Abuse of Competitive Fringe
Carlo Capuano
NOTA DI LAVORO 91.2005

JULY 2005
PRCG – Privatisation Regulation Corporate Governance

Carlo Capuano, University of Naples FEDERICO II

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=762164

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Abuse of Competitive Fringe

Summary
The purpose of this article is to analyze how the presence of a competitive fringe, composed by price taker firms, can affect the sustainability of collusive equilibria. Our starting point is that there exists a diffused misunderstanding about its strategical role as collusive minus factor. We deny that. In fact, if it is true that in single dominance cases the presence of a competitive fringe significantly reduces the price increasing profitability and the leader market power, when we consider collective dominance cases the deviation profitability and the punishment mechanism become crucial. In this paper after introducing a minimal structural and strategical framework needed for describing this kind of competition, we prove that not only the presence of a competitive fringe is a collusive plus factor, but also that there exists a critical dimension of the fringe such that collusion is a Nash equilibrium of the static game.

Keywords: Collusion, Oligopoly, Competitive fringe, Bertrand, Nash

JEL Classification: D43, L1, L13

The author is grateful to Alfredo Del Monte for his relevant suggestions. All mistakes are the author’s.

Address for correspondence:

Carlo Capuano
Dipartimento di Teoria e Storia dell’Economia Pubblica
Complesso Universitario di Monte S.Angelo
80124, Naples
Italy
Phone: +39 081675366
Fax: +39 0817663540
E-mail: carcapua@unina.it
1 Introduction.

The purpose of this article is to analyze how the presence of a competitive fringe, composed by price taker firms, can affect the sustainability of collusive equilibria. Our starting point is that there exists a diffused misunderstanding about its strategical role as collusive minus factor. In fact, if we agree that when we deal with single dominance the presence of a competitive fringe is a collusive minus factor, we deny it when we consider collective dominance and collusion sustainability. Here we are why we talk about an abuse of competitive fringe, an abuse that we have also found in some recent European Commission sentences\footnote{The Merger Task Force of the European Commission has accepted the presence of a competitive fringe as a defence referring to the risk of a post merger collective dominance. For example see the case CVC/Danone. Moreover, in some seminal cases as Nestlé/Perrier, Kali und Salz and, the last but not the least, the case Airtours/ First Choice, the absence of a competitive fringe is mentioned as a collusive plus factor. See also the Enterprise Papers n.6/2001, “Assessment criteria for distinguishing between competitive and dominant oligopolies in merger control” published by the European Commission.}.

In presence of a competitive fringe composed by price taker firms, the topic literature, developed on single dominance issues, considers that the dominant firm market power is constrained, as its profits. In fact, when the leader increases its price, the competitive fringe responds increasing its supply, the effect is a significant reduction of the dominant firm residual demand and of its extra profits. This is the main result that we find, for example, in Landes e Posner (1981), Utton (1995), Carlton e Perloff (1990), Scherer e Ross (1990), and Del Monte (2002). In particular, in Del Monte, it is clear how the competitive fringe supply elasticity, directly correlated with the number of competitive fringe members, its also positively correlated with the absolute value of the dominant firm residual demand: the bigger is the fringe, the higher is the residual demand elasticity, the lower is the leader mark up\footnote{On the residual demand, the inverse elasticity rule holds.}.

Unfortunately, the same theoretical structure cannot be easily switched to collective dominance analysis. In fact, when we deal with tacit collusion as a Subgame Perfect Equilibrium, it is known that it is not crucial the price increasing profitability but the unilateral incentive to deviate from the collusive price. It is essential to analyze the feasibility of an undercutting strategy and the strengthen of the punishment mechanism implemented. Nevertheless, there exists a broad literature about cartel stability in presence of a competitive fringe. The main problem is that in order to explain the competition, in many papers collateral assumptions are introduced, assumptions not always necessary for isolating the strategical role of the mere presence of a competitive fringe: capacity constraints, incomplete information, multivariable competition as R&D or advertisement, product differentiation and so on.

Indeed, this paper starts discussing the minimal structural and strategical framework needed for describing a market where a cartel faces a competitive fringe. Then, after proposing a simple model setting, we analyze the role of the competitive fringe in a Supergames framework. We prove not only that when
collusion is sustained as a Subgame Perfect Equilibrium, the competitive fringe is a collusive plus factor, but also that there exists a critical dimension of the fringe such that collusion is a Nash Equilibrium of the static game.

2 Minimal structural and strategical assumptions.

2.1 Characterization of a competitive fringe.

We start properly defining the structural and strategical assessment of the firms belonging to a competitive fringe.

The first question involves their technology. The competitive fringe member cannot be characterized by constant returns to scale. Otherwise, defining a supply function of the fringe would be impossible. For the same reason, we cannot assume increasing returns to scale. This means that the competitive fringe members ought to be characterized by decreasing returns to scale, maybe by a U shaped cost function. Moreover, in some models a capacity constraint is assumed. But, this could not be time consistent in a repeated game framework. Otherwise, it would be not clear why constrained firms don’t invest in capacity if profitable.

A second question involves the strategical behavior of the competitive fringe. If we assume that the competitive fringe member operates as a Cournot Stackelberg follower, this would not cohere with the idea that price taker firms observe a price, the equilibrium one, and choose a quantity as control variable. In fact, Cournot assumptions require the firms to operate as monopolist on a residual demand but this makes them price makers\(^3\). Similarly, a competitive fringe member cannot operate as Bertrand-Stackelberg follower: price taker firms never decides a price\(^4\)!

2.2 Characterization of the leader firms.

The competitive fringe observes and responds to the cartel behavior: the latter cannot operate as Cournot-Stackelberg Leader for the same reason that the former, the competitive fringe, is not composed by Cournot-Stackelberg Followers. Moreover, if the cartel members, the leaders, decide their quantity, the observed price cannot be the equilibrium one. This is because when the competitive fringe responds, the price will change and it can happen that payoffs will be negative for all the firms: in some cases an equilibrium does not exist at all. Indeed, we assume that in any contest, the leaders choose a price. The lowest price among leaders’ ones will be the equilibrium price.

A second hypothesis is required about technology. Assuming that the leaders are characterized by a different technology with respect to the competitive fringe

\(^3\) Anyway, many author study cartel stability with a Cournot fringe. See, for example, Shaffer (1995), or de Roos (2004).

\(^4\)Our assumption, then, is different from the ones we find in Rothschild (1992) and Ross (1992), in Posada (2000) and (2001), where cartel stability is considered in a market with a Bertrand differentiated fringe.
is risky because it would be difficult to isolate the strategic impact of this
asymmetry on the implemented equilibrium. Anyway, if we assume constant
returns to scale we have a trivial result.

Proposition 1 In a linear demand market where a competitive fringe, char-
acterized by an increasing and continuous supply function, competes with some
leader firms characterized by constant returns to scale, the presence of the com-
petitive fringe is not relevant with respect to the sustainability of tacit collusion
as a Subgame Perfect Equilibrium.

Proof. We assume that the firms belonging to the competitive fringe operate
as price taker. Under the assumption of decreasing returns to scale, without
capacity constraints, the profit maximizer problem surely admits a solution, an
increasing, continuous supply function. The leaders serve the residual demand.
Directly from the seminal paper of Friedman (1971), we know that when col-
luders are characterized by constant returns to scale, the demand parameters
do not affect the critical discount factor needed for sustaining collusion as a non
cooperative equilibrium in an infinitely repeated game. This is true when the
leaders choose either quantities or prices as control variables. ■

Again, we cannot assume increasing returns to scale for any leader firms
because of the natural monopoly result.

At last, we can assume that leaders are characterized by decreasing returns
to scale as the competitive fringe. It is easier but not necessary assume symmetry.
In this case, there exist some problems about the definition of a Bertrand Nash
equilibrium for the leaders firms, but also before figuring it out we prove some
relevant results .

2.3 A proposed model setting.

We assume good homogeneity and we consider a linear demand market where
two leader firms compete with a n firm competitive fringe.

\[P = A - \beta Q \]

with

\[A, \beta > 0 \]

where

\[Q = q_1^L + q_2^L + q_1^F + ... + q_n^F \]

is the total amount produced by the two leaders, indexed by the apex L, added
to the total amount produced by the n firms belonging to the competitive fringe,
indexed by the apex F.

The technology is symmetric and characterized by decreasing returns to
scale. We assume a quadratic cost function for all the firms, the leaders and the
competitive fringe.
Neither structural nor strategical capacity constraints are considered. We have complete but not perfect information because of the following time setting. First, the leaders simultaneously choose their prices. Then, the lowest one is considered as the equilibrium one by any firms belonging to the competitive fringe. They operate as price takers that solve the own profit maximization problem. This two-stage game is infinitely repeated. If tacit collusion among the leaders is implemented, then it would be as a Subgame Perfect Equilibrium.

2.3.1 The competitive fringe supply and the leaders residual demand

Given the \(q \), from the first order condition of the standard profit maximization problem we derive the firm supply function \(s_i(p) \), and, adding for all the firms belonging to, we obtain the competitive fringe supply function, \(S^F(p) \).

\[
C_i(q) = \frac{1}{2}q^2
\]

(3)

\[
S^F(p) = ns_i(p) = np
\]

(4)

where the equilibrium price \(p \) is the lowest price between the leaders ones.

\[
p = \min(p_1, p_2)
\]

(6)

The leaders residual demand is now a function of the number \(n \) of firms belonging to the competitive fringe.

\[
D^L(.) = D(p) - S^F(p)
\]

(7)

\[
D^L(.) = A - (n + \beta)p = A - bp
\]

(8)

where \(b = n + \beta > 0 \)

The number \(n \) of firms belonging to the competitive fringe affects the elasticity of the leaders residual demand function: the more are the firms, the flatter is the inverse demand function, i.e. the higher is the absolute value of the price elasticity.

\[
|\eta^L| = -\frac{\partial D^L}{\partial p} \frac{p}{D^L} = \frac{bp}{A - bp}
\]

(10)

where

\[
d|\eta^L| = \frac{\partial |\eta^L|}{\partial b} \frac{\partial b}{\partial n} = \frac{p}{(A - bp)^2} > 0
\]

(11)

In the following we examine how demand elasticity affect collusion sustainability. We have already had a first result when leaders are characterized by constant returns to scale\(^5\). A second result involves decreasing returns to scale and it is the main contribute of our analysis.

\(^5\) See Proposition 1.
3 Collusion among leaders.

Referring to the seminal contribute of Friedman (1971), we characterized the level of collusion sustainability in a market by the critical discount factor δ^* needed for letting firms be indifferent between colluding and deviating in an infinitely repeated game.

\[
\delta^* = \frac{\Pi^{Coll} - \Pi^{dev}}{\Pi^{dev} - \Pi^{Nash}}
\]

where Π^{Coll}, Π^{dev} and Π^{Nash} respectively are the static collusive profits, the deviation and Nash ones. As standard, we assume trigger strategies and a forever Nash reversion punishment.

3.1 Static collusive profits.

In order to derive the static collusive profits, the problem to solve is the same faced by a multiplane monopolist. With symmetry and decreasing returns to scale the production will be equally shared until the firm marginal cost is equal to the marginal revenue. When price is the control variable we have the following.

\[
\max_p p(A - bp) - 2 \left[\frac{1}{2} \left(\frac{A - bp}{2} \right)^2 \right] = 0
\]

\[
\frac{\partial^2 \Pi^{Coll}}{\partial p^2} = A - 2bp + \frac{A}{2}b - \frac{1}{2}b^2p = 0
\]

\[
p^{Coll} = A \frac{2 + b}{b(4 + b)}
\]

\[
q_1^{Coll} = q_2^{Coll} = \frac{A}{4 + b}
\]

\[
\Pi_1^{Coll} = \Pi_2^{Coll} = \frac{A^2}{2b(4 + b)}
\]

The leaders output, $q_1^{Coll} = q_2^{Coll}$, the collusive price, p^{Coll}, and the collusive profits, $\Pi_1^{Coll} = \Pi_2^{Coll}$, are negatively correlated with the number of firms belonging to the competitive fringe: the bigger is the competitive fringe, the less profitable is collusion. But, this result only affects a part of our problem. Differently from single dominance cases, with a cartel the unilateral incentive to deviate from collusion would be the crucial issue.

3.2 Deviation profits.

In a supergame framework collusion is sustainable in a no cooperative way only if the short period gains by deviation are not higher than the expected losses
by Nash Reversion for ever\footnote{Gains and losses are computed with respect to the collusive profits as benchmark.}. This kind of trade-off, that often depends on the agent intertemporal discount factor, needs that the deviation is profitable, i.e. the collusion is not a static Nash equilibrium. Otherwise, for any discount factor, collusion is part of a Subgame Perfect Equilibrium. This consideration helps us to introduce the second result of our paper.

Proposition 2 When we consider decreasing returns to scale, if the demand elasticity is sufficiently high, oligopolistic firms have not incentive to deviate from collusive agreement by undercutting, i.e. collusion is a Nash equilibrium of the static game.

Proof. The proof of this proposition requires to compute the price and the profits by deviation from the collusive scheme. We can anticipate the intuition that underlies these results: without any structural or strategical capacity constraints of the served demand, when a firm tries to undercut rivals, it has to serve all the generated demand. If we consider a infinitesimal price deviation the effect on marginal revenue is not significant; at the same time, because of the decreasing returns to scale, we have a relevant increasing in the marginal cost of the firm that now has to serve all the generated demand. The net effect can decreases the deviator profit with respect the collusive level.

Analytically, we start computing the deviation price. If the first leader decides to deviate from the collusive price, it is going to play as a monopolist on the leaders residual demand D_L.

\[
	ext{if } p_1^{\text{dev}} < p_2 \Rightarrow q_1(p^{\text{dev}}) = D_L(p^{\text{dev}})
\]

(17)

A first candidate as deviation price is the monopoly price p^M, computed as the following.

\[
\begin{align*}
\max_p \Pi^M_p &= p(A-bp) - \frac{1}{2}(A-bp)^2 \\
\frac{\partial \Pi^M}{\partial p} &= A-2bp + Ab - b^2p = 0 \\
p^M &= \frac{A + b}{b(2 + b)}
\end{align*}
\]

(18)

where \(\forall b > 0 \), \(p^M = \frac{A + b}{b(2 + b)} > p^{\text{coll}} = \frac{A}{b(4 + b)} \)

(19)

The monopoly price is always higher than the collusive one: this is because of the decreasing returns to scale assumption. Indeed, the profit function is a quadratic form of the implemented price, this implies that the deviation price will be the higher one that the firm can offer, i.e. an infinitesimal deviation
from the collusive one.

\[
p_{\text{dev}} = p_{\text{Coll}} - \varepsilon \quad \text{con } \varepsilon \to 0 \quad (20)
\]

\[
\Pi_{\text{dev}} \simeq \Pi_{\text{M}} (p_{\text{Coll}}) \simeq A^2 \frac{4}{b(4+b)^2} \quad (21)
\]

Comparing 21 to 10,

\[
\forall b = (n + \beta) \geq 4 \Leftrightarrow n \geq n^* = 4 - \beta,
\]

\[
\Pi_{\text{dev}} \simeq A^2 \frac{4}{b(4+b)^2} \leq \Pi_{\text{Coll}} = A^2 \frac{1}{2b(4+b)} \quad (22)
\]

It is shown that if the coefficient \(b \) of the demand function is high enough, deviation is not profitable, i.e. collusion is a Nash equilibrium of the static game.

Moreover,

Proposition 3 Because of the demand elasticity is positively correlated with the number of firms belonging to the competitive fringe, there exists a critical mass \(n^* \) for the competitive fringe such that collusion is a Nash equilibrium of the static game.

Proof. Because of the 11, this is directly derived from the previous proposition.

The figures 1 and 2 show that both collusive both monopoly profits are quadratic functions of the implemented price. As verified with the??, the monopoly price is always higher than the collusive one. A deviation from collusion shifts the deviator onto the monopoly profit function, in the neighborhood of the collusive price. We have two cases. In the first one, shown in figure 2, deviation profits are higher than collusive ones, i.e. the unilateral deviation is profitable. In the second case, deviation profits are lower than collusive ones, i.e. the unilateral deviation is not profitable: collusion is a Nash equilibrium.

3.3 A Bertrand-Nash Equilibrium.

The propositions 1 and 3 already deny the idea that the presence of a competitive fringe play the role of a collusive minus factor. The last step is to analyze what happens when the condition 22 is not verified, i.e. the number of firms belonging to the competitive fringe is smaller than the critical value \(n^* \). In

\[\text{This is the case shown in figure 2.}\]
Figure 1: Case of non profitable unilateral deviation from collusive price.

Figure 2: Case of profitable unilateral deviation from collusive price.
order to compute the critical discount factor \(\beta \), we have to derive a non collusive Bertrand Nash equilibrium of the model. In particular, we look for a symmetric one.

We consider the problem of a leader firm that maximizes its own profits and faces a residual demand that now assumes as given not only the competitive fringe supply but also the equilibrium served demand of the other leader.

\[
\begin{align*}
MAX \Pi_1 & = p_1 (D_L - q_2) - \frac{1}{2} (D_L - q_2)^2 \\
& = p_1 (A - bp_1 - q_2) - \frac{1}{2} (A - bp_1 - q_2)^2 \\
\frac{\partial \Pi_1}{\partial p} & = A - q_2 + Ab - 2bp_1 - bq_2 - b^2p_1 = 0 \\
p_1 & = \frac{(A - q_2)(b + 1)}{(b + 2)b} \\
q_1(p_1, q_2) & = A - q_2 - \frac{b + 1}{b + 2}(A - q_2)
\end{align*}
\]

Under symmetry, we impose

\[
q_1 = q_2 = q^{BN} = A - q^{BN} - \frac{b + 1}{b + 2}(A - q^{BN})
\]

then

\[
q^{BN} = \frac{A}{b + 3} \tag{23}
\]

and

\[
p_1^{BN} = p_2^{BN} = \frac{A}{b} \frac{b + 1}{b + 3} \tag{24}
\]

\[
\Pi_1^{BN} = \Pi_2^{BN} = A^2 \frac{(b + 2)}{2(b + 3)b} \tag{25}
\]

where, \(\forall b > 0 \),

\[
p^{BN} = \frac{A}{b} \frac{b + 1}{b + 3} < A \frac{2 + b}{b(4 + b)} = p^{Coll} \tag{26}
\]

\[
\Pi^{BN} = A^2 \frac{(b + 2)}{2(b + 3)^2b} < A^2 \frac{1}{2b(4 + b)} = \Pi^{Coll} \tag{27}
\]

In order to verify that the price vector \(\{p_1^{BN}, p_2^{BN}\} \) is a Nash equilibrium we have to prove that there not exist any profitable unilateral deviations. Given the 26 and the 19, the price of monopoly \(p^M \) is higher that the price \(p_1^{BN} \). Again, because of the quadratic form of the profit function with respect to the implemented price, we analyze a infinitesimal deviation from the price \(p_1^{BN} \).

\[
\Pi_1^{dev}(p_1 = \frac{A}{b} \frac{b + 1}{b + 3} - \varepsilon) \simeq p_1^{BN} (A - bp_1^{BN}) - \frac{1}{2} (A - bp_1^{BN})^2
\]

10
\[\Pi_1^{\text{dev}} \simeq \frac{A^2}{2 (b + 3)^2} < \frac{(b + 2)^2}{2 (b + 3)^2} = \Pi_1^{\text{BN}}, \forall b \] \tag{28}

Indeed, the condition 28 proves that there not exist any profitable unilateral deviations.

The model admits infinite Nash equilibrium of the static game. The derived one is sustainable for all \(b \), it is symmetric and characterized by lower profits than the collusive ones; moreover, it has been computed starting from an own profit maximization problem.

3.4 The collusive critical discount factor.

When the condition 22 does not hold, derived a non collusive Nash equilibrium of the static game, we can compute the critical discount factor needed for sustaining collusion as a Subgame Perfect Equilibrium.

\[\delta^* = \frac{\Pi^\text{dev} - \Pi^\text{Coll}}{\Pi^\text{dev} - \Pi^\text{BN}} \]

\[= \frac{\frac{4}{b(4+b)^2} - \frac{1}{2(4+b)} - \frac{1}{4(4+b)^2}}{2(4+b)^2 - 2(b+3)^2} \]

\[= \frac{(b + 3)^2 (b - 4)}{(2b^2 - 16b + b^3 - 40)} \] \tag{29}

where

\[\left. \frac{\partial \delta^*}{\partial b} \right|_{b \in [1, 4]} = \left(-2 \right) \frac{(4b + b^2 - 4) (b + 3)}{(2b^2 - 16b + b^3 - 40)^2} \leq 0 \] \tag{30}

Proposition 4 When (i) the leader firms are characterized by decreasing returns to scale, (ii) a deviation from collusive equilibria is profitable, then the critical discount factor \(\delta^* \) needed for sustaining collusion as a Subgame Perfect Equilibrium, is a decreasing function of the number of firms belonging to the competitive fringe.

Proof. Given the 9, there exists a positive correlation between the number \(n \) of firms belonging to the competitive fringe and the demand coefficient \(b \). The derivative of the discount factor 29 with respect to \(b \), as shown by the 30, is always negative. Then, the derivative of the discount factor \(\delta^* \) with respect the number of firms \(n \) is always negative.

\[\left. \frac{d \delta^*}{d n} \right|_{b \in [1, 4]} = \left[\frac{\partial \delta^*}{\partial b} \frac{\partial b}{\partial n} \right]_{b \in [1, 4]} \leq 0 \] \tag{31}

Indeed, we have shown an other case where the presence of competitive fringe is not a collusive minus factor.
Figure 3: The critical discount factor $\delta(b)$ as a decreasing function of the demand coefficient b.

4 Conclusions.

In this paper we have proved that, under a structurally and strategically consistent model setting, the presence of a competitive fringe is a collusive plus factor. The assumptions of decreasing returns to scale, absence of structural or strategical capacity constraints, are crucial to derive a contest where the firm that deviate from collusion by undercutting the rivals, faces losses with respect the collusive payoff. The main intuition is the following. If an infinitesimal price deviation does not affect marginal revenue, when we impose the deviator to serve all the generated demand, we see a relevant increasing of marginal cost and a consequent decreasing of the marginal profit. It can happens that deviation from collusive price is not profitable, i.e. collusion is a Nash equilibrium of the static game. In particular, we prove that the bigger is the competitive fringe, the more likely is that collusive equilibrium is implemented.
References.

An Application to the Recreational Value of Forests

Gernot KLEPPER and Sonja PETERSON:

Andrea BIGANO and Stef PROOST:

Ingo BRÄUER and Rainer MARGGRAF

Dinko DIMITROV, Peter BORM, R uud HENDRICKX and Shao CHIN SUNG:

Francesco RICCI

Kiflemariam HAMDE

E.C.M. RUIJGROK and E.E.M. NILLESEN

Ekin BIROL, Ágnes GYOVAI and Melinda SMALE

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON:

Koen SMEKENS and Bob VAN DER ZWAAN:

Sergio CURRARINI and Marco MARINI:

Marc ESCRIBUÉLA-VILLAR: Cartel Sustainability and Cartel Stability

Sebastian BEROYETS and Nicolas GRAVEL: Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach

Valentina BOSETTI, Mariaaeter CASSINELLI and Alessandro LANZA

Valeria DELLA Rovere, Mattia DI ZORIO and Stefano GIULIANI

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Eko BIRO, Ágnes GYOVAI and Melinda SMALE: Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Gernor KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects

Timo GOESCHL and Danilo CAMARGO IGLIORI: Property Rights Conservation and Development: An Analytical Framework

Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Tom DEDEURWAERDERE: Bioprospection: From the Economics of Contracts to Reflexive Governance

Koen REHNDANZ and David MADDISON: The Amenity Value of Climate to German Households

Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

E.C.M. RUIJGROK and E.E.M. NILLESEN: The Socio-Economic Value of Natural Riverbanks in the Netherlands

Giannis VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings

Anastasios XEPAPADEAS and Kiya TAZDAÎT: On Coalition Formation with Heterogeneous Agents

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margherita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

Salvador BARBERÁ and Matthew O. JACKSON (lxx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union

Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lxx): Optimal Information Transmission in Organizations: Search and Congestion

Francis BLOCH and Armando GOMES (lxx): Contracting with Externalities and Outside Options

Rabah AMIR, Efraïnni DIAMANTOUDI and Licun XUE (lxx): Merger Performance under Uncertain Efficiency Gains

Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players

Daniel DIEHMEIER, Héliya ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation

Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization and Coalition Government Formation

Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

Sanjeev GOYAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): Economics: An Emerging Small World?

Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. FØRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elissaios PAPYRakis and Rayer GERLACH: Natural Resources, Investment and Long-Term Income

Marzio GALEOTTI and Claudia KEMPFERT: Interactions between Climate and Trade Policies: A Survey

A. MARKANDYA, S. PEDROSO and D. STREIMIKIENE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

Sergei IZMALKOV (lxx): Multi-Unit Open Ascending Price Efficient Auction

Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures

Massimo DEL GAITTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus decentralisation

Pierre-André JOURIET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits

Bob van der ZWAAN and Reyer GERLACH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BERGANTINOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. M. FLORAX and Peter NIJKAMP: A Meta-Analysis of the Willingness to Pay for Reductions in Pesticide Risk Exposure

Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

Massimo FLORIO and Mara GRASSENI: The Missing Shock: The Macroeconomic Impact of British Privatisation

John BENNETT, Saul ESTRIN, James MAW and Giovanni URGA: Privatisation Methods and Economic Growth in Transition Economies

Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

Pehr-Johan NORBACK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo LEVAGGI and Michele MORETTO: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

Paulo A.L.D. NUNES and Laura ONOFRI: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications

Patrick CAYRAGE: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?

Valeria COSTANTINI and Francesco GRACCEVA: Oil Security. Short- and Long-Term Policies
Stéphane HALLEGATTE
Mombert HOPPE
William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative
Angelo ANTOCI: Regional and Sub-Global Climat e Blocs. A Game Theoretic
Barbara BUCHNER and Carlo CARRARO: Microsimulating the Effects of Household
Fausto CAVALLARO: An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An
Carla MASSIDDA: Debate in a Growth Model
Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Application of the Promethee Method
David CALEF and Robert GOBLE: The Allure of Technology: How France and California Promoted Electric
Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global
Valentina BOSETTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?
William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative
Methods with Applications to Economic-Ecological Modelling
Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRIGUEZ: Microsimulating the Effects of Household
Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

Valentina BOSETTI, Marzio GALEOTTI and Alessandro LANZA: How Consistent are Alternative Short-Term Climate Policies with Long-Term Goals?
William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative
Methods with Applications to Economic-Ecological Modelling
Xavier PETRUCCHI: On the Incidence of a Tax on PureRent with Infinite Horizons
Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRIGUEZ: Microsimulating the Effects of Household
Energy Price Changes in Spain
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Information Channels in Labor Markets, On the Resilience of Referral Hiring</td>
<td>Alessandra CASELLA and Nobuyuki HANAKI (lxxii):</td>
</tr>
<tr>
<td>38</td>
<td>Social Games; Matching and the Play of Finitely Repeated Games</td>
<td>Matthew O. JACKSON and Alison WATTS (lxxii):</td>
</tr>
<tr>
<td>39</td>
<td>The Egalitarian Sharing Rule in Provision of Public Projects</td>
<td>Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii):</td>
</tr>
<tr>
<td>40</td>
<td>Stochastic Stability in Network with Decay</td>
<td>Francesco FERI (lxxii):</td>
</tr>
<tr>
<td>41</td>
<td>Dynamic Effects on the Stability of International Environmental Agreements</td>
<td>Aart de ZEEUW (lxxii):</td>
</tr>
<tr>
<td>42</td>
<td>Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Venetian Islands</td>
<td>Giovanni IEM (lxxii):</td>
</tr>
<tr>
<td>43</td>
<td>Abnormal Returns in Privatization Public Offerings: The Case of Portuguese Firms</td>
<td>Carla VIEIRA and Ana Paula SERRA:</td>
</tr>
<tr>
<td>44</td>
<td>Combining Actual and Contingent Behavior to Estimate the Value of Sports Fishing in the Lagoon of Venice</td>
<td>Anna ALBERINI, Valentina ZANATTA and Paolo ROSATO:</td>
</tr>
<tr>
<td>45</td>
<td>Participation in International Environmental Agreements: The Role of Timing and Regulation</td>
<td>Michael FINUS and Bianca RUNDSHAGEN:</td>
</tr>
<tr>
<td>46</td>
<td>Are EU Environmental Policies Too Demanding for New Members States?</td>
<td>Lorenzo PELLLEGRINI and Reyer GERLAGH:</td>
</tr>
<tr>
<td>47</td>
<td>Modeling Factor Demands with SEM and VAR: An Empirical Comparison</td>
<td>Matteo MANERA:</td>
</tr>
<tr>
<td>48</td>
<td>A Characterization of Stochastically Stable Networks</td>
<td>Olivier TERCIEX and Vincent VANNEVELBOSCH (lxxii):</td>
</tr>
<tr>
<td>49</td>
<td>Among Unionized Firms</td>
<td>Ana MÀULÈON, José SEMPERE-MONERRIS and Vincent J. VANNEVELBOSCH (lxxii): R&D Networks</td>
</tr>
<tr>
<td>50</td>
<td>Optimal Transfers and Participation Decisions in International Environmental Agreements</td>
<td>Carlo CARRARO, Johan EYCKMANS and Michael FINUS:</td>
</tr>
<tr>
<td>51</td>
<td>From the Theory of the Firm to FDI and Internationalisation: A Survey</td>
<td>Valeria GATTAFI:</td>
</tr>
<tr>
<td>52</td>
<td>Multilateral Environmental Agreements and Trade Obligations: A Theoretical Analysis of the Doha Proposal</td>
<td>Alireza NAGHAVI:</td>
</tr>
<tr>
<td>53</td>
<td>Economic Valuation of On Site Material</td>
<td>Margaretha BREIL, Gretel GAMBARELLI and Paulo A.L.D. NUNES:</td>
</tr>
<tr>
<td>54</td>
<td>Investment and Time to Plan: A Comparison of Structures vs. Equipment in a Panel of Italian Firms</td>
<td>Alessandra del BOCA, Marzio GALEOTTI, Charles P. HIMMELBERG and Paola ROTA:</td>
</tr>
<tr>
<td>55</td>
<td>Emissions Trading, CDM, JI, and More — The Climate Strategy of the EU</td>
<td>Germar KLEPPER and Sonja PETERSON:</td>
</tr>
<tr>
<td>56</td>
<td>Environmental Regulation and the Eco-Industry</td>
<td>Maia DAVID and Bernard SINCLAIR-DESIGNÈ:</td>
</tr>
<tr>
<td>57</td>
<td>The Pigouvian Tax Rule in the Presence of an Eco-Industry</td>
<td>Alain-Désiré NIMUNBONA and Bernard SINCLAIR-DESIGNÈ:</td>
</tr>
<tr>
<td>58</td>
<td>Economic Innovations: Institutional Impacts on Co-operations for Sustainable Development</td>
<td>Helmut KARL, Antje MÖLLER, Ximena MATUS, Edgar GRANDE and Robert KAISSER:</td>
</tr>
<tr>
<td>59</td>
<td>Criteria for Assessing Sustainable Development</td>
<td>Dimitra YOUVAKI and Anastasios XEPAPADEAS:</td>
</tr>
<tr>
<td>60</td>
<td>Development: Theoretical Issues and Empirical Evidence for the Case of Greece</td>
<td>Andreas LöSCHEL and Dirk T.G. RÜBBELKE:</td>
</tr>
<tr>
<td>61</td>
<td>Trust and Fiscal Performance: A Panel Analysis with Swiss Data</td>
<td>Christoph A. SCHALTEGGER and Benno TORGGLER:</td>
</tr>
<tr>
<td>62</td>
<td>A Role for Instructions</td>
<td>Irene VALSECCHI:</td>
</tr>
<tr>
<td>63</td>
<td>A Data Envelopment Analysis Approach to the Assessment of Natural Parks' Economic Efficiency and Sustainability</td>
<td>Valentina BOSETTI and Gianni LOCATELLI:</td>
</tr>
<tr>
<td>64</td>
<td>Impure Public Goods and Technological Interdependencies</td>
<td>Christoph A. SCHALTEGGER and Benno TORGGLER:</td>
</tr>
<tr>
<td>65</td>
<td>Trust and Fiscal Performance: A Panel Analysis with Swiss Data</td>
<td>Irene VALSECCHI:</td>
</tr>
<tr>
<td>66</td>
<td>Applications of Negotiation Theory to Water Issues</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI:</td>
</tr>
<tr>
<td>67</td>
<td>Advances in Negotiation Theory: Bargaining, Coalitions and Fairness</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI:</td>
</tr>
<tr>
<td>68</td>
<td>Network Capital and Social Trust: Pre-Conditions for ‘Good’ Diversity?</td>
<td>Sandra WALLMAN:</td>
</tr>
<tr>
<td>69</td>
<td>On the Determinants of Social Capital in Greece Compared to Countries of the European Union</td>
<td>Asimina CHRISTOFOROU (lxxiv):</td>
</tr>
<tr>
<td>67</td>
<td>The Determinants of Social Capital in Greece Compared to Countries of the European Union</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Alessandra SGOBBI:</td>
</tr>
<tr>
<td>69</td>
<td>Varieties of Trust</td>
<td>Eric M. USLANER (lxxiv):</td>
</tr>
<tr>
<td>71</td>
<td>Citizenship Laws and International Migration in Historical Perspective</td>
<td>Grazziella BERTOCCHI and Chiara STROZZI (lxxv):</td>
</tr>
<tr>
<td>72</td>
<td>Accommodating Differences</td>
<td>Elisabeth van HYLCKAMA VJLEG (lxxv):</td>
</tr>
<tr>
<td>73</td>
<td>Governance of Diversity Between Social Dynamics and Conflicts in Multicultural Cities</td>
<td>Renato SÀNSA and Ercole SORI (lxxv):</td>
</tr>
</tbody>
</table>
Margherita GRASSO and Matteo MANERA: Asymmetric Error Correction Models for the Oil-Gasoline Price Relationship

Umberto CHERUBINI and Matteo MANERA: Hunting the Living Dead A “Peso Problem” in Corporate Liabilities Data

Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Joëlle NOAILLY, Jeroen C.J.M. van den BERGH and Cees A. WITHAGEN (lxxvi): Local and Global Interactions in an Evolutionary Resource Game

Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Wolfgang HEIMBACH: Cartel Stability under an Optimal Sharing Rule

Riccardo CANEVA and Matteo MANERA: Does a “Peso Problem” Exist in Corporate Liabilities Data?

Jeroen C.J.M. van den BERGH and Cees A. WITHAGEN: Investing in Science and Innovation: The Role of Institutions

Hans-Peter WEIKARD and Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Riccardo CANEVA and Matteo MANERA: Does a “Peso Problem” Exist in Corporate Liabilities Data?

Hans-Peter WEIKARD and Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Riccardo CANEVA and Matteo MANERA: Does a “Peso Problem” Exist in Corporate Liabilities Data?

Hans-Peter WEIKARD and Hans-Peter WEIKARD: Cartel Stability under an Optimal Sharing Rule

Riccardo CANEVA and Matteo MANERA: Does a “Peso Problem” Exist in Corporate Liabilities Data?
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>