Vannetelbosch, Vincent; Tercieux, Olivier

Working Paper

A Characterization of Stochastically Stable Networks

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 48.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Vannetelbosch, Vincent; Tercieux, Olivier (2005) : A Characterization of Stochastically Stable Networks, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 48.2005

This Version is available at:
http://hdl.handle.net/10419/73945

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A Characterization of Stochastically Stable Networks
Olivier Tercieux and Vincent Vannetelbosch

NOTA DI LAVORO 48.2005

APRIL 2005

CTN – Coalition Theory Network

Olivier Tercieux, CentER, Tilburg University
Vincent Vannetelbosch, FNRS and CORE, University of Louvain
A Characterization of Stochastically Stable Networks

Summary
Jackson and Watts [J. of Econ. Theory 71 (2002), 44-74] have examined the dynamic formation and stochastic evolution of networks. We provide a refinement of pairwise stability, $p$–pairwise stability, which allows us to characterize the stochastically stable networks without requiring the "tree construction" and the computation of resistance that may be quite complex. When a 1/2–pairwise stable network exists, it is unique and it coincides with the unique stochastically stable network. To solve the inexistence problem of $p$–pairwise stable networks, we define its set-valued extension with the notion of $p$–pairwise stable set. The 1/2–pairwise stable set exists and is unique. Any stochastically stable network is included in the 1/2–pairwise stable set. Thus, any network outside the 1/2–pairwise stable set must be considered as a nonrobust network. We also show that the 1/2–pairwise stable set can contain no pairwise stable network and we provide examples where a set of networks is more "stable" than a pairwise stable network.

Keywords: Network formation, Pairwise stability, Stochastic stability

JEL Classification: C70, D20

Vincent Vannetelbosch is Research Associate of the National Fund for Scientific Research (FNRS), Belgium. We would like to thank Paul Belleflamme, Francesco Feri, Matt Jackson, Ana Mauleon, Philippe Solal and Anne van den Nouweland for helpful comments or discussions. Financial support from the research project BEC 2003-02084 (Universidad del Pais Vasco) funded by the Spanish government, from the CNRS project GW/SCSHT/SH/2003-41, from the Belgian French Community’s program Action de Recherches Concertée 03/08-302 (UCL) and from the French Ministry of Research (Action Concertée Incitative) is gratefully acknowledged. The research of Olivier Tercieux has been made possible by a FSR fellowship from UCL.

This paper was presented at the 9th Coalition Theory Workshop on "Collective Decisions and Institutional Design" held in Barcelona, Spain, on 30-31 January 2004 and organised by the Universitat Autònoma de Barcelona.

Address for correspondence:

Vincent Vannetelbosch
CORE, Université Catholique de Louvain
Voie du Roman Pays 34
B-1348 Louvain-la-Neuve
Belgium
Phone: 003210474142
Fax: 003210474301
E-mail: vannetelbosch@core.ucl.ac.be
1 Introduction

The organization of individual agents into networks and groups or coalitions has an important role in the determination of the outcome of many social and economic interactions.\footnote{Jackson (2003, 2004) has provided a survey of models of network formation.}

There are many possible approaches to model network formation. One is simply to model it explicitly as a non-cooperative game (see e.g. Aumann and Myerson, 1988). A different approach is to analyze the networks that one might expect to emerge in the long run and to examine a sort of stability requirement that individuals not benefit from altering the structure of the network. This is the approach that was taken by Jackson and Wolinsky (1996) when defining pairwise stable networks. A network is pairwise stable if no player benefits from severing one of their links and no other two players benefit from adding a link between them, with one benefiting strictly and the other at least weakly. Another approach is to analyze the process of network formation in a dynamic framework.\footnote{Watts (2001) has extended the Jackson and Wolinsky model to a dynamic process but he has limited attention to the specific contest of the connections model and a particular deterministic dynamic.}

Jackson and Watts (2002) have proposed a dynamic process in which individuals form and sever links based on the improvement that the resulting network offers them relative to the current network. This deterministic dynamic process may end at stable networks or in some cases may cycle. To explore whether some networks might be regarded as more reasonable than others, Jackson and Watts (2002) add to this deterministic process random perturbations and examine the distribution over networks as the level of random perturbations vanishes.

Exploiting the tree construction of Freidlin and Wentzel (1984), Jackson and Watts (2002) have shown that the outcome of their selection process (called stochastically stable networks) can be fully characterized in terms of resistances. However, these results are not always helpful in determining the outcome, because the required computation for resistances and the tree construction may be quite complex. To be more precise, this problem is known to be NP-complete in complexity theory.\footnote{See Garey and Johnson (1979, p.206). We know that for NP-complete problems, all known algorithms to solve the problem require time which is exponential in the problem size (for instance in the number of individuals considered).}

Thus we do not have much knowledge on which network will arise in these processes in general. In order to extend the applicability of these results, more succinct criteria are needed to determine the outcome of this selection theory. One goal of the paper is to find a criterion for network selection that is free from the computation of resistances and the tree construction.\footnote{In noncooperative games Young (1993), Ellison (1993), Kandori, Mailath and Rob (1993) among others have applied the Freidlin and Wentzel (1984) techniques in order to provide evolutionary models that select among (strict) Nash equilibria. But these results are submitted to the same criticism than}
We propose a new concept, $p$–pairwise stability, which is a refinement of the notion of pairwise stability. A network is said to be $p$–pairwise stable if when we add a set of links to this network (or sever a set of links), then if we allow players to successively create or delete links, they will come back to the initial network. The parameter $p \in [0, 1]$ indicates the "number" of links that can be modified: $p = 0$ means that all links may be modified, $p = 1$ means that no link may be added or severed. Thus, 1–pairwise stability reverts to Jackson and Wolinsky (1996) pairwise stability concept. Also, a network is said to be $\frac{1}{2}$–pairwise stable if when we add a set of links to this network (or sever a set of links) such that the number of changes is less than half the total of possible changes, then if we allow players to successively create or delete links, they will come back to the initial network.

We show that when a $\frac{1}{2}$–pairwise stable network exists, it is unique. Moreover it is the only stochastically stable network in Jackson and Watts (2002) stochastic evolutionary process. But while our notion of a $\frac{1}{2}$–pairwise stable network leads to a unique selection when it exists, it does not always exist. Therefore, we define its set-valued extension with the notion of $\frac{1}{2}$–pairwise stable set of networks that is proved to exist and to coincide with the $\frac{1}{2}$–pairwise stable network when it exists. We also show that if a network is stochastically stable then it belongs to the $\frac{1}{2}$–pairwise stable set of networks. Thus, any network outside the $\frac{1}{2}$–pairwise stable set must be considered as a non-robust network. Interestingly, the $\frac{1}{2}$–pairwise stable set of networks can contain no pairwise stable network. We see this as a drawback of pairwise stability, and we provide examples where a set of networks is more "stable" than a pairwise stable network.

The paper is organized as follows. In Section 2 we define the notion of $p$–pairwise stable network and we study its properties. In Section 3 we propose a set-valued extension, the $p$–pairwise stable set of networks. In Section 4 we provide an evolutionary foundation to the $\frac{1}{2}$–pairwise stable set of networks. In Section 5 we conclude.

2 $p$–Pairwise Stable Networks

Let $N = \{1, ..., n\}$ be the finite set of players who are connected in some network relationship. The network relationships are reciprocal and the network is thus modeled as a

Jackson and Watts (2002) and so they are not always helpful in determining the selected action profiles. Then, some authors have looked for criteria for equilibrium (or non-equilibrium) selection that are free from the computation of resistances and the tree construction. For instance, Young (1993) has shown that in a two player, two action game, only the risk-dominant equilibrium (in the sense of Harsanyi and Selten (1988)) is stochastically stable. This result was generalized by Maruta (1997) and Durieu, Solal and Tercieux (2003) to two players finite games.
the network is possible. A network is fixed, and hence can be thought of as applying to situations where no intervention is possible. A network \( g \subseteq G^N \) is strongly efficient relative to \( v \) if \( v(g) \geq v(g') \) for all \( g' \subseteq G^N \). This is a strong notion of efficiency as it takes the perspective that value is fully transferable.

A simple way to analyze the networks that one might expect to emerge in the long run is to examine a sort of equilibrium requirement that agents not benefit from altering the structure of the network. A weak version of such condition is the pairwise stability notion defined by Jackson and Wolinsky (1996). A network is pairwise stable if no player

\[5\] Bala and Goyal (2000) have studied network formation in directed networks. See also Dutta and Jackson (2000).

\[6\] Throughout the paper we use the notation \( \subseteq \) for weak inclusion and \( \subsetneq \) for strict inclusion. We also use the symbols \( \lor \) and \( \land \) which mean "or" and "and", respectively. Finally, \# will refer to the notion of cardinality.
benefits from severing one of their links and no other two players benefit from adding a link between them, with one benefiting strictly and the other at least weakly.

**Definition 1** A network $g$ is pairwise stable with respect to value function $v$ and allocation rule $Y$ if

(i) for all $ij \in g$, $Y_i(g, v) \geq Y_i(g - ij, v)$ and $Y_j(g, v) \geq Y_j(g - ij, v)$, and

(ii) for all $ij \notin g$, if $Y_i(g, v) < Y_i(g + ij, v)$ then $Y_j(g, v) > Y_j(g + ij, v)$.

Let us say that $g'$ is adjacent to $g$ if $g' = g + ij$ or $g' = g - ij$ for some $ij$. A network $g'$ defeats $g$ if either $g' = g - ij$ and $Y_i(g', v) > Y_i(g, v)$, or if $g' = g + ij$ with $Y_i(g', v) \geq Y_i(g, v)$ and $Y_j(g', v) \geq Y_j(g, v)$ with at least one inequality holding strictly. Pairwise stability is equivalent to saying that a network is pairwise stable if it is not defeated by another (necessarily adjacent) network. The following example shows the main insight of the stability requirement we will introduce. In particular, the example shows that a network that is both pareto-dominant and pairwise stable can be "less stable" than another network.

**Example 1.** Consider a situation where four players can form links. The payoffs they obtained from the different network configurations are (see Figure 1): for a non-empty network $g$, $Y_i(g) = \#(g)$ if $i \in N(g)$ with $\#(g)$ being the number of links in $g$, $Y_i(g) = 0$ if $i \notin N(g)$, and $Y_i(g) = 10$ if $g$ is the empty network. Both the empty network and the complete network are pairwise stable networks. The empty network is also the efficient network.

Suppose that at least two links are added to the empty network to form $g'$. Then, from $g'$ all "undefeated" improving paths go to the complete network and none goes back to the empty network. An improving path is a sequence of networks that can emerge when players form or sever links based on the improvement the resulting network offers relative to the current network. Each network in the sequence differs by one link from the previous one. If a link is added, then the two players involved must both agree to its addition, with at least one of the two strictly benefiting from the addition of the link. If a link is deleted, then it must be that at least one of the two players involved in the link strictly benefits from its deletion. By an "undefeated" improving path, we mean that the final network in the sequence of the improving path is not defeated. Suppose now that at most four links are deleted from the complete network to form $g''$. Then, from $g''$ all "undefeated" improving paths go back to the complete network. Thus, we say that the empty network (while being the efficient network) is "less stable" than the complete network, while both are pairwise stable.
Figure 1: The empty and complete networks are pairwise stable (Example 1).

In order to formalize such refinement of pairwise stability, we first define a notion of distance between two networks. For \( g, g' \subseteq g^N \) we denote by

\[
d(g, g') = \frac{\# \{ ij \in g^N \mid (ij \in g \land ij \notin g') \lor (ij \notin g \land ij \in g') \}}{\#g^N}
\]

the distance between \( g \) and \( g' \). That is, \( d(g, g') \) is the number of links that \( g \) does have while \( g' \) does not, plus the number of links that \( g \) does not have while \( g' \) does, the total being divided by the maximum number of links. Thus, \( 0 \leq d(g, g') \leq 1 \). The formal definition of an improving path is due to Jackson and Watts (2002). An improving path from a network \( g \) to a network \( g' \) is a finite sequence of graphs \( g_1, \ldots, g_K \) with \( g_1 = g \) and \( g_K = g' \) such that for any \( k \in \{1, \ldots, K - 1\} \) either:

(i) \( g_{k+1} = g_k - ij \) for some \( ij \) such that \( Y_i(g_k - ij) > Y_i(g_k) \), or

(ii) \( g_{k+1} = g_k + ij \) for some \( ij \) such that \( Y_i(g_k + ij) > Y_i(g_k) \) and \( Y_j(g_k + ij) \geq Y_j(g_k) \).
The length of an improving path is $K - 1$, $K \geq 2$. If there exists an improving path from $g'$ to $g$, then as Jackson and Watts (2002) we use the symbol $g' \rightarrow g$. For a given network, $g$, let $im(g) = \{g' \subseteq g^N \mid g' \rightarrow g\}$. This is the set of networks for which there is an improving path leading from $g'$ to $g$. An improving path from $g'$ to $g$ is of maximum length if $g_K$ is not defeated by any $g'' \subseteq g^N$. For $g' \neq g$, we write $g' \leftrightarrow g$ if:

(i) all improving paths of maximum length from $g'$ go to $g$,

(ii) there does not exist an infinite improving path from $g'$.\footnote{An infinite improving path from $g$ is an infinite sequence of graphs $g_1, g_2, \ldots$ such that for any $k \in \{2, 3, \ldots\}$ either (i) $g_{k+1} = g_k - ij$ for some $ij$ such that $Y_i(g_k - ij) > Y_i(g_k)$, or (ii) $g_{k+1} = g_k + ij$ for some $ij$ such that $Y_i(g_k + ij) > Y_i(g_k)$ and $Y_j(g_k + ij) \geq Y_j(g_k)$. Thus, no network is not defeated in an infinite improving path.}

We write $g \leftrightarrow g$ if from $g$ there is no improving path. For a given network $g$, let $IM(g) = \{g' \subseteq g^N \mid g' \leftrightarrow g\}$. In the sequel, we note $\phi(p)$ the largest number smaller or equal to $p$ such that $\phi(p) \cdot \#g^N$ is an integer. This notation will be useful in defining our notion of $p$-pairwise stable networks.

**Definition 2** Let $p \in [0, 1]$. A network $g$ is $p$-pairwise stable with respect to allocation rule $Y$ and value function $v$ if for all $g' \subseteq g^N$ such that $d(g', g) \leq 1 - \phi(p)$, we have $g' \in IM(g)$.

Any network $g$ that is $p$-pairwise stable is $p'$-pairwise stable for $p' \geq p$. The notion of $p$-pairwise stability is a refinement of pairwise stability in the following sense. A network $g$ is pairwise stable if and only if it is $1$-pairwise stable. Thus, any network $g$ that is $p$-pairwise stable is pairwise stable.

**Proposition 1** Let $p \leq \frac{1}{2}$. A $p$-pairwise stable network is unique when it exists.

**Proof.** We proceed by contradiction. Let us assume that $g^1$ and $g^2$ are two distinct $p$-pairwise stable networks where $p \leq \frac{1}{2}$. Then, they are $\frac{1}{2}$-pairwise stable. If $d(g^1, g^2) \leq 1 - \phi(\frac{1}{2})$, we have a straightforward contradiction. (Since we must have $g^1 \in IM(g^2)$, i.e. $g^1 \leftrightarrow g^2$ which is not possible since $g^1(\neq g^2)$ is pairwise stable (or indifferently $1$-pairwise stable).

Assume now that $d(g^1, g^2) > 1 - \phi(\frac{1}{2})$. Pick $g^1$ and delete elements in $\{(ij \in g^1 \land ij \notin g^2)\}$ and add elements in $\{(ij \notin g^1 \land ij \in g^2)\}$ so that we obtain a network $g'$ satisfying $d(g', g^1) = 1 - \phi(\frac{1}{2})$. By construction, this network $g'$ satisfies $d(g', g^2) \leq \phi(\frac{1}{2}) \leq 1 - \phi(\frac{1}{2})$.

Then, since $g^1$ and $g^2$ are $\frac{1}{2}$-pairwise stable, we have that $g' \in IM(g^2)$, i.e. $g' \leftrightarrow g^1$, which is impossible.
and \( g' \in IM(g^2) \), i.e. \( g' \longmapsto g^2 \), which is not possible since \( g^2 \neq g^1 \). 

In Example 1, the empty network is pairwise stable and is the unique strongly stable network. However, the complete network is the unique \( \frac{1}{2} \)-pairwise stable network. The reason is that from any network \( g' \) with \( \#(g') \geq 3 \) (or \( d(g', g^N) \leq \frac{1}{2} \)) any "undefeated" improving paths go to the complete network \( g^N \), but none goes to the empty network. The next two examples show that a \( \frac{1}{2} \)-pairwise stable network may fail to exist while a pairwise stable network exists. In the first example, none of the two pairwise stable networks is \( \frac{1}{2} \)-pairwise stable, because there exists a network at mid distance from which there are improving paths going to both pairwise stable networks. In the second example, the unique pairwise stable is not \( \frac{1}{2} \)-pairwise stable because improving paths are enclosed in a cycle.

**Example 2.** Consider a situation where four players can form links. The payoffs they obtained from the different network configurations are (see Figure 2): \( Y_i(g) = [\#(g)]^2 - c \cdot \#(j \in N \text{ such that } ij \in g) \) if \( i \in N(g) \), \( Y_i(g) = 0 \) if \( i \notin N(g) \), (and so, \( Y_i(g) = 0 \) if \( g \) is the empty network). The parameter \( c > 0 \) is the individual cost of forming a link. For \( c < 11 \) the complete network is pairwise stable, for \( c > 1 \) the empty network is pairwise stable. For \( c < 5 \) our refinement will select the complete network which is the unique \( \frac{1}{2} \)-pairwise stable network. For \( c > 7 \) the empty network is the unique \( \frac{1}{2} \)-pairwise stable network. But, if \( 5 < c < 7 \) then a \( \frac{1}{2} \)-pairwise stable network fails to exist. The reason is that at \( g' = \{12, 13, 34\} \) players 2 and 4 have incentives to form the link 24 but at the same time players 1 or 3 has an incentive to sever the link he has with 2 or 4. So, from \( g' \) some improving paths go to the empty network, while others go to the complete network. It follows that no \( \frac{1}{2} \)-pairwise stable network exists.

**Example 3.** Suppose that five players can form links. In the complete network, \( Y_i(g) = 8 \) for all \( i \). In any network \( g \) players \( i \notin N(g) \) have a payoff \( Y_i(g) = 0 \). In networks \( g \) such that \( \#(g) \in [3, 9] \), we have \( Y_i(g) = 9 - \#(g) \) if \( i \in N(g) \). In any \( g \) such that \( \#(g) = 1 \) or 2 and players 4 or 5 belong to \( N(g) \) then \( Y_i(g) = 0 \) for all \( i \). In any \( g \) such that \( \#(g) = 2 \) and players 4 and 5 do not belong to \( N(g) \), we have that \( Y_i(g) = 7 \) for \( i \in N(g) \).

\(^8\)Jackson and van den Nouweland (2004) have introduced the notion of strongly stable networks. A strongly stable network is a network which is stable against changes in links by any coalition of individuals. Strongly stable networks are Pareto efficient and maximize the overall value of the network if the value of each component of a network is allocated equally among the members of that component.

\(^9\)Note that in all examples of the paper, we will choose the number of players \( N \) so that \( \#g^N = \frac{N(N+1)}{2} \) is even. This will allow us to have \( \phi(\frac{1}{2}) = \frac{1}{2} \).
Finally, let $Y_1(\{12\}) = Y_2(\{13\}) = Y_2(\{23\}) = 6$, $Y_2(\{12\}) = Y_1(\{13\}) = Y_3(\{23\}) = 8$.

Figure 3 presents some of these network configurations. In this example there is a unique pairwise stable network, the complete network. But, there does not exist a $\frac{1}{2}$-pairwise stable network. Indeed, from any $g'$ such that $d(g', g^N) \geq \frac{1}{5}$, no improving path goes to $g^N$.

Thus, a $\frac{1}{2}$-pairwise stable network does not always exist. In the spirit of Tercieux (2004) we aim to solve the problem of non-existence of $\frac{1}{2}$-pairwise stable networks by providing a set-valued extension. Interestingly, such an approach will put into relief that a set of networks that are not pairwise stable can be more "stable" than a pairwise stable network.
Figure 3: Another example of non-existence of $\frac{1}{2}$-stable networks (Example 3).

3 $p$—Pairwise Stable Sets of Networks

Let us first restate the definition of an improving path. An improving path from a network $g$ to a set of networks $G \subseteq G^N$ is a finite sequence of graphs $g_1, \ldots, g_K$ with $g_1 = g$ and $g_K \in G$ such that for any $k \in \{1, \ldots, K - 1\}$ either:

(i) $g_{k+1} = g_k - ij$ for some $ij$ such that $Y_i(g_k - ij) > Y_i(g_k)$, or

(ii) $g_{k+1} = g_k + ij$ for some $ij$ such that $Y_i(g_k + ij) > Y_i(g_k)$ and $Y_j(g_k + ij) \geq Y_j(g_k)$.

The length of an improving path is $K - 1$, $K \geq 2$. An improving path from $g'$ to $G \subseteq G^N$ is of maximum length if $g_K$ is not defeated by any $g'' \notin G$. For $g' \notin G$, we write $g' \mapsto G$ if:

(i) all improving paths of maximum length from $g'$ go to $G$,
(ii) for any infinite improving path from $g'$, there exists $K$ such that for all $k \geq K$, $g_k \in G$.

We write $g \rightarrow G$ if from $g \in G$ there is no improving path going to $g' \notin G$. For a given set of network $G$, let $IM(G) = \{g' \subseteq g^N | g' \rightarrow G\}$. Note that, in the following, for $G \subseteq G^N$, and $g' \subseteq g^N$ we will note $d(g', G) \leq 1 - \phi(p)$ if $d(g', g) \leq 1 - \phi(p)$ for some $g \in G$.

**Definition 3** Let $p \in [0, 1]$. A set of networks $G \subseteq G^N$ is $p$-pairwise stable with respect to allocation rule $Y$ and value function $v$ if

1. for all $g' \subseteq g^N$ such that $d(g', G) \leq 1 - \phi(p)$, we have $g' \in IM(G)$,
2. there does not exist $G' \subsetneq G$ such that $G'$ satisfies (1).

**Remark 1** The set $G^N$ (trivially) satisfies (1) in Definition 3 for any $p \in [0, 1]$.

**Proposition 2** Let $p \in [0, 1]$. Two (distinct) $p$-pairwise stable set of networks must be disjoint.

**Proof.** We proceed by contradiction. Assume that $G$ and $G'$ are two (distinct) $p$-pairwise stable sets of networks and $G \cap G' \neq \emptyset$. Then, for all $g' \subseteq g^N$ such that $d(g', G \cap G') \leq 1 - \phi(p)$, we have $g' \in IM(G)$. But since this assertion is also true for $G'$, we have that for all $g' \subseteq g^N$ such that $d(g', G \cap G') \leq 1 - \phi(p)$, $g' \in IM(G \cap G')$. Thus $G \cap G'$ satisfies (1) in Definition 3, contradicting the fact that $G$ (and $G'$) are $p$-pairwise stable sets, i.e. the minimality is violated (point (2) in Definition 3 of $p$-pairwise stable sets). $lacksquare$

As underlined earlier, the main drawback of our definition of $\frac{1}{2}$-pairwise stable networks is that existence may fail also when a pairwise stable network exists. We now show that our set-valued notion of $\frac{1}{2}$-pairwise stable set always exists. As will become clear (for instance through Example 3), when there does not exist any $\frac{1}{2}$-pairwise stable network, our notion allows to eliminate many possibilities. Moreover, it is possible that the $\frac{1}{2}$-pairwise stable set of networks does not contain any pairwise stable network (see Example 3). We claim that this last point is important and underlines an important drawback of pairwise stability. The selection result we will introduce in the next section will give a foundation to this informal argument since we will prove that any network outside the $\frac{1}{2}$-pairwise stable set is not robust in a precise sense.
Proposition 3 Let \( p \in [0, 1] \). There always exists at least one \( p \)-pairwise stable set of networks.

Proof. Let us proceed by contradiction. Let \( p \in [0, 1] \) and assume that there does not exist any set of networks \( G \subseteq G^N \) that is \( p \)-pairwise stable. This means that for any \( G^0 \subseteq G^N \) that satisfies (1) in Definition 3 (there always exist such a \( G^0 \), see Remark 1), we can find a proper subset \( G^1 \) that satisfies (1). But again for \( G^1 \), we can find a proper subset \( G^2 \) that satisfies (1). Iterating the reasoning we can build an infinite (decreasing) sequence \( \{G^k\}_{k \geq 0} \) of distinct elements of \( G^N \) satisfying (1). But since \( \#G^N < \infty \), this is not possible; so the proof is completed. \( \blacksquare \)

Note first that if \( g \) is a \( \frac{1}{2} \)-pairwise stable network then \( \{g\} \) is a \( \frac{1}{2} \)-pairwise stable set of networks. What our next result shows in particular is that \( \{g\} \) is the only \( \frac{1}{2} \)-pairwise stable set of networks and thus the two notions coincide in that special case.

Proposition 4 Let \( p \leq \frac{1}{2} \). There always exists a unique \( p \)-pairwise stable set of networks.

Proof. We proceed by contradiction. Assume that \( G^1 \) and \( G^2 \) are two distinct \( p \)-pairwise stable networks where \( p \leq \frac{1}{2} \). Then, they satisfy (1) in Definition 3 for \( p = \frac{1}{2} \).

If \( d(G^1, G^2) \leq 1 - \phi(\frac{1}{2}) \). Then we have a straightforward contradiction. (Since from \( g \in G^1 \) we must have \( g \in IM(G^1) \), i.e. \( g \leftrightarrow G^1 \) and \( g \in IM(G^2) \), i.e. \( g \leftrightarrow G^2 \) which is not possible since \( G^1 \cap G^2 = \emptyset \).

If \( d(G^1, G^2) > 1 - \phi(\frac{1}{2}) \), we take \( g^1(\in G^1) \) and \( g^2(\in G^2) \). Then, pick \( g^1 \) and delete elements in \( \{(ij \in g^1 \land ij \notin g^2)\} \) and add elements in \( \{(ij \notin g^1 \land ij \in g^2)\} \) so that we obtain a network \( g' \) satisfying \( d(g', G^1) = 1 - \phi(\frac{1}{2}) \). By construction, this network \( g' \) satisfies \( d(g', G^2) \leq \phi(\frac{1}{2}) \leq 1 - \phi(\frac{1}{2}) \). Then, since \( G^1 \) and \( G^2 \) are \( p \)-pairwise stable for \( p \leq \frac{1}{2} \) (i.e. they both satisfy (1) in Definition 3 for \( p = \frac{1}{2} \)), we have that \( g' \in IM(G^1) \), i.e. \( g' \leftrightarrow G^1 \) and \( g' \in IM(G^2) \), i.e. \( g' \leftrightarrow G^2 \) which again is not possible since \( G^1 \cap G^2 = \emptyset \). \( \blacksquare \)

In Example 2 we have that, for \( 5 < c < 7 \), there does not exist a \( \frac{1}{2} \)-pairwise stable network, but the set formed by the complete and empty networks is the \( \frac{1}{2} \)-pairwise stable set of networks. In Example 3, the complete network is the unique pairwise stable network and there is no \( \frac{1}{2} \)-pairwise stable network. However, the \( \frac{1}{2} \)-pairwise stable set of networks is \( G' = \{g_1, g_2, g_3, g_4, g_5, g_6\} \) (see Figure 3), which does not include the complete network, because there is a cycle \( g_1 \rightarrow g_2 \rightarrow g_3 \rightarrow g_4 \rightarrow g_5 \rightarrow g_6 \rightarrow g_1 \) and all "undefeated" improving paths from any \( g' \) such that \( d(g', G') \leq \frac{1}{2} \) go to \( G' \) and stay in \( G' \). By an
"undefeated" improving path, we mean that the final network in the sequence of the improving path is not defeated by a network that does not belong to $G'$.

Our set-valued notion generalizes many existing concepts of the literature. We can easily link this to two definitions, the first one is the well-known definition of pairwise stable networks of Jackson and Wolinsky (1996). The second one is the one of closed cycle provided by Jackson and Watts (2002). The following straightforward proposition is stated without proof.

**Proposition 5** \( \{g\} \) is a \( p \)-pairwise stable set if and only if \( g \) is a \( p \)-pairwise stable network. And so, \( \{g\} \) is a \( 1 \)-pairwise stable set if and only if it is a pairwise stable network.

The following definition is due to Jackson and Watts (2002, p.273). A set of networks \( G \), form a cycle if for any \( g \in G \) and \( g' \in G \), there exists an improving path connecting \( g \) to \( g' \). A cycle \( G \) is a closed cycle if no network in \( G \) lies on an improving path leading to a network that is not in \( G \).

**Proposition 6** \( G \) is a \( 1 \)-pairwise stable set if and only if it is a closed cycle.

**Proof.** The proof can be found in Appendix A. ■

4 Evolutionary Selection

In this section, we show that our notion of \( \frac{1}{2} \)-pairwise stable networks (and \( \frac{1}{2} \)-pairwise stable set of networks) is relevant in the stochastic evolutionary process proposed by Jackson and Watts (2002).

4.1 The Process

Let us recall first the Jackson and Watts (2002)'s process. At a discrete set of times, \( \{1, 2, 3, \ldots\} \) decisions to add or sever a link are made. At each date, a pair of players \( ij \) is randomly identified with probability \( p(ij) > 0 \). The (potential) link between these two players is the only link that can be altered at that time. If the link is already in the network, then the decision is whether to sever it, and otherwise the decision is whether to add the link. The players involved act myopically, adding the link if it makes each at least as well off and one strictly better off, and severing the link if its deletion makes either player better off. After the action is taken, there is some small probability \( \varepsilon > 0 \) that a
mutation (or tremble, or mistake) occurs and the link is deleted if it is present, and added if it is absent.\footnote{\textmd{Mutations may be due to exogenous unmodeled factors that are beyond player's control. Alternatively, players may simply make errors in calculating whether adding or severing a link is beneficial. Finally, we could think to players having a limited information. Thus they occasionally experiment to see if adding or severing a link will make them better off (endogenous mutations have been formalized in several papers, see for instance van Damme and Weibull (2002) or Maruta (2002)).}}

The above process defines a (finite) Markov chain with states being the network in place at the end of a given period. Note that with mutations as part of the process, each state of the system is reachable with positive probability from every other state. The Markov chain is said to be irreducible and aperiodic, and thus has a unique corresponding stationary distribution (see Freidlin and Wentzel, 1984). As $\varepsilon$ goes to zero, the stationary distribution converges to a unique limiting stationary distribution. A network that is in the support of the limiting (as $\varepsilon$ goes to zero) stationary distribution of the above-described Markov process is said to be \textit{stochastically stable}. Intuitively, a stochastically stable network is one that is observed infinitely many more times than others when the probability of mutations is infinitely small. Jackson and Watts (2002) provides a characterization of stochastically stable networks using the tree construction of Freidlin and Wentzell (1984). In the following, we prove that our concept can be used to avoid this complex construction.

4.2 Relationship between $p$–Pairwise Stability and Stochastic Stability

The following theorem shows that under the process we have just described, the only networks that will arise with a significant frequency in the long run (i.e., the stochastically stable one) are in the $\frac{1}{2}$–pairwise stable set.

\textbf{Theorem 1} \textit{Let $G$ be the $\frac{1}{2}$–pairwise stable set of networks. The set of stochastically stable networks is included in $G$.}

\textbf{Proof.} See Appendix B. \hfill \blacksquare

Thus any network outside the $\frac{1}{2}$–pairwise stable set must be considered as a non-robust network. To be more precise, the stochastic process presented above can be thought of as a check on the robustness of pairwise networks or cycles. Although a number of networks may be pairwise stable, they can differ in how resilient they are to the random mutations. For instance, it may be relatively hard to leave and easy to get back to some networks, our above theorem tells us that such networks are included in the $\frac{1}{2}$–pairwise stable set of networks. This result also tells us that any network that is not in the $\frac{1}{2}$–pairwise stable set is relatively easy to leave and hard to get back.
In order to understand these points, note that once the process has reached the $\frac{1}{2}$-pairwise stable set of networks $G$, it cannot leave it without further mutations. On the first hand, in order to get off that set, it is necessary that strictly more than $\frac{#gN}{2}$ mutations occur (notice that in order to give the intuition of our result, we skip some technical points in assuming that $N$ is such that $\frac{#gN}{2}$ is an integer). If it is not the case, the process will come back to $G$ with no further mutation. On the other hand, as it will become clear, if the process has reached a network that is outside $G$, it is sufficient that less than $\frac{#gN}{2}$ mutations occur to allow the process to reach a network that belong to $G$. In order to see why it is so, note that from a network $g'$ that does not belong to $G$, with (less than) $\frac{#gN}{2}$ mutations, one can reach a network $\bar{g}$ such that $d(g, \bar{g}) \leq \frac{1}{2}$ where $g$ belongs to $G$. Thus, by definition, the process will move to $G$ without any further mutations. To see how we can build $\bar{g}$, we just have to add links to $g'$ that belong to $g$ and not to $g'$ or to delete links that do not belong to $g$ but belong to $g'$. By repeating this procedure less than $\frac{#gN}{2}$ times, we can reach such a $\bar{g}$. Thus there exist networks in $G$ which are the easiest to reach from other networks, where - again - "easiest" is interpreted as requiring the fewest mutations. These networks are stochastically stable. The formal argument is given in the appendix.

Of course, we would like to have a full characterization of the set of stochastically stable networks. In order to do so, we provide several sufficient conditions that go in that sense. These results are corollaries of Theorem 1. The first one shows that if there exists a $\frac{1}{2}$-pairwise stable network then it must be the unique stochastically stable network. Note that this result can be seen as a parallel to the one of Young (1993) [Theorem 3, p.72] in noncooperative games.

**Corollary 1** Assume that a network $g$ is the $\frac{1}{2}$-pairwise stable network. Then $g$ is the unique stochastically stable network.

The following two corollaries directly come from the fact that if $g$ is stochastically stable then $g$ is part of a $1$-pairwise stable set of networks. Furthermore, if $g \in G$ is stochastically stable and $G$ is a $1$-pairwise stable set then all $g' \in G$ are stochastically stable (this follows from Lemma 2 in Jackson and Watts (2002) together with our Proposition 6 that establishes the equivalence between a $1$-pairwise stable set and a closed cycle).

**Corollary 2** Let $G$ be the $\frac{1}{2}$-pairwise stable set of networks. If $G$ is $1$-pairwise stable then $G$ is the set of stochastically stable networks.

**Corollary 3** Let $G$ be the $\frac{1}{2}$-pairwise stable set of networks. If $G' \subseteq G$ is the unique $1$-pairwise stable set in $G$ then $G'$ is the set of stochastically stable networks.
Example 4. Suppose that three players can form links (see Figure 4). In the complete network, \( Y_i(g) = 3 \) for all \( i \). In any network \( g \) players \( i \notin N(g) \) have a payoff \( Y_i(g) = 0 \). In any \( g \) such that \( \#(g) = 2 \), \( Y_i(g) = 2 \) if \( i \in N(g) \). Finally, let \( Y_1(\{12\}) = Y_2(\{13\}) = Y_3(\{23\}) = 1 \), \( Y_2(\{12\}) = Y_1(\{13\}) = Y_3(\{23\}) = 4 \). In this example there is a unique pairwise stable network, the complete network. There does not exist a \( \frac{1}{2} \)-pairwise stable network, \( \{g^N\} \) is the 1—pairwise stable set, and all networks except the empty one belong to the \( \frac{1}{2} \)-pairwise stable set of networks.

In Example 4, the complete network is the unique pairwise stable network and there is no \( \frac{1}{2} \)-pairwise stable network because of the cycle \( g_1 \to g_2 \to g_3 \to g_4 \to g_5 \to g_6 \to g_1 \). The \( \frac{1}{2} \)-pairwise stable set of networks is \( G' = \{g_1, g_2, g_3, g_4, g_5, g_6, g^N\} \) but this set is not 1—pairwise stable. Indeed, \( \{g^N\} \) is the unique 1—pairwise stable set and so by corollary 3 is the unique stochastically stable network.

The next example shows that our sufficient conditions are quite tight in the following sense: a \( p \)-pairwise stable network with \( p = \frac{1}{2} + \varepsilon \) (\( \varepsilon \) small) may not be a stochastically stable network.

Example 5. Suppose that fifty players can form links. For \( \#(g) \leq 611 \), let \( Y_i(g) = 611 - \#(g) \) if \( i \in N(g) \) and \( Y_i(g) = 0 \) otherwise. For \( \#(g) \geq 612 \), let \( Y_i(g) = \#(g) - 611 \) if \( i \in N(g) \) and \( Y_i(g) = 0 \) otherwise. The empty network is a \( p \)-pairwise stable network for \( p \geq (615/1225) \approx 0.502 \), but the empty network is not stochastically stable. The unique stochastically stable network is the complete one, which is also the unique \( \frac{1}{2} \)-pairwise
stable network.

5 Conclusion

In this paper, we have defined a refinement of pairwise stability: $p$–pairwise stability. When a $\frac{1}{2}$–pairwise stable network exists, we have shown that it is unique and that it coincides with the unique stochastically stable network. To solve the inexistence problem of $p$–pairwise stable networks, we have defined its set-valued extension with the notion of $p$–pairwise stable set. We have shown that $\frac{1}{2}$–pairwise stable set exists and is unique. In addition, any stochastically stable networks is included in the $\frac{1}{2}$–pairwise stable set.

Appendix

A Proof of Proposition 6

In this part we prove Proposition 6 that establishes the equivalence between our notion of $1$–pairwise stability and the notion of a closed cycle proposed by Jackson and Watts (2002). In order to do so, we first state and prove some useful lemmas. The following lemma is stated without proof.\textsuperscript{11}

\textbf{Lemma 1} If $G$ is such that for all $g \in G$, $g \in IM(G)$ (note that this is (1) in Definition 3 of a $1$–pairwise stable set) then there exists $C \subseteq G$ that is a closed cycle.

Our next lemma provides a first step in establishing a link between $1$–pairwise stability and closed cycles.

\textbf{Lemma 2} If $C$ is a closed cycle then there exists $G \subseteq C$ that is $1$–pairwise stable.

\textbf{Proof.} Since $C$ is a closed cycle, we know that for all $g \in C$, $g \in IM(C)$. Then $C$ satisfies (1) of Definition 3 of a $1$–pairwise stable set. Now assume that there does not exist any $G \subseteq C$ that is $1$–pairwise stable. Then any $G \subseteq C$ has a proper subset that satisfies (1) in the definition of $1$–pairwise stable sets. Now, as in the proof of Proposition 3, this implies that there exists an infinite decreasing sequence $\{G^k\}_{k \geq 0}$ where $G^0 = C$ and $G^{k+1} \subsetneq G^k$ for all $k \geq 0$. But since $\#G^N < \infty$, this is not possible; so the proof is completed.

Now we are ready to complete the proof of Proposition 6. We first prove the "if" part. Suppose that $G$ is a closed cycle but $G$ is not $1$–pairwise stable and show that

\textsuperscript{11}A complete proof would mimic the proof of Lemma 1 in Jackson and Watts (2002, p.273).
this lead to a contradiction. This last point can be due to the violation of (1) or (2) in the definition of a 1–pairwise stable set. Assume first that (1) is violated. Such a violation implies in particular that there exists \(g \in G\) and \(g' \notin G\) such that \(g \rightarrow g'\). Which contradicts the definition of a closed cycle. Assume now that (2) is violated. This means that there exists \(G' \subsetneq G\) that satisfies (1) in the definition of a 1–pairwise stable set i.e., for all \(g' \in G\), \(g' \in IM(G')\). But by Lemma 1, we know that there exists a closed cycle \(C \subseteq G' \subsetneq G\). Then, we have the following: first, because \(G\) is a (closed) cycle, we have that for all \(g, g' \in G\), \(g \rightarrow g'\). But we also have, because \(C\) is a closed cycle, that for all \(g \in C(\subsetneq G)\) and \(g' \in G \setminus C\), \(g \rightarrow g'\) is wrong. Thus we obtain a contradiction.

We now prove the "only if" part. We know by Lemma 1 that since \(G\) is 1–pairwise stable, there exists \(C \subseteq G\) that is a closed cycle. We must prove that \(C = G\). So let us proceed by contradiction and assume that \(C \subsetneq G\). We know by Lemma 2 that there exists \(G' \subseteq C \subsetneq G\) that is 1–pairwise stable. This leads to a straightforward contradiction since it contradicts (2) (the minimality) in the 1–pairwise stability of \(G\). This completes the proof of Proposition 6.

\[ \text{B Proof of Theorem 1} \]

In order to prove Theorem 1, we first introduce some useful definitions and notations.

\[ \text{B.1 Definitions} \]

For a given network \(g\), remember that \(im(g) = \{g' \subseteq g^N\mid\text{there exists an improving path from } g' \text{ to } g\}\). A path \(p = \{g_1, \ldots, g_K\}\) is a sequence of adjacent networks. The resistance of a path \(p = \{g_1, \ldots, g_K\}\) from \(g'\) to \(g\), denoted \(r(p)\), is computed by \(r(p) = \sum_{i=1}^{K-1} I(g_i, g_{i+1})\), where

\[
I(g_i, g_{i+1}) = \begin{cases} 
0 & \text{if } g_i \in im(g_{i+1}) \\
1 & \text{otherwise}
\end{cases}
\]

Resistance keeps track of how many mutations must occur along a special path to follow that path from one network to another. A mutation is necessary to move from one network to an adjacent one whenever it is not in the relevant player’s interests to sever or add the link that distinguishes the two adjacent networks.

Let \(r(g', g) = \min\{r(p) \mid p \text{ is a path from } g' \text{ to } g\}\) and set \(r(g, g) = 0\). Note that \(r(g', g) = 0\) iff \(g' \in im(g)\) or \(g' = g\). Thus (by proposition 6) if \(g, g' \in G\) where \(G\) is 1–pairwise stable, then \(r(g', g) = 0\).

Given a network \(g\), a \(g\)--tree is a directed graph which has as vertices all networks and has a unique directed path leading from each \(g'\) to \(g\). Let \(T(g)\) denote all the \(g\)--trees, and
represent a $t \in T(g)$ as a collection of ordered pairs of networks, so that $g'g'' \in t$ if and only if there is a directed edge connecting $g'$ to $g''$ in the $g$–tree $t$.

The resistance of a network $g$ is computed as $r(g) = \min_{t \in T(g)} \sum_{g'g'' \in t} r(g',g'')$. The main result of Jackson and Watts (2002) that is closely related to the techniques developed in Young (1993) is that the set of stochastically stable networks is the set $\{g \mid r(g) \leq r(g') \}$ for all $g'$. We will use this characterization in order to prove our main results.

B.2 The Proof

The proof is divided into two parts: (1) we bound the resistances of paths that begin at $g \in G$ and the resistances of paths ending at $g \in G$; (2) we show that some $g \in G$ minimizes stochastic potential.

(1) We give a lower bound on the resistance of the transitions that begin at $g \in G$ and end at any $g' \notin G$. Recall that by definition of $p$–pairwise stability for $p \leq \frac{1}{2}$, $r(g,g') > (1 - \phi(\frac{1}{2})) \cdot \#g^N \geq \frac{\#g^N}{2}$.

We give now an upper bound on the resistance of paths that begin at any $g' \notin G$ and end in $G$. Pick $g' \notin G$. (Note that if $d(g',G) \leq 1 - \phi(\frac{1}{2})$ then, by definition of $G$, $g' \in IM(G)$ i.e. no mutation is necessary to go to $G$. Thus we will implicitly assume that $d(g',G) > 1 - \phi(\frac{1}{2})$.) We delete elements in $\{(ij \in g' \land ij \notin g)\}$ and add elements in $\{(ij \notin g' \land ij \in g)\}$ so that we obtain a network $\tilde{g}$ satisfying $d(\tilde{g},g') = 1 - \phi(\frac{1}{2})$. By construction, this network $\tilde{g}$ satisfies $d(\tilde{g},g) \leq \phi(\frac{1}{2}) \leq 1 - \phi(\frac{1}{2})$ where $g \in G$. But $G$ is a $p$–pairwise stable set of networks for $p \leq \frac{1}{2}$; therefore with less than $(1 - \phi(\frac{1}{2})) \cdot \#g^N$ mutations, we will reach a network in $G$ (note that once the process has reached $G$, we cannot leave it without mutations). Therefore, $r(g',\tilde{g}) \leq (1 - \phi(\frac{1}{2})) \cdot \#g^N$ for some $\tilde{g} \in G$. We will note such a $\tilde{g}$ by $\Psi(g')$. Thus for every $g' \notin G$, $r(g',\Psi(g')) \leq (1 - \phi(\frac{1}{2})) \cdot \#g^N$.

(2) Suppose by contradiction that $g' \notin G$ is stochastically stable. Denote by $t'$ (one of the $g'$–tree(s) ($t' \in T(g')$) that minimizes resistance.

We know that there is a sequence $g_1,\ldots,g_n$ with $g_1 = \Psi(g') \in G$ and $g_n = g'$ such that:
- $g_lg_{l+1} \in t'$ for every $l = 1,\ldots,n-1$
- there is a $k \in \{1,\ldots,n-1\}$ such that $g_k \in G$ and $g_{k+1} \notin G$. Delete this edge and add one from $g'$ to $\Psi(g')$. We obtain a tree $t'' \in T(g_k)$ where $g_k \in G$.

By construction, $r(g_k) = r(g') - r(g_k,g_{k+1}) + r(g',\Psi(g'))$. But as proved above, we have $r(g_k,g_{k+1}) > (1 - \phi(\frac{1}{2})) \cdot \#g^N \geq r(g',\Psi(g'))$. Hence, $r(g^k) < r(g')$. This contradicts the fact that $g'$ minimizes stochastic potential. This completes the proof.
References


NOTE DI LAVORO PUBLISHED IN 2004

**IEM 1.2004**
Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

**ETA 2.2004**
Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

**PRA 3.2004**
Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

**ETA 4.2004**
Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

**PRA 5.2004**
Romano PIRAS: Growth, Congestion of Public Goods, and Second-Best Optimal Policy

**CCMP 6.2004**
Herman R.J. VOLLEBERGH: Lessons from the Polder: Is Dutch CO2-Taxation Optimal

**PRA 7.2004**
Sandro BRUSCO, Giuseppe LOPOPOMO and S. VISWANATHAN (Ixxv): Merger Mechanisms

**PRA 8.2004**
Wolfgang AUSSENEN, Pegaret PICHLER and Alex STOMPER (Ixxv): IPO Pricing with Bookbuilding, and a When-Issued Market

**PRA 9.2004**
Pegaret PICHLER and Alex STOMPER (Ixxv): Primary Market Design: Direct Mechanisms and Markets

**PRA 10.2004**
Florian ENGLMAIER, Pablo GUILLEN, Loreto LLORENTE, Sander ONDERSTAL and Rupert SAUSGRUBER (Ixxv): The Chopstick Auction: A Study of the Exposure Problem in Multi-Unit Auctions

**PRA 11.2004**
Bjarne BRENDSTRUP and Harry J. PAARSCH (Ixxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

**PRA 12.2004**
Ohad KADAN (Ixxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

**PRA 13.2004**
Jaarten C.W. JANSEN (Ixxv): Auctions as Coordination Devices

**PRA 14.2004**
Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixxv): All-Pay Auctions with Weakly Risk-Averse Buyers

**PRA 15.2004**
Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

**PRA 16.2004**
Marta STRYSZOWSKA (Ixxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

**CCMP 17.2004**
Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade

**NRM 18.2004**
Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (Ixxv): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

**SIEV 19.2004**
Maarten C.W. JANSSEN (Ixxvii): Country Risk Ratings of Small Island Tourism Economies

**NRM 20.2004**
Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

**NRM 21.2004**
Jacqueline M. HAMILTON (Ixxvii): Climate and the Destination Choice of German Tourists

**NRM 22.2004**
Javier Rey-MAQUIEIRA PALMER, Javier LOZANO IBÁÑEZ and Carlos Mario GÓMEZ GÓMEZ (Ixxvii): Land, Environmental Externalities and Tourism Development

**NRM 23.2004**
Pius ODUNGA and Henk FOLMER (Ixxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

**NRM 24.2004**
Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (Ixxvii): Tourism, Trade and Domestic Welfare

**NRM 25.2004**
Riaz SHAREEF (Ixxvii): Country Risk Ratings of Small Island Tourism Economies

**NRM 26.2004**
Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (Ixxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

**NRM 27.2004**
Raúl Hernández MARTÍN (Ixxvii): Impact of Tourism Consumption on GDP, The Role of Imports

**CSRM 28.2004**
Nicoletta FERRO: Cross-Country Ethical Dilemmas in Business: A Descriptive Framework

**NRM 29.2004**
Marian WEBER (Ixxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

**NRM 30.2004**
Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE (Ixxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

**CCMP 31.2004**
Marzio GALEOTTI, Alessandra GORIA, Paolo MOMBRINI and Evi SPANTIDAKI: Weather Impacts on Natural, Social and Economic Systems (WISE) Part I: Sectoral Analysis of Climate Impacts in Italy

**CCMP 32.2004**
Marzio GALEOTTI, Alessandra GORIA, Paolo MOMBRINI and Evi SPANTIDAKI: Weather Impacts on Natural, Social and Economic Systems (WISE) Part II: Individual Perception of Climate Extremes in Italy

**CTN 33.2004**
Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

**KTHC 34.2004**

**KTHC 35.2004**
Linda CHAIB (Ixxviii): Immigration and Local Urban Participatory Democracy: A Boston-Paris Comparison
Franca ECKERT COEN and Claudio ROSSI (lxviii): Foreigners, Immigrants, Host Cities: The Policies of Multi-Ethnicity in Rome. Reading Governance in a Local Context


Kiflemariam HAMDE (lxviii): Mind in Africa, Body in Europe: The Struggle for Maintaining and Transforming Cultural Identity - A Note from the Experience of Eritrean Immigrants in Stockholm

Andrea BIGANO and Stef PROOST: Biodiversity Conservation on Private Lands: Information Problems and Possibilities of the Contingent Valuation Method

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Technology-based Climate Protocol

Gernot KLEPPER and Sonja PETERSON: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Francesco CRESPI: International Cooperation to Resolve International Pollution Problems

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Marc ESCRIBUÉLA-VILLAR: Cartel Sustainability and Cartel Stability

Sebastian BEROYETS and Nicolas GRAVEL: Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach

Signe ANTHON and Bo JELLEMARK THORSEN: Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits


Ekio BIROL, Àgnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Scott BARRETT and Michael HOEL: Optimal Disease Eradication

Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Ingo BRÄUER and Rainer MARGGRAF: Optimal Disease Eradication

Karin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households

Michael FINUS: Modesty Pays: Sometimes

Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance

Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

Erwin GOESCHL and Danilo CAMARGO IGLIORI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon

Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol

E.C.M. RUIJGROK and E.E.M. NILLESEN: The Socio-Economic Value of Natural Riverbanks in the Netherlands

E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands

Michael FINUS: Modesty Pays: Sometimes!

Tord BJÖRNDAI and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margarita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

Salvador BARBERA and Matthew O. JACKSON (lxx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union

Alex ARENAI, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lx): Optimal Information Transmission in Organizations: Search and Congestion

Francisco BLOCH and Armando GOMES (lx): Contracting with Externalities and Outside Options

Rahab AMIR, Efrosyni DIAMANTOUDI and Licun XUE (lx): Merger Performance under Uncertain Efficiency Gains

Francisco BLOCH and Matthew O. JACKSON (lx): The Formation of Networks with Transfers among Players

Daniel DIERMEIER, Hílya ERASLAN and Antonio MERLO (lx): Bicameralism and Government Formation

Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lx): Potential Maximization and Coalition Government Formation

Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lx): Group Decision-Making in the Shadow of Disagreement

Sanjeev GOTAL, Marco van der LEIJ and José Luís MORAAG-GONZÁLEZ (lx): Economics: An Emerging Small World?

Edward CARTWRIGHT (lx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. FØRUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elissaios PAPYRakis and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

Marzio GALEOTTI and Claudia KEMFERT: Interactions between Climate and Trade Policies: A Survey

A. MARKANDYA, S. PEDROSO and D. STREMIKINE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

Sergei IZMALKOV (lx): Multi-Unit Open Ascending Price Efficient Auction

Gianmarco I.P. OTTAVIANO and Giovanni PERI: Economics: An Emerging Small World?

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BERGANTIÑOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIKKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIKKAMP: A Meta-Analysis of the Willingness to Pay for Reductions in Pesticide Risk Exposure

Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test


John BENNETT, Saul ESTRIN, James MAW and Giovanni URGA: Privatisation Methods and Economic Growth in Transition Economies

Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo MAINARDI: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective

Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIKKAMP: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Giuseppe DI VITA: Natural Resources Dynamics: Another Look

Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

Valeria COSTANTINI and Francesco GRACCEVA: Oil Security, Short- and Long-Term Policies
Auctions
Price Sealed-Bid Auctions
the Incidence of Commissions in Auction Markets
Maximization and the Multiple-Good Monopoly
and Evidence from Timber Auctions
Roberto BURGUET

Externalities
Bookbuilding is Dominating Auctions
Real Option Analysis
Environmental Taxation Game
Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK

Influence of World Energy Prices
for Public Goods: Finite Versus Continuous Mixing in Logit Models
Latent-Class Approach Based on Intensity of Participation
Savings
Analysis of Climate Change Impacts on Tourism from Poland and the Czech Republic
Information: The Differential Tax Revisited
on the Islands of the Venice Lagoon: A Spatially-Distributed Hedonic-Hierarchical Approach
Economy
NRM 122.2004
Carlo GIUPPONI, Jaroslaw MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application

NRM 123.2004

ETA 124.2004
Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited

NRM 125.2004
Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta VALDINI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach

PRA 126.2004
Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic

CCMP 127.2004
Maria BERRITTELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism

CCMP 128.2004
Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy Savings

NRM 129.2004
Elisatos PAPYRakis and Reyer GERLAGH: Natural Resources, Innovation, and Growth

PRA 130.2004
Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization

SIEV 131.2004
Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A Latent-Class Approach Based on Intensity of Participation

SIEV 132.2004

IEM 133.2004
Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited

ETA 134.2004
Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma

SIEV 135.2004
Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys

CCMP 136.2004
Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy Prices

ETA 137.2004
Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game

CCMP 138.2004
ZhongXiang ZHANG: The World Bank’s Prototype Carbon Fund and China

CCMP 139.2004
Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy

NRM 140.2004
Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis

PRA 141.2004
Patrick BAJARI, Stephanie HOUTHON and Steven TADELIS (lxxi): Bidding for Incomplete Contracts

PRA 142.2004
Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealed Bid Auctions: Theory and Evidence from Timber Auctions

PRA 143.2004
David GOLDREICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions

PRA 144.2004
Roberto BURGUET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economics

PRA 145.2004

PRA 146.2004

PRA 147.2004
Claudio MEZZETTI, Aleksandar PEKEČ and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price Auctions

PRA 148.2004
John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions

PRA 149.2004
Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions

PRA 150.2004
François DEGEORGE, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why Bookbuilding is Dominating Auctions

CCMP 151.2004
Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification. Internal Institution and Pressure Groups in the Kyoto Protocol’s Adoption Process

CCMP 152.004
Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model

PRA 153.004
Alejandro M. MANELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue Maximization and the Multiple-Good Monopoly

ETA 154.004
Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism in Stabilization Policies?

CTN 155.004
Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with Externalities

CCMP 156.004
Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?


William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling

Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons

Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRÍGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change

Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?

Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change


Angelo ANTOCI: Regional and Sub-Global Climatic Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes

Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers

Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

Carla MASSIDDA: Estimating the New Keynesian Phillips Curve for Italian Manufacturing Sectors

Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry

Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms

Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer

Mombert HOPPE: Technology Transfer Through Trade

Roberto ROSON: Platform Competition with Endogenous Multihoming

Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Glbal Climatic Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes

Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information

Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility

Joseph HUBER: Key Environmental Innovations

Antoni CALVÓ-ARMENGOL and Rahmi İLKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation

Francesco FERI: Network Formation with Endogenous Decay

Frank H. PAGE, Jr. and Myrna H. WOODERS: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

Maria Angeles GARCIA-VALIÑAS: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility

Francesco FERI (lxxii): Network Formation with Endogenous Decay

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility

NOTE DI LAVORO PUBLISHED IN 2005

NOTE DI LAVORO PUBLISHED IN 2005
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CTN</td>
<td>38.2005</td>
<td>Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated Games</td>
</tr>
<tr>
<td>CTN</td>
<td>39.2005</td>
<td>Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): The Egalitarian Sharing Rule in Provision of Public Projects</td>
</tr>
<tr>
<td>CTN</td>
<td>40.2005</td>
<td>Francesco FERI: Stochastic Stability in Network with Decay</td>
</tr>
<tr>
<td>CTN</td>
<td>41.2005</td>
<td>Aart de ZEEUW (lxxii): Dynamic Effects on the Stability of International Environmental Agreements</td>
</tr>
<tr>
<td>NRM</td>
<td>42.2005</td>
<td>Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands</td>
</tr>
<tr>
<td>PRCG</td>
<td>43.2005</td>
<td>Carla VIEIRA and Ana Paula SERRA: Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms</td>
</tr>
<tr>
<td>SIEV</td>
<td>44.2005</td>
<td>Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO: Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice</td>
</tr>
<tr>
<td>CTN</td>
<td>45.2005</td>
<td>Michael FINUS and Bianca RUNDHAGEN: Participation in International Environmental Agreements: The Role of Timing and Regulation</td>
</tr>
<tr>
<td>CCMP</td>
<td>46.2005</td>
<td>Lorenzo PELLEGRINI and Reyer GERLAGH: Are EU Environmental Policies Too Demanding for New Members States?</td>
</tr>
<tr>
<td>IEM</td>
<td>47.2005</td>
<td>Matteo MANERA: Modelling Factor Demands with SEM and VAR: An Empirical Comparison</td>
</tr>
<tr>
<td>CTN</td>
<td>48.2005</td>
<td>Olivier TERCIEUX and Vincent VANNETELBOSCH (lxx): A Characterization of Stochastically Stable Networks</td>
</tr>
</tbody>
</table>
This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications” organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003

This paper has been presented at the 4th BioEcon Workshop on “Economic Analysis of Policies for Biodiversity Conservation” organised on behalf of the BIOECO Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003

This paper has been presented at the international conference on “Tourism and Sustainable Economic Development – Macro and Micro Economic Issues” jointly organised by CRENóS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003

This paper was presented at the ENGIME Workshop on “Governance and Policies in Multicultural Cities”, Rome, June 5-6, 2003

This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference “The Future of Climate Policy”, Cagliari, Italy, 27-28 March 2003

This paper was presented at the 9th Coalition Theory Workshop on “Collective Decisions and Institutional Design” organised by the Universitat Autònoma de Barcelona and held in Barcelona, Spain, January 30-31, 2004

This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by Fondazione Eni Enrico Mattei and Consip and sponsored by the EU, Rome, September 23-25, 2004

This paper was presented at the 10th Coalition Theory Network Workshop held in Paris, France on 28-29 January 2005 and organised by EUREQua.
<table>
<thead>
<tr>
<th>2004 SERIES</th>
<th>2005 SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CCMP</strong></td>
<td><strong>CCMP</strong></td>
</tr>
<tr>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td><strong>GG</strong></td>
<td><strong>SIEV</strong></td>
</tr>
<tr>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
</tr>
<tr>
<td><strong>SIEV</strong></td>
<td><strong>NRM</strong></td>
</tr>
<tr>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td><strong>NRM</strong></td>
<td><strong>KTHC</strong></td>
</tr>
<tr>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td><strong>KTHC</strong></td>
<td><strong>IEM</strong></td>
</tr>
<tr>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
</tr>
<tr>
<td><strong>IEM</strong></td>
<td><strong>CSRM</strong></td>
</tr>
<tr>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
</tr>
<tr>
<td><strong>CSRM</strong></td>
<td><strong>PRA</strong></td>
</tr>
<tr>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td><strong>PRA</strong></td>
<td><strong>ETA</strong></td>
</tr>
<tr>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
</tr>
<tr>
<td><strong>ETA</strong></td>
<td><strong>CTN</strong></td>
</tr>
<tr>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td>Coalition Theory Network</td>
</tr>
<tr>
<td><strong>CTN</strong></td>
<td></td>
</tr>
<tr>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>