Capuano, Carlo

Working Paper

Abuse of Competitive Fringe

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 91.2005

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Capuano, Carlo (2005) : Abuse of Competitive Fringe, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 91.2005

This Version is available at:
http://hdl.handle.net/10419/73913

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Abuse of Competitive Fringe
Carlo Capuano

NOTA DI LAVORO 91.2005

JULY 2005

PRCG – Privatisation Regulation Corporate Governance

Carlo Capuano, University of Naples FEDERICO II

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=762164

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Abuse of Competitive Fringe

Summary
The purpose of this article is to analyze how the presence of a competitive fringe, composed by price taker firms, can affect the sustainability of collusive equilibria. Our starting point is that there exists a diffused misunderstanding about its strategical role as collusive minus factor. We deny that. In fact, if it is true that in single dominance cases the presence of a competitive fringe significantly reduces the price increasing profitability and the leader market power, when we consider collective dominance cases the deviation profitability and the punishment mechanism become crucial. In this paper after introducing a minimal structural and strategical framework needed for describing this kind of competition, we prove that not only the presence of a competitive fringe is a collusive plus factor, but also that there exists a critical dimension of the fringe such that collusion is a Nash equilibrium of the static game.

Keywords: Collusion, Oligopoly, Competitive fringe, Bertrand, Nash

JEL Classification: D43, L1, L13

The author is grateful to Alfredo Del Monte for his relevant suggestions. All mistakes are the author’s.

Address for correspondence:

Carlo Capuano
Dipartimento di Teoria e Storia dell’Economia Pubblica
Complesso Universitario di Monte S.Angelo
80124, Naples
Italy
Phone: +39 081675366
Fax: +39 0817663540
E-mail: carcapua@unina.it
1 Introduction.

The purpose of this article is to analyze how the presence of a competitive fringe, composed by price taker firms, can affect the sustainability of collusive equilibria. Our starting point is that there exists a diffused misunderstanding about its strategical role as collusive minus factor. In fact, if we agree that when we deal with single dominance the presence of a competitive fringe is a collusive minus factor, we deny it when we consider collective dominance and collusion sustainability. Here we are why we talk about an abuse of competitive fringe, an abuse that we have also found in some recent European Commission sentences.

In presence of a competitive fringe composed by price taker firms, the topic literature, developed on single dominance issues, considers that the dominant firm market power is constrained, as its profits. In fact, when the leader increases its price, the competitive fringe responds increasing its supply, the effect is a significant reduction of the dominant firm residual demand and of its extra profits. This is the main result that we find, for example, in Landes e Posner (1981), Utton (1995), Carlton e Perloff (1990), Scherer e Ross (1990), and Del Monte (2002). In particular, in Del Monte, it is clear how the competitive fringe supply elasticity, directly correlated with the number of competitive fringe members, its also positively correlated with the absolute value of the dominant firm residual demand: the bigger is the fringe, the higher is the residual demand elasticity, the lower is the leader mark up.

Unfortunately, the same theoretical structure cannot be easily switched to collective dominance analysis. In fact, when we deal with tacit collusion as a Subgame Perfect Equilibrium, it is known that it is not crucial the price increasing profitability but the unilateral incentive to deviate from the collusive price. It is essential to analyze the feasibility of an undercutting strategy and the strengthen of the punishment mechanism implemented. Nevertheless, there exists a broad literature about cartel stability in presence of a competitive fringe. The main problem is that in order to explain the competition, in many papers collateral assumptions are introduced, assumptions not always necessary for isolating the strategical role of the mere presence of a competitive fringe: capacity constraints, incomplete information, multivariable competition as R&D or advertisement, product differentiation and so on.

Indeed, this paper starts discussing the minimal structural and strategical framework needed for describing a market where a cartel faces a competitive fringe. Then, after proposing a simple model setting, we analyze the role of the competitive fringe in a Supergames framework. We prove not only that when

1The Merger Task Force of the European Commission has accepted the presence of a competitive fringe as a defence referring to the risk of a post merger collective dominance. For example see the case CVC/Danone. Moreover, in some seminal cases as Nestlé/Perrier, Kali und Salz and, the last but not the least, the case Airtours/ First Choice, the absence of a competitive fringe is mentioned as a collusive plus factor. See also the Enterprise Papers n.6/2001, “Assessment criteria for distinguishing between competitive and dominant oligopolies in merger control” published by the European Commission.

2On the residual demand, the inverse elasticity rule holds.
collusion is sustained as a Subgame Perfect Equilibrium, the competitive fringe is a collusive plus factor, but also that there exists a critical dimension of the fringe such that collusion is a Nash Equilibrium of the static game.

2 Minimal structural and strategical assumptions.

2.1 Characterization of a competitive fringe.

We start properly defining the structural and strategical assessment of the firms belonging to a competitive fringe.

The first question involves their technology. The competitive fringe member cannot be characterized by constant returns to scale. Otherwise, defining a supply function of the fringe would be impossible. For the same reason, we cannot assume increasing returns to scale. This means that the competitive fringe members ought to be characterized by decreasing returns to scale, maybe by a U shaped cost function. Moreover, in some models a capacity constraint is assumed. But, this could not be time consistent in a repeated game framework. Otherwise, it would be not clear why constrained firms don’t invest in capacity if profitable.

A second question involves the strategical behavior of the competitive fringe. If we assume that the competitive fringe member operates as a Cournot Stackelberg follower, this would not cohere with the idea that price taker firms observe a price, the equilibrium one, and choose a quantity as control variable. In fact, Cournot assumptions require the firms to operate as monopolist on a residual demand but this makes them price makers. Similarly, a competitive fringe member cannot operate as Bertrand-Stackelberg follower: price taker firms never decides a price.

2.2 Characterization of the leader firms.

The competitive fringe observes and responds to the cartel behavior: the latter cannot operate as Cournot-Stackelberg Leader for the same reason that the former, the competitive fringe, is not composed by Cournot-Stackelberg Followers. Moreover, if the cartel members, the leaders, decide their quantity, the observed price cannot be the equilibrium one. This is because when the competitive fringe responds, the price will change and it can happen that payoffs will be negative for all the firms: in some cases an equilibrium does not exist at all. Indeed, we assume that in any contest, the leaders choose a price. The lowest price among leaders’ ones will be the equilibrium price.

A second hypothesis is required about technology. Assuming that the leaders are characterized by a different technology with respect to the competitive fringe

3 Anyway, many author study cartel stability with a Cournot fringe. See, for example, Shaffer (1995), or de Roos (2004).
4 Our assumption, then, is different from the ones we find in Rothschild (1992) and Ross (1992), in Posada (2000) and (2001), where cartel stability is considered in a market with a Bertrand differentiated fringe.
is risky because it would be difficult to isolate the strategical impact of this asymmetry on the implemented equilibrium. Anyway, if we assume constant returns to scale we have a trivial result.

Proposition 1 In a linear demand market where a competitive fringe, characterized by an increasing and continuous supply function, competes with some leader firms characterized by constant returns to scale, the presence of the competitive fringe is not relevant with respect to the sustainability of tacit collusion as a Subgame Perfect Equilibrium.

Proof. We assume that the firms belonging to the competitive fringe operate as price taker. Under the assumption of decreasing returns to scale, without capacity constraints, the profit maximizer problem surely admits a solution, an increasing, continuous supply function. The leaders serve the residual demand. Directly from the seminal paper of Friedman (1971), we know that when colluders are characterized by constant returns to scale, the demand parameters do not affect the critical discount factor needed for sustaining collusion as a non-cooperative equilibrium in an infinitely repeated game. This is true when the leaders choose either quantities or prices as control variables.

Again, we cannot assume increasing returns to scale for any leader firm because of the natural monopoly result.

At last, we can assume that leaders are characterized by decreasing returns to scale as the competitive fringe. It is easier but not necessary assume symmetry. In this case, there exist some problems about the definition of a Bertrand Nash equilibrium for the leaders firms, but also before figuring it out we prove some relevant results .

2.3 A proposed model setting.

We assume good homogeneity and we consider a linear demand market where two leader firms compete with a n firm competitive fringe.

\[P = A - \beta Q \]

(1)

with \(A, \beta > 0 \)

where

\[Q = q_1^L + q_2^L + q_1^F + \ldots + q_n^F \]

(2)

is the total amount produced by the two leaders, indexed by the apex \(L \), added to the total amount produced by the \(n \) firms belonging to the competitive fringe, indexed by the apex \(F \).

The technology is symmetric and characterized by decreasing returns to scale. We assume a quadratic cost function for all the firms, the leaders and the competitive fringe.
\[C_i(q) = \frac{1}{2} q^2 \]

Neither structural nor strategical capacity constraints are considered. We have complete but not perfect information because of the following time setting. First, the leaders simultaneously choose their prices. Then, the lowest one is considered as the equilibrium one by any firm belonging to the competitive fringe. They operate as price takers that solve the own profit maximization problem. This two-stage game is infinitely repeated. If tacit collusion among the leaders is implemented, then it would be as a Subgame Perfect Equilibrium.

2.3.1 The competitive fringe supply and the leaders residual demand

Given the 3, from the first order condition of the standard profit maximization problem we derive the firm supply function \(s_i(p) \), and, adding for all the firms belonging to, we obtain the competitive fringe supply function, \(S^F(p) \).

\[C'(q_i) = q_i = p = s_i(p) \tag{4} \]

\[S^F(p) = n s_i(p) = np \tag{5} \]

where the equilibrium price \(p \) is the lowest price between the leaders ones.

\[p = \min(p_1, p_2) \tag{6} \]

The leaders residual demand is now a function of the number \(n \) of firms belonging to the competitive fringe.

\[D^L(.) = D(p) - S^F(p) \tag{7} \]

\[D^L(.) = A - (n + \beta)p \]

where

\[b = n + \beta > 0 \tag{9} \]

The number \(n \) of firms belonging to the competitive fringe affects the elasticity of the leaders residual demand function: the more are the firms, the flatter is the inverse demand function, i.e. the higher is the absolute value of the price elasticity.

\[|\eta^L| = \left| -\frac{\partial D^L}{\partial p} \right| = \frac{p}{A - bp} \tag{10} \]

where

\[\frac{d |\eta^L|}{dn} = \frac{\partial |\eta^L|}{\partial b} \frac{\partial b}{\partial n} = \frac{p}{(A - bp)^2} > 0 \tag{11} \]

In the following we examine how demand elasticity affect collusion sustainability. We have already had a first result when leaders are characterized by constant returns to scale\(^5\). A second result involves decreasing returns to scale and it is the main contribute of our analysis.

\(^5\)See Proposition 1.
3 Collusion among leaders.

Referring to the seminal contribute of Friedman (1971), we characterized the level of collusion sustainability in a market by the critical discount factor \(\delta^* \) needed for letting firms be indifferent between colluding and deviating in an infinitely repeated game.

\[
\delta^* = \frac{\Pi^{\text{Coll}}}{1 - \delta^*} = \Pi^{\text{dev}} + \delta^* \frac{\Pi^{\text{Nash}}}{1 - \delta^*}
\]

\[
\delta^* = \frac{\Pi^{\text{dev}} - \Pi^{\text{Coll}}}{\Pi^{\text{dev}} - \Pi^{\text{BN}}}
\]

where \(\Pi^{\text{Coll}} \), \(\Pi^{\text{dev}} \) and \(\Pi^{\text{Nash}} \) respectively are the static collusive profits, the deviation and Nash ones. As standard, we assume trigger strategies and a forever Nash reversion punishment.

3.1 Static collusive profits.

In order to derive the static collusive profits, the problem to solve is the same faced by a multiplane monopolist. With symmetry and decreasing returns to scale the production will be equally shared until the firm marginal cost is equal to the marginal revenue. When price is the control variable we have the following.

\[
\text{MAX } 2\Pi^{\text{Coll}}_p = p(A - bp) - 2 \left[\frac{1}{2} \left(\frac{A - bp}{2} \right)^2 \right]
\]

\[
\frac{\partial 2\Pi^{\text{Coll}}}{\partial p} = A - 2bp + \frac{A}{2}b - \frac{1}{2}b^2p = 0
\]

\[
p^{\text{Coll}} = \frac{2 + b}{b(4 + b)} (14)
\]

\[
q^{\text{Coll}}_1 = q^{\text{Coll}}_2 = \frac{A}{4 + b} (15)
\]

\[
\Pi^{\text{Coll}}_1 = \frac{\Pi^{\text{Coll}}_2}{2b(4 + b)} (16)
\]

The leaders output, \(q^{\text{Coll}}_1 = q^{\text{Coll}}_2 \), the collusive price, \(p^{\text{Coll}} \), and the collusive profits, \(\Pi^{\text{Coll}}_1 = \Pi^{\text{Coll}}_2 \), are negatively correlated with the number of firms belonging to the competitive fringe: the bigger is the competitive fringe, the less profitable is collusion. But, this result only affects a part of our problem. Differently from single dominance cases, with a cartel the unilateral incentive to deviate from collusion would be the crucial issue.

3.2 Deviation profits.

In a supergame framework collusion is sustainable in a no cooperative way only if the short period gains by deviation are not higher than the expected losses
by Nash Reversion for ever\(^6\). This kind of trade-off, that often depends on the agent intertemporal discount factor, needs that the deviation is profitable, i.e. the collusion is not a static Nash equilibrium. Otherwise, for any discount factor, collusion is part of a Subgame Perfect Equilibrium. This consideration helps us to introduce the second result of our paper.

Proposition 2 When we consider decreasing returns to scale, if the demand elasticity is sufficiently high, oligopolistic firms have not incentive to deviate from collusive agreement by undercutting, i.e. collusion is a Nash equilibrium of the static game.

Proof. The proof of this proposition requires to compute the price and the profits by deviation from the collusive scheme. We can anticipate the intuition that underlies these results: without any structural or strategical capacity constraints of the served demand, when a firm tries to undercut rivals, it has to serve all the generated demand. If we consider a infinitesimal price deviation the effect on marginal revenue is not significant; at the same time, because of the decreasing returns to scale, we have a relevant increasing in the marginal cost of the firm that now has to serve all the generated demand. The net effect can decreases the deviator profit with respect the collusive level.

Analytically, we start computing the deviation price. If the first leader decides to deviate from the collusive price, it is going to play as a monopolist on the leaders residual demand \(D_L\).

\[
if \ p_1^{dev} < p_2 \Rightarrow q_1(p^{dev}) = D_L(p^{dev})
\]

A first candidate as deviation price is the monopoly price \(p^M\), computed as the following.

\[
\begin{align*}
MAX \Pi^M_p & = p(A-bp) - \frac{1}{2}(A-bp)^2 \\
\frac{\partial \Pi^M}{\partial p} & = A-2bp + Ab - b^2p = 0 \\
p^M & = A \frac{1+b}{b(2+b)}
\end{align*}
\]

where

\[
\forall b > 0, \quad p^M = A \frac{1+b}{b(2+b)} > p^{coll} = A \frac{2+b}{b(4+b)}
\]

The monopoly price is always higher than the collusive one: this is because of the decreasing returns to scale assumption. Indeed, the profit function is a quadratic form of the implemented price, this implies that the deviation price will be the higher one that the firm can offer, i.e. an infinitesimal deviation.

\(^6\)Gains and losses are computed with respect to the collusive profits as benchmark.
from the collusive one.

\[p^{\text{dev}} = p^{\text{Coll}} - \varepsilon \quad \text{con} \ \varepsilon \to 0 \]
\[\Pi^{\text{dev}} \simeq \Pi^M (p^{\text{Coll}}) \simeq A^2 \frac{4}{b(4+b)^2} \]

Comparing 21 to 10,

\[\forall b = (n + \beta) \geq 4 \Leftrightarrow n \geq n^* = 4 - \beta, \]
\[\Pi^{\text{dev}} \simeq A^2 \frac{4}{b(4+b)^2} \leq \Pi^{\text{Coll}} = A^2 \frac{1}{2b(4+b)} \]

It is shown that if the coefficient \(b \) of the demand function is high enough, deviation is not profitable, i.e. collusion is a Nash equilibrium of the static game.

Moreover,

Proposition 3 Because of the demand elasticity is positively correlated with the number of firms belonging to the competitive fringe, there exists a critical mass \(n^* \) for the competitive fringe such that collusion is a Nash equilibrium of the static game.

Proof. Because of the 11, this is directly derived from the previous proposition.

The figures 1 and 2 show that both collusive both monopoly profits are quadratic functions of the implemented price. As verified with the??, the monopoly price is always higher than the collusive one. A deviation from collusion shifts the deviator onto the monopoly profit function, in the neighborhood of the collusive price. We have two cases. In the first one, shown in figure 2, deviation profits are higher than collusive ones, i.e. the unilateral deviation is profitable. In the second case, deviation profits are lower than collusive ones, i.e. the unilateral deviation is not profitable: collusion is a Nash equilibrium.

3.3 A Bertrand-Nash Equilibrium.

The propositions 1 and 3 already deny the idea that the presence of a competitive fringe play the role of a *collusive minus factor*. The last step is to analyze what happens when the condition 22 is not verified, i.e. the number of firms belonging to the competitive fringe is smaller than the critical value \(n^* \). In

\[\text{This is the case shown in figure 2.} \]
Figure 1: Case of non profitable unilateral deviation from collusive price.

Figure 2: Case of profitable unilateral deviation from collusive price.
order to compute the critical discount factor β, we have to derive a non collusive Bertrand Nash equilibrium of the model. In particular, we look for a symmetric one.

We consider the problem of a leader firm that maximizes its own profits and faces a residual demand that now assumes as given not only the competitive fringe supply but also the in equilibrium served demand of the other leader.

\[
\max_{p_1} \Pi_1 = p_1 (D^L_q - q_2) - \frac{1}{2} (D^L_q - q_2)^2
\]

\[
= p_1 (A - bp_1 - q_2) - \frac{1}{2} (A - bp_1 - q_2)^2
\]

\[
\frac{\partial \Pi_1}{\partial p} = A - q_2 + Ab - 2bp_1 - bq_2 - b^2p_1 = 0
\]

\[
p_1 = \frac{(A - q_2)(b+1)}{(b+2)b}
\]

\[
q_1(p_1, q_2) = A - q_2 - \frac{b+1}{b+2}(A - q_2)
\]

Under symmetry, we impose

\[
q_1 = q_2 = q_{BN} = A - q_{BN} - \frac{b+1}{b+2}(A - q_{BN})
\]

then

\[
q_{BN} = \frac{A}{b+3}
\]

and

\[
p_{BN1} = p_{BN2} = \frac{A b + 1}{b b + 3}
\]

\[
\Pi_{BN1} = \Pi_{BN2} = A^2 \frac{(b + 2)}{2 (b + 3)^2 b}
\]

where, $\forall b > 0$,

\[
p_{BN} = \frac{A b + 1}{b b + 3} < \frac{A}{b(4 + b)} = p_{Coll}
\]

\[
\Pi_{BN} = A^2 \frac{(b + 2)}{2 (b + 3)^2 b} < \frac{A^2}{2b(4 + b)} = \Pi_{Coll}
\]

In order to verify that the price vector $\{p_{BN1}, p_{BN2}\}$ is a Nash equilibrium we have to prove that there not exist any profitable unilateral deviations. Given the 26 and the 19, the price of monopoly p^M is higher that the price p_{BN1}. Again, because of the quadratic form of the profit function with respect to the implemented price, we analyze a infinitesimal deviation from the price p_{BN1}.

\[
\Pi_1^{dev}(p_1 = \frac{A b + 1}{b b + 3} - \varepsilon) \approx p_{BN1} (A - bp_{BN1}) - \frac{1}{2} (A - bp_{BN1})^2
\]
Indeed, the condition 28 proves that there exist any profitable unilateral deviations.

The model admits infinite Nash equilibrium of the static game. The derived one is sustainable for all b, it is symmetric and characterized by lower profits than the collusive ones; moreover, it has been computed starting from an own profit maximization problem.

3.4 The collusive critical discount factor.

When the condition 22 does not hold, derived a non-collusive Nash equilibrium of the static game, we can compute the critical discount factor needed for sustaining collusion as a Subgame Perfect Equilibrium.

$$
\delta^* = \frac{\Pi_{dev} - \Pi^{Coll}}{\Pi_{dev} - \Pi^{BN}}
= \frac{\frac{4}{b(4+b)^2} - \frac{1}{2b(4+b)}}{\frac{4}{b(4+b)^2} - \frac{(b+2)^2}{2(b+3)^2}b}
= \frac{(b+3)^2(b-4)}{(2b^2-16b+b^3-40)}
$$

(29)

where

$$
\frac{\partial \delta^*}{\partial b} \big|_{b \in [1,4]} = \left(-2 \right) \frac{(4b+b^2-4)(b+3)}{(2b^2-16b+b^3-40)^2} \leq 0
$$

(30)

Proposition 4 When (i) the leader firms are characterized by decreasing returns to scale, (ii) a deviation from collusive equilibria is profitable, then the critical discount factor δ^* needed for sustaining collusion as a Subgame Perfect Equilibrium, is a decreasing function of the number of firms belonging to the competitive fringe.

Proof. Given 9, there exists a positive correlation between the number n of firms belonging to the competitive fringe and the demand coefficient b. The derivative of the discount factor 29 with respect to b, as shown by the 30, is always negative. Then, the derivative of the discount factor δ^* with respect the number of firms n is always negative.

$$
\frac{d\delta^*}{dn} \big|_{b \in [1,4]} = \left[\frac{\partial \delta^*}{\partial b} \frac{\partial b}{\partial n} \right]_{b \in [1,4]} \leq 0
$$

(31)

Indeed, we have shown another case where the presence of competitive fringe is not a collusive minus factor.
Figure 3: The critical discount factor $\delta(b)$ as a decreasing function of the demand coefficient b.

4 Conclusions.

In this paper we have proved that, under a structurally and strategically consistent model setting, the presence of a competitive fringe is a collusive plus factor. The assumptions of decreasing returns to scale, absence of structural or strategical capacity constraints, are crucial to derive a contest where the firm that deviate from collusion by undercutting the rivals, faces losses with respect the collusive payoff. The main intuition is the following. If an infinitesimal price deviation does not affect marginal revenue, when we impose the deviator to serve all the generated demand, we see a relevant increasing of marginal cost and a consequent decreasing of the marginal profit. It can happens that deviation from collusive price is not profitable, i.e. collusion is a Nash equilibrium of the static game. In particular, we prove that the bigger is the competitive fringe, the more likely is that collusive equilibrium is implemented.
References.

<table>
<thead>
<tr>
<th>Code</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEM</td>
<td>1.2004</td>
<td>Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>2.2004</td>
<td>Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>3.2004</td>
<td>Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>4.2004</td>
<td>Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>7.2004</td>
<td>Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>8.2004</td>
<td>Wolfgang AUSSENNEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>9.2004</td>
<td>Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>11.2004</td>
<td>Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>12.2004</td>
<td>Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>13.2004</td>
<td>Maarten C.W. JANSSEN (lxv): Auctions as Coordination Devices</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>14.2004</td>
<td>Gadi FIBICH, Arieh GAVIOS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>15.2004</td>
<td>Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>16.2004</td>
<td>Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>17.2004</td>
<td>Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>18.2004</td>
<td>Angela ANTOCI, Simone BORGHESI and Paolo RUSSU (lxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>19.2004</td>
<td>Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>21.2004</td>
<td>Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>23.2004</td>
<td>Pius ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>24.2004</td>
<td>Jean-Jacques NOWAK, Mondher SAHII and Pasquale M. SGRO (lxvii): Tourism, Trade and Domestic Welfare</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>26.2004</td>
<td>Juan Luis EUGENIO-MARTIN, Noelia MARTIN MORALES and Riccardo SCARPA (lxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>27.2004</td>
<td>Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>29.2004</td>
<td>Marian WEBER (lxviii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>30.2004</td>
<td>Trond BJØRNDAL, Phoebe KOUNDOURI and Sean PASCOE (lxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>33.2004</td>
<td>Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution</td>
<td></td>
</tr>
</tbody>
</table>
An Application to the Recreational Value of Forests

Gernot KLEPPER and Sonja PETERSON: Possibilities of the Contingent Valuation Method

Andrea BIGANO and Stef PROOST: On Coalition Formation with Heterogeneous Agents

Timo GOESCHL and Tun LIN: The Socio-Economic Value of Natural Riverbanks in the Netherlands

Ingo BRÄUER and Rainer MARGGRAF: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Dinko DIMITROV, Peter BORM, Rudd HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Competitiveness Effects

Anastasios XEPAPADEAS and Constadina PASSA: Optimal Disease Eradication

Giannis VARDAS and Anastasios XEPAPADEAS: Resource-Abundance and Economic Growth in the U.S.

E.C.M. RUIJGROK: Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management

Barbara BUCHNER and Carlo CARRARO: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Micheal FINUS: Modelling Dynamic Conditional Correlations

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits

Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA: The Amenity Value of Climate to German Households

Koen REHDAHNZ and David MADDISON: The EU Emissions Trading Scheme. Allowance Prices, Trade Flows, Competitiveness Effects

Micheal FINUS: Modesty Pays: Sometimes

Sergio CURRARINI and Marco MARINI: Optimal Disease Eradication

Ekin BIROL, Ágnes GYOVAI and Melinda SMALE: Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Scott BARRETT and Michael HOEL: Optimal Disease Eradication

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Ingo BRAÜER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturated Streams

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Koen REHDAHNZ and David MADDISON (lxvi): The Amenity Value of Climate to German Households

Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ (lxvi): The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Micheal FINUS: Modesty Pays: Sometimes!

Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Micheal FINUS: Modesty Pays: Sometimes!

Micheal FINUS: Modesty Pays: Sometimes!
Auctions
Price Sealed-Bid Auctions
the Incidence of Commissions in Auction Markets
Maximization and the Multiple-Good Monopoly
and Evidence from Timber Auctions
Roberto BURGUET

Externalities
in Stabilization Policies?
Bookbuilding is Dominating Auctions
Real Option Analysis
Environmental Taxation Game
Č
Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEV

Savings
Analysis of Climate Change Impacts on Tourism
from Poland and the Czech Republic
Information: The Differential Tax Revisited
Resources Management: A DSS Tool and a Pilot Study Application
Economy

David FISK: Transport Energy Security. The Unseen Risk?

Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism
Pressure Groups in the Kyoto Protocol’s Adoption Process

Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS: Comparing Individual-Specific Benefit Estimates
for Security of Energy Supply

Carlo GIUPPONI, Jaroslav MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water
Resources Management: A DSS Tool and a Pilot Study Application
Margaretha BREIL, Anita FASSIO, Carlo GIUPPONI and Paolo ROSATO: Evaluation of Urban Improvement
on the Islands of the Venice Lagoon: A Spatially-Distributed Hedonic-Hierarchical Approach

Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric
Information: The Differential Tax Revisited

Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta IVALDI, Valentina MARIN and Francesca
PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach
Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence
from Poland and the Czech Republic

Maria BERRITELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium
Analysis of Climate Change Impacts on Tourism

Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy
Savings
Elisavos PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth

Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization
Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A
Latent-Class Approach Based on Intensity of Participation

Riccardo SCARPA Kenneth G. WILLIS and Melinda ACUTT: Comparing Individual-Specific Benefit Estimates
for Public Goods: Finite Versus Continuous Mixing in Logit Models

Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited
Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma

Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys

Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The
Influence of World Energy Prices

Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an
Environmental Taxation Game

ZhongXiang ZHANG: The World Bank’s Prototype Carbon Fund and China
Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy
Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A
Real Option Analysis

Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incompete Contracts

Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealed Bid Auctions: Theory
and Evidence from Timber Auctions

David GOLDBREICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions
Roberto BURGUET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More
Simple Economics

Ali HORTACSU and Samita SAREEN (lxxi): Order Flow and the Formation of Dealer Bids: An Analysis of
Information and Strategic Behavior in the Government of Canada Securities Auctions

Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUQUET (lxxi): How to Win Twice at an Auction. On
the Incidence of Commissions in Auction Markets

Claudio MEZZETTI, Aleksandar PEKE and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price
Auctions

John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-
Price Sealed-Bid Auctions

François DEGEORGE, François DERRIEN and Kent L. WOMACK: Quid Pro Quo in IPOs: Why
Bookbuilding is Dominating Auctions

Barbara BUCHNER and Silvia DALL ‘OLIO: Russia: The Long Road to Ratification. Internal Institution and
Pressure Groups in the Kyoto Protocol’s Adoption Process

Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate
Policy Analysis? A Robustness Exercise with the FEEM-RICE Model

Alejandro M. MANELLI and Daniel R. VINCENT (lxxi): Multidimensional Mechanism Design: Revenue
Maximization and the Multiple-Good Monopoly

Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism
in Stabilization Policies?

Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with

Cesare Dosi and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants
Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?

William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling

Alberto PETRUCCI: On the Incidence of a Tax on PureRent with Infinite Horizons

Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRIGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change

Qiang WU and Paolo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

Hubert KEMPFF: Is Inequality Harmful for the Environment in a Growing Economy?

Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI: The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change

Angelo ANTOCI: Regional and Sub-Global Climatic Blocks. A Game Theoretic Perspective on Bottom-up Climate Regimes

Barbara BUCHNER and Carlo CARRARO: Microsimulating the Effects of Household Change and Extreme Weather Events on Tourism

Fausto CAVALLARO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method

Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria

Wietze LISE: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian Leather/Footwear Industry

Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

Carla MASSIDDA: Estimating the New Keynesian Phillips Curve for Italian Manufacturing Sectors

Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian Leather/Footwear Industry

Susanne MENZEL and Riccardo SCARPA: Protection Motivation Theory and Contingent Valuation: Perceived Realism, Threat and WTP Estimates for Biodiversity Protection

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Start-up Entry Strategies: Employer vs. Nonemployer firms

Michele MORETTO and Gianpaolo ROSSINI: Start-up Entry Strategies: Employer vs. Nonemployer firms

Frédéric DEROIAN: The Core of Directed Network Problems with Quotas

Bandel OMBUMBA, Jonathan TEY and Niki FOMAS: Decoupling the Role of Coalitions and Coalitional Equilibria in the Analysis of TFP Convergence

Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism

Maria Angeles GARCIA-VALIÑAS: Decentralization and Environment: An Application to Water Policies

Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility

Joseph HUBER: Key Environmental Innovations

Antoni CALVÓ-ARMENGOL and Rahimi ILKILIC (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation

Francesco FERI (lxxii): Network Formation with Endogenous Decay

Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
<table>
<thead>
<tr>
<th>Conference</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTN</td>
<td>37.2005</td>
<td>Applications of Negotiation Theory to Water Issues</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI</td>
</tr>
<tr>
<td>CTN</td>
<td>38.2005</td>
<td>Advances in Negotiation Theory: Bargaining, Coalitions and Fairness</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI</td>
</tr>
<tr>
<td>KTHC</td>
<td>67.2005</td>
<td>Natural Capital and Social Trust: Pre-Conditions for ‘Good’ Diversity?</td>
<td>Asimina CHRISTOFOROU</td>
</tr>
<tr>
<td>KTHC</td>
<td>68.2005</td>
<td>Citizenship Laws and International Migration in Historical Perspective</td>
<td>Maia DAVID and Bernard SINCLAIR-DESAGNÉ</td>
</tr>
<tr>
<td>KTHC</td>
<td>69.2005</td>
<td>Varieties of Trust</td>
<td>Eric M. USLANER</td>
</tr>
<tr>
<td>KTHC</td>
<td>71.2005</td>
<td>Citizenship Laws and International Migration in Historical Perspective</td>
<td>Graziella BERTOCCHI and Chiara STROZZI</td>
</tr>
<tr>
<td>IEM</td>
<td>72.2005</td>
<td>Identifying Options and Policy Instruments for the Internalisation of External Costs of Electricity Generation, Dissemination of External Costs of Electricity Supply</td>
<td>Alberto LONGO and Anil MARKANDYA</td>
</tr>
<tr>
<td>IEM</td>
<td>73.2005</td>
<td>Governance of Diversity Between Social Dynamics and Conflicts in Multicultural Cities: A Selected Survey on Historical Bibliography</td>
<td>Renato SANS and Ercole SORI</td>
</tr>
<tr>
<td>CCMP</td>
<td>74.2005</td>
<td>Environmental Valuation with Quantitative Data</td>
<td>Anna BOGOMOLNA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER</td>
</tr>
</tbody>
</table>
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>