and consequences could possibly arise therefrom.

What does really matter for converging to optimality is the different perception of pollution amongst agents. In other words, public intervention equalises the firms’ welfare loss to the families welfare gains due to polluting emissions. Or better, the former are paying a tax directly to the latter to compensate for any harmful emitted pollutant. We are saying that the government fixes a tax \(h \) on current emissions, and families do receive the entire revenue. The same as if we assign to families the property rights on some
pollution permits that firms have to buy to pollute “legally”. Of course, according to the Coase theorem this immediately leads to the optimal efficient allocation of resources, since no one has an incentive to “free ride” anymore.

To this end, we formalise the problem and organise the rest of the paper as follows. In section 2, we analyse a centralised economy, and derive the growth rate of a system where the social planner (representative household) intervenes to maximise the welfare in a let us say “sustainable” way. In section 3, we concentrate instead on the transitional dynamics of this economy around the steady state, and give a possible interpretation of our findings in the light of the literature concerning the EKC hypothesis. The final section concludes, and a subsequent Appendix provides all the necessary proofs.

2 The maximisation problem

Let us consider a centralised economy where the representative household maximises the following CIES utility function\(^3\)

\[
\int_0^\infty \frac{(CE)^{1-\sigma} - 1}{1 - \sigma} e^{-\sigma t} dt
\]

\(^3\)The utility function we are going to deal with possesses the useful property of unitarian green preferences. To this end, if we define \(\phi(C, E)\) as the relative preference for the environment, or rather the ratio of the values of environmental quality and consumption, both evaluated at their marginal utilities, it follows that

\[
\phi(C, E) = \frac{E \cdot U_E}{C \cdot U_C} = 1
\]

(see, Ayong Le Kama-Schubert, 2004).
where both consumption, C, and environmental quality, E, do enter the utility function as two substitute goods;4 subject to the following constraints on physical capital (K),

$$\dot{K} = rK + hP - C \quad (1)$$

and environmental quality (E),

$$\dot{E} = \theta E - P \quad (2)$$

The budget constraint in Eq. (1) assumes that households own the entire amount of capital K in the economy, being r the gain from renting it to producing firms, and consume a number of goods named C.5 Moreover, they receive the tax (h) being paid by all producing firms on each unit of emitted pollution (P), as a compensation for any damage being caused to the quality of the environment they live in.6 On the other hand, following Musu (1995),4 Necessary condition for C and E to be substitutes requires that

$$\frac{\partial^2 U}{\partial C \partial E} = \frac{1 - \sigma}{(CE)^\sigma} < 0$$

and consequently, $\sigma > 1$.

5To simplify the analysis, we assume hereafter capital K to be the only producing input, as commonly found in the so-called AK-model literature.

6Obviously, since pollution and environmental quality are seen as external by firms and households, market failures arise thus driving a wedge between the optimal and the decentralised growth paths of the economy. As no incentives to invest in pollution abatement or prevention arise, governmental intervention is called for to induce firms and households to make less extractive use of the environment, and maximise the social welfare by internalising the externality due to polluting emissions. That is to say, if firms act in an unregulated production market, and there is no fixed limit to polluting emissions, they feel
we constrain environmental quality to improve over time, \(\frac{\partial \dot{E}}{\partial E} = \theta > 0 \), being \(\theta \) the speed at which nature regenerates, and to decay as pollution loads \((P) \) increase, \(\frac{\partial \dot{E}}{\partial P} = -1 < 0 \), as in Eq. (2).

Therefore, Pontryagin’s maximisation rule yields the following current Hamiltonian function

\[
H_C = \frac{(CE)^{1-\sigma} - 1}{1 - \sigma} + \lambda [rK + hP - C] + \mu [\theta E - P]
\]

which is linear in \(P \). This implies that the problem could not be well defined without imposing an upper bound of \(P \), \(\bar{P} \), which possibly depends on \(K \), \(\bar{P} = \bar{P}(K) \). Therefore, given \(g_x = \dot{x}/x \) for a function of time \(x(t) \), the Maximum Principle suggests the following

Proposition 1 A sustainable steady state solution requires

\[
C(t) = \varepsilon E(t), \quad \varepsilon = h(r - \theta) > 0
\]

to hold on every interior optimal path.

Proof. See the Appendix ■

Basically, along a sustainable balanced growth path the economy evolves free to produce (and, conversely, to pollute) as far as economic growth is possible. On the contrary, a public intervention fixing a tax on each polluting emission being realised, may slow down any dirty production activities, and drive the system back along the socially optimal balanced growth path.
according to

\[g_C = g_E = \frac{r - \rho}{2\sigma - 1} \]

(3)

that is, any increase in consumption is allowed only if environmental quality does grow accordingly. But this constrain pollution \(P \) to the same growth rate, as if we allow polluting emissions to raise only when compensated by a proportional environmental improvement due, for example, to a recycling programme,

\[g_E = g_P \]

(4)

or rather

\[\frac{P}{E} = \gamma, \quad \gamma > 0 \quad \text{(constant)} \]

(5)

where, for simplicity, we assume hereafter \(\gamma = \theta - \frac{r - \rho}{2\sigma - 1} \).

Remark 2 A weak sustainability rule of thumb allows environmental quality to grow constantly over time.

The assumption of weak sustainability permits to overcome the environmental constraints, by considering Nature as part of the total amount of capital, which is finally held constant.\(^7\) Both natural and physical capital are therefore seen as substitutable, thanks to technological progress that allows agents to extract more and more value from a declining amount of natural resources.

\(^7\)“Weak sustainability requires that the amount of natural capital necessary for the life-supporting system of the Earth is non-decreasing, and the sum of man-made and non-critical natural capital is constant,” (Pearce and Turner, 1990).
On the other hand, neither we underestimate the limits nor we neglect the biophysical laws that characterise the use of a natural resource.\(^8\) Notwithstanding, we justify the assumption given so far about sustainability, as environmental quality is supposed to constantly improve over time \((g_E > 0)\). In fact, although a technological sector is left out from our analysis, it is not difficult to think of it as an economy where new technologically clean products to preserve the environment are continuously introduced whether new pollutants may on the contrary emerge (see also Musu, 1995).

The problem we have been dealing with so far has shown the way a social planner has to follow to determine the optimal allocation of pollution and make a sustainable growth consequently feasible, given a constraint on environmental quality and physical capital. However, a deepen investigation on the evolution of this economy in the neighbourhood of the steady state needs to be conducted. We dedicate the next section to this end.

3 Equilibrium dynamics along the BGP

Perturbing a system to check for the behaviour of its solution when approaching the steady state can be noteworthy, and might help the policy maker to better understand the appropriate decisions that drive the system towards the long run equilibrium. The analysis conducted so far in section 2 allows

\(^8\) Above all, the second law of thermodynamics states that every system always tends to move from order to disorder, and its energy tends to be progressively transformed into lower levels of availability, until no more availability for further processes is reached.
us to rewrite the problem in a more suitable fashion, and consequently derive
the following

Proposition 3 *The motion generated by a sustainable decentralised solution implies the following two-dimensional system of first-order differential equations:*

\[
\begin{align*}
\dot{K} &= rK + \left(h - \frac{\varepsilon}{\gamma}\right)P \\
\dot{P} &= (\theta - \gamma)P
\end{align*}
\]

given constancy of environmental quality’s growth rate, \(g_E\). The system possesses an unstable interior steady-state.

Proof. See the Appendix. ■

Our scope is to finally interpret our findings in the light of the EKC literature, and eventually determine the way polluting emissions react at changes in physical capital. To this end, we shall adopt the following convenient variable substitution, \(x = \frac{P}{K}\), and finally come to the subsequent equation of motion

\[
\dot{x} = \left[\frac{2r(1 - \sigma) - \rho}{2\sigma - 1}\right] x - \left(h - \frac{\varepsilon}{\gamma}\right) x^2
\]

(6)
Graphic representation of Eq. (6) is more direct and straightforward, and yields the following Figure 1\(^9\)

![Figure 1: Dynamics of the system](image)

To summarise, a dynamic behavioural analysis permits to understand the appropriate policy intervention that should be made to attain the steady-state, given the initial level of our state-like and control-like variables. Moreover, thorough analysis of equilibrium coordinates provides some interesting findings. To begin with, we may consider an economy which starts up at point \(A\) with endowment \(x_1\). This resembles the case of a clean society starting with a high natural regeneration rate (i.e., low level of pollution), gradually changing its production processes to abate the associated polluting emissions.\(^9\) Note that \(\dot{x}\) can be interpreted as the speed at which the pollution to capital share evolves over time.

\(^9\)Note that \(\dot{x}\) can be interpreted as the speed at which the pollution to capital share evolves over time.
The system does finally converge to O, with pollution being finally weeded out. Conversely, if we consider a *dirty* economy with a very high pollution to capital share, starting, for example, at point B with endowment x_2, the system approaches equilibrium from the right-hand side, passing through E, and constantly reducing the amount of polluting emissions, until the system collapses again to O. Finally, it seems that an economy will “naturally” converge to the *virgin state* of nature. Nevertheless, the speed at which a society decides to change its production processes, and reduce pollution loads, might be slightly different. Whereas the rich economy in B starts decreasing its pollution at a very high speed, once a minimum threshold is reached, it becomes more difficult to get rid of a *dirty* production process, and convergence to the stable virgin state O starts lessening.

It is also easy to interpret these findings according to the classic EKC (Environmental Kuznets Curve) hypothesis, that associates increasing pollution with increasing levels of income at a starting phase of development, though pollution is assumed to slow down instead when a turning point is reached at some high levels of national income.

In our case, nonetheless, a starting point at B resembles the assumption of high income societies that are more devoted to environmental concerns, and start reducing their emission levels. It can basically depict a situation where polluting emissions are very high. Then, the engine of development and growth either increases the amount of physical capital available to the economy or progressively abates polluting emissions, thus reducing the pollu-
tion/capital share, and thus finally drive the system towards the equilibrium point, E.

Unfortunately, equilibrium E is not stable, that is either the system lies on it from the beginning, or it is unavoidably pushed back to the stable solution in O. It seems then theoretically plausible that the EKC hypothesis fails at representing a sustainable economic development as depicted in this paper. Indeed, we can expect that whenever a society has reached a sustained level of development, and its citizens beg for more environmental care policies, it might very well happen that they continue to ask for a reduction of polluting emissions, until the system collapses to the stable solution, where pollution definitely disappears.

4 Concluding remarks

Nowadays pollution is still considered a dirty word. The main question is whether continued environmental degradation might be considered a necessary part of the process of industrialisation. In other words, we ought to investigate whether or not polluting emissions do continue to increase without bound as more and more countries develop. The problem is that a clear relationship between growth and environmental quality is particularly complex: some indicators appear to improve with growth; others worsen; still others exhibit a somewhat doubtful trend.

Basically, the concern that environmental issues may limit current growth
opportunities is not new. The problem of sustainable development was firstly debated during the 1970s, but strongly fostered during the last decade. This is probably due to the recent political quarrels on climate change and the Kyoto Protocol effectiveness, but also to the emergence of a vast literature on the so-called “Environmental Kuznets Curve hypothesis” (EKC), where the relationship between pollution and income is assumed to have the shape of an inverted U, that is pollution might increase only in the first stage of economic development, while it necessarily decreases when developed societies seek a less polluted environment to live in, and become more willing to invest in new technologies that clean-up the production processes of their economic activities. Unfortunately, lots of criticisms have been raised against this theory, since polluting problems seem to be nowadays an unavoidable burden that developed societies have to deal with.

It seems from our analysis that behaving sustainably is not a concept that economists might easily agree upon, as we noticed instead that a sustainable steady state outcome mainly represents a knife-edge solution to be achieved when the economy collapses, and Nature goes back to its Virgin state. Basically, we are assuming that whenever a sustainable policy be implemented to allow polluting emissions grow at the same rate of consumption, this might cause an awkward effect that might drive the system back to a situation where solutions annihilate. On the contrary, a positive solution may be achieved, but only if the economy starts from the beginning, and stays forever, with endowment x_2.

14
To summarise, this paper has presented an economy where environmental concerns affecting the welfare of future generations enter the decision making problem of a green social planner. To this end, some interesting results arise when studying the transitional dynamics of this economy. In fact, the type of equilibrium that characterises our economy allows us to give a new contribution to the still controversial EKC hypothesis. It seems to be confirmed that, as nations or regions experience greater prosperity, their citizens demand that more attention be paid to the noneconomic aspects of their living conditions. The richer countries which tend to have relatively cleaner urban air and river basins, also have relatively more tightening environmental standards and stricter enforcement of their environmental laws than the middle-income and poorer countries, many of which still have pressing environmental problems to address. However, instead of a possible downward sloping and inverted U-shaped pattern, we noticed that as countries develop, they always cease to produce certain pollution-intensive goods, no matter their starting level of development. Nevertheless, it might very well happen that the speed at which rich societies start changing the composition of pollutants in their production processes be higher than the pace less developed economies do experiment when moving towards a sustainable solution.
A Appendix

Given the current Hamiltonian function

$$H_C = \frac{(CE)^{1-\sigma} - 1}{1 - \sigma} + \lambda [rK + hP - C] + \mu [\theta E - P]$$

and assuming that $g_x = \dot{x}/x$ for a function of time $x(t)$, and $U_C = \partial U/\partial C$, the Maximum Principle suggests

$$\frac{\partial H_C}{\partial C} = U_C - \lambda = 0 \implies (1 - \sigma)g_E - \sigma g_C = g_\lambda \quad (A.1)$$

$$\frac{\partial H_C}{\partial P} = \lambda h - \mu = 0 \implies g_\lambda = g_\mu \quad (A.2)$$

$$\dot{\lambda} = -\frac{\partial H_C}{\partial K} + \lambda \rho = -\lambda r + \lambda \rho \implies g_\lambda = \rho - r < 0 \quad (A.3)$$

$$\dot{\mu} = -\frac{\partial H_C}{\partial E} + \mu \rho = -U_E - \mu \theta + \mu \rho \implies g_\mu = (\rho - \theta) - \frac{U_E}{\mu} \quad (A.4)$$

Since $g_\lambda = g_\mu$ is constant from (A.2) and (A.3), (A.4) implies

$$g_\mu = \frac{d \ln U_E}{dt} = (1 - \sigma)g_C - \sigma g_E \quad (A.5)$$

From (A.1), (A.2) and (A.5),

$$(1 - \sigma)g_E - \sigma g_C = (1 - \sigma)g_C - \sigma g_E \implies g_C = g_E \quad (A.6)$$
and thus,
\[g_C = g_E = \frac{r - \rho}{2\sigma - 1} \quad (A.7) \]
from (A.1) and (A.3). Also, we have

\[C^*(t) = \varepsilon E^*(t), \quad \varepsilon > 0 \text{ (constant)}, \quad (A.8) \]
on an interior optimal path. Since \(U_E/U_C = C/E = \varepsilon \), (A.4) yields

\[g_\mu = (\rho - \theta) - \frac{U_E}{\mu} = g_\mu = (\rho - \theta) - \varepsilon \frac{\lambda}{\mu} = g_\mu = (\rho - \theta) - \frac{\varepsilon}{h}. \quad (A.9) \]

From (A.9), (A.2) and (A.3), it follows that

\[\varepsilon = h(r - \theta) \quad (A.10) \]
Note that constant \(g_E \) implies

\[g_E = g_P, \text{ and } \frac{P}{E} = \theta - \frac{r - \rho}{2\sigma - 1} = \gamma \quad (A.11) \]
for \(g_E = \theta - P/E \). The initial values \(C_0 \) and \(P_0 \) are finally obtained as

\[C_0 = h(r - \theta)E_0, \text{ and } P_0 = \left(\theta - \frac{r - \rho}{2\sigma - 1} \right) E_0. \quad (A.12) \]
Finally, (A.8) is obtained without any assumption of BGP, and thus holds on every interior optimal path. In fact, since \(\varepsilon \) is constant not only on an
optimal BGP, but also on any interior optimal path, one cannot perturb the system by varying \(\varepsilon \) for a local analysis around the steady state.

In any case, nonnegativity conditions impose some restrictions on the parameters:

\[
 r > \theta \text{ for } C > 0 \quad (A.13)
\]

and

\[
 \theta(2\sigma - 1) + \rho > r \text{ for } P > 0 \quad (A.14)
\]

As another restriction, the objective functional is well defined iff \(2g_E(1 - \sigma) - \rho < 0 \). Or, equivalently,

\[
 \rho > 2(1 - \sigma)r. \quad (A.15)
\]
References

NOTE DI LAVORO PUBLISHED IN 2006

SIEV 1.2006 Anna ALBERINI: Determinants and Effects on Property Values of Participation in Voluntary Cleanup Programs: The Case of Colorado
CCMP 2.2006 Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control
CCMP 3.2006 Roberto ROSON: Introducing Imperfect Competition in CGE Models: Technical Aspects and Implications
KTHC 4.2006 Sergio VERGALLI: The Role of Community in Migration Dynamics
SIEV 5.2006 Fabio GRAZI, Jeroen C.J.M. van den BERGH and Piet RIETVELD: Modeling Spatial Sustainability: Spatial Welfare Economics versus Ecological Footprint
PRCG 7.2006 Michele MORETTO and Paola VALBONESE: Firm Regulation and Profit-Sharing: A Real Option Approach
SIEV 8.2006 Anna ALBERINI and Aline CHIABAI: Discount Rates in Risk v. Money and Money v. Money Tradeoffs
CTN 9.2006 Jon X. EGUIA: United We Vote
CTN 10.2006 Shao CHIN SUNG and Dinko DIMITRO: A Taxonomy of Myopic Stability Concepts for Hedonic Games
NRM 11.2006 Fabio CERINA (lxxviii): Tourism Specialization and Sustainability: A Long-Run Policy Analysis
NRM 12.2006 Valentina BOSETTI, Mariaaester CASSINELLI and Alessandro LANZA (lxxviii): Benchmarking in Tourism Destination, Keeping in Mind the Sustainable Paradigm
CCMP 13.2006 Jens HORBACH: Determinants of Environmental Innovation – New Evidence from German Panel Data Sources
KTHC 14.2006 Fabio SABATINI: Social Capital, Public Spending and the Quality of Economic Development: The Case of Italy
CSRIM 16.2006 Giuseppe DI VITA: Corruption, Exogenous Changes in Incentives and Deterrence
CCMP 20.2006 Massimiliano MAZZANTI and Roberto ZOBOLI: Examining the Factors Influencing Environmental Innovations
CCMP 22.2006 Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve
NRM 23.2006 Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time?
CCMP 28.2006 Giovanni BELLA: Uniqueness and Indeterminacy of Equilibria in a Model with Polluting Emissions
IEM 29.2006 Alessandro COLOGNI and Matteo MANERA: The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries
KTHC 30.2006 Fabio SABATINI: Social Capital and Labour Productivity in Italy
ETA 31.2006 Andrea GALLICE (lxxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret
IEM 32.2006 Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy
NRM 33.2006 Rinaldo BRAU and Davide CAO (lxxviii): Uncovering the Macrostructure of Tourists' Preferences: A Choice Experiment Analysis of Tourism Demand to Sardinia
CTN 34.2006 Parakash CHANDER and Henry TULKENS: Cooperation, Stability and Self-Enforcement in International Environmental Agreements: A Conceptual Discussion
IEM 35.2006 Valeria COSTANTINI and Salvatore MONNI: Environment, Human Development and Economic Growth
<table>
<thead>
<tr>
<th>ETA</th>
<th>37.2006</th>
<th>Maria SALGADO (lxxix): Choosing to Have Less Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>40.2006</td>
<td>Alberto GAGO, Xavier LABANDEIRA, Fidel PICOS And Miguel RODRÍGUEZ: Taxing Tourism In Spain: Results and Recommendations</td>
</tr>
<tr>
<td>IEM</td>
<td>41.2006</td>
<td>Karl van BIERNIET, Dirk Le ROY and Paulo A.L.D. NUNES: An Accidental Oil Spill Along the Belgian Coast: Results from a CV Study</td>
</tr>
<tr>
<td>CCMP</td>
<td>42.2006</td>
<td>Rolf GOLOMBEK and Michael HOEL: Endogenous Technology and Tradable Emission Quotas</td>
</tr>
<tr>
<td>KTHC</td>
<td>43.2006</td>
<td>Giulio CAIENELLI and Donato IACOBUCCI: The Role of Agglomeration and Technology in Shaping Firm Strategy and Organization</td>
</tr>
<tr>
<td>CCMP</td>
<td>44.2006</td>
<td>Alvaro CALZADILLA, Francesco PAULI and Roberto ROSON: Climate Change and Extreme Events: An Assessment of Economic Implications</td>
</tr>
<tr>
<td>KTHC</td>
<td>47.2006</td>
<td>Walter F. LALICH (lxxxi): Measurement and Spatial Effects of the Immigrant Created Cultural Diversity in Sydney</td>
</tr>
<tr>
<td>KTHC</td>
<td>48.2006</td>
<td>Elena PASPALANOVA (lxxxi): Cultural Diversity Determining the Memory of a Controversial Social Event</td>
</tr>
<tr>
<td>KTHC</td>
<td>49.2006</td>
<td>Ugo GASPARINO, Barbara DEL CORPO and Dino PINELLI (lxxxi): Perceived Diversity of Complex Environmental Systems: Multidimensional Measurement and Synthetic Indicators</td>
</tr>
<tr>
<td>KTHC</td>
<td>50.2006</td>
<td>Aleksandra HAUKE (lxxxi): Impact of Cultural Differences on Knowledge Transfer in British, Hungarian and Polish Enterprises</td>
</tr>
<tr>
<td>KTHC</td>
<td>51.2006</td>
<td>Katherine MARQUAND FORSYTH and Vanja M. K. STENIUS (lxxxi): The Challenges of Data Comparison and Varied European Concepts of Diversity</td>
</tr>
<tr>
<td>KTHC</td>
<td>52.2006</td>
<td>Gianmarco I.P. OTTAVIANO and Giovanni PERI (lxxxi): Rethinking the Gains from Immigration: Theory and Evidence from the U.S.</td>
</tr>
<tr>
<td>KTHC</td>
<td>53.2006</td>
<td>Monica BARNI (lxxxi): From Statistical to Geolinguistic Data: Mapping and Measuring Linguistic Diversity</td>
</tr>
<tr>
<td>KTHC</td>
<td>54.2006</td>
<td>Lucia TAJOLI and Lucia DE BENEDICTIS (lxxxi): Economic Integration and Similarity in Trade Structures</td>
</tr>
<tr>
<td>KTHC</td>
<td>55.2006</td>
<td>Suzanna CHAN (lxxxi): “God’s Little Acre” and “Belfast Chinatown”: Diversity and Ethnic Place Identity in Belfast</td>
</tr>
<tr>
<td>KTHC</td>
<td>56.2006</td>
<td>Diana PETKOVA (lxxxi): Cultural Diversity in People’s Attitudes and Perceptions</td>
</tr>
<tr>
<td>KTHC</td>
<td>57.2006</td>
<td>John J. BETANCUR (lxxxi): From Outsiders to On-Paper Equals to Cultural Curiosities? The Trajectory of Diversity in the USA</td>
</tr>
<tr>
<td>KTHC</td>
<td>58.2006</td>
<td>Kiftemariam HAMDE (lxxxi): Cultural Diversity A Glimpse Over the Current Debate in Sweden</td>
</tr>
<tr>
<td>KTHC</td>
<td>59.2006</td>
<td>Emilio GREGORI (lxxxi): Indicators of Migrants’ Socio-Professional Integration</td>
</tr>
<tr>
<td>KTHC</td>
<td>61.2006</td>
<td>Sara VERTOMMEN and Albert MARTENS (lxxxi): Ethnic Minorities Rewarded: Ethnostratification on the Wage Market in Belgium</td>
</tr>
<tr>
<td>KTHC</td>
<td>62.2006</td>
<td>Nicola GENOVESE and Maria Grazia LA SPADA (lxxxi): Diversity and Pluralism: An Economist's View</td>
</tr>
<tr>
<td>KTHC</td>
<td>63.2006</td>
<td>Carla BAGNA (lxxxi): Italian Schools and New Linguistic Minorities: Nationality Vs. Plurilingualism. Which Ways and Methodologies for Mapping these Contexts?</td>
</tr>
<tr>
<td>KTHC</td>
<td>64.2006</td>
<td>Vedran OMANOVIĆ (lxxxi): Understanding “Diversity in Organizations” Paradigmatically and Methodologically</td>
</tr>
<tr>
<td>KTHC</td>
<td>66.2006</td>
<td>Roberto ALZETTA (lxxxi): Diversities in Diversity: Exploring Moroccan Migrants’ Livelihood in Genoa</td>
</tr>
<tr>
<td>KTHC</td>
<td>67.2006</td>
<td>Monika SEDEKNOVA and Jiri HORAK (lxxxi): Multivariate and Multicriteria Evaluation of Labour Market Situation</td>
</tr>
<tr>
<td>KTHC</td>
<td>68.2006</td>
<td>Dirk JACOBS and Andrea REA (lxxxi): Construction and Import of Ethnic Categorisations: “Allochthones” in The Netherlands and Belgium</td>
</tr>
<tr>
<td>KTHC</td>
<td>69.2006</td>
<td>Eric M. USLANER (lxxxi): Does Diversity Drive Down Trust?</td>
</tr>
<tr>
<td>KTHC</td>
<td>70.2006</td>
<td>Paula MOTA SANTOS and João BORGES DE SOUSA (lxxxi): Visibility & Invisibility of Communities in Urban Systems</td>
</tr>
<tr>
<td>ETA</td>
<td>71.2006</td>
<td>Rinaldo BRAU and Matteo LIPPI BRUNI: Eliciting the Demand for Long Term Care Coverage: A Discrete Choice Modelling Analysis</td>
</tr>
<tr>
<td>CTN</td>
<td>72.2006</td>
<td>Dinko DIMITROV and Claus-Jochen HAAKE: Coalition Formation in Simple Games: The Semistrict Core</td>
</tr>
<tr>
<td>CTN</td>
<td>73.2006</td>
<td>Ottorino CHILLEM, Benedetto GUI and Lorenzo ROCCO: On The Economic Value of Repeated Interactions Under Adverse Selection</td>
</tr>
<tr>
<td>CTN</td>
<td>74.2006</td>
<td>Sylvain BEAL and Nicolas QUÉROU: Bounded Rationality and Repeated Network Formation</td>
</tr>
<tr>
<td>CTN</td>
<td>75.2006</td>
<td>Sophie BADE, Gaëlle HAERINGER and Ludovic RENOU: Bilateral Commitment</td>
</tr>
<tr>
<td>CTN</td>
<td>76.2006</td>
<td>Andránik TANGIAN: Evaluation of Parties and Coalitions After Parliamentary Elections</td>
</tr>
<tr>
<td>CTN</td>
<td>77.2006</td>
<td>Rudolf BERGHAMMER, Agnieszka RUSINOWSKA and Harrie de SWART: Applications of Relations and Graphs to Coalition Formation</td>
</tr>
<tr>
<td>CTN</td>
<td>78.2006</td>
<td>Paolo PIN: Eight Degrees of Separation</td>
</tr>
<tr>
<td>CTN</td>
<td>79.2006</td>
<td>Roland AMANN and Thomas GALL: How (not) to Choose Peers in Studying Groups</td>
</tr>
</tbody>
</table>
Donatella CALABI, Vincent M. OTTO, Andreas LÖSCHEL and John REILLY

Carmine GUERRIERO, Kerstin RONNEBERGER, Maria BERRITTELLA, Francesco BOSELLO and Richard S.J. TOL

Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate Change on Domestic and International Tourism: A Simulation Study

Richard S.J. TOL, Stephen W. PACALA and Robert SOCOLOW: Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA

Carles MANERA and Jaume GARAU TABERNER: The Recent Evolution and Impact of Tourism in the Mediterranean: The Case of Island Regions, 1990-2002

Andrea BIGANO, Carlo CARRARO and A. Denny ELLERMAN: Paying for Permanence: Public Preferences for Contaminated Site Cleanup

Barbara BUCHNER, Carlo CARRARO and A. Denny ELLERMAN: The Allocation of European Union Allowances: Lessons, Unifying Themes and General Principles
NRM 118.2006 Isabel CORTÉS-JIMÉNEZ and Manuela PULINA: A further step into the ELGH and TLGH for Spain and Italy

SIEV 119.2006 Beat HINTERMANN, Anna ALBERINI and Anil MARKANDYA: Estimating the Value of Safety with Labor Market Data: Are the Results Trustworthy?

SIEV 120.2006 Elena STRUKOVA, Alexander GOLUB and Anil MARKANDYA: Air Pollution Costs in Ukraine

CCMP 121.2006 Massimiliano MAZZANTI, Antonio MUSOLESI and Roberto ZOBOLI: A Bayesian Approach to the Estimation of Environmental Kuznets Curves for CO2 Emissions

ETA 122.2006 Jean-Marie GRETHER, Nicole A. MATHYS, and Jaime DE MELO: Unraveling the World-Wide Pollution Haven Effect

KTHC 123.2006 Sergio VERGALLI: Entry and Exit Strategies in Migration Dynamics

PRIV 124.2006 Bernardo BORTOLOTTI and Valentina MILELLA: Privatization in Western Europe Stylized Facts, Outcomes and Open Issues

SIEV 125.2006 Pietro CARATTI, Ludovico FERRAGUTO and Chiara RIBOLDI: Sustainable Development Data Availability on the Internet

SIEV 126.2006 S. SILVESTRI, M PELLIZZATO and V. BOATTO: Fishing Across the Centuries: What Prospects for the Venice Lagoon?

CTN 127.2006 Alison WATTS: Formation of Segregated and Integrated Groups

SIEV 128.2006 Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Lexicographic Preferences in Discrete Choice Experiments: Consequences on Individual-Specific Willingness to Pay Estimates

CCMP 129.2006 Giovanni BELLA: Transitional Dynamics Towards Sustainability: Reconsidering the EKC Hypothesis

(lxxviii) This paper was presented at the Second International Conference on “Tourism and Sustainable Economic Development - Macro and Micro Economic Issues” jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005.

(lxxix) This paper was presented at the International Workshop on “Economic Theory and Experimental Economics” jointly organised by SET (Center for advanced Studies in Economic Theory, University of Milano-Bicocca) and Fondazione Eni Enrico Mattei, Italy, Milan, 20-23 November 2005. The Workshop was co-sponsored by CISEPS (Center for Interdisciplinary Studies in Economics and Social Sciences, University of Milan-Bicocca).

(lxxx) This paper was presented at the First EURODIV Conference “Understanding diversity: Mapping and measuring”, held in Milan on 26-27 January 2006 and supported by the Marie Curie Series of Conferences “Cultural Diversity in Europe: a Series of Conferences.”

2006 SERIES

CCMP Climate Change Modelling and Policy (Editor: Marzio Galeotti)
SIEV Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)
NRM Natural Resources Management (Editor: Carlo Giupponi)
KTHC Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM International Energy Markets (Editor: Matteo Manera)
CSRM Corporate Social Responsibility and Sustainable Management (Editor: Giulio Sapelli)
PRCG Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)
ETA Economic Theory and Applications (Editor: Carlo Carraro)
CTN Coalition Theory Network