Maggioni, Mario A.; Nosvelli, Mario; Uberti, T. Erika

Working Paper

Space Vs. Networks in the Geography of Innovation: A European Analysis

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 153.2006

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Maggioni, Mario A.; Nosvelli, Mario; Uberti, T. Erika (2006) : Space Vs. Networks in the Geography of Innovation: A European Analysis, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 153.2006, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/73941

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Space Vs. Networks in the Geography of Innovation: A European Analysis
Mario A. Maggioni, Mario Nosvelli and T. Erika Uberti

NOTA DI LAVORO 153.2006

DICEMBER 2006

KTHC – Knowledge, Technology, Human Capital

Mario A. Maggioni and T. Erika Uberti, DISEIS (Dept. of International Economics, Institutions and Development), and Faculty of Political Science, Catholic University of Milan, Milan
Mario Nosvelli, CERIS-CNR, Milan

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=952937

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Space Vs. Networks in the Geography of Innovation: A European Analysis

Summary
In the last fifteen years, income differences among European Member States have been strongly narrowing while the process has been matched with a widening of the inter-regional variance within single countries. Traditionally, regional economic disparities in Europe have been ascribed to peripherality and/or to a high level of dependence on declining sectors. Nowadays regional disparities can be no longer defined only in terms of statistical differences in the values of standard macroeconomic indicators, but also according to innovative capacities and knowledge endowment. This paper provides an original framework for the interpretation of the existing relationships between innovation process and research activity in Europe and the structural and geographical features shaping the European scientific and technological map. In order to do so, we focus on two knowledge-based relational phenomena: participation in the same research networks (funded by the EU Fifth Framework Programme) and EPO co-patent applications. Using two complementary econometric techniques we try to assess those factors that determine patenting activity, distinguishing structural features, geographical and relational spillovers. Through these variables we measure the intrinsic relational structure of knowledge flows which directly connects people, institutions and, indirectly, regions, across European countries in order to test whether hierarchical relationships based on a-spatial networks between geographically distant excellence centres prevail over diffusive patterns based on spatial contiguity.

Keywords: Spatial Distribution, Networks, European Analysis

JEL Classification: O31, R12, C21

Previous versions of this paper have been presented at the ISS Conference, Nice-Sophia Antipolis, June 2006, and at the ADRES Conference, St. Etienne, September 2006. We thank participants and discussants for their comments. The usual caveat applies. Maggioni and Uberti thank DISEIS (Dept. of International Economics, Institutions and Development) for financial support.

Address for correspondence:

Mario A. Maggioni
DISEIS- Università Cattolica
L.go gemelli, 1
20133 Milano
Italy
Phone: +39 0272343951
E-mail: mario.maggioni@unicatt.it
1. Introduction

European Union has always been concerned about “regional disparities”, and this issue became more relevant after the recent Eastward enlargement of the EU membership (Traistaru, Nijkamp, Longhi, 2003; Lackenbauer, 2004; Hapiot and Slim, 2004).

Furthermore, in the last fifteen years, income differences among European Member States have been strongly narrowing, while the process has been matched with a widening of the inter-regional variance within single countries (Quah, 1996; European Commission, 1999a; Martin, 1998, Boldrin and Canova, 2001). Such a dynamic rises a shadow on a whole season of European regional policies, explicitly designed to reduce geographical imbalances and strengthen regional cohesion, and questions on the consequences of the Europe enlargement as the gap is expected to widen.

A very peculiar and worrying aspect of the European context is that the agglomeration process of the economic activity – spontaneously produced by the interaction of economic agents searching for efficiency gains – may become too strong and risky to be socially acceptable in terms of equity.

Traditionally, regional economic disparities have been ascribed to peripherality – measured by the distance from the main centres in terms of population and economic activity – and/or to a high level of dependence on declining industries. Nowadays regional disparities can be no longer defined only in terms of statistical differences in the values of standard macroeconomic indicators (such as GDP a/o unemployment rate), but also according to innovative capacities and knowledge endowment. Knowledge matters more and more in defining both the level and the GDP growth rate of a region.

This paper provides an original framework for the interpretation of the existing relationships between innovation process and research activity in Europe and the structural and geographical features that shape the European scientific and technological map.

Krugman, in his Geography and Trade (1991a), states that “knowledge flows (...) are invisible; they leave no paper trail by which they may be measured and tracked”. Jaffe et al. (1993) react to the previous statement by suggesting that “knowledge flows do sometimes leave a paper trail, in the
form of citations in patents. Because patents contain detailed geographical information about their inventors, we can examine where these trails actually lead” (ibid, p. 578).

We attempt to move the approach a little further by focussing on two knowledge-based relational phenomena: namely, participation in the same research networks (funded by the EU within the Fifth Framework Programme) and EPO co-patent applications. Through these variables we attempt to measure the intrinsic relational structure of knowledge flows, which directly connects people, institutions and, indirectly, regions across the European countries.

The underlying idea of the paper is that knowledge is created and diffused through some crucial nodes (i.e. firms and universities) which tend to co-locate together in specific sites, thus determining the birth and development of high-tech clusters, innovative industrial districts, and excellence centres\(^1\). However, this geographical selection process leading to a hierarchical structure of the location of innovative activities goes together with an increasing role of knowledge spillovers that, starting from excellence centres, extend their positive effects to other agents (firms, universities, research centres) located in neighbourhood areas. So relevant regions present both an “attractivity” potential and a “diffusive capacity” (Acs, Anselin and Varga, 2002).

Thus, aim of the paper is to verify whether hierarchical relationships based on a-spatial networks between geographically distant excellence centres prevail over diffusive patterns based on spatial contiguity.

To achieve this aim we perform two empirical exercises focussed on a subset of 109 European regions at NUTS 2 level in France, Germany, Italy, Spain and United Kingdom. In the first exercise we consider the process of co-patenting between these regions in order to compare, within a gravity equation model, the influence of geographical distance versus relational distance in shaping these scientific and technological relationships. In the second exercise we analyse the patenting activity of the same subset of European regions in order to measure and compare, through spatial econometric techniques, the relative effects of spatial and relational proximity in determining their innovative performance.

The paper is organised as follows: section 2 includes a brief description of the Fifth Framework Programme, section 3 contains the empirical analyses and section 4 concludes the paper by summarising the main results.

2. The 5 Framework Programme (5FP): an overview

Searching for “paper trails” recording evidences of scientific and technological cooperation and networking between institutions and organizations located in five European countries, we focussed on the research contracts (directly and indirectly requiring the creation of research networks) within the Fifth Framework Programmes (henceforth, 5FP).

In this section we briefly depict some essentials of 5FP to understand its structure; therefore we use the EU-CORDIS database, to present some simple descriptive statistics; and finally we illustrate the part of the 5FP, relative to the sample of 109 European regions, used in the empirical analyses in section 3.

The aim of European Framework Programmes is to promote scientific research and technological development within the EU. The mission of such programmes is to solve problems and answering the challenges of the integration process by investigating the socio-economic, technological, industrial economic, social and cultural aspects of the EU (European Commission, 1999b). The 5FP is a five years programme started in 1998 and concluded in 2002. It differentiates from the previous ones for its targets, organisational structure and types of projects, the complementarity among

\(^1\) For a detailed analysis of the emergence of high-tech clusters see Bresnahan \textit{et al.} (2001) and Braunerhjelm and Feldman (2006).
projects, the intention to develop a critical mass of European resources in science and technology, and a slightly higher budget with respect to the previous ones.

FP5 has a multi-theme structure, consisting of seven Specific Programmes, of which four are Thematic Programmes: Quality of Life and Management of living resources (LIFE QUALITY); User-friendly Information Society (IST); Competitive and sustainable growth (GROWTH); Energy, Environment, and sustainable development (EESD); and three are Horizontal Programmes, which underpin and complement the Thematic Programmes by responding to common needs across all research areas; Confirming the international role of Community research (INCO-2); Promotion of innovation and encouragement of SME participation (INNOVATION-SME); Improving the human potential and the socio-economic knowledge base (IMPROVING) (European Commission, 1999b).

According to the EU-CORDIS database, the total number of contracts financed within the 5FP is 16,085 (for a total funding of nearly 12,000 millions euros), out of 60,000 submitted proposals (with a success rate of about 28%) (EU-CORDIS, 2005). Within the 5FP, the contracts are grouped according to the aim of research, as defined by the Thematic and Horizontal Programmes, but are divided into various typologies depending on the type of actors involved.

Table 1: 5FP by contract type and average membership

<table>
<thead>
<tr>
<th>Type of Contracts</th>
<th>Total Contracts</th>
<th>%</th>
<th>Average dimension per contract</th>
<th>Sub-sample Contracts</th>
<th>Average dimension per contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to Research Infrastructures</td>
<td>187</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursaries, grants, fellowships</td>
<td>1,105</td>
<td>6.9</td>
<td>1.2</td>
<td>29</td>
<td>6.9</td>
</tr>
<tr>
<td>Cooperative research contracts</td>
<td>620</td>
<td>3.9</td>
<td>7.9</td>
<td>297</td>
<td>7.8</td>
</tr>
<tr>
<td>Coordination of research actions</td>
<td>170</td>
<td>1.1</td>
<td>11.4</td>
<td>61</td>
<td>11.3</td>
</tr>
<tr>
<td>Cost-sharing contracts</td>
<td>5,105</td>
<td>31.7</td>
<td>8.1</td>
<td>2,982</td>
<td>8.0</td>
</tr>
<tr>
<td>Demonstration contracts</td>
<td>67</td>
<td>0.4</td>
<td>8.9</td>
<td>23</td>
<td>9.3</td>
</tr>
<tr>
<td>Exploratory awards</td>
<td>997</td>
<td>6.2</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploratory awards (thematic networks)</td>
<td>3</td>
<td>0.02</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Research Centre research</td>
<td>87</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparatory, accompanying and support measures</td>
<td>3,378</td>
<td>21.0</td>
<td>2.4</td>
<td>514</td>
<td>6.2</td>
</tr>
<tr>
<td>Research grants (individual fellowships)</td>
<td>2,855</td>
<td>17.7</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transnational access</td>
<td>1</td>
<td>0.01</td>
<td>5.0</td>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>Research network contracts</td>
<td>333</td>
<td>2.1</td>
<td>7.7</td>
<td>228</td>
<td>7.7</td>
</tr>
<tr>
<td>Thematic network contracts</td>
<td>524</td>
<td>3.3</td>
<td>15.5</td>
<td>259</td>
<td>15.9</td>
</tr>
<tr>
<td>Not defined</td>
<td>653</td>
<td>4.1</td>
<td>6.4</td>
<td>172</td>
<td>7.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16,085</td>
<td>100</td>
<td>4.9</td>
<td>4,566</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Note: only contracts in bold have been considered in the empirical analysis.
Source: our calculations on the EU-CORDIS 5FP database.

Being interested in the existing networks of scientific and technological relationships established between institutions and organisations belonging to the 5 largest EU countries (France, Germany, Italy, Spain and United Kingdom) – which represented about 80% of the GDP and of the population
and 77% of the total R&D expenditure. We focus our analysis on a subset of research contracts typologies granted by the EU within the 5FP, whose organisational structure may be better described through a network composed by one coordinator and several participants – as illustrated in table 1.

While the average membership of all 5FP contracts is slightly less than 5, thanks to our selection the same in the sample exceeds 8.

Since we focus our analysis on network-type organisational structure of contracts, it is important to define the networks’ nodes: namely coordinators and participants. Coordinators are, in the EU jargon, those legal entities that are in charge of the contracts, in terms of administrative, financial and scientific activities required within the contracts. The coordinator is relevant both in legal and in scientific terms since it is “legally” responsible for the project in front of the Commission; but its role reflects important managing and power skills with respect to the other members of the research project. 5FP research contracts involve different type of actors: single individuals, private firms, universities, research centres, foundations, ONGs, international organisations, etc.

The information relative to the type of coordinator is crucial because it identifies those actors that are more involved in creating new knowledge, and reflects their ability to create research networks. In general research and education institutions coordinate 4,316 contracts (27%), while firms (belonging to the so called “industry sector”) only 1,010 contracts (6%). “Other” institutions coordinate more than a half of the contracts (8,512) (53%).

Hence European research networks seem to be mostly managed by subjects not directly involved in the process of creation of new knowledge (i.e. firms, universities and research laboratories). Actually these statistics should be commented very carefully because in many cases, the coordinator of a proposal is a private consultancy that offers its acquired skills to manage the complex EU funding application procedures. Hence these coordinators may not have relevant skills in research and technological development activities, but in the applications procedures and in managing research funding.

A similar analysis, conducted on the categories of participants included in the dataset (62,617 in total), confirms the relative marginality of the industry sector representing only 11% of the total participants, a percentage much smaller if compared with universities and research institutions (44%) and “Other” players (41%). These percentages signal the difficulties of the EU in involving firms in cooperative research and development activities.

Another interesting perspective of analysis of the 5FP research contracts deals with its geographical distribution as illustrated in table 2. The map of coordinators of 5FP contracts is naturally euro-centered (89.4% of the total projects is coordinated by institutions located in Europe 15), although 1.4% of the contracts has a coordinator that is not European. In general coordinators are not evenly distributed across Europe. Larger countries, with well-developed national innovation systems, are over-represented and the presence of EU offices on the national seems to have also a positive impact, both as coordinator and as participants.

2 There are important differences among them: in fact for example, Germany invests 2,5% of GDP in R&D activities and Spain, less than half, 1,04%.
3 Thus we selected only those contracts recording an average membership greater than 2. Exception to this general rule was the case of bursaries, grants, fellowships which, in our sample, showed an higher average membership (nearly 7) (table 1).
4 Formally the EU recognises the possibility to participate to the 5FP to all legal entities (natural persons, legal persons, international organisations and Joint Research Centres) (European Commission, 1999b).
5 Unfortunately the European Commission-Cordis database does not allow to identify the corresponding sector of these organisations.
Table 2: 5FP by country

<table>
<thead>
<tr>
<th>Participation as coordinator</th>
<th>Funds received<sup>a</sup></th>
<th>Participation as members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>%</td>
<td>Total amount (millions euro)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Austria</td>
<td>399</td>
<td>2.5</td>
</tr>
<tr>
<td>Belgium</td>
<td>694</td>
<td>4.3</td>
</tr>
<tr>
<td>Denmark</td>
<td>403</td>
<td>2.5</td>
</tr>
<tr>
<td>Finland</td>
<td>268</td>
<td>1.7</td>
</tr>
<tr>
<td>France</td>
<td>2,094</td>
<td>13.0</td>
</tr>
<tr>
<td>Germany</td>
<td>2,267</td>
<td>14.1</td>
</tr>
<tr>
<td>Greece</td>
<td>509</td>
<td>3.2</td>
</tr>
<tr>
<td>Ireland</td>
<td>206</td>
<td>1.3</td>
</tr>
<tr>
<td>Italy</td>
<td>1,570</td>
<td>9.8</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>22</td>
<td>0.1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1,195</td>
<td>7.4</td>
</tr>
<tr>
<td>Portugal</td>
<td>212</td>
<td>1.3</td>
</tr>
<tr>
<td>Spain</td>
<td>1,157</td>
<td>7.2</td>
</tr>
<tr>
<td>Sweden</td>
<td>414</td>
<td>2.6</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2,967</td>
<td>18.4</td>
</tr>
<tr>
<td>EU-5 (our sample)</td>
<td>10,055</td>
<td>62.5</td>
</tr>
<tr>
<td>EU-15</td>
<td>14,377</td>
<td>89.4</td>
</tr>
<tr>
<td>10 EU New Members (post 2004)</td>
<td>517</td>
<td>3.2</td>
</tr>
<tr>
<td>Rest of Europe</td>
<td>438</td>
<td>2.7</td>
</tr>
<tr>
<td>Other Countries</td>
<td>228</td>
<td>1.4</td>
</tr>
<tr>
<td>NOT defined</td>
<td>525</td>
<td>3.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16,085</td>
<td>100</td>
</tr>
</tbody>
</table>

^a These values refer to total funds assigned to projects whose coordinator is located in the country.
Source: our calculations on the EU-CORDIS database.
Table 2 shows that United Kingdom is the most involved country in the 5FP, with British institutions coordinating about 18% of total financed contracts, followed by Germany (14.1%) and France (13%). These 3 countries manage about one half of all 5FP contracts. Italy and Spain are lagging behind, being involved as contract coordinators respectively in 9.8% and 7.2% of the EU total. These five countries account for more than 62.5% of the coordinators.

Similar results can be drawn considering the memberships: the members are mostly from European countries (83.7%), although non-EU share increased (4.7%) respect to the coordinator (1.4%). The five countries listed before represent 55.6% of total members, but there is a change in the classification. In fact Germany is most involved (13.9%) followed by United Kingdom and France (12.3% and 12.1%) are more or less equally involved, while Italy and Spain show similar percentages as before (9.1% and 6.1%).

Similar percentages characterise the distribution of funds (table 2).

To summarise, in order to carry out the empirical analysis described in section 3, we select those 5FP contracts that respond to some geographical, structural and information criteria. First of all we select those contracts that involved (directly or indirectly) the creation of a “network”, and whose coordinator was an organisation/institution localised in one of the 109 European regions belonging to the above mentioned 5 large countries, irrespective to the type of coordinator. Finally we selected only those applications whose record was complete (i.e containing information on region’s coordinator; on typology of coordinator and on the total amount of EU funds). This selection process produced a final number of 4,566 contracts, about 28% of all contracts financed within the 5FP (table 1) and 64% of the total funding.

3. The empirical analyses

Scientific and technological knowledge, leading to patents (and, partly, embedded in), is both created and diffused through some crucial nodes (i.e. universities, research institutions, firms, etc.), which tend to spatially concentrate within excellence centres and high-tech clusters (Swann et al., 1988; Bresnahan et al., 2001; Maggioni, 2002; Braunerhjelm and Feldman, 2006). However, this co-location process may have two distinct effects on the “geography of innovation” at the regional level.

On one hand, each cluster may extend its influence on the neighbouring territories through a trickling down process of spatial diffusion (underlining the role of face-to face contacts, labour force local mobility, and other forms of localised knowledge spillovers). According to this perspective, space matters most.

On the other hand, technological and scientific knowledge developed in the cluster may be diffused and exchanged through a set of a-spatial networks (often structured in formal and contractual agreements between institutions) connecting each cluster with other clusters, irrespectively of the geographical contiguity. According to this perspective, relational networks matter most.

Thus knowledge may either diffuse homogeneously through space following an inverse relationship with the distance from the cluster’s centre or flows through a complex network of privileged channels.

The aim of these two empirical exercises is therefore to verify the relative importance of the two above mentioned phenomena in order to test whether formal relationships based on a-spatial networks between geographically distant clusters prevail over diffusive patterns based on spatial contiguity.

In order to do so we focus on two knowledge-based phenomena: the participation in a research network (funded within the 5FP) and the patent application at EPO. Through these variables we attempt to measure the intrinsic relational structure of knowledge flows, which directly connects
people, institutions and, indirectly, regions across the European countries. In particular the first one detects the impact of networking activity as an input of the innovative process, and the second one measures the networking activity as output.

3.1. A gravity model of co-patenting

Patents (and patent applications) are one of the most established output indicators of innovative activities. Since the seminal contribution of Scherer (1965), patents have been used in the economic literature (Grilliches, 1981, 1990), in order to measure knowledge spillovers and other spatial externality effects which, in contrast to what argued by Krugman (1991a), “do leave a paper trail” (Jaffe et al., 1993).

The constitution of the European Patent Office in Munich in 1977 allowed researchers to use a common dataset to analyse the innovative performance of different European countries and regions. In particular Paci and Usai (2000) and Breschi and Lissoni (2004) have developed systematic analyses of patenting activity throughout Europe at different NUTS levels, showing the existence of significant clustering phenomena (whose agglomeration indexes are even higher than those registered by high-tech manufacturing) within a core-periphery geographical pattern.

Later studies investigate patent data as relational variables Breschi and Lissoni (2004 and 2006) use patent citations in order to compare the relevance of spatial proximity as opposed to social proximity in determining the spillover effect of scientific research. Maggioni and Usai (2005) look at patents as a relation between inventors and applicants at NUTS 2 level and study the distributions of these relationships within different European countries searching for industry-specific patterns and testing the hypotheses of a diffused “brain-drain” dynamics.

In Maggioni and Uberti (2005) and in this paper another relational aspect of patents is considered: the co-invention process. Out of a total of more than 170,900 patent applications belonging to every IPC sections (coming from inventors located in the above mentioned 5 countries in the period 1998-2002) – extracted by the CRENOS files based on the original EPO database – we selected only those patents whose applications were recorded by more than one inventor.

Next we split each patent into equal shares attributed to each inventor; and we added these data for each NUTS2 regions in order to build a matrix in which a generic cell ij represents the share of patents recorded jointly by inventors located in region i and region j (where region i and region j could belong to different nations). Finally a total of nearly 30,000 co-patents was identified.

Co-invention (and thus co-patenting) is a process involving both tacit and codified knowledge exchanges. For this reason it implies a series of both “face to face” and “over the distance” relationships between inventors. That is why it is interesting to analyse the relative importance of “geographic” versus “functional” distance as forces shaping the interregional (international) structure of knowledge flows networks (Maggioni and Uberti, 2005).

The gravity equation model is an extremely successful tool of empirical analysis to explain social interactions (for example international trade, foreign direct investment, migration, tourism) according to the existence of “attractive” and “impeding” forces.

6 “The measure of patented innovations provides a fairly good, although not perfect, representation of innovative activity. This supports the use of patent counts in studies examining technological change” (Acset et al., 2002, p. 1070).

7 Not to forget the wide economic geography and regional science literature.

8 For example a patent registered by three inventors located in three distinct regions i, j, and z, would be split in $n^* (n-1)$ cells and respectively in i with j and z, j with i and z, and z with i and j. Hence a invention co-patented by three individuals in three different regions and is registered with a value of 0.1666 in the cells corresponding to 6 different couplets.
This range of models is derived from the “Law of universal gravitation” proposed by Newton in 1687 stating that “gravitational force between masses decreases with the distance between them”, according to an inverse-square law.

In the economic literature gravitational models are commonly used to explain the actual pattern of international trade flows. Bilateral trade between two countries is proportional to their economic mass (i.e. GDP or population) and inversely related to their geographical distance. These models are successful tool for empirical analysis since the ’60s: the signs of parameters of importing and exporting countries’ GDPs are positive, roughly equal to unity and significant, and the sign of geographical distance is negative and significant (Tinbergen, 1962; Poyhonen, 1963). More recently this empirical success has found solid theoretical bases within different analytic frameworks: from Hecksher-Ohlin-Samuelson, to monopolistic competition, to national (Armington) product differentiation (Anderson, 1979; Bergstrand, 1985; Helpman, 1988; Deardorff, 1998; Feenstra, 2002; Dalglin, Mitra and Trindade, 2004).

In this paper we build a gravitational model which explains knowledge flows embedded in the realisation of a patentable innovation by two inventors living in two generic regions \(i \) and \(j \) as a function of a series of attributional and relational variables.

The dependent variable is \(CO_PAT_{ij} \), co-patenting between the period 1998 and 2002, the independent variables are defined as follows.

The set of independent variables includes 2 different sources of R&D expenditure (as percentage of GDP): business R&D expenditure (\(BizRD \)) and government R&D expenditure (\(GovRD \))\(^9\).

Secondly, being a gravity equation framework, we include a variable to measure the role played by geographical distance (between the regions and from the regions to the European “centre”).

We use geographical distances (\(GEODIST_{ij} \)) among 109 European regions, calculated according to the shortest road distance (in kilometres) between regional “capitals”. In this paper the notion of “regional capital” is arbitrary since NUTS2 level are administrative meaningful entities in Italy, Germany, Spain and France, but not in the UK. In this last case we used population as the selecting criteria to identify the most relevant city (which we called “capital”), irrespective to the presence of an administrative capital\(^10\).

Another important geographical aspect is related to the centrality or peripherality of a region respect to a geographical European centre identified with Brussels: regions distant from Brussels are much more disadvantaged and show worst economic performance. Hence we included the \(PERIPH_{ij} \) variable to detect this aspect. This variable considers at the same time the distance of each couplet of regions (11,772 couplets) from Brussels and we consider the minimum value between the two to detect the central advantage played of the most advantaged region\(^11\).

The similarity of the innovative specialisation of two regions (\(TECHSIMIL_{ij} \)) is measured as the correlation coefficient between the sectoral composition of patent application registered by region \(i \) and those registered by region \(j \) at EPO in the same period 1997-2000 (Moreno, Paci, Usai, 2005).

The relational aspect is captured by the co-membership in the same 5FP project. The variable \(MEMB_{ij} \) counts the number of joint memberships of regions within the considered subset of 5FP contracts. This variable captures the influence of research networks on the co-patenting activity.

\(^9\) Due to data availability, either \(BizRD \) and \(GovRD \) are calculated as averages for years 1995, 1997, 1999 and 2001. These variables are calculated for region \(i \) and region \(j \), but in table 3 we present only one coefficient for each R&D source due to the symmetry of the database.

\(^10\) For example for Scotland we selected Glasgow instead of Edinburgh.

\(^11\) We replicated the estimation with alternative measures of peripherality (namely the maximum distance and the sum of the distances from Brussels) and obtained almost identical results.
Finally we add some dummy variables: $CONTIG_{ij}$, the geographical contiguity which takes value 1 for contiguous regions (i.e. which share a border), 0 elsewhere; and δ_i, a dummy variable which is used to control for fixed national effects both on the “emitting” and the “receiving” regions.

We use a double-log specification of the following OLS regression equation so that estimated coefficients can be interpreted as elasticities and is defined as follows:

$$Co_PAT_{ij} = \alpha_0 + \alpha_1 BizRD_i + \alpha_2 BizRD_j + \alpha_3 GovRD_i + \alpha_4 GovRD_j + \alpha_5 TECHSIMIL_{ij} + \alpha_6 GEODIST_{ij} + \alpha_7 CONTIG_{ij} + \alpha_8 PERIPH_i + \alpha_9 MEMB_{ij} + \delta_i + \varepsilon_{ij}$$

where d_i indicates country dummies variables and ε_{ij} is the standard error term.

The independent variables used in the regression presented in table 3 thus measure the role played by private and public R&D, by the degree of technological similarity, by the geography and, finally by the participation to joint research networks in determining the co-patenting activity between two European regions.

The results (illustrated in table 3) show that business R&D is more relevant than government R&D in explaining the variance of the co-patenting activity and that the co-patenting activity of two regions is positively correlated to the degree of technological similarity of their innovation systems.

Table 3: The gravity equation of co-patents

<table>
<thead>
<tr>
<th>variables</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>BizRD</td>
<td>0.393***</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
</tr>
<tr>
<td>GovRD</td>
<td>0.042***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
</tr>
<tr>
<td>TECHSIMIL_{ij}</td>
<td>0.321***</td>
</tr>
<tr>
<td></td>
<td>(0.154)</td>
</tr>
<tr>
<td>GEODIST_{ij}</td>
<td>-1.001***</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
</tr>
<tr>
<td>CONTIG_{ij}</td>
<td>0.701***</td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
</tr>
<tr>
<td>PERIPH_{ij}</td>
<td>-0.591***</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
</tr>
<tr>
<td>MEMB_{ij}</td>
<td>0.315***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
</tr>
</tbody>
</table>

Number of observations 4,518

F-Test 383.43

Adj-R² 0.5153

Robust standard errors in parenthesis; *** significant at 1%. Country dummies and a constant term were included in all regressions. Their coefficients are always significant but not reported in the table.

In particular a 1% increase of private R&D in region i and j influences co-patenting activity of about half of a percentage point, but the same increment in government R&D affects co-patenting activity 10 times less (about 0.04%).

The technological similarity of innovation systems of two counties affects positively co-patenting activity. This significance and the sign of this coefficient confirm that innovation and “innovative”
relational activities go in the same direction following a path where similar regions match with similar regions.

Although these first results, the analysis confirms that space is an important part of the innovation activity: geographical distance between regions is negatively related to co-patenting (doubling the distance between two regions, reduces the co-patenting activity by one half); and contiguous regions12 show a higher propensity to co-invention. Furthermore, geographical peripherality does influence negatively the co-patenting activity: two equally distant couplets of regions are likely to have different co-patenting figures according to their distance from Brussels.

Finally, research networks (as proxy of the existence of relational activities) play a smaller but significantly positive role in the co-patenting activity. In fact a 1\% increase the co-membership affects the co-patenting activity by 0.3\%. This confirms that relational innovative activities, as being part of a European research network, affect positively the innovative capacity of a region.

Comparing the coefficients of geographical variables and relational variables emerges relations and distance play important role on the co-patenting activity, but there are important differences. We can therefore conclude that this first empirical exercise may suggest the prominence of spatial spillover dynamics over formal relational networking in determining the knowledge exchange and interactions needed to jointly produce a patentable innovation.

However one may suspect that research contracts are established between contiguous (or proximate) regions, thus weakening the above-mentioned results by blurring the difference between spatial spillovers and relational exchange of knowledge. This suspicion proves to be wrong as shown by the correlation coefficient between $GEODIST_{ij}$ and $MEMB_{ij}$ which is almost null (-0.0744) and the average distance between two randomly selected members of a research network, which is equal to about 800 Km.

3.2. Spatial dependence vs. relational dependence in patenting activity

The previous econometric exercise focussed on co-patenting which account for a minimal part of all patenting activity in the 5 largest European countries (30,000 out of 170,900, nearly 18\%). The sample is certainly small but not biased, since the “co-patenting” and the “patenting” activity are similarly distributed across European Regions13.

However in order to have a more complete description of the relevance of relational vs. spatial proximity, we model a second econometric exercise whose object is patenting activity of European regions looking for evidence of spatial and relational dependence in the data.

In doing so we follow a stream of literature, which, based on the seminal contribution of Griliches (1979), examines the knowledge production function from a spatial perspectives. Jaffe (1989) analyses the existence of spatial knowledge spillovers originated by universities and finds that these positive externalities are intrinsically local (i.e. limited in their geographical extent) due to relevance of tacit knowledge in academic relations, which makes scientific and technological knowledge transmissible only through face to face contacts.

This relevance of localised knowledge spillovers has been confirmed by a series of empirical analyses (either at the state or at SMA level) on the US case (Acs et al., 1994; Audrestsch and Feldman, 1996; Anselin et al., 1995). However these papers do not model explicitly the mechanism of knowledge transfer and therefore, as highlighted by Breschi and Lissoni (2001), run the risk of mixing together local knowledge spillovers with other sources of pecuniary externalities.

12 By using both distance and contiguity variables we are somehow able to take into account the large variance in the size of regions existing within our sample.

13 The rank correlation between the variables distributions is equal to 1.
Recent papers such as Varga et al. (2003), Bottazzi and Peri (2003), Greunz (2003), Bode (2004), Abreu et. al. (2005) and Moreno, Paci e Usai (2005) investigate the mechanisms and determinants of the process of creation and diffusion of innovative knowledge, taking explicitly into account both temporal and spatial dynamics through a full set of spatial econometrics techniques.

In order to do so we use a knowledge production function where the dependent variable is the number of patents application per million labour force registered by inventors located in 109 European Regions in year 2002, while the set of independent variables is composed by various types of Research and Development expenditures (R&D), different measures of the specialisation in patenting and production, and different measures of spatial and relational dependence.

Due to the fact that there exists a time lag between inputs and outputs in the knowledge production function (i.e. between R&D expenditure and patent applications), we consider the number of patent application registered at EPO in 2002 while for the independent variables we calculated the average value of the period 1995-2001\(^{14}\).

The use of different sources of R&D funding (private and public) makes us able to detect which sector (private or public) is mostly involved in the process of creating potentially “marketable” knowledge (leading to an active patenting activity). In particular in the regression we include business R&D expenditure \((BizRD_i) \) and government R&D expenditure \((GovRD_i) \) expressed as percentage of the regional GDP.

We want also to test whether specialisation (in the regional innovation and production system) influences the patenting activity in general and we calculated both absolute (denoted by SP) and relative (denoted by LQ) specialisation indexes.

\(SP_{INN_i} \) corresponds to the share of high-tech patents of region \(i \) respect to the total number of high-tech patents in the nation\(^{15}\) as follows:

\[
SP_{INN_i} = \frac{Pat_{HT_i}}{Pat_{HT}}
\]

where \(i \) identifies the region, \(I \) the nation, \(HT \) the patents in high-technology industries.

Secondly, in order to test the influence of the relative specialisation of the regional innovation system, as compared to the national one, we calculated a traditional location quotient for high-tech patents \((LQ_{INN_i}) \) as follows:

\[
LQ_{INN_i} = \frac{\frac{Pat_{HT_i}}{Pat_{HT}}}{\frac{Pat_{HT_i}}{Pat_{TOT}}} = \frac{Pat_{HT_i}}{Pat_{HT}} \times \frac{Pat_{TOT}}{Pat_{HT}}
\]

where \(i \) identifies the region, \(I \) the nation, \(HT \) the patents in high-technology industries and \(TOT \) the total number of patents in all sectors.

In order to measure the relevance of the specialisation of the production structure of each region included, we calculated an absolute and a relative specialisation index: \(SP_{PROD_i} \) and \(LQ_{PROD_i} \) by measuring economic activity in terms of the number of local units\(^{16}\).

\[^{14}\] The time series derived from Eurostat database contain some missing data, and this procedure partially allowed us to include valuable data.

\[^{15}\] Similarly to R&D expenditures, all specialisation indexes are based on the average of the period 1995-2001.

\[^{16}\] Similarly we compute both absolute and relative specialization index relative to employment, obtaining very similar results (not presented in the paper).
The first index (SP_PROD_i) is the absolute specialisation in high-tech activity of regions in the nations, and is calculated as the share of the number of local units in high-tech sectors in region i respect to the total number of local units in high-tech sector in nation I. Formally:

$$SP_PROD_i = \frac{LU^{HT}_i}{LU^{HT}_I}$$

where i identifies the region and I the nation, LU^{HT}_i identifies the total number of local units in high-tech sector.

The relative specialisation of the regional production system in high-tech industries is calculated as a location quotient relative to local units in high-tech sectors (LQ_PROD_i) is calculated as follows:

$$LQ_PROD_i = \frac{\frac{LU^{HT}_i}{LU^{MAN}_i}}{\frac{LU^{HT}_I}{LU^{MAN}_I}}$$

where all variables are as above except LU^{MAN}_i which identifies the total number of local units in manufacturing in the region (i) (or in the nation if I)

Further we include an attributional quantitative variable relative to the Fifth Framework Programme, $MEMB_i$, that corresponds to the total number of 5FP networks a region i was involved as member.

Finally to detect not only the role of geographical distance, but most of all the role by the peripherality, we included a geographical variable, $PERIPH_i$, that indicates the distance of a region from Brussels.

In order to measure the relative importance of spatial versus relational dependence in the patenting dataset we use spatial econometrics techniques based on two different contiguity matrices: a geographical/spatial (spa) and a relational one (rel).

The geographical matrix, in spatial econometrics is called the contiguity matrix W^c, whose elements w^c_{ij} are 1 if regions i and j share a common border and 0 otherwise.

The relational matrix is built on the scientific relations among regions participating on 5FP. In the relational matrix W^r the elements w^r_{ij} are one 1 if regions i and j share a relevant level of research programmes and 0 otherwise. The relational matrix was built according to a network, as defined within the 5FP. This binary matrix was created following a complex procedure. Once labelled each coordinator and members according to the region of localisation, we defined a squared matrix of relations containing the number of relations between each couplet of regions and we symmetrised it. Since the resulting matrix was too dense (almost each region had scientific relation with nearly every other region) we decided to dichotomise the matrix by taking as threshold value the average number of partners each region had in all the contracts in the dataset (equal to 7).

With spatial error models we tested two equations that contain different measurements of innovative and production specialisation.

17 In this analysis the high-tech sector includes the following sectors of NACE classification Rev. 1.1: DL30 (Manufacture of office machinery and computers); DL32 (Manufacture of radio, television and communication equipment and apparatus); DL33 (Manufacture of medical, precision and optical instruments, watches and clocks).

18 Similarly to R&D expenditures data, these indexes are calculated as average of the available data within the period 1995-2001.

19 See below tests for the LM test for model specification.
The equation, in double-log, takes into account location quotients and is as follows:
\[
PAT_i = \beta_0 + \beta_1 BizRD_i + \beta_2 GovRD_i + \beta_3 INN_i + \beta_4 PROD_i + \beta_5 PERIPH_i + \\
+ \beta_6 MEMB_i + \lambda W\varepsilon + \xi_i,
\]
where explicative variables are those defined above, and \(INN_i \) is either the absolute \(\text{SP_INN}_i\) or relative index \(\text{LQ_INN}_i\) to verify the specialisation of the innovation system; \(PROD_i \) is either the absolute \(\text{SP_PROD}_i\) or relative index \(\text{LQ_PROD}_i\) to verify the specialisation of the production system; spatial effects are accounted through the autoregressive coefficient \(\lambda\) and the spatial lag for the errors \(W\varepsilon\). \(\xi_i\) is the standard error term.

Before concentrating on the estimations we analyse the degree of autocorrelation of patents considering spatial and relational matrices. Spatial indexes measure the autocorrelation between the dependent variable and its spatial dimension\(^{20}\). In order to detect and test the existence of spatial autocorrelation in our sample, a global (Moran’s I) and a local (LISA) indexes are calculated.

The Moran’s I, a measure of global spatial autocorrelation or overall clustering, allows estimating the strength of spatial autocorrelation in data distribution. Although Moran’s I is very powerful in detecting the degree of spatial autocorrelation, it tends to average local variations, missing the local dimension of spatial autocorrelation. Hence a second local index of spatial autocorrelation is computed: the LISA (Local Indicators of Spatial Association) index which indicates the presence, or absence, of significant spatial clusters or outliers for each location allowing the identification of “hot-spots”\(^{21}\) areas (Anselin, 1988).

Moran’s I statistics show positive and significant (at 1%) coefficients for both matrixes.

20 In this analysis the autocorrelation is computed between patents (dependent variable) and the geographical/spatial lag and between patents and the relational lag.

21 As well as “cold-spots”.

Looking at the Figure 1, we can see clearly that while high-patent and low-patent tend to form isolated homogenous clusters (suggesting the existence of a polarised structure of the innovation system within our sample), the European scientific networks financed within the 5FP are preferably composed by a mix of high and low patenting regions.

These first results seems to indicate the presence of geographical spillovers and the second put forward that European scientific nets tends (are supposed) to be more heterogeneous.

Looking at local autocorrelation (LISA) maps (figures 2 and 3), we can discriminate again between the result obtained with geographical map and relational map.

Figure 2: LISA cluster map of patenting activity (Spatial matrix)

In the first case (Figure 2) a “stronger” cluster characterise some German regions, while the two “weak” clusters involve Italian and Spanish Regions. In the second case (Figure 3) the “stronger” relational clusters regards a subset of advanced European regions which, even if are geographically
dispersed, are connected by a very dense relational network constituted by a high number of joint memberships in the same relevant contracts.

Standard spatial econometric theory offers a well consolidated methodology to detect spatial dependence in error terms, which, in particular, captures neighbouring effects on the dependent variable.

Table 4 shows the results of the spatial econometric analysis of the patenting activity of the 109 European regions included in our sample.

Table 4: Patenting activity: spatial vs. relational dependence

<table>
<thead>
<tr>
<th>Variables</th>
<th>OLS Specification 1</th>
<th>Spatial Error model</th>
<th>OLS Specification 2</th>
<th>Spatial Error model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rel</td>
<td>spa</td>
<td>rel</td>
<td>spa</td>
</tr>
<tr>
<td>CONST</td>
<td>10.82***</td>
<td>10.37***</td>
<td>10.26***</td>
<td>10.20***</td>
</tr>
<tr>
<td>BizRD<sub>i</sub></td>
<td>0.51***</td>
<td>0.51***</td>
<td>0.63***</td>
<td>0.62***</td>
</tr>
<tr>
<td>GovRD<sub>i</sub></td>
<td>-0.04</td>
<td>-0.06</td>
<td>-0.15</td>
<td>-0.17*</td>
</tr>
<tr>
<td>LQ<sub>i</sub> INN</td>
<td>0.18</td>
<td>0.18*</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>LQ<sub>i</sub> PROD</td>
<td>0.54*</td>
<td>0.53**</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>SP<sub>i</sub> INN</td>
<td>0.41***</td>
<td>0.41***</td>
<td>0.33***</td>
<td></td>
</tr>
<tr>
<td>SP<sub>i</sub> PROD</td>
<td>-0.28*</td>
<td>-0.30*</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>PERIPH<sub>i</sub></td>
<td>-0.58***</td>
<td>-0.64***</td>
<td>-0.73***</td>
<td>-0.75***</td>
</tr>
<tr>
<td>MEMB<sub>i</sub></td>
<td>-0.19</td>
<td>-0.17</td>
<td>-0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>Lambda</td>
<td>0.36***</td>
<td>0.70***</td>
<td>0.25</td>
<td>0.60***</td>
</tr>
<tr>
<td>Observations</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>R<sup>2</sup></td>
<td>0.68</td>
<td></td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood</td>
<td>-125.45</td>
<td>-123.32</td>
<td>-116.57</td>
<td>-146.75</td>
</tr>
</tbody>
</table>

* significant at 10%, ** significant at 5%, *** significant at 1%.

The coefficient of $BizRD_i$ is always positive and significant (as found in the previous exercise), while the coefficient of $GovRD_i$ is generally negative. If one compares these results with those of Table 3 one can derive that publicly funded R&D addresses very basic types of research which rarely produce patentable (or patented) results but which is much more keen on cooperation and collaboration between different institutions.

²² We should remember that these countries face very different institutional frameworks, concerning the commercial exploitation of academic and public research.
The two sets of specialisation indexes applied to both the innovation and the production systems at the regional level show that both the absolute (SP_Pat_i) and the relative specialisation (LQ_Pat_i) of the regional innovation systems in high-tech sectors produces higher number of patents per head. This result does not hold for the specialisation of the production systems: having a larger share of the national high-tech industries (SP_Prod_i) does not grant a region a higher per capita patenting activity (coefficients are negative or insignificant), while a relative specialisation (LQ_Prod_i) in the same sectors gives a comparative advantages in terms of patent propensity and activities.

The negative and always significant coefficient of $PERIPH_i$ confirms the existence of a polarised “core-periphery” structure of the European innovation system. The farer the region from Brussels, the lower the number of patent per million labour force registered. This confirms the results showed in figures 1, 2 and 3.

The coefficient of the $MEMB_i$ variable is not significant. This shows that it is not really important for a region to be part of a large number of networks in order to be innovative; but, what is important is to be part of the most relevant networks, i.e. to be connected to other relevant regions.

This result is confirmed by the specific spatial econometric analysis, which is performed for each model on two contiguity matrix: a relational and a spatial one.

The first statistics used to achieve this aim is the Moran’s I statistics, which detects the general presence of spatial dependence in our model.

From the bottom lines of Table 4 it emerges quite clearly that the Moran’s I statistic is significant for all four model specifications, thus signalling both the presence of spatial and relational dependence and the impossibility to use standard OLS estimation techniques. In order to choose the best model for spatial dependence correction we follow Anselin and Florax (1995) considering Lagrange Multiplier (LM) tests for spatial error and spatial lag dependence and their robust counterparts. In Table 4 we presents results for the spatial error specification.

Results on fitting are positive as it is the case of Likelihood ratio tests – provided in Table 3 - which is always significant, suggesting that these estimations presents a better fit than standard regression models. In the same way, AIC (Akaike Information Criterion) and SC (Schwartz Criterion) asses that the spatial error models adopted reveal a better fitting than spatial lag models.

Koenker-Bassett and White test exclude the presence of heteroskedasticity in the specifications with the spatial matrix but not for the relational matrix. These results may depend on the very particular nature of the relational weight matrix since one must bear in mind that heteroskedasticity is “frequently encountered in spatial analysis when there are irregular units and relationship being modelled are different in different places” (Law and Heining, 2004, p.37).

Models (I spa) and (II spa) take into account the spatial interaction existing between the value of the dependent variable in a given region and the value of the same variable registered in the neighbouring regions. The lambda coefficient (which derives from the spatial error specification of the model) is always positive and highly significant, thus confirming the empirical results of the established literature: patenting activity in a given region benefits from positive performance of its neighbours.

Models (I rel) and (II rel) take into account the relational structure driving from the participation to the same networks within the 5FP in order to test whether there are significant interaction existing between the value of the dependent variable in a given region and the value of the same variable registered in the relationally connected regions. The lambda coefficient is positive but smaller and not significant in one case.

23 OLS residuals are spatially autocorrelated.
Such a result may be interpreted as a prevalence of spatial spillover effects over the alternative structure based on a-spatial and hierarchical networking, as a prominence of tacit knowledge diffusion with respect to explicit knowledge exchange in the phase of the scientific and technological research process leading to a patentable innovation.

However this may be not necessary the case. Since one of the main objective of EU policies is to reduce geographical imbalances and strengthen the degree of regional cohesion, it may well be the case of a selection bias within the 5FP aimed and supporting research networks involving rich and poor regions, advanced and laggard ones, central and peripherical.

If this is true, then it become easy to understand why data on relational contiguity give feeble signals as compared to spatial contiguity. Two counteracting forces are at play. Autonomous regional decisions will push research institutions located in central and advanced regions to establish exclusive networks, but in order to maximise the probability of being selected, research institutions look for excellent partners located in peripheral and laggard regions.

4. Conclusion

Between the end of the ‘80 and the beginning of the ’90, in the field of economic theory endogenous growth literature highlighted the role played by human capital and R&D in determining growth performance of economic systems (Romer, 1986; Lucas, 1988). Similarly, new economic geography showed that market forces may produce heavily polarised spatial distribution of economic activities (Krugman, 1991b).

In addition, European institutions triggered adopting the so-called Lisbon Strategy. In March 2000 the European Council held a special meeting in Lisbon to “agree a new strategic goal for the Union in order to strengthen employment, economic reform and social cohesion as part of a knowledge-based economy” (European Commission, 2000). To achieve this goal, the European Council put forward a threefold strategy whose first and main pillar aimed at preparing the EU for a knowledge-based economy and to adopt the necessary structural reforms to improve competitiveness and innovation.

Nowadays, although the celebrated Lisbon strategy’s claim has been seriously criticised and partially reconsidered, it is not possible to deny its merit: having focussed the attention on the relation between scientific excellence, technological primacy, trade and production performance, on the one hand, and the trade-off between internal cohesion and external competitiveness, on the other hand.

Recent empirical literature demonstrates that scientific and technological knowledge, which leads to (and, partly, is embedded in) patents, is both created and diffused through some crucial nodes (i.e. universities, research institutions, firms, etc.), which tend to concentrate spatially within excellence centres and high-tech clusters (Swann et al., 1988; Bresnahan et al., 2002; Maggioni, 2002; Braunerhjelm and Feldman, 2006). However, this co-location process may have two distinct effects on the “geography of innovation” at the regional level: a geographical effect and a relational effect.

On one hand, each cluster might extend its influence on the neighbouring territories through a trickling down process of spatial diffusion (underlining the role of face-to-face contacts, labour force, local mobility and other forms of localised knowledge spillovers). According to this perspective, space matters most.

On the other hand, technological and scientific knowledge developed in the cluster may be diffused and exchanged through a set of aspatial networks (often structured in formal and contractual agreements between institutions) connecting each cluster with other clusters, irrespectively of the geographical contiguity. According to this perspective, relational networks matter most.
This paper investigates both phenomena and tests whether formal relationships based on a spatial networks between geographically distant clusters prevail over diffusive patterns based on spatial contiguity and two empirical exercises have been performed.

In the first exercise we build a gravitational model which explains knowledge flows embedded in the realisation of a patentable innovation by two inventors living in two generic regions (i.e. co-patents) as a function of a series of attributional and relational variables. According to this test, the significant variables in explaining the structure of co-patents are business and public R&D expenditure and the similarity of innovative structure of the regions. Geography plays a relevant role in this relational activity: spatial proximity and geographical centrality (with respect to Brussels) are always significant in determining the co-patenting activity.

In the second exercise, using spatial econometrics techniques, we tested a knowledge production function, which explains the number of patents application as function of a set variables (i.e. different sources of R&D expenditures and various measures of specialisation of the regional innovation and production system), to measure the degree of spatial and relational autocorrelation of the dependent variable. The estimation confirms the main results of the literature on innovation activity: the crucial role played by the R&D expenditure, although in this exercise the private expenditure is much more relevant in patenting activity (this is probably due to the market oriented activity of industrial sector, opposed to basic research activity performed by public sector) and by the relative specialisation in high-technology sectors.

In both empirical exercises we introduced different variables derived from the 5FP database to measure the influence of scientific networking on regional innovation outcomes. In both cases (when network membership is considered an independent variable and when it is used to build an alternative contiguity matrix), the participation in 5FP research networks have positive impacts in regional innovative activity, despite some crucial limitations.

These research networks may have not fully supported European competitiveness and economic performance. This could be partially explained, on one hand, by the fact that most collaborative research has been undertaken in the “pre-competitive” phase of the research process and, on the other, by the fact that the private sector is only marginally involved in the 5FP.

But the most relevant function of Framework Programmes lies in the creation of dynamic networks bringing together researchers from laboratories scattered in European firms, universities and other research institutions, providing access to complementary skills, and reducing the degree of excessive competition among researchers and the duplication of research efforts.

We should also consider the incentives structure that affects the choice of partners in a 5FP application. In fact two important and counteracting forces are involved: on one hand actors want to collaborate with institutions located in central and advanced regions to establish exclusive research networks and to create excellence centres; but on the other hand, in order to maximise the probability to be funded, actors look for those partners located in peripheral and laggard regions.

In conclusion the paper has shown that relational networks, here proxied by with 5FP membership, influence the behaviours of regional innovation systems, but that spatial proximity plays a more relevant role in determining their performance.

24 “Too often successful projects did not produce marketable results, either because they have been isolated from market and social considerations despite their technical excellence, or because the means by which they were to be exploited were not specified or even thought about at the earliest stages of work” (European Commission, 2001).

25 As confirmed by the percentage of industrial coordinators involved (equal to 6%), a negligible percentage if compared to the incidence of educational and research sector (27%).
References

European Commission, CORDIS, (2005), Fifth Framework Programme Database, Brussels.

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org
http://agecon.lib.umn.edu

NOTE DI LAVORO PUBLISHED IN 2006

SIEV 1.2006 Anna ALBERINI: Determinants and Effects on Property Values of Participation in Voluntary Cleanup Programs: The Case of Colorado

CCMP 2.2006 Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control

CCMP 3.2006 Roberto ROSON: Introducing Imperfect Competition in CGE Models: Technical Aspects and Implications

KTHC 4.2006 Sergio VERGALLI: The Role of Community in Migration Dynamics

SIEV 5.2006 Fabio GRAZI, Jeroen C.J.M. van den BERGH and Piet Rietveld: Modeling Spatial Sustainability: Spatial Welfare Economics versus Ecological Footprint

PRCG 7.2006 Michele MORETTO and Paola VALBONESE: Firm Regulation and Profit-Sharing: A Real Option Approach

SIEV 8.2006 Anna ALBERINI and Aline CHIABAI: Discount Rates in Risk v. Money and Money v. Money Tradeoffs

CTN 9.2006 Jon X. EGUIA: United We Vote

CTN 10.2006 Shao CHIN SUNG and Dinko DIMITRO: A Taxonomy of Myopic Stability Concepts for Hedonic Games

NRM 11.2006 Fabio CERINA (lxxviii): Tourism Specialization and Sustainability: A Long-Run Policy Analysis

NRM 12.2006 Valentina BOSETTI, Mariaaeter CASSINELLI and Alessandro LANZA (lxxviii): Benchmarking in Tourism Destination, Keeping in Mind the Sustainable Paradigm

CCMP 13.2006 Jens HORBACH: Determinants of Environmental Innovation – New Evidence from German Panel Data Sources

KTHC 14.2006 Fabio SABATINI: Social Capital, Public Spending and the Quality of Economic Development: The Case of Italy

CSRIM 16.2006 Giuseppe DI VITA: Corruption, Exogenous Changes in Incentives and Deterrence

CTN 19.2006 Somdeb LAHIRI, Mariaester CASSINELLI and Alessandro LANZA: The Asymmetric Effects of Oil Shocks on Output Growth: A G-7 Countries Perspective

CCMP 20.2006 Massimiliano MAZZANTI and Roberto ZOBOLI: Examining the Factors Influencing Environmental Innovations

CCMP 22.2006 Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the Environmental Kuznets Curve

NRM 23.2006 Y. Hossein FARZIN and Ken-Ichi AKAO: When is it Optimal to Exhaust a Resource in a Finite Time?

KTHC 27.2006 Vincent M. OTTO, Timo KUOSMANEN and Ekko C. van IERLAND: Stabilisation Targets, Technical Change and the Environment Protection Scheme in Ireland

IEM 29.2006 Markov-Switching Analysis for the G-7 Countries

KTHC 30.2006 Fabio SABATINI: Social Capital and Labour Productivity in Italy

ETA 31.2006 Andrea GALLICE (lxxix): Predicting one Shot Play in 2x2 Games Using Beliefs Based on Minimax Regret

IEM 32.2006 Andrea BIGANO and Paul SHEEHAN: Assessing the Risk of Oil Spills in the Mediterranean: the Case of the Route from the Black Sea to Italy

NRM 33.2006 Rinaldo BRAU and Davide CAO (lxxviii): Uncovering the Macrostructure of Tourists’ Preferences: A Choice Experiment Analysis of Tourism Demand to Sardinia

CTN 34.2006 Parkash CHANDER and Henry TULKENS: Cooperation, Stability and Self-Enforcement in International Environmental Agreements: A Conceptual Discussion

IEM 35.2006 Valeria COSTANTINI and Salvatore MONNI: Environment, Human Development and Economic Growth

Monica BARNI, Walter F. LALICH

Walter F. LALICH (lxxx): Measurement and Spatial Effects of the Immigrant Created Cultural Diversity in Perceived Diversity of Complex

Ugo GASPARINO, Barbara DEL CORPO and Dino PINELLI

Under Adverse Selection: Choice Modelling Analysis

KTHC 49.2006

Rinaldo BRAU and Matteo LIPPI BRUNI

The Netherlands and Belgium: Results from a CV Study

Monika SEDENKOVA and Jiri HORAK

Giulio CAIENLLI and Donato IACOBUCCI (lxxx): The Role of Agglomeration and Technology in Shaping Firm Strategy and Organization

CTN 64.2006

Alvaro CALZADILLA, Francesco PAULI and Roberto ROSON (lxxx): Climate Change and Extreme Events: An Assessment of Economic Implications

SIEV 45.2006

NRM 46.2006

KTHC 47.2006

Walter F. LALICH (lxxx): Measurement and Spatial Effects of the Immigrant Created Cultural Diversity in Sydney

KTHC 48.2006

Elena FASPALANOVA (lxxx): Cultural Diversity Determining the Memory of a Controversial Social Event

Ugo GASPARINO, Barbara DEL CORPO and Dino PINELLI (lxxx): Perceived Diversity of Complex Environmental Systems: Multidimensional Measurement and Synthetic Indicators

KTHC 49.2006

Aleksandra HAUKÉ (lxxx): Impact of Cultural Differences on Knowledge Transfer in British, Hungarian and Polish Enterprises

KTHC 50.2006

Katherine MARQUAND FORSYTH and Vanja M. K. STENIUS (lxxx): The Challenges of Data Comparison and Varied European Concepts of Diversity

KTHC 51.2006

Gianmarco I.P. OTTAVIANO and Giovanni PERI (lxxx): Rethinking the Gains from Immigration: Theory and Evidence from the U.S.

KTHC 52.2006

Monica BARNI (lxxx): From Statistical to Geolinguistic Data: Mapping and Measuring Linguistic Diversity

KTHC 53.2006

Lucia TAIJOLI and Luca DE BENEDICTIS (lxxx): Economic Integration and Similarity in Trade Structures

KTHC 54.2006

Suzanna CHAN (lxxx): “God’s Little Acre” and “Belfast Chinatown”: Diversity and Ethnic Place Identity in Belfast

KTHC 55.2006

Diana PETKOVA (lxxx): Cultural Diversity in People’s Attitudes and Perceptions

KTHC 56.2006

John J. BETANCUR (lxxx): From Outsiders to On-Paper Equals to Cultural Curiosities? The Trajectory of Diversity in the USA

KTHC 57.2006

Kiffemariam HAMDE (lxxx): Cultural Diversity A Glimpse Over the Current Debate in Sweden

KTHC 58.2006

Emilio GREGORI (lxxx): Indicators of Migrants’ Socio-Professional Integration

KTHC 59.2006

Christa-Maria LERM HAYES (lxxx): Unity in Diversity Through Art? Joseph Beuys’ Models of Cultural Dialogue

KTHC 60.2006

Sara VERTOMMEN and Albert MARTENS (lxxx): Ethnic Minorities Rewarded: Ethnosegregation on the Wage Market in Belgium

KTHC 61.2006

Nicola GENOVESE and Maria Grazia LA SPADA (lxxx): Diversity and Pluralism: An Economist's View

KTHC 62.2006

Carla BAGNA (lxxx): Italian Schools and New Linguistic Minorities: Nationality Vs. Plurilingualism. Which Ways and Methodologies for Mapping these Contexts?

KTHC 63.2006

Yedran OMANOVIĆ (lxxx): Understanding “Diversity in Organizations” Paradigmatically and Methodologically

KTHC 64.2006

Milja PASPALANOVA (lxxx): Identifying and Assessing the Development of Populations of Undocumented Migrants: The Case of Undocumented Poles and Bulgarians in Brussels

KTHC 65.2006

Roberto ALZETTA (lxxx): Diversity in Diversity: Exploring Moroccan Migrants’ Livelihood in Genoa

KTHC 66.2006

Monika SEDENKOVA and Jiri HORAK (lxxx): Multivariate and Multicriteria Evaluation of Labour Market Situation

KTHC 67.2006

Dirk JACOBS and Andrea REA (lxxx): Construction and Import of Ethnic Categorisations: “Allochthones” in The Netherlands and Belgium

KTHC 68.2006

Eric M. USLANER (lxxx): Does Diversity Drive Down Trust?

KTHC 69.2006

Paula MOTA SANTOS and João BORGES DE SOUSA (lxxx): Understanding “Diversity in Organizations” Paradigmatically and Methodologically

KTHC 70.2006

Rinaldo BRAU and Matteo LIPPI BRUNI (lxxx): Eliciting the Demand for Long Term Care Coverage: A Discrete Choice Modelling Analysis

CTN 71.2006

Dinko DIMITROV and Claus-Jochen HAAKE: Coalition Formation in Simple Games: The Semistrict Core

CTN 72.2006

Ottorino CHILLEM, Benedetto GUI and Lorenzo ROCCO: On The Economic Value of Repeated Interactions

CTN 73.2006

Sylvain BEAL and Nicolas QUEROU: Bounded Rationality and Repeated Network Formation

CTN 74.2006

Sophie BADE, Guillaume HAERINGER and Ludovic RENOU: Bilateral Commitment

CTN 75.2006

Antrandik TANGIAN: Evaluation of Parties and Coalitions After Parliamentary Elections

CTN 76.2006

Rudolf BERGHAMMER, Agnieszka RUSINOWSKA and Harrie de SWART: Applications of Relations and Graphs to Coalition Formation

CTN 77.2006

Paolo PIN: Eight Degrees of Separation

CTN 78.2006

Roland AMANN and Thomas GALL: How (not) to Choose Peers in Studying Groups

CTN 79.2006
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.2006</td>
<td>Inequity Aversion May Increase Inequity</td>
</tr>
<tr>
<td>81.2006</td>
<td>Directed Technical Change and Climate Policy</td>
</tr>
<tr>
<td>82.2006</td>
<td>Riding the Waves of Reforms in Corporate Law, an Overview of Recent Improvements in Italian Corporate Codes of Conduct</td>
</tr>
<tr>
<td>83.2006</td>
<td>Coalition Governments in a Model of Parliamentary Democracy</td>
</tr>
<tr>
<td>84.2006</td>
<td>Valence Advantages and Public Goods Consumption: Does a Disadvantaged Candidate Choose an Extremist Position?</td>
</tr>
<tr>
<td>85.2006</td>
<td>Pigou’s Dividend versus Ramsey’s Dividend in the Double Dividend Literature</td>
</tr>
<tr>
<td>86.2006</td>
<td>The Impact of Change on Domestic and International Tourism: A Simulation Study</td>
</tr>
<tr>
<td>87.2006</td>
<td>Educational Qualification, Work Status and Entrepreneurship in Italy an Exploratory Analysis</td>
</tr>
<tr>
<td>88.2006</td>
<td>The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Data Envelopment Analysis</td>
</tr>
<tr>
<td>89.2006</td>
<td>The White House and The Kyoto Protocol: Double Standards on Uncertainties and Their Consequences</td>
</tr>
<tr>
<td>90.2006</td>
<td>Proportionality of Willingness to Pay to Small Risk Changes – The Impact of Attitudinal Factors in Scope Tests</td>
</tr>
<tr>
<td>91.2006</td>
<td>When Inertia Generates Political Cycles</td>
</tr>
<tr>
<td>92.2006</td>
<td>Can R&D-Inducing Green Tariffs Replace International Environmental Regulations?</td>
</tr>
<tr>
<td>93.2006</td>
<td>Reconsidering The Impact of Environment on Long-Run Growth When Pollution Influences Health and Agents Have Finite-Lifetime</td>
</tr>
<tr>
<td>94.2006</td>
<td>Carbon Leakage Revisited: Unilateral Climate Policy with Directed Technical Change</td>
</tr>
<tr>
<td>95.2006</td>
<td>Comparing Tax and Tax Reallocations Payments in Financing Rail Noise Abatement Programs: Results from a CE valuation study in Italy</td>
</tr>
<tr>
<td>96.2006</td>
<td>Valuing Environmental Factors in Cost-Benefit Analysis Using Data Envelopment Analysis</td>
</tr>
<tr>
<td>97.2006</td>
<td>Intellectual Property Rights and Entry into a Foreign Market: FDI vs. Joint Ventures</td>
</tr>
<tr>
<td>98.2006</td>
<td>The Impact of Population on CO2 Emissions: Evidence from European Countries</td>
</tr>
<tr>
<td>99.2006</td>
<td>Privatization and Efficiency: From Principals and Agents to Political Economy</td>
</tr>
<tr>
<td>100.2006</td>
<td>Multi-Sectoral Uses of Water & Approaches to DSS in Water Management in the NOSTRUM Partner Countries of the Mediterranean</td>
</tr>
<tr>
<td>101.2006</td>
<td>Participatory Approach in Decision Making Processes for Water Resources Management in the Mediterranean Basin</td>
</tr>
<tr>
<td>102.2006</td>
<td>Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling Experiment</td>
</tr>
<tr>
<td>103.2006</td>
<td>Identity and Self-Other Differentiation in Work and Giving Behaviors: Experimental Evidence</td>
</tr>
<tr>
<td>104.2006</td>
<td>Economic Valuation of Oceanographic Forecasting Services: A Cost-Benefit Exercise</td>
</tr>
<tr>
<td>105.2006</td>
<td>Water Infrastructures Facing Sustainable Development Challenges: Integrated Evaluation of Impacts of Dams on Regional Development in Morocco</td>
</tr>
<tr>
<td>107.2006</td>
<td>Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the Usa</td>
</tr>
<tr>
<td>109.2006</td>
<td>The Impact of Climate Change on Domestic and International Tourism: A Simulation Study</td>
</tr>
<tr>
<td>110.2006</td>
<td>Mapping Diversity in Milan. Historical Approaches to Urban Immigration</td>
</tr>
<tr>
<td>111.2006</td>
<td>Foreigners and the City: An Historiographical Exploration for the Early Modern Period</td>
</tr>
<tr>
<td>112.2006</td>
<td>Paying for Permanence: Public Preferences for Contaminated Site Cleanup</td>
</tr>
<tr>
<td>113.2006</td>
<td>Global Climate Change, Technology Transfer and Trade with Complete Specialization</td>
</tr>
<tr>
<td>114.2006</td>
<td>Water Culture among Israelis, Palestinians and Jordanians</td>
</tr>
<tr>
<td>115.2006</td>
<td>The Allocation of European Union Allowances: Lessons, Unifying Themes and General Principles</td>
</tr>
<tr>
<td>116.2006</td>
<td>Carbon Dioxide Emission Scenarios for the Usa</td>
</tr>
</tbody>
</table>
NRM 118.2006 Isabel CORTÉS-JIMÉNÉZ and Manuela PULINA: A further step into the ELGH and TLGH for Spain and Italy
Beat HINTERMANN, Anna ALBERINI and Anil MARKANDYA: Estimating the Value of Safety with Labor
SIEV 119.2006 Elena STRUKOVA, Alexander GOLUB and Anil MARKANDYA: Air Pollution Costs in Ukraine
CCMP 120.2006 Massimiliano MAZZANTI, Antonio MUSOLESI and Roberto ZOBOLI: A Bayesian Approach to the Estimation of Environmental Kuznets Curves for CO2 Emissions
ETA 121.2006 Jean-Marie GREThER, Nicole A. MATThYS, and Jaime DE MELO: Unraveling the World-Wide Pollution Haven Effect
KTHC 122.2006 Sergio VERGALLI: Entry and Exit Strategies in Migration Dynamics
PRCG 123.2006 Bernardo BORTOLOTTI and Valentina MILELLA: Privatization in Western Europe Stylized Facts, Outcomes and Open Issues
SIEV 124.2006 Pietro CARATTI, Ludovico FERRAGUTO and Chiara RIBOLDI: Sustainable Development Data Availability on the Internet
CCMP 125.2006 S. SILVESTRI, M PELLIZZATO and V. BOATTO: Fishing Across the Centuries: What Prospects for the Venice Lagoon?
CTN 126.2006 Alison WATTS: Formation of Segregated and Integrated Groups
SIEV 127.2006 Danny CAMPBELL, W. George HUTCHINSON and Riccardo SCARPA: Lexicographic Preferences in Discrete Choice Experiments: Consequences on Individual-Specific Willingness to Pay Estimates
CCMP 128.2006 Giovanni BELLA: Transitional Dynamics Towards Sustainability: Reconsidering the EKC Hypothesis
IEM 129.2006 Elisa SCARPA and Matteo MANERA: Pricing and Hedging Illiquid Energy Derivatives: an Application to the JCC Index
PRCG 130.2006 Andrea BELTRATTI and Bernardo BORTOLOTTI: The Nontradable Share Reform in the Chinese Stock Market
IEM 131.2006 Alberto LONGO, Anil MARKANDYA and Marta PETRUCCI: The Internalization of Externalities in The Production of Electricity: Willingness to Pay for the Attributes of a Policy for Renewable Energy
KTHC 133.2006 Antonia R. GURRIERI and Luca PETRUZZELLI: Local Networks to Compete in the Global Era. The Italian SMEs Experience
SIEV 136.2006 Anna ALBERINI, Alberto LONGO and Patrizia RIGANTI: Using Surveys to Compare the Public’s and Decisionmakers’ Preferences for Urban Regeneration: The Venice Arsenale
ETA 137.2006 Y. Rossein FARZIN and Ken-Ichi AKAO: Environmental Quality in a Differentiated Duopoly
CCMP 138.2006 Danny ELLERMAN and Barbara BUCHNER: Over-Allocation or Abatement? A Preliminary Analysis of the Eu Ets Based on the 2005 Emissions Data
CCMP 139.2006 Horăfu A. RUS (lxxxi): Renewable Resources, Pollution and Trade in a Small Open Economy
CCMP 140.2006 Enrica DE CIAN (lxxxi): International Technology Spillovers in Climate-Economy Models: Two Possible Approaches
CCMP 142.2006 Gregory F. NEMET (lxxxi): How well does Learning-by-doing Explain Cost Reductions in a Carbon-free Energy Technology?
CCMP 143.2006 Anne BRIAND (lxxxi): Marginal Cost Versus Average Cost Pricing with Climatic Shocks in Senegal: A Dynamic Computable General Equilibrium Model Applied to Water
CCMP 144.2006 Thomas ARONSSON, Kenneth BACKLUND and Linda SAHLEN (lxxxi): Technology Transfers and the Clean Development Mechanism in a North-South General Equilibrium Model
IEM 145.2006 Theocaris N. GRIGORIADIS and Benno TÖRGLER: Energy Regulation, Roll Call Votes and Regional Resources: Evidence from Russia
CCMP 146.2006 Manish GUPTA: Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector
CCMP 147.2006 Valeria COSTANTINI: A Modified Environmental Kuznets Curve for Sustainable Development Assessment using Panel Data
IEM 148.2006 Andrea BIGANO, Mariaester CASSINELLI, Anil MARKANDYA and Fabio SFERRA: The Role of Risk Aversion and Lay Risk in the Probabilistic Externality Assessment for Oil Tanker Routes to Europe
KTHC 149.2006 Valeria GATTA: A Tale of Three Countries: Italian, Spanish and Swiss Manufacturing Operations in China
SIEV 150.2006 Alessandra SGOBBI and Gregorio FRAVIGA: Governance and Water Management: Progress and Tools in Mediterranean Countries
KTHC 151.2006 Pietro CARATTI and Gabriella Lo CASCO: Sustainable Development Policies in Europe
KTHC 152.2006 Mario A. MAGGIONI, Mario NOSVELLI and T. Erika UBERTI: Space Vs. Networks in the Geography of Innovation: A European Analysis
(lxxviii) This paper was presented at the Second International Conference on "Tourism and Sustainable Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005.

(lxxix) This paper was presented at the International Workshop on "Economic Theory and Experimental Economics" jointly organised by SET (Center for advanced Studies in Economic Theory, University of Milano-Bicocca) and Fondazione Eni Enrico Mattei, Italy, Milan, 20-23 November 2005. The Workshop was co-sponsored by CISEPS (Center for Interdisciplinary Studies in Economics and Social Sciences, University of Milan-Bicocca).

(lxxx) This paper was presented at the First EURODIV Conference "Understanding diversity: Mapping and measuring", held in Milan on 26-27 January 2006 and supported by the Marie Curie Series of Conferences "Cultural Diversity in Europe: a Series of Conferences.

(lxxxi) This paper was presented at the EAERE-FEEM-VIU Summer School on "Computable General Equilibrium Modeling in Environmental and Resource Economics", held in Venice from June 25th to July 1st, 2006 and supported by the Marie Curie Series of Conferences "European Summer School in Resource and Environmental Economics".

2006 SERIES

<table>
<thead>
<tr>
<th>CCMP</th>
<th>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anil Markandya)</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Matteo Manera)</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Giulio Sapelli)</td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
</tr>
</tbody>
</table>
