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Climate policy and the optimal extraction

of high- and low-carbon fossil fuels∗

Sjak Smulders† , Edwin van der Werf‡

Abstract

We study how restricting CO2 emissions affects resource prices and depletion over time.

We use a Hotelling-style model with two non-renewable fossil fuels that differ in their carbon

content (e.g. coal and natural gas) and in addition are imperfect substitutes in final good

production. We show that an economy facing a CO2 flow-constraint may substitute towards

the relatively dirty input. As the economy tries to maximise output per unit of emissions it

is not only carbon content that matters: productivity matters as well. With an announced

constraint the economy first substitutes towards the less productive input such that more

of the productive input is available when constrained. Preliminary empirical results suggest

that it is cost-effective to substitute away from dirty coal to cleaner oil or gas, but to

substitute from natural gas towards the dirtier input oil.

JEL Classification: O13, Q31, Q43

Keywords: Climate policy, non-renewable resources, input substitution

1 Introduction

Climate change policies that call for a reduction in CO2 emissions are likely to have an economy-

wide impact by imposing significant cost on most sectors in the economy. Substitution from

high-carbon to low-carbon energy sources may allow an economy to reduce carbon dioxide
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(CO2) emissions at lower cost. For example, a country can build gas-fueled powerplants instead

of coal-fueled powerplants. Or the country can expand sectors that rely on low-carbon inputs

at the cost of sectors that mainly use high-carbon inputs. The overall cost of climate change

policies therefore depends on the behaviour of both energy users and energy suppliers, and

important questions in this context are: how should energy users substitute between different

energy sources; should they make a transition towards a ’low-carbon economy’; how will resource

rents for energy producing countries change; should they leave reserves of high-carbon resources

(e.g. coal) unexploited, at least for a while?

In a standard static partial equilibrium setting, a CO2 emission tax affects the user cost of

high-carbon energy more than that of low-carbon energy and substitution will take place towards

low-carbon energy. We show that in the more appropriate dynamic setting, with energy coming

from non-renewable resource stocks, the results are quite different. Extending the canonical

non-renewable resource model with a second resource, we find that a binding CO2 emission

constraint not necessarily calls for substitution towards low-carbon fuels in the short-run, but

– depending on a well-defined measure of scarcity of the two resources – may instead call for

relatively more intensive high-carbon fuel use in the short-run and less of it in the long-run.

Taking the current global policy regarding global warming as a starting point, we study how a

permanent cap on carbon dioxide emissions (’Kyoto forever’) affects the composition of energy

use, the timing of extraction of different energy resources and their scarcity rents when the

government uses a cost-effective instrument. We build a model that is as close as possible to the

standard non-renewable resource model and distinguish between two non-renewable resources,

for example coal and natural gas, that are imperfect substitutes in production and differ in CO2

emissions per unit of effective energy.

We build our arguments on the fact that high-carbon and low-carbon inputs are imperfect

substitutes at an aggregate level. Substitution between different types of products implies
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indirect substitution between energy types and types of fossil fuels. For example, a shift in the

transport sector from road transport to rail implies a change in the fossil fuel mix as trucks use

oil-based products while the rail sector uses electricity, which can be generated by gas-fueled

powerplants. The energy sector can substitute between fossil fuel types when deciding upon

investment in new powerplants: although for an individual power plant the choice between coal,

oil, and gas is a discrete one, the point of indifference between the three inputs may differ at

different locations, leading to imperfect substitution at the aggregate level.

We show that relative extraction in the constrained economy not only depends on the carbon

content of the two inputs, but also on their relative productivity and physical scarcity. The best

way to cope with an emission constraint is to intertemporally reallocate the extraction of the

two given resource stocks such that production per unit of carbon dioxide emissions is relatively

high at the time the emission constraint is binding, and low when the constraint no longer (or

– in the case of an anticipated constraint – not yet) binds. Hence the constrained economy uses

the resource with the lowest amount of emissions per unit of output relatively more intensively,

as compared to an unconstrained economy. This resource is not necessarily the resource with

lowest amount of carbon per unit of energy: because of diminishing returns to each of the

energy inputs, the scarcer a resource relatively is, the higher its marginal productivity per unit

of emissions.

Our empirical results suggest that it is cost-effective to substitute away from dirty coal

to cleaner oil or gas. However, when it comes to choose between relatively clean natural gas

and the dirtier input oil, the paradoxical ”dirty-first result” might apply, i.e. there should

be substitution from (low-carbon) gas towards (high-carbon) oil, as the latter is found to be

relatively more productive per unit of CO2 emissions.

The option of substituting low-carbon for high-carbon fuels to meet climate targets has been

studied analytically in Chakravorty et al. (2006b) and numerically in Chakravorty et al. (1997).
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The latter paper develops a numerical integrated assessment model with several non-renewables

(oil, coal and natural gas), multiple energy demand sectors, and a clean renewable resource.

The authors simulate three scenarios for technical change with optimal climate policy, but do

not analytically identify the forces underlying relative extraction patterns. In Chakravorty et al.

(2006b), climate policy consists of an exogenous ceiling on the stock of pollution. A high- and a

low-carbon fossil fuel, together with a clean backstop technology, are used in energy generation.

The optimal order of extraction is studied. This work maintains the assumption that the fossil

fuels are perfect substitutes, so that often one resource is exclusively used and at certain points

in time there is a complete switch in resource use from one to the other fuel.

Most theoretical papers studying climate policy and fossil fuel extraction use a single (pol-

luting) non-renewable resource. Withagen (1994) extends the standard Hotelling (1931) model

with stock externalities from resource use and studies the optimal extraction path. Grimaud

and Rougé (2005) treat pollution as a flow and extend the model with endogenous technological

change and growth.

A second branch of theoretical papers has both a polluting non-renewable and a non-

polluting backstop technology. Tahvonen (1997) extends Withagen’s model with extraction

costs and a backstop and shows that, if the initial stock of externalities is low enough, the

extraction path of the non-renewable may have an inverted U-shape form. In a related paper,

Chakravorty et al. (2006a) study the effects of an exogenous ceiling on the stock of emissions on

the use of the non-renewable resource and the backstop technology during and after the period

that the constraint is binding.

Few papers study imperfect substitution between non-renewable resources. Exceptions are

Beckmann (1974) and Hartwick (1978), but these early studies are not concerned with carbon

emissions.

In the remainder of the paper, we first present our model in Section 2, and we study the
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economy without any form of climate policy in Section 2. In Section 4 we study an unexpected

and initially binding constant CO2 emission ceiling, and show that it might be optimal to use

relatively more of the high-carbon input. In section 5 we study the empirical relevance of this

paradoxical “dirty-first” result. Section 6 presents the effects of an announced constraint, and

in section 7 we look at the robustness of our results with respect to alternative policies and

technological change. We conclude in section 8.

2 The model

The representative consumer derives utility from final good Y and faces an intertemporal budget

constraint: dV (t) /dt = r (t)V (t) − Y (t). Here V (t) is wealth and r (t) is the market interest

rate, at time t. The consumer maximizes intertemporal utility:

U(t) =

∫ ∞

t
lnY (τ) · e−ρτdτ, (1)

where ρ is the utility discount rate. Maximizing (1) subject to the intertemporal budget con-

straint implies the following Ramsey rule:

Ŷ (t) = r (t) − ρ. (2)

where, as in the remainder of this paper, the hat denotes the growth rate (Ŷ = d lnY/dt).

The competitive final goods industry produces Y from two fossil fuel inputs, H and L, both

scaled to units of energy, according to the following constant returns to scale CES technology

(we suppress the time argument when no confusion arises):

Y = A

(
ηHR

σ−1

σ
H + ηLR

σ−1

σ
L

) σ
σ−1

, (3)
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where A is the level of total factor productivity, Ri is the amount extracted of resource i ∈

{H, L}, ηH and ηL are positive technology parameters and σ ∈ (0,∞) is the constant elasticity

of substitution. The use of fossil fuels causes emissions of carbon dioxide. The two inputs differ

in their CO2 emission intensity per unit of energy and we denote the (constant) CO2 emission

coefficients of H and L by εH and εL respectively, with εH > εL so that H is the relatively

dirty or high-carbon input. The total amount of emissions is denoted by Z.1 If the economy is

subject to an emissions constraint, total emissions cannot exceed a maximally allowed amount

Z̄, according to the following constraint:

εHRH (t) + εLRL (t) = Z (t) ≤ Z̄. (4)

As we are interested in the reaction of the economy to the constraint rather than in optimal

climate policy itself, we assume that the constraint Z̄ is exogenous. The government allocates

tradable emission permits over producers in the final goods industry, who trade them at a market

price pZ and buy resources of type i at price pRi.
2 The price of the final good is normalized

to one for every period. Firms maximize profits and the first order conditions for resource use

read (from (3) and (4)):

A
σ−1

σ ηi

(
Y

Ri

) 1

σ

= pRi + εipZ . (5)

This equation states that the marginal revenue from resource input i (the marginal product

at the left-hand side) equals its marginal cost (the user price at the right-hand side), which

1Our notation is consistent with the measurement of Ri in units of energy and Z in units of carbon. By
rescaling Ri and Z it is possible to normalize - without loss of generality - three of the four parameters εL, εH ,
ηL, and ηH , to unity. However, to facilitate interpretation and comparison to the data, we do not apply this
normalisation.

2Although we present the results for the decentralized economy with regulation through tradable pollution
permits, it can be shown that a planner who maximizes utility subject to the exogenous emission constraint
chooses exactly the same allocation. Hence, the setting we study is one of cost-effective environmental regulation.
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consists of the price of the resource augmented with the cost of pollution in case the constraint

is binding.3

The two fossil fuels are extracted from stocks of non-renewable resources, SH and SL re-

spectively, according to

dSi/dt = −Ri, (6)

∫ ∞

0
Ridt ≤ Si0,

where Si0 is the initial stock of resource i. Resource owners maximize the net present value of

profits from exploiting the non-renewable resource stocks, taking resource price pRi as given.

Extraction costs are assumed to be zero so the resource price is a pure scarcity rent. For each

of the resources this results in the familiar Hotelling rule:

p̂Ri (t) = r (t) . (7)

From this we see that the relative resource rent pRH/pRL will be constant over time, as both

rents grow at the same rate.

We are now ready to study extraction of the two resources. We first study extraction in

an economy without a CO2 emission constraint and then move to a constrained but otherwise

identical economy.

3Note that we will always have an interior solution. If Ri = 0 we would have Y = 0 for σ ≤ 1, while

∂Y/∂Ri = A
σ−1

σ ηi (Y/Ri)
1/σ

→ ∞ for σ > 1 which violates (5) for finite pRi and pZ .
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3 The economy without (the prospect of) climate policy

Suppose that from some instant T (possibly equal to 0) on the economy is unconstrained and

does not expect future climate policy. In this case the economy is described by a pure depletion

or cake eating model from t = T on (see e.g. Heal, 1993). Time differentiating (5) (with pZ = 0)

and substituting (7), we find that both inputs grow at the same rate. Combining the results

with (3), we find that the two scarcity rents grow at rate p̂Ri = r = Â. Finally, substituting

(2), we find that extraction and emissions decrease at a rate equal to the utility discount rate:

R̂H = R̂L = −ρ ∀ t ≥ T, (8)

After integrating (8) and imposing the constraint that forward-looking resource owners

anticipate that eventually all reserves will be sold, we find that the extraction rates of the two

resources can be expressed as:

Ri (t) = ρSi (t) ∀ t ≥ T. (9)

Consequently total emissions equal

Z(t) = ρ · (εHSH(t) + εLSL(t)) ∀ t ≥ T (10)

(see (4)). According to (8) and (9), relative extraction is constant over time and equal to instant

T ’s relative stock:

RH(t)

RL(t)
=

SH(T )

SL(T )
∀ t ≥ T. (11)

From the first order conditions (5) and equilibrium relative extraction (11) we find the equilib-
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rium relative scarcity rent:

pRH(t)

pRL(t)
=

ηH

ηL

(
SH(T )

SL(T )

)−1/σ

∀ t. (12)

These results reveal that as long as the economy is unconstrained and does not expect future

climate policy, relative extraction in the unconstrained economy is constant and equals relative

stocks at each point in time. Since conservation of both resource stocks requires that resource

owners earn the same return on the two resources, both resource prices grow at the common

rate r in equilibrium. Hence, the relative price is constant over time and the constant-returns-

to-scale production function then implies that relative demand is constant as well. As resource

owners want to fully exploit the available reserves, stock dynamics require relative extraction

to equal relative stocks which implies that the initial relative scarcity rent in an unconstrained

economy is determined by initial availability of the resources.

4 An unexpected emission constraint

We now introduce the constraint on emissions. The constraint is unexpectedly introduced at

time t = 0 and is binding by then. It will stay at the level Z̄ forever, which is known by all

agents. The constraint will not bind forever, though, since resource stocks, from which emissions

stem, are depleted over time (cf. (10)). In particular, we derive the following result:

Lemma 1. Define T as the instant from which onward emissions cease to be constrained. If

constraint Z̄ is introduced unexpectedly at t = 0, then:

T =
εHSH0 + εLSL0

Z̄
−

1

ρ
. (13)
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Proof. The total amount of CO2 that will be emitted from t = 0 on can be written as εHSH0 +

εLSL0 = [εH (SH0 − SH(T )) + εL (SL0 − SL(T ))] + [εHSH(T ) + εLSL(T )]. The first term in

square brackets represents total emissions in the period that the economy is constrained, so this

term equals TZ̄. For any t ≥ T , we can use (4) and (9), from which we find that the second

term in square brackets equals Z̄/ρ. Combining results, we find (13).

Clearly, a larger initial stock or a stricter environmental policy implies a longer period of

being restricted. A lower discount rate, and hence more patient consumers, implies that the

economy is suffering the constraint for a shorter period as the economy tends to extract and

pollute less (see (10)).

To meet the emissions constraint, (4), resource use can be reduced equi-proportionally, or its

composition can be changed (relative to the period before t = 0). In the latter case, emissions

per unit of output will change:

Lemma 2. Define S̄ ≡ (ηHεL/ηLεH)σ. Emissions intensity Z/Y reaches a minimum for

RH/RL = S̄ and increases in |RH/RL − S̄|.

Proof. From (3) and (4) we find that Z/Y is a function of RH/RL only. Taking the first order

derivative d(Z/Y )
d(RH/RL) , we find the result.

Because of imperfect substitutability, a very high or very low level of one of the resource

inputs – while still meeting the emission constraint – results in relatively little output and a

high emission intensity. The more polluting one input relatively is (as indicated by a relatively

large εi), the less intensively this input must be used should one want to minimize emissions

intensity. Similarly, if one input is much more productive than the other one (as indicated by

the ηi’s), intensive use of this input results in relatively high output and low emission intensity.

In equilibrium, the development of relative extraction in the constrained economy with an

unannounced emission constraint can be summarized by the following proposition:
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Proposition 1. Suppose a CO2 emission constraint is unexpectedly introduced. Then

1. if the high-carbon input (low-carbon input) is relatively scarce, that is if SH0/SL0 < (>)S̄,

(a) the relative scarcity rent pRH/pRL jumps up (down) on impact;

(b) relative extraction RH/RL jumps up (down) on impact, but decreases (increases) over

time as long as the economy is constrained;

(c) relative extraction stays above (below) the level of the relative stocks SH/SL as long

as the economy is constrained, but equals relative stocks when the constraint ceases

to be binding;

(d) the high-carbon resource stock declines faster (less fast) than the low-carbon resource

stock as long as the economy is constrained;

2. if the high- and low-carbon input are equally scarce (that is, if SH0/SL0 = S̄), the relative

scarcity rent, relative extraction and relative stocks do not change after the imposition of

the emission constraint;

3. if the two inputs are not equally scarce, emissions per unit of output jump down but in-

crease over time to a higher level compared to the period before the constraint was imposed;

they remain constant after the constraint ceases to be binding.

Proof. See Appendix.

The proposition states that at the instant on which emissions become unexpectedly con-

strained, substitution takes place towards the relatively scarce input, that is towards input i for

which Si0/Sj0 < S̄, where S̄ ≡ (ηHεL/ηLεH)σ see lemma 2. The increase in the relative use of

the scarce input implies that over time this input will become even scarcer, since the relative

stock Si/Sj decreases over time (part 1(d) of the proposition). This explains the jump in the

relative scarcity rent (part 1(a) of the proposition).
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Figure 1: Extraction paths for SH(0)/SL(0) < S̄: the unconstrained economy (thin arrows) and
the economy with an unannounced constraint (thick arrows)

We illustrate the paths of extraction, for the case in which SH0/SL0 < S̄, by the thick

arrows in Figure 1. The constrained economy moves along line Z̄, at which emissions are at the

imposed ceiling and which is defined by RH = (Z̄ − εLRL)/εH . Since over time the economy

moves to lower production isoquants, pollution per unit of GDP gradually increases over time.

The unconstrained economy, which according to (9) extracts a constant fraction of each available

stock, moves down along a ray from the origin with slope SH0/SL0.

Two basic forces drive the evolution of relative energy use: physical scarcity and marginal

productivity per unit of pollution. The emission constraint induces the economy to save on

pollution per unit of GDP. If relative energy use, RH/RL, was equal to S̄, output per unit of

emissions would be maximized; the closer relative use approaches S̄, the higher output per unit

of emissions. As the unconstrained economy aligns relative resource use with resource supply,

as measured by relative stocks, it uses relatively little of the relatively scarce resource, while
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this resource might have the highest marginal product per unit of CO2. Once the constraint is

imposed, the economy starts to use more of the resource that has highest marginal productivity

per unit of pollution, and hence relative extraction jumps closer to S̄. However, relative use

cannot deviate too much from relative stocks, since at the time the constraint no longer binds

(time T ), relative resource use and available stocks have to be aligned again. Therefore the

pollution constraint makes the economy intertemporally reallocate the extraction of resources,

such that output per unit of pollution is high when the pollution constraint is most binding, and

then gradually substitutes towards the resource with lower productivity per unit of pollution

as the constraint becomes less binding. Eventually, once the constraint does not bind anymore,

the economy smoothly ends up at the point where resource use and supply are aligned.

The implication is that the high-carbon input might be used intensively first. This ”dirty-

first result” arises when the high-carbon resource is physically relatively scarce, such that re-

source use in line with relative stocks implies that the high-carbon input has higher productivity

per unit of CO2. For future reference it is useful to formalize this ”dirty-first condition” as:

SH0

SL0
<

(
ηH/ηL

εH/εL

)σ

≡ S̄. (14)

To further explain why relative resource use changes over time and intertemporal substitu-

tion between high- and low-carbon resources takes place in the constrained economy, we divide

(5) for the low-carbon input by that for the high-carbon input and rewrite the result, to derive

the following expression:

ηH

ηL

(
RH

RL

)−1/σ

= (1 − ζ)
pRH

pRL
+ ζ

εH

εL
, (15)

where ζ = pZεL/(pRL + pZεL) is the share of pollution costs in the user price of low-carbon

resources. This equation reveals that relative demand for energy sources depends on the relative
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user price, which is a weighted average of relative scarcity rents and relative pollution costs.

Relative scarcity rents (pRH/pRL) and pollution costs (εH/εL) are constant over time (see

(12)). However, the share of pollution cost in the user price ζ gradually falls, since scarcity

rents increase and the price of pollution permits falls. As a result, the relative user price of

high-carbon resources changes over time, thus inducing intertemporal substitution.

Whether the relative user price rises or falls depends on the sign of εH/εL − pRH/pRL (see

(15)). If εH/εL < pRH/pRL, the relative user price of high-carbon resources increases over time.

Intuitively, with this inequality the high-carbon resource is relatively costly mainly because of

scarcity cost rather than pollution cost, and this resource benefits the least from lower pollution

costs. Users then gradually substitute towards the low-carbon resource during the period that

the emissions constraint is binding. This case arises if the inequality in (14) is satisfied.4 In the

opposite situation, with εH/εL > pRH/pRL and (14) holding with reverse inequality, the high-

carbon resource mainly benefits from pollution price reductions and users gradually substitute

to the high-carbon resource.

We conclude this section by a comparative static result. As climate change agreements

typically specify fixed-term installments of pollution reduction and are subject to renegotiation,

it is relevant to study the effects of a change in the stringency of the pollution cap. If the

emission constraint becomes tighter, pollution costs become a more important determinant in

the cost of resource use as compared to scarcity rents, ceteris paribus. As a consequence the

relative extraction rate jumps closer towards S̄ (where S̄ is the level that would apply if scarcity

did not matter), as is stated by the following proposition:

Proposition 2. Suppose a binding CO2 constraint is unexpectedly further tightened, and let

input i be the relatively scarce input: Si0/Sj0 < (ηiεj/ηjεi)
σ. Then, compared to the case with

4If SH0/SL0 < S̄, we have RH/RL < S̄, from (A.5) in the appendix, and then εH/εL < pRH/pRL, from (A.6).
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the initial (looser) constraint,

1. the economy is constrained for a longer period;

2. relative extraction jumps further towards the relatively scarce input;

3. Si/Sj is lower at the instant the constraint ceases to be binding, and hence relative extrac-

tion Ri/Rj will be lower when unconstrained;

4. the relative scarcity rent pRi/pRj jumps further upwards;

5. the carbon-intensity of output jumps further downwards.

Proof. See Appendix.

With a more stringent constraint, fewer resources can be extracted so that it takes longer

before unconstrained emissions are below the level of the ceiling and the economy is constrained

for a longer period. Furthermore, the tighter constraint induces the economy to further increase

the productivity per unit of emissions. The resulting relative extraction rate and relative re-

source rent are closer to the level (viz. S̄) that would apply in an economy in which pollution

only (rather than scarcity) would matter.

5 The empirical relevance of the “dirty-first condition”

The necessary condition for the relative use of high-carbon inputs to go up (our ”dirty-first

result”) is, as given in inequality condition (14), that the high-carbon input is relatively scarce

in a physical sense, but relatively productive in terms of its marginal contribution to output per

unit of CO2 emissions. We now want to explore whether this inequality could hold in reality.

We use data on prices, consumption, and stocks of coal, oil and gas, for the period 1984-2005
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(1987-2005 for coal due to availability of data on coal prices), to see for which fuels the inequality

(14) holds.5

Productivity parameters ηi in (14) cannot be directly observed, but can be derived from

observed equilibrium prices and quantities: assuming the data reflect a zero pollution tax and

using the firms’ optimality conditions (5) (with pZ = 0) to eliminate ηi, we can rewrite (14) as

SH(t)

SL(t)
<

RH(t)

RL(t)

(
pRH(t)/εH

pRL(t)/εL

)σ

. (16)

A first look at the data shows that roughly the following relations hold: Scoal(t) ≫ Soil(t) ≈

Sgas(t); Roil(t) ≫ Rcoal(t) > Rgas(t);
p
ε oil

(t) ≈ p
ε gas

(t) > p
ε coal

(t). First we consider the

combination with H = coal and L = oil: the left-hand side of the inequality in (16) exceeds

unity and the right-hand side is smaller than unity (for any σ ≥ 0). Hence, the inequality

(the ”dirty-first condition”) does not hold and we conclude that, according to the data, climate

policy will induce substitution from high-carbon coal to low-carbon oil. If we make the same

comparison for H = coal and L = gas, we see that with σ ≥ 0 the inequality is again likely to

be violated. Hence the data suggest that, after the introduction of a ceiling on the amount of

CO2 emitted, there will be substitution from high-carbon coal towards low-carbon gas. With

H = oil and L = gas, however, the inequality in (16) is likely to hold. That is, the data suggest

that climate policy induces substitution from low-carbon gas to high-carbon oil.

In the next step, we looked at the inequality in (16) for individual years. With a production

function with coal and oil as inputs, we then find that the inequality is indeed violated for

any σ ≥ 0, for all years, and the pattern of substitution is towards the low-carbon input oil.

The same result holds when H = coal and L = gas: climate policy induces substitution from

5We used data from the 2006 BP Statistical Review of World Energy, available at
http://www.bp.com/statisticalreview. We converted all data in Million Tonnes of Oil Equivalents. We
use relative emission coefficients that are compatible with US and German data. An appendix with further
details on data collection, the calibration, and regressions, is available from the authors upon request.
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high-carbon input coal towards the low-carbon input gas. However, when H = oil and L = gas,

the results are indecisive. For 11 out of our 22 observations we find that the result depends on

the size of σ, while for the other half of our observations the inequality holds for any σ ≥ 0

(hence substitution towards the high-carbon input). In the former case the inequality holds for

values of σ that are not too large, where the critical value of σ ranges from 0.6 to 17.5.

As a final exploration, we used our data to estimate the elasticity of substitution between

oil and gas. We used both country-level panel data and world-level time series data to estimate

productivity parameters and both short-run and long-run elasticities of substitution. All re-

gressions that report a positive value for the elasticity of substitution, and for which we cannot

reject the null hypothesis of no autocorrelation, report an elasticity of substitution between oil

and gas that is sufficiently low for the inequality in (16) to hold. Hence, the regressions suggest

that, following from proposition 1, with a ceiling on carbon dioxide emissions, it is optimal to

substitute from low-carbon gas towards high-carbon oil.

In sum: Our data suggest that both oil and gas are more productive per unit of CO2 than

scarce, relative to coal, and hence climate policy is likely to induce substitution from the high-

carbon fuel coal to the low(er)-carbon inputs oil and gas. However, according to our data

the marginal productivity of carbon coming from the use of oil is higher than the marginal

productivity of carbon coming from gas, while the two resources are roughly equally scarce in

a physical sense. As our theory suggests, this would make it optimal to substitute from gas

towards oil when climate policy constrains CO2 emissions, and the ”dirty-first result” might be

of more than just theoretical interest.
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6 Announcement effects

We now investigate how the economy reacts to an emission constraint in the case that agents

anticipate the actual implementation of the policy.6 In particular, we study the path of resource

extraction for the situation in which the carbon constraint starts to be effective at time tK > 0,

but is announced at time t = 0, so that preparations can be made over the period t ∈ (0, tK).

Agents maximize the same objective functions subject to the same constraints as in the

previous section, with the only difference that the constraint (4) is now binding from t = tK

instead of t = 0. The resulting path of relative extraction can be characterized by the following

proposition:

Proposition 3. Suppose a CO2 emission constraint is announced before it is actually imple-

mented. Then,

1. if SH0/SL0 < (>)S̄,

(a) relative extraction RH/RL (i) jumps down (up) at the announcement, (ii) stays con-

stant until actual implementation, (iii) jumps up (down) at actual implementation

and (iv) gradually declines (increases) until the pollution constraint ceases to be bind-

ing, attaining the level it had before implementation;

(b) the high-carbon resource stock (i) gets depleted less fast (faster) than the low-carbon

resource stock between announcement and start of implementation; (ii) the opposite

happens when the pollution constraint is binding;

(c) the level of emissions as well as emissions per unit of GDP jump down at implemen-

tation;

6Kennedy (2002) also studies the effect of an announced emission constraint. Using a two-period model
without resources he shows that it may be optimal for a small country to reduce emissions before the 2008-2012
commitment period, either because of co-benefits (e.g. reductions in emissions of other pollutants than CO2

that go together with a reduction in fossil fuel combustion) or because early investments in physical capital help
reducing adjustment costs.
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2. if SH0/SL0 = S̄, (a) relative extraction and relative stocks remain constant forever, and

(b) neither emissions nor emissions per unit of GDP jump at the time of implementation.

Proof. See Appendix.

The proposition implies that the announcement of an emission constraint at a future date

immediately causes a drop in the rate of extraction of the relatively more productive resource

(in terms of GDP per unit of emissions) and a rush on resources that will be used less after

implementation. As a consequence the constrained period starts with (relatively) more of the

productive resource, and resource owners of the other resource face a smaller loss (i.e. a smaller

drop in scarcity rent), as compared to the situation without announcement. At the instant the

constraint becomes binding the extraction rate of the productive input jumps up, and from then

on relative extraction develops as would be the case with an unanticipated constraint.

We illustrate the extraction paths for the case where SH0/SL0 < S̄ in Figure 2 by the

thick arrows. For the same case, Figure 3 illustrates the development of relative extraction

and relative stocks over time. Initially relative extraction is below relative stocks, causing an

increase in the latter, while after the introduction of the constraint relative extraction jumps

up to a level higher than that of the relative stocks, and hence the latter decline until relative

extraction and relative stocks are equal at the instant that the constraint ceases to be binding

(part 1 of proposition 3).

At the time the constraint is implemented, the economy substitutes towards the more pro-

ductive resource (in terms of GDP per unit of CO2), while keeping output constant (a jump

in relative extraction along the production isoquant from RH (0) /RL (0) to RH (tK) /RL (tK)

in Figure 2). As a consequence, the economy’s pollution intensity Z/Y decreases. Since the

introduction of the constraint is expected and fully anticipated, consumption cannot jump and

substitution takes place along a production isoquant, changing emissions but not the level of
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Figure 2: Extraction paths for SH(0)/SL(0) < S̄: the unconstrained economy (thin arrows) and
the economy with an announced constraint (thick arrows)

output of the final good. This is in contrast with the case without announcement in which both

emissions and output jump at the instant the constraint is introduced.

7 Alternative policies and technical change

In this section we check whether our results, and particularly the possibility of a “dirty-first” re-

sult, are robust with respect to alternative policies (a stock constraint and an emission intensity

constraint) and to the introduction of technological change in the model.

7.1 Stock and emission intensity constraints

The emissions reduction policy studied so far constrained the flow of pollution, as the simplest

interpretation of the Kyoto protocol. However, it is widely recognized that not the flow but

the stock of cumulative emissions, or CO2 concentration levels, should be the criterion of sound
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Figure 3: Development of relative extraction (solid lines) and relative stocks (dotted line) with
announced constraint, for SH(0)/SL(0) < S̄

climate change policy. Moreover, even a flow constraint can be combined with a flexibility

provision that firms could “bank” emission permits, allowing them to keep permits for later

use or borrow against the future. To check how our results could change with an emissions

concentration target or banking policy, we study how a permanent constraint on cumulative

emissions affects relative extraction of high- and low-carbon resources.

We denote cumulative emissions by X, so that Ẋ = Z. The policy that is announced and

implemented at time zero caps cumulative emissions, X(t) ≤ X̄, at any point in time. The

amount of pollution permits introduced at time 0 in the market equals X̄ − X(0) > 0; the

permits are bankable and tradable. We assume that the constraint is binding at introduction,

which requires that cumulative pollution from unconstrained resource use exceeds the amount

of permits, i.e. X(0) + εHSH(0) + εLSL(0) ≥ X̄.

Each unit of CO2 emissions reduces the remaining stock of permits. Hence, the stock of
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permits is like a non-renewable resource and the permit price, pZ , must grow at rate r to make

owners of permits indifferent between selling now or selling in future. Now the users of permits,

the producers, face resource price as well as pollution prices growing at the same rate r, so

that the user price, at the right-hand side of first-order condition (5), grow at rate r as well

and the relative user price of the two resources stays constant over time. Hence, while the flow

constraint induced substitution over time, the stock constraint fixes relative resource use over

time. The question now is whether the relative use of high-carbon inputs could be higher under

the stock constraint than in the unconstrained economy, in which case we would find again the

“dirty-first result”.

With both resource inputs growing at the same rate, we find – as demonstrated already

above for the unconstrained economy – that R̂H = R̂L = Ŷ − Â = (r − ρ) − r = −ρ so

that cumulative extraction of resource i and cumulative pollution from resource i after t = 0

equal Ri(0)/ρ and εiRi(0)/ρ, respectively. In addition, relative resource extraction RH/RL is

constant over time, even though the economy is constrained. The market sector now chooses

levels of resource inputs so as to maximize net present value of output under the constraints

that cumulative extraction does not exceed available resources, and cumulative pollution equals

available emissions permits. Using our solutions for the growth rates of resource input and

interest rate, we can write the maximization problem as a static one (at time t = 0; we omit

this time indicator):

Max. AF (RH , RL) /ρ, s.t. Ri ≤ ρSi,
∑

i

εiRi = ρ
(
X̄ − X

)
(17)

where F (.) is the CES function in (3). From the solution of (17) we derive the following:

Proposition 4. Suppose a binding stock constraint is unexpectedly introduced. Then

1. relative extraction RH/RL jumps up (down) if SH0/SL0 < (>)S̄, and
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2. leaves relative extraction unaffected if SH0/SL0 = S̄.

Proof. See Appendix.

Hence, under exactly the same conditions as under the flow constraint, SH0/SL0 < S̄, also

the stock constraint induces the economy to use relatively more of dirty input.

Note that a constraint on cumulative emissions is not equivalent to an emissions concentra-

tion target, since it abstracts from decay of the emissions stock in the atmosphere that comes

from ocean CO2 uptake and other carbon sinks. If we model the change in CO2 concentrations,

C, in the simplest possible way as the balance between emissions and proportional decay, viz.

Ċ = Z − δC, and assume a policy that caps emissions forever by imposing C(t) ≤ C̄, the

equilibrium path for relative extraction has features of both the stock-constraint path and the

flow-constraint path. Initially, C(t) < C̄, so the concentration level can increase but a rising

pollution price reflects that the ceiling is being approached, like in the stock constraint case.

Once concentrations hit the ceiling, the flow of pollution is restricted to total decay
(
Z = δC̄

)

until resource stocks are so small that unrestricted resource use results in low pollution levels

and declining concentrations
(
Z = ρ

∑
i εiSi < δC̄

)
, like in the flow constraint case. Again, the

dirty-first result will appear for SH0/SL0 < S̄.

As an alternative route to mitigate climate change, one that is claimed to be politically

more attractive, there have been proposals to set targets for emissions intensity (in particular

in the USA when it voted down the Kyoto Protocol and in Canada recently). In our model

this implies an upper bound on Z/Y . Recall that RH/RL = S̄ minimizes Z/Y and that,

because of the linear homogeneity of the production function, Z/Y increases with |RH/RL− S̄|.

Hence, the equilibrium relative extraction rate must be close enough to S̄ under an intensity

constraint. Starting from an unconstrained equilibrium in which high-carbon inputs have the

highest productivity per unit of CO2

(
SH0/SL0 < S̄

)
, the economy will satisfy a (binding)
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intensity constraint by increasing relative high-carbon use. Hence, our dirty-first result shows

up under the same conditions as with flow or stock constraint.

In sum, we find that however pollution is constrained (as a flow, stock, atmospheric con-

centration, or per unit of GDP alike), the economy starts using more of the resource input

that has the highest marginal productivity per unit of pollution. This input is the one with

high CO2 emissions per unit of energy if its physical scarcity (relative to productivity) forces

unconstrained use of it to be small (i.e. if SH0/SL0 < S̄).

7.2 Technological change

One could wonder whether technological change affects the “dirty-first” result that it might

be optimal to substitute towards the high-carbon input, after the introduction of climate pol-

icy. While we saw that neutral technological change, Â, has no impact on the relative use of

the two resources, this changes with non-neutral or biased technical change, to be modeled by

different rates of increase in ηH and ηL. An increase in ηH/ηL implies dirty-input-using tech-

nological change: the prospect of higher relative productivity of the high-carbon input in the

future induces users to postpone use of this resource. Compared to the situation with neutral

technological change, dirty-input-using technological change would shift the use of the high car-

bon input to the future and would partly offset any dirty-first effect of a emissions constraint.

However, if technological change has a high-carbon-saving bias (causing ηH/ηL to decrease),

the opposite would happen: frontloading of the high-carbon input, as compared to the neutral

technological change case, and reinforcing any dirty-first result.

The interesting question is therefore whether high-carbon-using or high-carbon-saving tech-

nological change (i.e. an increase in ηH/ηL) is the likely equilibrium outcome after the intro-

duction of climate policy. To answer this question we need a model of endogenous innovation,

for example along the lines of the model of directed technological change by Acemoglu (2002).
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Although the full development of such a model is left for future research, we can try to use

the following general insight from Acemoglu’s model without natural resources: when the use

of factor x increases relative to factor y, innovation tends to be factor-x using (see also Di

Maria and Smulders, 2004). This suggests that if users tend to shift to high-carbon inputs

in immediate reaction to the emissions constraint (our dirty-first result), innovation becomes

high-carbon-using. However, later on relative use of the high-carbon input must be necessarily

lower than without the emissions constraint, which will trigger high-carbon-saving technolog-

ical change. As a result, the productivity of the high-carbon input will be higher especially

in the medium-run, but not in the short-run (innovation takes time) and not in the long-run,

when innovation becomes pollution-saving (all in comparison to the unconstrained case). The

optimal reaction is then to concentrate extraction and use of the high-carbon resource in the

medium-run, rather than the short-run and the long-run, as compared to the case without

endogenous biased technological change. We therefore expect that endogenous technological

change mitigates the reaction of relative extraction to the emissions constraint (RH/RL stays

closer to the unconstrained level), but that the direction of the change in relative use as well as

the conditions for a dirty-first result are not affected.

8 Concluding remarks

In reaction to a ceiling on the amount of carbon dioxide emissions an economy may want to

substitute between high-carbon and low-carbon fuels. We have shown that in the standard

Hotelling model extended with a second, imperfectly substitutable resource, the economy opti-

mally decreases CO2 intensity of GDP. However, this is not always obtained through substitution

of low-carbon for high-carbon inputs (e.g. natural gas for oil). Since producers want to maxi-

mize output, given the emission constraint, resource users initially substitute towards the input
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which, at the margin, has the highest level of output per unit of carbon dioxide. This may be

the input with most CO2 emissions per unit of energy, in particular when this input is physically

relatively scarce: it is then used in production at relatively low levels and hence diminishing

returns cause its productivity to be relatively high. With an anticipated constraint, the reaction

is more complex: the economy switches towards the less productive input (in terms of GDP

per unit of carbon) before the constraint becomes binding and jumps towards a relatively more

intensive use of the more productive input when the emission ceiling becomes binding.

A preliminary empirical investigation indicates that it is optimal to substitute away from

coal towards gas and oil, but also at the same time to substitute away from low-carbon input

gas towards high-carbon input oil. Hence, in order to cope with climate change, energy policies

should not necessarily be directed to a fast transition to low-carbon energy sources. In addition

to relative pollution content, scarcity of resources as well as their productivity differences, as

shaped by substitution possibilities, should be taken into account.

The general insight from our analysis is that incorporating scarcity and intertemporal sub-

stitution in extraction into the analysis of pollution constraints may revert conclusions from the

usual static models. The limited substitution between energy resources in production plays an

essential role as well: demand factors are crucial in determining to which resource the economy

should substitute to minimize the cost of climate change policy. These factors include the sec-

toral composition of the economy and the degree to which technologies of energy users is biased

to a particular type of energy.

For future research it is interesting to consider the role of induced technological change in

more detail, as well as that of extraction costs, uncertainty, and strategic supply reactions from

monopolistic resource owners. A more detailed calibration or estimation of the model then

becomes possible as well.
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A Appendix

We simplify notation using variables without subscripts to denote high-carbon to low-carbon

ratios: R(t) ≡ RH(t)/RL(t), S(t) ≡ SH(t)/SL(t) and p(t) ≡ pRH(t)/pRL(t), and similarly

η ≡ ηH/ηL, ε ≡ εH/εL, and S0 ≡ SH0/SL0. For any variable x we define x(τ−) ≡ limt↑τ x(t)

and x(τ+) ≡ limt↓τ x(t).

Before proving the propositions, we present and prove the following lemma, which summa-

rizes the dynamics of relative extraction R over three relevant time periods: when the constraint

is announced but not yet effective, when the constraint binds, when the constraint is not binding

anymore.

Lemma 3. Let t = 0 be the instant at which the constraint is announced, tK be the instant at

which the constraint becomes binding, and TU the instant at which the constraint ceases to be

binding. Then without further shocks

R(t) = S(TU ), ∀ t ∈ (0, tK) (A.1)
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R(t) = R(T−
U ),∀ t ≥ TU . (A.2)

dR/dt = f(R)
[
R1/σ − η/ε

]
,∀ t ∈ (tK , TU ), (A.3)

where f is a function of R and parameters with f > 0 and ∂f/∂Z̄ = 0 for all R > 0,

TU∫

t

(
1

1 + εR(τ)
−

1

1 + εS(t)

)
dτ +

(
1

1 + εR(TU )
−

1

1 + εS(t)

)
1

ρ
= 0,∀ t ∈ [tK , TU ) (A.4)

dR(t)/dt ⋚ 0 ⇔ (η/ε)σ R R(t) R S(t) R R(TU ),∀ t ∈ (tK , TU ). (A.5)

Proof. For all t ∈ [0, tK) ∪ [TU ,∞) we have pZ = 0 and, from (5), p (t) = η (R (t))−1/σ. For

all t ≥ TU , we have, from (11), R (t) = S (t). Since p is constant over time (see (7)), we find

p (t) = η (S (TU ))−1/σ ∀ t; this proves (A.1).

Prices cannot jump in absence of unexpected events due to arbitrage. Then R can only

jump if output Y jumps (see (5)), which is ruled out by the concavity of the utility function.

This proves (A.2).

To derive (A.3), substitute one of the first-order conditions (5) into the other to eliminate

pZ , and rewrite:

A(σ−1)/σηL

pL

(
Y

RL

)1/σ

=
1 − p/ε

1 − R−1/ση/ε
. (A.6)

Time differentiate and substitute (7) and (2) to replace p̂L by Ŷ + ρ:

(σ − 1)Â − σ
(
Ŷ + ρ

)
+ Ŷ − R̂L =

1

1 − R1/σε/η
R̂. (A.7)

Define θL =
(
1 + ηR1−1/σ

)−1
and λL = (1 + εR)−1, which are the production elasticity and
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share in total pollution of the low-carbon input, respectively. This implies:

1

1 − R1/σε/η
=

λL (1 − θL)

λL − θL
. (A.8)

Time differentiating the binding emission constraint (4), we find R̂H = λLR̂ and R̂L = − (1 − λL) R̂.

Time differentiating the production function and inserting the two expressions from the emission

constraint, we find:

Ŷ = Â + (λL − θL) R̂. (A.9)

Substituting (A.8) and (A.9) into (A.7) and rearranging, we find:

R̂ =
(θL − λL) σρ

(θL − λL)2 σ + θL (1 − θL)
. (A.10)

The left-hand side of (A.6) is positive, so that sign(ε − p) = sign [R − (η/ε)σ]. Since p and ε

are constant over time, [R − (ε/η)σ] cannot switch sign. Since, from (A.8), sign (θL − λL) =

sign [R − (η/ε)σ], we can write (A.10) as in (A.3). This proves (A.3).

To derive (A.4), we note that the definitions of Z, R and S imply εLSL+εHSH
εLSLεHSH

Z
(

1
1+εR − 1

1+εS

)
=

RL
SL

− RH
SH

. Evaluating Z and R at time τ and S at time t, and integrating over τ from t to

infinity, the right-hand side becomes zero because of full depletion, so that, after dividing out a

positive term, we may write
∫ ∞

t Z(τ)
[

1
1+εR(τ) −

1
1+εS(t)

]
dτ = 0. For τ > tK , Z(τ) = Z̄ up till

TU and Z(τ) = Z̄eρ(TU−τ) after TU and R is constant after TU and continuous at TU , according

to (A.2). Then the above integral can be rewritten as in (A.4).

To proof (A.5), note that (A.4) implies that if R monotonically decreases over time, then

R(t) must first exceed, but eventually fall short of S(t). More generally, for ∀ t ∈ (tK , TU ), we

have: if dR(τ)/dτ ⋚ 0, ∀τ ∈ (t, TU ), then R(t) R S(t) R R(TU ). Equation (A.3) shows that,
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indeed, dR/dt cannot switch sign between tK and TU . Hence we have (A.5).

A.1 Proof of proposition 1

Prior to the unexpected constraint (t < tK = 0), the economy acts like the unconstrained

economy, so that, from (11), R(0−) = S(0−) = S(0). Then part 1(b) follows from (A.5) with

tK = 0. Part 1(c) follows from (A.2) and (A.5). Part 1(a) follows from 1(c) and (12). From

stock dynamics (6) we derive

dS

dt
=

RL

SL
(S − R) . (A.11)

Combined with part 1(b) of the proposition, this proves 1(d). This completes the proof of part

1 of proposition 1. The proof of part 2 is analogous.

Finally we prove part 3 using lemma 2. From 1(c) and (11), we have
∣∣R(0−) − S̄

∣∣ =

∣∣S0 − S̄
∣∣ >

∣∣R(0+) − S̄
∣∣ and with lemma 2 this proves the downward jump. The ”increase over

time” follows from 1(b). From 1(c) and (11), we have
∣∣R(0−) − S̄

∣∣ =
∣∣S0 − S̄

∣∣ <
∣∣R(T ) − S̄

∣∣ .

With lemma 2, this proves the higher end-level. The last part follows from (11).

A.2 Proof of proposition 2

Denote by Z̄o the ”old” constraint that is introduced at t = 0 and which would, in the absence

of shocks, cease to bind at T o. Denote by Z̄n the ”new” constraint that at time tn unexpectedly

replaces Z̄o, where Z̄o > Z̄n, and ceases to bind at Tn.

We prove part 1 by using the procedure we used for the proof of lemma 1 and derive Tn
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from (9), (10), and (A.2) in the following way:

εHSH0 + εLSL0 = [εH (SH0 − SH(tn) + SH(tn) − SH(Tn))

+εL (SL0 − SL(tn) + SL(tn) − SL(Tn))]

+εHSH(Tn) + εLSL(Tn)

= tnZ̄o + (Tn − tn)Z̄n + εH
RH(Tn)

ρ
+ εL

RL(Tn)

ρ

εHSH0 + εLSL0

Z̄o
−

1

ρ
= tn + (Tn − tn)

Z̄n

Z̄o
+

Z̄n

Z̄o

1

ρ
−

1

ρ

T o − Tn =

(
tn − Tn −

1

ρ

)
Z̄o − Z̄n

Z̄o

This explicitly solves for Tn. Since by assumption the new constraint is binding when intro-

duced, we must have tn < Tn, and hence Tn T T o ⇐⇒ Z̄o S Z̄n, which proves part 1.

We prove parts 2-4 for SH0/SL0 < (η/ε)σ ≡ S̄ only; the other cases are analogous. We

continue the notation of the proof of proposition 1. Since ∂f/∂Z̄ = 0 in (A.3), a decline in Z̄

affects the equilibrium path of R(t) only through an increase in TU . Write Ro(t) and Rn(t) for

relative extraction with the old and the new value for Z̄ respectively. Suppose the unexpected

change in the constraint would not on impact change relative extraction, i.e. Rn(tn+) = Ro(tn+).

Then, from (A.3), Rn (t) = Ro (t) ∀ t ∈ (tn, T o], but Rn (t) < Ro (t) ∀ t ∈ (T o, Tn) and the

integral at the left-hand side of (A.4) with R = Rn, t = tn and TU = Tn exceeds the integral

with R = Ro, t = tn and TU = T o. But this violates the equality in (A.4) for the new path. If

Rn(tn+) < Ro(tn+), then the integral for the new path is positive a fortiori. Hence, we must

have Rn(tn+) > Ro(tn+), which proves part 2 of the proposition.

We prove part 3 in a similar way. Suppose Rn(Tn) = Ro(T o), then Rn(t) = Ro(t−Tn +T o)

for t ∈ (tn + Tn − T o, Tn) and Rn(t) > Ro(tn) for t ∈ (tn, tn + Tn − T o). But then (A.4)

is violated on the new path since the integral becomes negative. A fortiori (A.4) is violated

with Rn(Tn) > Ro(T o). Hence we must have Rn(Tn) < Ro(T o). From (11) it follows that
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Sn(Tn) < So(T o), which proves part 3.

Combining the results in part 3 with (A.1), we find Ro(T o) = So(T o) > Sn(Tn) = Rn(Tn).

From (12), we then have po(T o) < pn(Tn).

Part 5 directly follows from part 3 of proposition 1.

A.3 Proof of proposition 3

Suppose the constraint is announced at t = 0, becomes binding at t = tK > 0 and ceases to be

binding at t = TA.

Assume that S (tK) < (η/ε)σ ≡ S̄. Then, from part 1 of proposition 1 and (A.11), we have

S (tK) > S (TA) . (A.12)

Suppose S0 ≤ R(0+). Then from (A.1), (A.2), and (A.11) the relative stock has to jump up

at t = tK for (A.12) to hold, which violates continuity of stocks. So S0 > R(0+) = S(TA). It

follows from (A.11) that dS/dt > 0 ∀ t ∈ (0, tK) so that S0 < S(tK). Since we started from

the assumption S(tK) < S̄, we must have S0 < S̄. The reasoning for the cases S(tK) ≥ S̄ are

analogous. This proves parts (i) and (ii) of part 1(a), part (i) of part 1(b), and part 2(a) of the

proposition; parts 1(a) (iv) and 1(b)(ii) follow from part 1 of proposition 1.

Arbitrage prevents resource rents to jump, so from (7) r is finite and from (2) income

cannot jump at any t > 0. Since the emissions constraint starts to be binding at t = tK > 0

by construction, either emissions jump down and hence emissions per unit of income jump

down at t = tK , or emissions do not jump and neither do emissions per unit of output. The

latter requires that relative extraction does not jump, which requires S0 = S̄, see part 2 (a)

of this proposition. The former, a jump down in emissions with continuous income, requires a

jump along a production isoquant. Hence Z/Y jumps down and RL and RH jump in opposite
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directions. Continue with the case S0 < S̄ (the proof for the other case is similar). Then

from part 1(a), we have R(0+) = R(t−K) = S(TA) < S̄, and R(t+K) > S(tK) > S(TA), so that

R(t+K) > R(t−K). That is, at time tK , R jumps up, so that RH jumps up and RL jumps down.

This proves parts 1(b)(iii), 1(c), and 2(b).

A.4 Proof of proposition 4

First, a binding constraint implies εHSH(t) + εLSL(t) > X̄ −X(t), where the rate of change of

both the left-hand side and the right-hand side equals Z(t), so that if the inequality holds at

t = 0, it holds at all t > 0. This allows us to drop the time indicator. Second, in section 7 we

have shown that with the pollution constraint binding, we have εHRH + εLRL = ρ
(
X̄ − X

)
.

Combining both results, we may write:

RH = ρSH ⇐⇒ R > S; RL = ρSL ⇐⇒ R < S. (A.13)

Now we define RL ≡ ρ
(
X̄ − X(0)

)
/

(
εL + εH S̄

)
and RH ≡ RLS̄, where

{
RH , RL

}
are the

extraction rates that give the highest possible level of output when constrained. Then the

solution to (17) reads and implies:

1. if SH > RH/ρ and SL > RL/ρ then RH = RH and RL = RL so that R = S̄;

2. if SH < RH/ρ then RH = ρSH < RH and RL = RL + ε
(
RH − ρSH

)
> RL so that, given

(A.13), S < R < R;

3. if SL < RL/ρ then RL = ρSL < RL and RH = RH + ε
(
RL − ρSL

)
> RH so that, given

(A.13), S > R > R.

Line 1 (line 2 and 3) proves the statements in part 2 (1) of the proposition.
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