Marzetti, Silvia; Mosetti, R.

Working Paper
Social Carrying Capacity of Mass Tourist Sites: Theoretical and Practical Issues about its Measurement

Nota di Lavoro, No. 144.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Marzetti, Silvia; Mosetti, R. (2005) : Social Carrying Capacity of Mass Tourist Sites: Theoretical and Practical Issues about its Measurement, Nota di Lavoro, No. 144.2005, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/73931

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Social Carrying Capacity of Mass Tourist Sites: Theoretical and Practical Issues about its Measurement
S. Marzetti Dall’Aste Brandolini and R. Mosetti
NOTA DI LAVORO 144.2005

NOVEMBER 2005
NRM – Natural Resources Management

S. Marzetti Dall’Aste Brandolini, Department of Economics, University of Bologna
R. Mosetti, Istituto Nazionale di Oceanografia e Geofisica Sperimentale, OGS, Trieste

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=856024

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Social Carrying Capacity of Mass Tourist Sites: Theoretical and Practical Issues about its Measurement

Summary

Congestion is an important management problem at mass tourist sites. This essay focuses on the social carrying capacity (SCC) of a tourist site as indicator of residents’ and visitors’ perception of crowding, intended as the maximum number of visitors (MNV) tolerated. In case of conflict between the residents’ MNV tolerated and the visitors’ MNV tolerated, the policy-maker has to mediate. We consider the case in which the residents’ SCC is lower than the visitors’ SCC, and the site SCC is the result of a compromise between these two aspects of the SCC. This can be measured by making reference to two criteria of choice: the utility maximisation criterion and the voting rule. The use of one method rather than the other depends on the data available about the individual preferences on crowding. Assuming that individual preferences are known, a maximisation model for the computation of the site SCC is conceived. It represents the case in which the residents’ SCC is the limiting factor. The site SCC is intended as the number of visitors which maximises the social welfare function. Because a local policy-maker maximises the welfare of residents, in this model visitors are represented by those residents whose welfare wholly depends on the tourism sector, while the social costs due to crowding are borne by those residents who are partially or totally independent from tourism. Nevertheless, in practice, the individual preferences about crowding are not always known. In this case, the MNV tolerated can be computed by applying the majority voting rule. It is shown that, under certain conditions, the optimum number of visitors, obtained through a maximisation model, is equal to the MNV tolerated by the majority of voters.

Keywords: Sustainable tourism development, Tourism carrying capacity, Social carrying capacity, Maximisation criterion, Majority voting rule, Overcrowding, Mass tourist site

JEL Classification: L83, Q01, Q26, Q58

This paper was presented at the Second International Conference on "Tourism and Sustainable Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, Chia, Italy, 16-17 September 2005.

Address for correspondence:

Silvia Marzetti
Department of Economics
University of Bologna
P.zza Scaravilli 2
40126 Bologna
Italy
Phone: +39 512098130
Fax: +39 51221968
E-mail: marzetti@economia.unibo.it
Social Carrying Capacity of Mass Tourist Sites: Theoretical and Practical Issues about its Measurement

S. Marzetti Dall’Aste Brandolinia and R. Mosettib

a Department of Economics, University of Bologna, Italy.
b Istituto Nazionale di Oceanografia e Geofisica Sperimentale, OGS, Trieste, Italy.

Abstract

Congestion is an important management problem at mass tourist sites. This essay focuses on the social carrying capacity (SCC) of a tourist site as indicator of residents’ and visitors’ perception of crowding, intended as the maximum number of visitors (MNV) tolerated. In case of conflict between the residents’ MNV tolerated and the visitors’ MNV tolerated, the policy-maker has to mediate. We consider the case in which the residents’ SCC is lower than the visitors’ SCC, and the site SCC is the result of a compromise between these two aspects of the SCC. This can be measured by making reference to two criteria of choice: the utility maximisation criterion and the voting rule. The use of one method rather than the other depends on the data available about the individual preferences on crowding. Assuming that individual preferences are known, a maximisation model for the computation of the site SCC is conceived. It represents the case in which the residents’ SCC is the limiting factor. The site SCC is intended as the number of visitors which maximises the social welfare function. Because a local policy-maker maximises the welfare of residents, in this model visitors are represented by those residents whose welfare wholly depends on the tourism sector, while the social costs due to crowding are borne by those residents who are partially or totally independent from tourism. Nevertheless, in practice, the individual preferences about crowding are not always known. In this case, the MNV tolerated can be computed by applying the majority voting rule. It is shown that, under certain conditions, the optimum number of visitors, obtained through a maximisation model, is equal to the MNV tolerated by the majority of voters.

Keywords: sustainable tourism development, tourism carrying capacity, social carrying capacity, maximisation criterion, majority voting rule, overcrowding, mass tourist site.

1 Introduction

Tourism1 is one of the fastest expanding sectors of the world economy. In the EU its contribution to the total GDP is about 4.7%. Visitors influence the social, cultural and economic activities of a site, resident life style and public policy-making. They are very sensitive to social, cultural and environmental quality; therefore tourist sites have to be

1 The tourism sector is intended in the broad sense, in that it is made up of both tourists or overnight visitors (people who visit the site and stay at least one night) and same-day visitors (people who visit the site, but do not sleep there) (World Tourism Organization, 1998).
managed according to sustainable criteria otherwise they will lose their ability to generate welfare.

Every process of tourism growth has to be sustained by the tourism carrying capacity (TCC) of the site. In this way, policy-makers must pursue sustainable tourism through ‘a rational distribution of tourism activity...without exceeding the saturation limits of each area according to its vulnerability and characteristics’ (Decleris, 2003, p.86).

In general, the concept of carrying capacity applied to the human species ‘is foremost socially determined, rather than biologically fixed due to the important influence of human consumption patterns, technologies, infrastructure, and impacts on the environment or food availability’ (Seidl & Tisdell, 1999). Applied to tourism, the TCC means that tourist economic growth has to be responsible towards local society and its cultural values, and compatible with the preservation and improvement of the local natural environment and with the conservation of the local traditional economic activities.

A tourist system is an integrated system constituted by different sub-systems, such as the ecological (biological and physical), social, cultural, infrastructural and management (institutional and economic) sub-systems (World Tourism Organization, 1998, 2004). Therefore the TCC is the result of the carrying capacities of all these sub-systems. The levels of these different carrying capacities may be in conflict; for example, mass tourism may be desirable from the economic point of view because it increases the local aggregate income, but from the social and ecological point of view it can be damaging if criminality increases and dunes are destroyed. This means that, in practice, policy-makers have to mediate between these different carrying capacities, also stimulating discussion about society values in order to change their plans and actions if necessary.

In this paper we focus on the social aspect of the carrying capacity. In literature, the social carrying capacity (SCC) is in general analysed both from the point of view of residents and from that of visitors. We consider mass tourism sites, because high-density recreational activities today are the predominant kind of tourism in Europe. Tourism is generally a seasonal economic activity and, on the most crowded days of the year, traffic, criminality, waiting time, and noise by day and by night are major causes of residents’ discomfort, and the quality of the visitors’ recreational experience deteriorates. Therefore, we present a joint analysis of these two aspects of the SCC in order to establish the site SCC by using a cost-benefit analysis (CBA) model based on the maximisation of individual preferences. Nevertheless, because sustainable tourism development means that real choices have to be made, we also highlight that a further criterion of choice is needed when preferences about crowding are unknown.

Section 2 briefly describes the CBA in order to measure the TCC as indicator of sustainable tourism. In section 3 the focus is on the site SCC as indicator of residents’ and visitors’ perception of crowding. We make particular reference to the case of conflict given by the situation in which the residents’ SCC is lower than the visitors’ SCC. Assuming that it is possible to measure the utility loss due to crowding, a solution of this conflict is described by a CBA model in which the policy-maker mediates between residents’ and visitors’ claims. Section 4, instead, focuses on the case in which the utility loss due to crowding cannot be estimated, and the voting criterion of the majority rule is applied. We present the conditions to be satisfied in order to make the optimum number of visitors obtained through a maximisation model equal to the MNV tolerated by the majority of voters.

2. Tourism Carrying Capacity and Cost-benefit Analysis

Different indicators are used for the TCC measurement because not only the number of visitors, tourist density and length of stay, but also visitors’ life style and their impact on the natural environment, facilities, infrastructures and residents’ life style have to be considered.
Nevertheless there continues to be the demand for representing the TCC with a single indicator. In economic literature the number of visitors is generally used (Fisher and Krutilla, 1972; Cicchetti and Smith, 1973; Canestrelli and Costa, 1991). Given the specific characteristics of tourism in the site considered, the TCC is defined as the maximum number of visitors (MNV) that can be contained in a tourist area. We make reference to the number of visitors present on a site per day.

In order to estimate a sustainable and efficient MNV, the CBA is applied. Economic efficiency states that tourist resources are rationally used if the difference between their benefits and costs is maximised; while sustainability requires social and environmental goods that the market does not evaluate to be considered in this computation. Therefore, by making reference to a CBA model the TCC is identified with the optimum number of visitors which maximises the social net benefit (Fisher and Krutilla, 1972). Let us consider the following very simple static model:

\[
\max_Q \Pi(Q) = NB(Q) - C_S(Q) - C_E(Q),
\]

where: \(\Pi(Q)\) is the total net benefit from tourism activity, \(NB(Q)\) the private net benefit from tourist production, \(C_S(Q)\) the social costs (such as noise, pollution, stress from crowding, and so on), \(C_E(Q)\) the value of environmental losses (a loss of biodiversity such as dune reduction, for example), and \(Q\) the number of visitors per day. It is, in general, assumed that the net marginal private benefit from tourism decreases with the number of visitors, while the social marginal cost and the environmental marginal cost increase. The optimum number of visitors \(Q^*\) has to satisfy the condition of equality between the net marginal benefit and the sum of the social and environmental marginal costs.

3. Social Carrying Capacity: the Maximisation Criterion

We cannot deal here with all the different aspects of the TCC. Our attention is devoted to the SCC computation in situations in which mass tourism determines crowding effects. Noise, criminality and waiting time represent social aspects of the TCC. Residents’ quality of life and visitors’ recreational experience can deteriorate as the number of visitors increases. As regards the optimal level of use from the ecological point of view, we assume that it is not a limiting factor. For example, natural resources used for recreational activities, such as numerous beaches, are very extensive, or the ecological aspect has greatly lost its importance because the natural environment has already been sacrificed heavily to tourist growth.

According to the CBA, the SCC of a tourist site can be in general defined as the optimum number of visitors per day to which the maximum social utility due to congestion corresponds. More specifically, in literature the SCC of a tourist area is defined from two different points of view. From the point of view of residents, the SCC represents the social interaction between residents and visitors, and it is the MNV tolerated by the host population without reducing their quality of life. From the point of view of visitors, the SCC describes the interaction between the visitors themselves, and is defined as the MNV tolerated by the visitors themselves without reducing the quality of the recreational experience or desiring to go to an alternative site or return home. These two aspects of the SCC may be in conflict, since the MNV tolerated by the visitors themselves may be different from the MNV tolerated by residents.

The shape of the individual utility curve highlights the psychological nature of the perception of overcrowding. In general, when an overcrowding sensation begins to be felt, the individual total utility \(U\) starts to reduce, the marginal utility becomes negative, and this means that the total number of visitors on the site exceeds the maximum number tolerated. In addition, different individuals (whether residents or visitors) may be sensitive to different level of crowding. Figure 1 shows, as an example, two different situations: curve (a)
represents the total utility U of an individual whose satisfaction from the presence of visitors is quite low, and who is quite sensitive to crowding because the overcrowding sensation begins to occur to the right of the fairly low daily number of visitors Q_1; while curve (b) represents a person whose satisfaction is high and who becomes sensitive to crowding with large numbers of visitors (overcrowding begins at Q_2) (Clawson and Knetsch, 1978; Marzetti, 2003).

![Figure 1: Residents’ or visitors’ utility](image)

3.1 Measuring the utility loss due to crowding

Residents' and visitors' losses of welfare due to overcrowding are not generally evaluated by the market. Nevertheless, measuring the SCC through the CBA requires them to be estimated with a specific method.

The CVM is a technique conceived by economists to estimate in monetary terms those values which are not established by the market. It is based on the economic theory of demand (individual preferences) and its philosophy is: when the value of something is unknown, go to those who might value it and ask how much they evaluate it (Price, 2000). Through a survey by questionnaire the CVM creates a hypothetical market which permits respondents to elicit, according to their preferences, the value of the non-marketable consequences of a change in the number of visitors to a site. The value so elicited is contingent to the scenario created through the questionnaire. The CVM is generally applied in the willingness to pay version (WTP), where the respondent is asked how much s/he is willing to pay for a certain change in crowding (Cicchetti and Smith, 1973). More specifically the WTP, for a project which reduces crowding, represents the value of the avoided loss of utility due to overcrowding. Nevertheless it can also be applied in the value of enjoyment (VOE) version2. In this CVM version the evaluation question asks respondents the value of enjoyment (dissatisfaction) of a change in the daily number of visitors. Compared with the WTP version, the VOE version has

2 The VOE method have been applied by Penning - Rowsell \textit{et al.} (1992) for estimating the use value of British beaches. With the same purpose, in Italy this method has been used by Marzetti and Zanuttigh (2003), and Marzetti and Lamberti (2004).
the advantage that no payment vehicle, which might be unpopular, is specified; so the number of protest answers may be lower.

The CVM (in whichever version) permits an estimate of the value of the individual preferences about crowding, which depends on a number of variables. A model of resident’s/visitor’s satisfaction (dissatisfaction) is as follows:

\[U = r(Q, C, A, L, R, S, I) \]

where: \(U \) = individual satisfaction (utility); \(Q \) = daily number of visitors; \(C \) = crowding consequences (advantages and disadvantages); \(A \) = a vector of site attributes, such as infrastructure capacity and facilities; \(L \) = factors representing individual quality of life; \(R \) = reactions to overcrowding; \(S \) = socio-economic attributes, such as total household income per year, sex, age, education, employment, marital status; \(I \) = survey influences, such as interviewer characteristics. Taking other variables as constant, it is expected that the resident or visitor relation between \(U \) and \(Q \) is represented by an individual utility curve such as one of those indicated in figure 1.

Guidelines for the specification of model (2) cannot be provided by the economic theory. Validity and reliability of the survey results are, in general, tested by correlation and regression analysis, and extensive literature exists on this topic (see Bateman and Willis, 1999, for example).

3.2. The site SCC: a maximisation model

The site SCC is obtained by comparing the visitors’ SCC, which we indicate with \(Q^* \), with the residents’ SCC, indicated with \(Q^{**} \). It may be the result of a compromise between these two carrying capacities, which is reached by the mediation of the local policy-maker responsible for the sustainable management of the site. In general, three situations are possible:

- a) \(Q^* = Q^{**} \), which is the ideal situation because it is a social equilibrium and only one indicator represents the SCC.
- b) \(Q^* < Q^{**} \), which indicates that visitors reach the maximum utility before residents. This can be the result of an inadequate quality of tourist services or a lack of adequate infrastructures and facilities. The policy-maker’s action could be promoting the organisation of crowd-attracting activities, and building (or improving) infrastructures and facilities.
- c) \(Q^* > Q^{**} \), where residents reach the maximum utility before visitors. Our attention is on this last case. It represents a situation of congestion, quite frequent in mass tourism sites, which we model in the following way.

The task of policy-makers is pursuing social welfare. Local policy-makers are elected by residents not by visitors, and they identify the social welfare with residents’ welfare. Therefore, in this essay we consider that in the local political context visitors’ interests are represented by those residents who produce tourist services (the tourist offer). We distinguish three kinds of residents: i) those who are directly and wholly tourism-dependent (the local tourist sector), and who represent visitors’ needs, ii) those who are in part indirectly tourism-dependent (such as those who benefit from the fact that a well developed tourist sector increases the local economic welfare), and iii) those who are totally independent from tourism (such as those who work in the public administration or pensioners). In addition, for simplicity, we suppose that residents who belong to category i) do not feel irritated by the presence of tourists; while those who belong to categories ii) and iii) suffer a loss of enjoyment in overcrowded situations due to tourism.

3 In particular, if survey studies describe scenarios that respondents find unclear or unrealistic, or are based on relatively small samples, the estimates obtained could differ widely from the true value; therefore great attention has to be paid to these last two aspects.

4 Canestrelli and Costa (1991, p. 298) highlight that the WTP of tourists ‘can be easily translated’ into the incomes of the ‘tourist-dependent population’.
Supposing that valid and reliable estimates of the monetary value of the utility losses due to crowding are available, we specify two aggregated utility functions about residents: i) the utility function of residents wholly dependent on tourism; and ii) the utility function of partially or totally independent residents. Thus we suppose that the optimum number of visitors tolerated by fully dependent residents is obtained by maximising their aggregated utility curve. This optimum number represents not only their own SCC but also the visitors’ SCC, and for simplicity we refer to it as the visitors’ SCC. Instead, the residents’ SCC is for simplicity assumed to be the optimum number of visitors which maximises the utility function of partially or wholly independent residents.

An aggregation procedure assumes that all individuals are alike and have the sample mean characteristics, such as the sample mean income (Cicchetti and Smith, 1973). Let us assume, for simplicity, that the local tourist sector is a perfect competition market which offers a basket of tourist goods (such as recreational activities and accommodation) per visitor at the price p. The representative wholly tourism-dependent resident does not suffer from crowding and maximises her/his utility U_1. Utility depends on income y_1, and for simplicity we write $U_1(y_1) = y_1$. We consider $y_1 = pQ - C(Q)$, where $C(Q)$ is the production cost, Q the tourist production measured in number of visitors per day. The optimal problem of this representative wholly tourism-dependent resident is:

$$\max \limits_Q \ [U_1(y_1) = pQ - C(Q)]. \quad (3)$$

The first order condition is:

$$p = C'(Q), \quad (4)$$

where $C'(Q)$ is the first order derivative of $C(Q)$, which for simplicity we assume to increase with Q. The solution is the tourist offer:

$$Q^* = h(p). \quad (5)$$

As regards the ii) and iii) categories of residents we use the following model. Their individual utility is $U_2(y_2) = y_2$, where income y_2 is equal to the sum of the non-tourism income y_0 and the tourism-dependent income $a(pQ - C(Q))$, where $0 \leq a < 1$. When $a=0$, it means that a resident is wholly tourism-independent. In addition, their social loss of utility due to crowding is $C_s(Q)$. Therefore, the optimal problem of the representative resident who partially depends on - or is wholly independent of - tourism is:

$$\max \limits_Q \ [U_2(y_2) - C_s(Q) = y_0 + a(pQ - C(Q)) - C_s(Q)]. \quad (6)$$

The first order condition is:

$$p = C'(Q) + C_s'(Q)/a, \quad (7)$$

where $C_s'(Q)$ is assumed to increase with Q^5. The solution can be written:

$$Q^{**} = f(p). \quad (8)$$

5 The utility function U, described in figure 1, is consistent with the residents’ utility here defined. In fact, by assuming the marginal costs to be linearly increasing, it follows that U is strictly convex since U'' is negative being $a > 0$. In the more general case, the requirement is that $C''(Q) > 0$ and $C'(Q) > 0$.
According to equation (5), given the price \(p \), \(Q \) depends on the ratio between the marginal utility loss due to crowding and the coefficient of tourism benefit \(a \). If there is no loss due to overcrowding, \(C_s'(Q)/a = 0 \), and \(Q^* \) is equal to \(Q^{**} \); while when \(C_s'(Q)/a > 0 \), \(Q^{**} < Q^* \). In other terms, when the utility loss \(C_s'(Q)/a > 0 \), the maximum number of visitors tolerated by partially or wholly tourism-independent residents is lower than that claimed by wholly tourism-dependent residents (or by visitors themselves). In this situation it is a policy-maker's task to mediate between them.

Let us assume that a policy-maker wants to know the number of visitors which maximises the social welfare, here intended as the sum of all residents’ utilities:

\[
\max_Q \{ U_1(y_1) + U_2(y_2) - C_s(Q) = (pQ - C(Q)) + [y_0 + a(pQ - C(Q)) - C_s(Q)] \}. \tag{9}
\]

The first order condition is:

\[
p = C'(Q) + C_s'(Q)/(1+a), \tag{10}
\]

and we write

\[
Q^\circ = g(p). \tag{11}
\]

At the price \(p \), \(Q^\circ \) represents the ideal site SCC. It is between \(Q^* \) and \(Q^{**} \) because \(C_s'(Q)/(1+a) < C_s'(Q)/a \), as shown in figure 2 (by assuming the marginal cost to be linear in \(Q \)).

According to equation (10), the price \(p \) is the social price of the tourist basket because it is comprehensive of the social cost due to crowding.

In order to pursue a sustainable management of the tourist resort, let us finally assume that a policy-maker decides to internalise the social loss due to crowding by taxing the tourist sector. According to our model, we can write \(\tau = C_s'(Q)/(1+a) \), where \(\tau \) is a Pigouvian tax; so \(\tau Q^\circ \) is the total tax that the tourist sector should pay the policy-maker. In figure 2 the tax amount \(\tau \) is equal to BC.

4. Social Carrying Capacity: the Voting Criterion
According to our model, the MNV which represents the ideal site SCC is obtained by maximising the local social welfare. From the practical point of view, if this model is to be useful, individual preferences have to be known. As regards the visitors’ SCC, the optimum \(Q^* \) can be estimated because the economic variables \(p \) and \(a \), and the \(C'(Q) \) economic function are known to the policy-maker. Nevertheless, experience shows that a CVM survey is not always successful, and in this case the estimate of the actual preferences represented by the \(C_s'(Q) \) social function is not always possible. More specifically, a respondent may declare that s/he is unable to reply to the valuation questions, or may behave like a “free-rider”\(^6\). If the number of no responses and protest answers is high, it is not possible to estimate the aggregated utility curve of residents\(^7\), and it is not possible to estimate the site SCC through a CBA model. Therefore \(Q^{**} \) has to be estimated by some other method.

A different method for estimating \(Q^{**} \) is by directly asking residents, partially or wholly tourism-independent, the MNV tolerated on the site considered, by means of a survey by questionnaire. We call this method a MNV survey in order to distinguish it from a CVM survey. Experience shows that residents generally have no problem in establishing the MNV tolerated on the site considered (Severiades, 2000; Medoro, 2004-5). More specifically, through this method, no questions are asked about the monetary value of the respondent’s satisfaction (dissatisfaction) due to crowding. Making reference to the most crowded days of the year, respondents are asked if they would prefer a daily number of visitors greater or lower than those present on the site so as not to feel irritated, or if they prefer the same number. In addition they are asked how comfortable (uncomfortable) they feel about the number of visitors present on the site considered, and their reaction to overcrowding.

The passage from the individual MNV tolerated to the SCC requires the specification of a criterion of social choice. The closest substitute for the maximisation criterion is a voting rule. Different voting rules exist for social deliberations. The majority rule\(^8\) is generally used for social choices. In politics the majority rule is applied to results obtained by the universal suffrage; while here this rule is applied to the results of a less costly survey based on a representative random sample of the relevant population (Marzetti and Mosetti, 2004). In order to distinguish this method from that of the CBA, we call it the majority rule method (MRM).

As regards the general management of social goods, Bowen (1943, p.33) discusses - when preferences are unknown - the ‘possible use of voting as a means of measuring or inferring marginal rates of substitution and hence of determining ideal output’, and highlights the conditions under which the ideal or optimum output of a social good obtained by a maximisation utility model is equal to the output preferred by the majority of voters. As regards the specific social losses due to overcrowding we highlight that, if it is assumed that each resident, partially or wholly tourism-independent, declares as MNV tolerated the number corresponding to her/his maximum net satisfaction, the optimum number of visitors obtained by maximising their utility is equal to the MNV obtained with the MRM even if respondents are unable to establish the monetary value of their satisfaction.

\(^6\) Some respondents may give a false response or no response to the evaluation questions if they fear that they will be asked to pay for the good under evaluation, even when assured that no payment will be asked.

\(^7\) In addition, even if a main survey of at least 500-600 interviews is carried out in order to estimate values with a confidence level of at least 95%, some coefficients – important from the economic point of view - may be statistically non-significant. Furthermore, even where most coefficients are statistically significant, the overall explanatory power of the relationship considered may be quite low. Finally, some simplifications might be needed for aggregating the individual preferences in a social utility function (Bowen, 1943; Cicchetti and Smith, 1973; Mueller, 1979).

\(^8\) Rawls (1971, revised 1999, p.313) claims that the best available way of ensuring ‘just and effective’ choices is some form of majority rule.
Therefore, in order to establish the site SCC, when \(Q^* > Q^{**} \) and \(C_s'(Q) \) cannot be estimated through a CVM survey, a policy-maker - aiming to internalise the residents’ social loss caused by the tourist sector - is rationally limited by the fact that the monetary values of the utility loss due to crowding is unknown. More specifically, as regards the social function \(C'(Q) + C_s'(Q)/a \), only the point A in figure 2 is known because \(Q^{**} \) is obtained through the MRM. In the case of linearly increasing marginal costs, as assumed in the model presented in section 3.2 it is easy to show that the ideal site SCC \(Q^o \) and the optimal amount of the Pigouvian tax \(\tau \) can be computed.

6. Conclusions

In this essay two methods for measuring the SCC are presented: the cost-benefit analysis and the voting rule method. They are based on two different criteria of choice of the MNV tolerated in crowded situations. The CBA is based on the maximisation criterion, and the SCC is computed by considering the individual preferences. The voting rule method is based on the majority voting rule as procedure for obtaining a social preference when individual preferences cannot be estimated. The use of one method rather than the other depends on the data available about the individual preferences.

Assuming that individual preferences about crowding are known, and that the residents’ SCC is the limiting factor, we have presented a CBA model in which the site SCC is the result of a compromise between the residents’ and visitors’ SCCs. In order to internalise the social losses due to crowding, this model permits the computation of the Pigouvian tax.

The ideal situation is to know the monetary value of the individual preferences. Nevertheless experience shows that, if residents generally have no problem in establishing the MNV tolerated on the site, many of them instead may be incapable of eliciting a monetary value for the correspondent utility. In this case, the MNV tolerated is established by applying the MRM. Through this method, partially or wholly tourism-independent residents are directly asked the MNV tolerated, and the residents’ SCC is the MNV tolerated by the majority of them. When marginal social costs are linearly increasing and under certain conditions, the optimum number of visitors, obtained through a maximisation model, is equal to the MNV tolerated by the majority of voters.

References

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series
Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://www.repec.org

NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries
ETA 2.2004 Masahika FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries
PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy
ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
ETA 8.2004 Wolfgang AUSSENNEGG, Pegaret PICHLER and Alex STOMPER (Ixx): IPO Pricing with Bookbuilding, and a When-Issued Market
PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixx): Primary Market Design: Direct Mechanisms and Markets
PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (Ixx): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
PRA 12.2004 Ohad KADAN (Ixx): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values
PRA 13.2004 Maarten C.W. JANSEN (Ixx): Auctions as Coordination Devices
PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixx): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination
CCMP 16.2004 Marta STRYSZOWSKA (Ixx): Late and Multiple Bidding in Competing Second Price Internet Auctions
CCMP 17.2004 Slim Ben YOUSSEF: Country Risk Ratings of Small Island Tourism Economies
NRN 18.2004 Angelo ANTOCI, Simone BORGHESE and Paolo RUSSU (Ixxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics
SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice
NRM 21.2004 Jacqueline M. HAMILTON (Ixxvii): Climate and the Destination Choice of German Tourists
NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya
NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (Ixxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach
NRM 27.2004 Raúl Hernández MARTÍN (Ixxvii): Impact of Tourism Consumption on GDP. The Role of Imports
NRM 29.2004 Marian WEBER (Ixxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest
NRM 30.2004 Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE (Ixxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting
CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution
An Application to the Recreational Value of Forests in WTI Oil Forward and Futures Returns

Heterogeneous Agents

Environmental Programs: An Evolutionary Approach

Possibilities of the Contingent Valuation Method

E.C.M. RUIJGROK

Netherlands

Resources on Smallholder Farms in Hungary: Institutional Analysis

Analysis of Extractive Reserves in the Brazilian Amazon

Analysis to Evaluate Environmentally Conscious Tourism Management

Effects on Energy Scenarios

Regulatory Choices

(lxvi): Biodiversity Conservation on Private Lands: Information Problems and
Timo GOESCHL and Tun LIN

Renaturated Streams

Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in
Mortality Risk Reductions: Does Latency Matter?

Francesco RICCI

(lxvi): Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the
Stability in Hedonic Games

Gernot KLEPPER and Sonja PETERSON:

(lxvi): Property Rights Conservation and Development: An
Timo GOESCHL and Danilo CAMARGO IGLIORI

Notes on the Determinants of Innovation: A Multi-Perspective Analysis

(lxvi): The Socio-Economic Value of Natural Riverbanks in the
Wildlife Conservation and Management in Kenya: Towards a Co-management Approach

Ekin BIROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural
Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects

Scott BARRETT and Michael HOEL: Optimal Disease Eradication

Dinko DIMITROV, Peter BORM, Rued HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for
Mortality Risk Reductions: Does Latency Matter?

Ingo BRÄUER and Rainer MARGGRAF

(lxvi): The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

(lxvi): Modelling Dynamic Conditional Correlations

Alessandro LANZA, Matteo MANERA and Michael MCALEER

(lxvi): Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Ekin BIROL, Ágnes GYOVAI and Melinda SMALE: Valuation of Ecosystem Services Provided by Biodiversity

Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturated Streams

Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance

Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households

Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management

Timo GOESCHL and Danilo CAMARGO IGLIORI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon

Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol

Elissaios PAPYRAKIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.

Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis

E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands

Gianmits VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings

Anastasios XEPAPADEAS and Constadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Michael FINUS: Modesty Pays: Sometimes!

Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margherita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
IEM	116.2004	Valeria COSTANTINI and Francesco GRACCEVA: Social Costs of Energy Disruptions
IEM	117.2004	Christian EGENHOFER, Kyriakos GIALOGLOU, Giacomo LUCIANI, Maroësa BOOTS, Martin SCHEELERS, Valeria COSTANTINI, Francesco GRACCEVA, Anil MARKANDYA and Giorgio VICINI: Market-Based Options for Security of Energy Supply
IEM	119.2004	Giacomo LUCIANI: Security of Supply for Natural Gas Markets. What is it and What is it not?
IEM	120.2004	L.J. de VRIES and R.A. HAKVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets
KTHC	121.2004	Alberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open Economy
NRM	122.2004	Carlo GIUPPONI, Jaroslav MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application
ETA	124.2004	Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited
NRM	125.2004	Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta VALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach
PRA	126.2004	Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic
CCMP	127.2004	Maria BERRITELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism
NRM	129.2004	Elsiatos PAPYRakis and Reyer GERLAGH: Natural Resources, Innovation, and Growth
PRA	130.2004	Bernardo BORTOLOTTI and Mara FACcIO: Reluctant Privatization
IEM	133.2004	Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited
ETA	134.2004	Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma
SIEV	135.2004	Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys
ETA	137.2004	Herbert DAWID, Christophe DEISSENBerg and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game
CCM P	139.2004	Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy
NRM	140.2004	Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis
PRA	141.2004	Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incompete Contracts
PRA	143.2004	David GOLDEiche (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions
PRA	144.2004	Roberto BURGUEt (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economics
PRA	146.2004	Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUgUEt (lxxi): How to Win Twice at an Auction. On the Incidence of Commissions in Auction Markets
PRA	147.2004	Claudio MEZZETTIl, Aleksandar PEKEc and Ilia TSETILIN (lxxi): Sequential vs. Single-Round Uniform-Price Auctions
PRA	148.2004	John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
PRA	149.2004	Philip A. HAILE, Han HONG and Matthew SHHUM (lxxi): Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions
PRA	150.2004	François DEGEOGRace, François DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why Bookbuilding Is Dominating Auctions
CCM P	151.2004	Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification. Internal Institution and Pressure Groups in the Kyoto Protocol’s Adoption Process
CCM P	152.2004	Carlo CARRARo and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model
PRA	153.2004	Alejandro M. MANELLI and Daniel R. VINCEN (lxxi): Multidimensional Mechanism Design: Revenue Maximization and the Multiple-Good Monopoly
ETA	154.2004	Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELs: Is there any Scope for Corporatism in Stabilization Policies?
CTN	155.2004	Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with Externalities
CCM P	156.2004	Cesare DOsi and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1.2005
Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

CCMP 2.2005
Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

CCMP 3.2005
Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

CCMP 4.2005
Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

ETA 5.2005
Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?

CCMP 6.2005
Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change

IEM 7.2005

ETA 8.2005
Lorenzo PELLEGRINI and Reyer GERLAGH: An Empirical Contribution to the Debate on Corruption

CCMP 9.2005
Angelo ANTOCCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model

CTN 10.2005
Frédéric DEROIAN: Cost-Reducing Alliances and Local Spillovers

NRM 11.2005
Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

KTHC 12.2005
Carla MASSIDDA: Estimating the New Keynesian Phillips Curve for Italian Manufacturing Sectors

KTHC 13.2005
Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

PRCG 14.2005
Claudia GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

CSRM 15.2005
Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian LeatherFootwear Industry

KTHC 16.2005
Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

KTHC 17.2005
Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms

KTHC 18.2005
Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer

KTHC 19.2005
Mombert HOPPE: Technology Transfer Through Trade

PRCG 20.2005
Roberto ROSON: Platform Competition with Endogenous Multithoming

CCMP 21.2005
Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Glbal Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes

IEM 22.2005
Fausto CAVALLARO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method

CTN 23.2005
Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria

IEM 24.2005
Wietze LISE: Decomposition of CO2 Emissions over 1980–2003 in Turkey

CTN 25.2005
Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: Perceived Realism, Threat and WTP Estimates for Biodiversity Protection

SIEV 26.2005
Elena GIACOMELLI and Marco DI CAGLIA: Concession Length and Investment Timing Flexibility

NRM 27.2005
Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

CCMP 28.2005
Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information

NRM 29.2005
Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations

CCMP 30.2005
Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism

NRM 31.2005
Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies

NRM 32.2005
Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility

CCMP 33.2005
Joseph HUBER: Key Environmental Innovations

CTN 34.2005
Antoni CALFÓ-ARMENGOL and Rahimi ILKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation

CTN 35.2005
Francesco FERI (lxxii): Network Formation with Endogenous Decay

CTN 36.2005
Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.2005</td>
<td>Matthew O. JACKSON and Alison WATTS</td>
<td>(lxii): Social Games: Matching and the Play of Finitely Repeated Games</td>
</tr>
<tr>
<td>39.2005</td>
<td>Anna BOGOMOLNIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER</td>
<td>(lxii): The Egalitarian Sharing in Provision of Public Projects</td>
</tr>
<tr>
<td>40.2005</td>
<td>Francesco FERI</td>
<td>Stochastic Stability in Network with Decay</td>
</tr>
<tr>
<td>41.2005</td>
<td>Aart de ZEEUW</td>
<td>Dynamic Effects on the Stability of International Environmental Agreements</td>
</tr>
<tr>
<td>42.2005</td>
<td>NRM</td>
<td>Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands</td>
</tr>
<tr>
<td>43.2005</td>
<td>Carla VIEIRA and Ana Paula SERRA</td>
<td>Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms</td>
</tr>
<tr>
<td>44.2005</td>
<td>Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO</td>
<td>Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice</td>
</tr>
<tr>
<td>45.2005</td>
<td>Michael FINUS and Bianca RUNDHAGEN</td>
<td>Participation in International Environmental Agreements: The Role of Timing and Regulation</td>
</tr>
<tr>
<td>46.2005</td>
<td>Lorenzo PELLEGRINI and Reyer GERLAGH</td>
<td>Are EU Environmental Policies Too Demanding for New Members States?</td>
</tr>
<tr>
<td>47.2005</td>
<td>Matteo MANERA</td>
<td>Modeling Factor Demands with SEM and VAR: An Empirical Comparison</td>
</tr>
<tr>
<td>48.2005</td>
<td>CTN</td>
<td>A Characterization of Stochastically Stable Networks</td>
</tr>
<tr>
<td>49.2005</td>
<td>Ana MÁULEON, José SEMPERE-MONERRIS and Vincent J. VANNEBELBOSCH</td>
<td>R&D Networks Among Unionized Firms</td>
</tr>
<tr>
<td>50.2005</td>
<td>Carlo CARRARO, Johan EYCKMANS and Michael FINUS</td>
<td>Optimal Transfers and Participation Decisions in International Environmental Agreements</td>
</tr>
<tr>
<td>51.2005</td>
<td>Valeria GATTAF</td>
<td>From the Theory of the Firm to FDI and Internalisation: A Survey</td>
</tr>
<tr>
<td>52.2005</td>
<td>Alireza NAGHAVI</td>
<td>Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the Doha Proposal</td>
</tr>
<tr>
<td>53.2005</td>
<td>Margaretha BREIL, Greetel GAMBARELLI and Paulo A.L.D. NUNES</td>
<td>Economic Valuation of On Site Material Damages of High Water on Economic Activities based in the City of Venice: Results from a Dose-Response-Expert-Based Valuation Approach</td>
</tr>
<tr>
<td>54.2005</td>
<td>Alessandra del BOCA, Marzio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA</td>
<td>Investment and Time to Plan: A Comparison of Structures vs. Equipment in a Panel of Italian Firms</td>
</tr>
<tr>
<td>55.2005</td>
<td>Gernot KLEPPER and Sonja PETERSON</td>
<td>Emissions Trading, CDM, JI, and More – The Climate Strategy of the EU</td>
</tr>
<tr>
<td>56.2005</td>
<td>Maia DAVID and Bernard SINCLAIR-DESAGNÉ</td>
<td>Environmental Regulation and the Eco-Industry</td>
</tr>
<tr>
<td>57.2005</td>
<td>Alain-Désiré NIMUBONA and Bernard SINCLAIR-DESAGNÉ</td>
<td>The Pigouvian Tax Rule in the Presence of an Eco-Industry</td>
</tr>
<tr>
<td>58.2005</td>
<td>Helmut KARL, Antje MÖLLER, Ximena MATUS, Edgar GRANDE and Robert KAISER</td>
<td>Environmental Innovations: Institutional Impacts on Co-operations for Sustainable Development</td>
</tr>
<tr>
<td>60.2005</td>
<td>Andreas LOSCHEL and Dirk T.G. RÜBBELE</td>
<td>Impure Public Goods and Technological Interdependencies</td>
</tr>
<tr>
<td>61.2005</td>
<td>Christoph A. SCHALTEGGER and Benno TORGLER</td>
<td>Trust and Fiscal Performance: A Panel Analysis with Swiss Data</td>
</tr>
<tr>
<td>62.2005</td>
<td>Irene VALSECCHI</td>
<td>A Role for Instructions</td>
</tr>
<tr>
<td>63.2005</td>
<td>Valentina BOSETTI and Gianni LOCATELLI</td>
<td>A Data Envelopment Analysis Approach to the Assessment of Natural Parks’ Economic Efficiency and Sustainability. The Case of Italian National Parks</td>
</tr>
<tr>
<td>64.2005</td>
<td>Christoph A. SCHALTEGGER and Benno TORGLER</td>
<td>On the Determinants of Social Capital in Greece Compared to Countries of the European Union</td>
</tr>
<tr>
<td>65.2005</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI</td>
<td>Applications of Negotiation Theory to Water Issues</td>
</tr>
<tr>
<td>66.2005</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI</td>
<td>Advances in Negotiation Theory: Bargaining, Coalitions and Fairness</td>
</tr>
<tr>
<td>67.2005</td>
<td>Sandra WALLMAN</td>
<td>(lxiv): Network Capital and Social Trust: Pre-Conditions for ‘Good’ Diversity?</td>
</tr>
<tr>
<td>68.2005</td>
<td>Asimina CHRISTOFOROU</td>
<td>(lxiv): On the Determinants of Social Capital in Greece Compared to Countries of the European Union</td>
</tr>
<tr>
<td>69.2005</td>
<td>Eric M. USLANER</td>
<td>(lxiv): Varieties of Trust</td>
</tr>
<tr>
<td>71.2005</td>
<td>Grazia LERTOCCHI and Chiara STROZZI</td>
<td>(lxv): Citizenship Laws and International Migration in Historical Perspective</td>
</tr>
<tr>
<td>72.2005</td>
<td>Elisabeth van HYLCKAMA VLIJG</td>
<td>(lxv): Accommodating Differences</td>
</tr>
<tr>
<td>73.2005</td>
<td>Renato SÁNSA and Ercole SORI</td>
<td>(lxv): Governance of Diversity Between Social Dynamics and Conflicts in Multicultural Cities: A Selected Survey on Historical Bibliography</td>
</tr>
</tbody>
</table>
NRM 115.2005
Martin D. SMITH and Larry B. CROWDER (lxxvi): Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary

NRM 116.2005
Dan HOLLAND and Kurt SCHNIER (lxxvi): Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

PRCG 117.2005
John NELLIS: The Evolution of Enterprise Reform in Africa: From State-owned Enterprises to Private Participation in Infrastructure — and Back?

PRCG 118.2005
Bernardo BORTOLOTTI: Italy’s Privatization Process and its Implications for China

SIEV 119.2005
Anna ALBERINI, Marcella VERONESI and Joseph C. COOPER: Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys

CTN 120.2005
Fedderico ECHENIQUE and Mehmet B. YENMEZ: A Solution to Matching with Preferences over Colleagues

KTHC 121.2005
Valeria GATTAI and Corrado MOLTENI: Dissipation of Knowledge and the Boundaries of the Multinational Enterprise

KTHC 122.2005
Valeria GATTAI: Firm’s Intangible Assets and Multinational Activity: Joint-Venture Versus FDI

CCMP 123.2005
Socrates KYPREOS: A MERGE Model with Endogenous Technological Change and the Cost of Carbon Stabilization

CCMP 124.2005
Fuminori SANO, Keigo AKIMOTO, Takashi HOMMA and Toshimasa TOMODA: Analysis of Technological Portfolios for CO2 stabilizations and Effects of Technological Changes

CCMP 125.2005
Fredrik HEDEBUS, Christian AZAR and Kristian LINDGREN: Induced Technological Change in a Limited Foresight Optimization Model

CCMP 126.2005
Reyer GERLAGH: The Value of ITC under Climate Stabilization

PRCG 127.2005
John NELLIS: Privatization in Africa: What has happened? What is to be done?

PRCG 128.2005
Raphaël SOUBEYRAN: Contest with Attack and Defence: Does Negative Campaigning Increase or Decrease Voters’ Turnout?

PRCG 129.2005
Pascal GAUTIER and Raphael SOUBEYRAN: Political Cycles: The Opposition Advantage

ETA 130.2005
Giovanni DI BARTOLOMEO, Nicola ACOCELLA and Andrew HUGHES HALLETT: Dynamic Controllability with Overlapping targets: A Generalization of the Tinbergen-Nash Theory of Economic Policy

SIEV 131.2005
Elissaios PAPYRAKIS and Reyer GERLAGH: Institutional Explanations of Economic Development: the Role of Precious Metals

ETA 132.2005
Giovanni DI BARTOLOMEO and Nicola ACOCELLA: Tinbergen and Theil Meet Nash: Controllability in Policy Games

IEM 133.2005
Adriana M. IGNACIUK and Rob B. DELLINK: Multi-Product Crops for Agricultural and Energy Production – an AGE Analysis for Poland

IEM 134.2005
Raffaele MINIACI, Carlo SCARPA and Paola VALBONESI: Restructuring Italian Utility Markets: Household Distributional Effects

SIEV 135.2005
Valentina ZANATTA, Paolo ROSATO, Anna ALBERINI and Dimitrios REPPAS: The Impact of Speed Limits on Recreational Boating in the Lagoon of Venice

NRM 136.2005
Chi-CHUR CHAO, Bharat R. HAZARI, Jean-Pierre LAFFARGUE, Pasquale M. SGRO, and Eden S. H. YU (lxxviii): Tourism, Jobs, Capital Accumulation and the Economy: A Dynamic Analysis

NRM 137.2005
Michael MCALEER, Riaz SHAREEF and Bernardo da VEIGA (lxxviii): Risk Management of Daily Tourist Tax Revenues for the Maldives

NRM 138.2005
Guido CANDELA, Paolo FIGINI and Antonello E. SCORCI (lxxviii): The Economics of Local Tourist Systems

NRM 139.2005
Paola De AGOSTINI, Stefano PECCI, Federico PERALI and Michele BAGGIO (lxxviii): Simulating the Impact on the Local Economy of Alternative Management Scenarios for Natural Areas

NRM 140.2005
Simone VALENTE (lxxviii): Growth, Conventional Production and Tourism Specialisation: Technological Catching-up Versus Terms-of-Trade Effects

NRM 141.2005
Tiago NEVES SEQUEIRA and Carla CAMPOS (lxxviii): International Tourism and Economic Growth: a Panel Data Approach

NRM 142.2005
Francesco MOLA and Raffaele MIELE (lxxviii): An Open Source Based Data Warehouse Architecture to Support Decision Making in the Tourism Sector

NRM 143.2005
Nishaal GOOROOCCHURN and Adam BLAKE (lxxviii): Tourism Immiserization: Fact or Fiction?

NRM 144.2005
S. MARZETTI Dall’ASTE BRANDOLINI and R. MOSETTI (lxxviii): Social Carrying Capacity of Mass Tourist Sites: Theoretical and Practical Issues about its Measurement
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>