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Abstract

Quantile regression provides a convenient framework for analyzing the im-
pact of covariates on the complete conditional distribution of a response vari-
able instead of only the mean. While frequentist treatments of quantile regres-
sion are typically completely nonparametric, a Bayesian formulation relies on
assuming the asymmetric Laplace distribution as auxiliary error distribution
that yields posterior modes equivalent to frequentist estimates. In this paper,
we utilize a location-scale-mixture of normals representation of the asymmet-
ric Laplace distribution to transfer different flexible modeling concepts from
Gaussian mean regression to Bayesian semiparametric quantile regression. In
particular, we will consider high-dimensional geoadditive models comprising
LASSO regularization priors and mixed models with potentially non-normal
random effects distribution modeled via a Dirichlet process mixture. These
extensions are illustrated using two large-scale applications on net rents in

Munich and longitudinal measurements on obesity among children.

1 Introduction

Quantile regression allows to determine the influence of covariates on the conditional
quantiles of the distribution of a dependent variable. Therefore, one of the main
advantages over mean regression is that quantile regression permits to supply de-

tailled information about the complete conditional distribution instead of only the



1 INTRODUCTION 2

mean. In addition, outliers and extreme data are usually less influential in quantile
regression due to the inherent robustness of quantiles.

For classical linear quantile regression as introduced by Koenker and Bassett (1978),
estimation of the quantile-specific regression coefficients 3. relies on minimizing the

sum of asymmetrically weighted absolute deviations (AWAD)
min}  pr(y; — @:6,)
T =1

where (y;,x;), i = 1,...,n are the observed response and covariate values for n

observations, the check function

Ty — B, if y, > xiB.
pr(yi — iB,) = i mi sz wh
(L =7y — B, ity <xiB;

defines asymmetrically weighted absolute residuals and 7 € (0,1) is the quantile
of interest. This approach is completely nonparametric and does not require the
assumption of a specific response distribution. No closed form solution for the
minimization problem exists and quantile regression estimates are typically obtained
based on linear programming (see Koenker, 2005, for details).

Recent interest in quantile regression has focused on broadening the scope of sup-
ported model specifications. For example, additive quantile regression models have
gained considerable attention. Yue and Rue (2011) and Oh et al. (2011) propose
differentiable approximations to the AWAD criterion that allow to employ differ-
ent types of smoothing approaches while Li et al. (2010) show ways to incorporate
regularisation on fixed effects into linear Bayesian quantile regression. Fenske et al.
(2011) propose boosting approaches for flexible, additive quantile regression models,
where penalized least squares estimates are utilized as base-learners. Koenker et al.
(1994) added an Li-norm penalty to the AWAD criterion that allows to still use lin-
ear programming techniques in the context of quantile smoothing splines. Koenker
and Mizera (2004) extend this approach to surface estimation based on triograms.

In this paper, we will introduce yet more flexible types of quantile regression models
motivated by two large-scale applications on rents for flats in the city of Munich
and on longitudinal childhood obesity measurements. The German tenancy law
gives restrictions to the increase of rents and forces the landlords to keep the prize

in a range defined by flats which are comparable in size, location and quality. To
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make it easier for tenants and owners to assess if the rent is appropriate for a flat,
so-called rental guides are derived based on large samples of flats. In the following,
we will use data from the 2007 Munich rental guide with about 3,000 observations
and 250 covariates. Kneib et al. (2011) suggested a high-dimensional geoadditive

model
yi = ;8 + fi(size;) + fo(year;) + fopat(si) + & (1)

for analyzing the expectation of the net rent per square meter y; in terms of nonlinear
effects f; and f5 of the size of the flat in square meters and the year of construc-
tion, a spatial effect fsp.c based on district information s; and a high-dimensional
vector of mostly categorical covariates x; (such as for example presence of a fridge,
attic, garden or balcony) with linear effects 8. While penalized splines and a Gaus-
sian Markov random field have been employed for the nonlinear and spatial effects,
respectively, LASSO and ridge penalization have been applied to the vector 8 to
achieve regularization. It turned out that, for mean regression, a geoadditive model
with LASSO regularization outperforms a model of moderate dimension resulting
from expert knowledge and has slight advantages over a comparable model with
ridge regularization. We therefore aim at extending the high-dimensional geoaddi-
tive model to quantile regression, to enable a more detailled view on the conditional
distribution of the net rents. In particular, quantile regression allows to determine
flexible bounds for the net rent based on, for example, the 5% and the 95% quantiles
without imposing strong assumptions on the error distribution.

The second application deals with longitudinal measurements on obesity among
children in the LISA (Influences of Life-style factors on the development of the
Immune System and Allergies in East and West Germany) study. The objective of
the study is to analyze the variations in individual body mass index (BMI) patterns
while simultaneously determining the impact of factors driving childhood obesity
such as the breast-feeding behaviour or maternal BMI. Since there is considerable
variation in the highly non-linear individual profiles, Heinzl et al. (2012) suggest a

flexible additive mixed model
yie = f(t) + ., 8 + z.,b; + i (2)

where t = 1,...,T;, denotes the time, ¢ = 1,...,n, the individual, f(¢) represents
the overall trend in the BMI measurements, «,3 contains parametric, fixed effects

common to all children and the random effects term z.,b; contains individual-specific
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deviations from the overall trend. Since there appear to be different groups of
children with specific patterns in their individual-specific deviations and to account
for potential non-normality of the random effects distribution, Heinzl et al. (2012)
utilized a Dirichlet process mixture (DPM) as random effects distribution which
allows for very flexible random effects distributions and model-based clustering of
the random effects.

In summary, our aim is to make flexible components in semiparametric regression
models such as nonlinear effects, spatial effects, LASSO regularized coefficient blocks
or non-normal random effects applicable in the context of quantile regression. These
are typically difficult to combine with linear programming or other direct maximiza-
tion approaches. Instead, we rely on a Bayesian formulation of quantile regression
based on the asymmetric Laplace distribution as an auxiliary error distribution as
suggested in Yu and Moyeed (2001). Therefore we consider the alternative repre-

sentation of the quantile regression problem as

Yi = Mir + Eir

where 7, » is the predictor of the 7th quantile in the regression model and ¢; ; is an
appropriate error term. Instead of assuming zero mean for the errors as in mean
regression, one then imposes the restriction that the 7-quantile of the error distri-
bution is zero. In the Bayesian framework, we have to assume a specific distribution
for the errors (or equivalently the responses) to be able to set up a likelihood. The
asymmetric Laplace distribution y; ~ ALD(7; ,, 0%, 7) with location parameter 7; .,

precision parameter 62, asymmetry 7 and density

pWilniz. 02, 7) = (1 — 7)6% exp(—6°p-(yi — 1ir)) (3)

is particularly useful since it yields posterior mode estimates that are equivalent to
the minimizers of the AWAD criterion.

To make Bayesian inference feasible, Yue and Rue (2011) introduced a location-scale
mixture representation of the asymmetric Laplace distribution that allows to rewrite
Bayesian quantile regression as a conditionally Gaussian regression with offset and
weights. As a consequence, Bayesian inferential schemes developed for Gaussian
regression models can then (at least conceptually) be easily transferred to quantile
regression. However, Yue and Rue (2011) observed severe mixing and convergence

in their approach to sampling-based Bayesian quantile regression and therefore had
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to resort to an approximate solution based on integrated nested Laplace approx-
imations. We propose a different updating scheme (based on basis coefficients of
nonparametric effects instead of function evaluations) that overcomes the difficul-
ties encountered by Yue and Rue (2011). Moreover, we imbed Bayesian semipara-
metric quantile regression in a generic framework that enables the flexible inclusion
of hyperprior structures on the variance (and mean) parameters of the conditional
Gaussian priors of the regression effects. Such hyperprior structured can be used
to re-cast extensions of semiparametric regression such as LASSO regularization or
Dirichlet process mixtures in the context of conditionally Gaussian Bayesian quantile
regression.

The rest of this paper is organized as follows: In Section 2, we first introduce
the location-scale mixture representation of the asymmetric Laplace distribution
and present a generic Markov chain Monte Carlo simulation algorithm for Bayesian
quantile regression with conditionally Gaussian priors. Afterwards we introduce
different special cases and the corresponding hyperprior specifications. Section 3
presents the applications based on a high-dimensional geoadditive regression model
in case of the Munich rental guide and a nonparametric random effects model for

the longitudinal obesity measurements.

2 Bayesian Semiparametric Quantile Regression

2.1 Generic Bayesian Quantile Regression with Auxiliary

Error Distribution

While the asymmetric Laplace distribution (3) provides a convenient way to express
quantile regression in a Bayesian framework based on an auxiliary error distribu-
tion, it complicates inference based on Markov chain Monte Carlo simulations due
to the inherent non-differentiability of the check function p,. We therefore follow
Yue and Rue (2011) and utilize a scale mixture of Gaussians representation of the
asymmetric Laplace distribution. Let Z ~ N(0,1) and W ~ Exp(d?) be two inde-
pendent random variables following a standard normal and exponential distribution

with rate parameter 62, respectively. Then the distribution of

|W
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with & = 71(1:2:) and o? = ﬁ follows the ALD(n, 62, 7) distribution. As a conse-
quence, the Bayesian quantile regression problem can be reformulated as a condi-
tionally Gaussian regression with offsets €W and weights U\/% after imputing W
as a part of the MCMC sampler.

To be more specific, we assume that n independent realisations y; ~ ALD(n;, 6%, 7)

are given with generic semiparametric predictor
J

i = Z fi(vi).
j=1

The predictor comprises various functions f; that are defined on the complete vec-
tor of covariates v;. For example, specific components may be given by (i) linear
functions f;j(v;) = ;B where x; is a subvector of v;, (i) univariate nonlinear
functions f;(v;) = f(z;) where z; is a single continuous element of v;, (i) spa-
tial effects f;(v;) = fspat(si) Where s; is a spatial location variable, or (iv) random
effects f;(v;) = x;b.,, where z; is some covariate (potentially including a constant
for random intercepts) and ¢; is a cluster variable that groups the observations, see
Fahrmeir et al. (2004) or Kneib et al. (2009) for similar generic model specifications.

In matrix notation, we can always write the generic model as
n=2Z+...+Zr,

where the design matrices Z; are obtained by suitable basis expansions and -,
contain the corresponding basis coefficients.

Our assumptions imply the observation model
Ylvi, v w, 8~ N(n+ fw, 0% /6° D)

where y = (y1,...,y,) and n = (m,...,n,) are the vectors of response observa-
tions and predictors, respectively, w = (wy,...,w,)" is the vector of i.i.d Exp(d?)
distributed weights implied by the scale mixture, and D = diag(wy, ..., w,) is a
corresponding diagonal matrix of the weights.

In order to enforce specific properties of the basis coefficients such as (for example
spatial) smoothness, we assume conditionally Gaussian, possibly partially improper

priors

1
v;1m;, 0;,0% o exp (—2(’)’j —m;) K ;(0;)(v; — mj)) (4)
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where the prior precision K ;(0;) may depend on a vector of further hyperparameters
0; for which additional hyperpriors have to be defined depending on the specific type
of effect. A term f = Z~ (e.g. P-spline, LASSO component etc.) is then specified
by defining

e a design matrix Z,

e a precision or penalty matrix K (),

e a prior p(m) for m,

e a prior p(@) for the hyperparameter(s) 6.

We will give specific examples below in Sections 2.2 — 2.4.

Since the location-scale mixture representation and the conditionally Gaussian prior
structure yield a conjugate model hierarchy, the full conditionals for the regression
coefficients are again Gaussian ~y,|- ~ N(u;,%;) with expectation and covariance

matrix ,
p; = 3t (%Z}Dfl(’y —§w—mn_;)+ Kj(ej)’mj) -
5
B —1
% = (K;0,)+%2,D7'Z))
where n_; = m — Z;v; is the partial predictor without the j-th effect. When

comparing the full conditionals with those arising from mean regression, where
p; =65 (Z(y—n_;)+K;(0;)m;) and X;=(K;0,)+6ZZ;)"

we find only minor differences corresponding basically to the imputed weights and
the offset.

Resulting from the scale mixture representation of the asymmetric Laplace distri-
bution, the weights w; are a priori i.i.d exponentially distributed given the prior
precision 6%, i.e. w;|d% ~ Exp(6%). This implies that the full conditionals for im-

puting the inverse of the weights are inverse Gaussian:

_ 2+ 202 §%(&% +207)
w; |- ~ InvGauss 3 , . 6
| (\ (yi —mi)? o )

If the prior for the precision parameter 62 is chosen to be the conjugate gamma
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distribution Ga(ag, by), the resulting full conditional is also gamma:

3n 1 & “
52|NGa <a0+2,b0—|—sz_l(yz—m—fwzf—}-z:wz) (7)
i=1 i=1
Since the prior for the weights also depends on §2, these are also part of the updated
gamma parameters in the full conditional, yielding a slight change compared to the
corresponding full conditional in mean regression.
In summary, we obtain the prior structure shown in Figure 1 that induces the

following algorithm for generic Bayesian quantile regression:
i. For j =1,...,J sample 7; from the Gaussian distribution with parameters (5),

ii. for j =1,...,J sample 8; and m; from the corresponding hyper full conditional

(as detailled in the following sections),
iii. fori=1,...,n sample w; from the inverse Gaussian distribution (6),
iv. sample 6% from the gamma distribution (7).

Note that our MCMC-sampler for geoadditive quantile regression differs from the
one proposed in Yue and Rue (2011) in the update related to nonparametric effects.
While Yue and Rue (2011) update the vector of function evaluations f;, our sampler
is based on the corresponding basis coefficients «;. This has two major advantages:
On the one hand, the dimensionality of the parameter vector is considerably smaller,
inducing a tremendous reduction in computing time. On the other hand, it avoids
the severe mixing and convergence problems observed by Yue and Rue (2011) and
therefore renders estimation og models with more than one nonparametric effect
possible.

In the following sections, we present specific examples for modeling the functions
f; and updating the corresponding hyperparameters 6; and m;. For notational
simplicity the index j will be suppressed, as there will be always a focus on one

special class of effects.

2.2 Geoadditive Quantile Regression

Continuous covariates. For approximating potentially nonlinear effects, Bayesian
P-splines can be used, see Eilers and Marx (1996) and Brezger and Lang (2006) for

full details. Here the n x K design matrix Z is composed of B-spline basis functions
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optional prior structure
for K ;l(Oj)
(see section 2.3)
optional prior structure 6?2 ~ Gammal(ay, by)

for m;
(see section 2.4)

Y

v; ~ N(m;, K;'(6;)) w; ~ Exp(0?)

J

Y

0.2 2
YY1 02w~ N(Zyyy + .+ Z gy + Ew, T50-)

Figure 1: Structure of a simple quantile regression model

evaluated at the observations x;. Assuming a first or second order random walk for

v, i.e.
1
7k‘7k71792NN(7k71,§), k=2 ... K

or

1
Vi | Vo1, Y2, 02 ~ N(27-1 _7k727§)> k=3,... K
as smoothness prior with diffuse priors for initial values yields the penalty matrix
K (0) = 0?R'R where R is a first or second order difference matrix. The prior also
implies m = 0. The vector of additional parameters 0 collapses to a single precision
parameter 62 that governs the trade off between fidelity to the data and smoothness.

The standard prior is 62 ~ Ga(a, b) implying the full conditional
0% |- ~ Ga(a + 0.5rank(K(0)),b+ 0.57' K (0)~). (8)

Spatial effects. For data observed on a regular or irregular lattice as in our case
study on rents in Munich a common approach for the spatial effect is based on
Markov random fields, see Rue and Held (2005). Let s; € {1,..., K} denote the
spatial index or region of the i-th observations. Then we assume fipat(s;) = 7s,, i-€.
separate parameters 7, ...,7x for each region are estimated. The n x K design
matrix Z is an incidence matrix whose entry in the ¢-th row and k-th column is

equal to one if observation 7 has been observed at location k& and zero otherwise.
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The most simple Markov random field prior for the regression coefficients ~, is
defined by
Yo | Yusu # GNN(Z i% 1)
Y Y Ns 7N802 Y

u€EDs

where N is the number of adjacent regions of s, and Js denotes the regions which

are neighbors of region s. This implies the penalty matrix K (0) with elements

-1 k # u,k ~ u,
K(0)[kul= 540 k# u k< u,
IN(k)| k=wu

and m = 0. Again the vector @ of additional parameters collapses to a single preci-

sion parameter § with gamma prior % ~ Ga(a,b) and corresponding full conditional

(8).

2.3 LASSO Regularization

In this section, we will show how the concept of the LASSO (Tibshirani, 1996) can be
adapted to Bayesian quantile regression by specifying suitable hyperpriors for @ fol-
lowing the ideas presented in Park and Casella (2008). Suppose that the regression
coefficients in a K-dimensional vector v shall be subject to LASSO-regularization.
Then a prior structure that yields posterior mode estimates which can be interpreted
as the Bayesian analogue to LASSO-regularized penalized maximum likelihood es-

timates is given by the Laplace prior

p(y) = l:[ A exp (—Alnl)

To enable the inclusion of Bayesian LASSO-regularization in the basic geoaddi-
tive quantile regression sampler outlined in the previous section, we again rely on
a scale-mixture representation of the Laplace prior yielding 7|8 ~ N(0, K(8) =
diag(1/6%,...,1/6%)) and hyperpriors 0, ~ Exp(A?), k =1,..., K and \* ~ Ga(a,b).
The full conditionals for the LASSO-specific parameters are

A K
6, % ~ InvGauss <||7 )\2> and A2 ~ Ga <a + K,b+05) 1/9,3) .
Tk k=1

According to Park and Casella (2008) the LASSO prior specified so far may re-
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sult in a multimodal posterior. We can avoid this problem by the scale-dependent
prior v/ ~ N(0, 5K ~'(6) = diag(1/6%,...,1/6%)) where the prior covariance is
scaled by the inverse of 62. Then all full conditionals have to be slightly modified
accordingly in analogy to Park and Casella (2008).

2.4 Dirichlet Process Mixtures for Random Effects

A further extension of the predictor for Bayesian quantile regression results when
considering random effects with potentially non-normal random effects distribution
specified via a Dirichlet process mixture prior (see Ghosh and Ramamoorthi, 2010,
for a recent review). The latter allows to specify a hyperprior on the space of all
random effects distributions while simultaneously enabling model-based clustering
of the random effects to retrieve groups of observations with similar random effects
profiles. In the following -y, will denote the random effects vector for individual 4,
referred to as b; in equation (2).

Our prior specification and implementation of DPMs is based on the stick-breaking
representation introduced by Sethuraman (1994). Let G denote the random effects

distribution and assume that a Dirichlet hyperprior is specified for G, i.e.
Yi ™ G, G ~ DP(V(), Go)

where (G is a base distribution and 1y > 0 specifies a concentration parameter that
determines a priori expected deviations of GG from the base distribution GGo. Then

it follows from the stick-breaking representation of Dirichlet processes that
G() = Y mdg, ()

where § b () are Dirac measures (i.e. point masses) located at cluster-specific pa-
k

rameter vectors ¢, drawn from a base distribution Gy, i.e.
iid.
d)k‘ ~ G07

independently from the (random) weights 7. The weights are generated through

the stick-breaking process
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with vy Lig- Be(1, 1), where Be denotes the beta distribution. As a consequence,
realisations of the Dirichlet process can be constructed as infinite mixtures of point
masses at locations generated as i.i.d. draws from a base measure. The weights
7, are generated by first breaking the part m; = wv; from a stick of the length
1 = m + 79 + ..., then breaking off the part m = vy(1 — m;) from the remaining
stick of length 1 — 71, and so on.

The stick-breaking representation of Dirichlet processes enables an intuitive inter-
pretation since it may be considered an infinite extension of finite mixture models.
However, it also reveals that realisations from a Dirichlet process are almost surely
discrete with all probability mass concentrated on the locations ¢, £ = 1,2,....
To overcome this limitation, we do not specify the Dirichlet process directly for the
random effects distribution but for the hyperparameters of this distribution, yielding

Dirichlet process mixtures with the following prior hierarchy:

v p(vile),s
¢i 1'1\(} GJ
~ DP(I/O, GQ)

Here, the random effects are assumed to be realized independently from distribu-
tions p(7;|¢;) with individual-specific parameters ¢,. These are generated according
to a probability measure obtained from a Dirichlet process with concentration pa-
rameter vy and base distribution Gy. Since the realization of the Dirichlet process
is almost surely discrete, ties among the individual-specific parameters ¢, will arise
and therefore there will be groups of individuals sharing the same random effects
distribution.

Specific choices we make for the prior specification in case of random effects are

v, % N(my, K(0)™),
m,; 1}\(} G,

G ~ DP(V(),G()),

i.e. the random effects are independent Gaussian distributed with a common co-
variance matrix K (0)™! = Q but differing means m; following a Dirichlet process
prior.

We will choose Gy to be Gaussian and assign vy a Gamma distribution. The hyper-
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vy ~ Gamma(a, b)

GO - N(l"'[)? ZO)

G ~ DP(I/(), Go),

m; ~ G oy, ~ Gamma(a,,b,),r =1,...,¢q

m; K~1(0) = diag(os,, . .. ,0y,)

Figure 2: Hyper-prior structure for the mean in the DPM context.

prior structures of p., and K () are visualized in Figure 2.

For the random effects v, we need to take into account the data distribution and
the prior with the parameters generated via the DPM. The fact, that we are using
DPMs does not change the equation in comparison to what we would get in a normal
mixed model approach. The full conditional of m is of the same structure as (5).
As the stick breaking process can obviously not be conducted to infinity, the standard
approach is to truncate the process in a certain N — see Ishwaran and James (2001)
— and only take into account the first N terms of the sum. In our example, N is
chosen to be 100.

A common way to implement the DPM — also Ishwaran and James (2001) — is to
introduce a vector of latent classification variables c of the length n, which consists in
each iteration of the Gibbs sampler of m different values of 1, ..., n. The subvector c*
denotes the vector comprising only the distinct values corresponding to non-empty
clusters. The auxiliary variables ¢, (k € 1,...,N) are drawn from two different
types of distributions depending on the fact if £ € ¢ or not.

For the k which are not one of the different values in the set of ¢;, ¢ is drawn from
the base distribution:

Pkl o, Bo ~ N(pg, Xo).
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If k € c¢*, ¢, is drawn as follows:

2 2 2
¢k’0—7r7/"[’0r70-07~”y7c ~ N(MST’UOD’

for the different &

1 —1
. i 1 np o, . Np 1
Ho, = ( + 2) <2bm+ 2) and 05" = <2 + 2) :
oz 0p, oz, by o5 0p,
The agr,r = 1,...,q are the diagonal elements of 3, and their priors are, again,
gamma distributions. The latent classification variables are drawn from a mixture

of the likelihood for the different ¢, weighted with different 7, which are drawn via

the stickbreaking representation of the Dirichlet distribution:

N
Ci|7r7 ¢7 Yi» 27 ~ Z Wkp(71|¢k7 Z’y)&c()
h=1
with () being the Dirac measure in k.
As a nex step, the 7 are constructed in a stick-breaking step using an auxiliary vari-
able vy, which is beta distributed, as allready described. The 7, are then obtained

through the above mentioned product

T = Uk H(l — Ul).
<k
Finally the precision, which was assigned a gamma distribution as prior, for the DP

is drawn from a gamma distribution

V| ~ Gamma (N — 1+ aq, by — szl log(1 — Vk)> .
h=0
The m; themselves are estimated by using m,; = ¢.,. As ¢ contains only m different
values (with m < n) the clustering mechanism follows directly from the construction.
It is obvious that, if this algorithm is repeated many times in an MCMC simulation,
due to the randomness of each step we get different values for each individual and
furthermore different clusters. Therefore, we will use a nearest neighbor approach

to get a clustering which is valid over all iterations.
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3 Applications

3.1 High-Dimensional Geoadditive Regression for the Mu-
nich Rental Guide

As a first application of semiparametric Bayesian quantile regression, we consider
the high-dimensional geoadditive regression model (1) but extended to conditional
quantile specifications. We chose to model the 5%, 20%, 50%, 80% and 95% quantiles
to give a detailled summary on both the central part of the distribution and the
boundaries. This reveales information not only about the expected rent for a flat
but also about the span, the rent is supposed to be in.

Due to the high dimensionality of the vector of parametric covariates (238 covari-
ates in total), we will consider Bayesian LASSO regularization for all components
(except the intercept). For the nonlinear effects of the size of the flat and the year of
construction, we consider cubic P-splines with second order random walk prior and
20 equidistant knots. The spatial effect was calculated with a Markov random field
where two subquarters are treated as neighbors if they share a common boundary.
For all gamma type priors, we chose hyperparameters a = b = 0.001. The number
of iterations for the MCMC sampler was fixed at 35,000 with a burn in period of
5,000 iterations and a thinning parameter of 30 (yielding 1,000 samples for deter-
mining posterior means). A graphical analysis of mixing and convergence showed
no inadequacies.

If we look at the results, we see that in fact most of the effects differ over the
different quantiles (see for example the nonlinear effects in Figures 3 and 4). The
picture shows the centered curves for the noncentral quantiles in comparison to the
posterior interval of the median regression. The grey stripes in the background
indicate the concentration of the data for the corresponding values. For reasons of
lucidity and because the figures have the aim to compare the effects, the posterior
intervals are only plotted for the median regression. The first thing which has to be
mentioned is, that the posterior interval is broader in the parts with less observations.
Another obvious fact is, that smoothing works better for the central quantiles than
for the extreme ones. This might be caused by the sparsity of data in these areas.
As for the differences of the impact on the different quantiles we see a tendency of
the functions to tilt over for both effects. The effect of the size of the flat seems
to be less expressed for the lower quantiles, expecially in the lowprice segment the

size of the flat does not really have any influence at all and increasing variability is
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observed as 7 grows. It is the other way round for the year of construction: there
is no pronounced effet of the age of the building on the highest quantile. Another
effect which shows in the latter is that the positive impact of old buildings does not
exist for lower quantiles.

In the spatial effect, the most noticeable fact is the higher number of significant
effects for the outer quantiles (see Figure 5). While for the 95% quantile, 93 sub-
quarters are selected to be significant, there are only 54 subquarters, which have
significant impact on the median. Furthermore, we see a tendency towards more
subquarters which have positive effect on the price in the higher quantiles (50 sub-
quarters with positive and 43 with negative influence in the 95% quantile) and the
opposed effect for lower quantiles (52 negative to 29 negative in the 5% quantile).
The second fact we can see in the graphics is that, just as in the nonlinear effects,
the estimation for the regression on the outer quantiles is less smooth, than for the
ones in the middle, indicating more variability in extreme quantiles.

Selection of the LASSO-regularized covariates with parametric effects via 95% poste-
rior credible intervals led to a whole of 103 variables aggregated over all five models.
The quantile for which the least effects where recognized as significant was the me-
dian with 47, while the highest number was 58 for 7 = 0.95. Analysing posteriors
of these parameters, different comportments can be detected. There are covariates,
which show very similar effects over all five quantiles, while others are only selected
for parts of them. In most of the cases, we can see the same direction of effect,
while in some the sign changes over the different quantiles (see Figure 6 for some
exemplary effects).

In some cases, the reason for covariates not to be selected is obviously the lack of
data (for example the fact that sauna, just as high class facilities, is only selected to
have an influence on the 95% quantile, while no modernisiations at all only appears
in the lowest quantile), while others just seem to be selected due to inner correlation.
The latter is not surprising as the LASSO is known for only selecting a few or even
one representative for highly correlated covariates.

To compare the results of the high-dimensional geoadditive model with those of an
expert model with a restricted set of covariates and with quantiles calculated from
a Gaussian mean regression model results, we performed a ten-fold cross validation
comparing the empirical risk on the test data. The quantiles for each flat where

estimated as the quantiles of the distribution:
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Figure 3: Munich rent index: nonlinear effect of size of the flat. Solid line: effect
on the non central quantiles, dashed lines: effect on the median and 95%-posterior
interval, lightgrey lines in background: concentration of data.

N1, ")

where 7); denotes the prediction for the ith flat and & is the vector of the residuals.
Thus the quantiles are obtained by the underlying Gaussian distribution, using
the prediction as mean and the squared residuals as variance. The empirical risk
is obtained by evaluating the quantile loss function p(y; — n;,) at the posterior
mean estimates in the test set. It turns out that the empirical risk is lower for
the LASSO as compared to the expert model for nearly all quantiles, see Table 3.1
for average risks over the folds. In comparison to the mean regression model both
quantile regression models, expert and LASSO, perform better. These results are
also illustrated in Figure 7 in terms of a parallel coordinate plot.

Geoadditive quantile regression including LASSO regularizaton is implemented in

BayesX (Lang et al., 2005) and will be published in the next version of the software.
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Figure 4: Munich rent index: nonlinear effect of year of contruction. Solid line: effect
on the non central quantiles, dashed lines: effect on the median and 95%-posterior
interval, lightgrey lines in background: concentration of data.

Quantile | LASSO Model Expert Model Mean Regression
7 =10.05 0.2285 0.2304 0.2146
7 =10.20 0.5043 0.5476 0.5516
7 =0.50 0.7100 0.7317 0.7339
7 =10.80 0.5005 0.5089 0.5168
7 =0.95 0.2301 0.2224 0.2039

Table 1: Munich rent index: mean risk for the high-dimensional geoadditive model,
the expert model and the mean regression model, averaged over the ten cross vali-
dation folds.

3.2 Nonparametric Random Effects for Longitudinal Obe-

sity Measurements in Children

As an application involving the specification of individual-specific random effects,
we consider the childhood obesity data described in the introduction. These lon-
gitudinal data were collected for 3,097 healthy neonates over 60 months at nine
mandatory medical examinations (2 weeks, 3, 6, 12, 24, 48 and 60 months). We

restricted attention to complete cases, yielding a final sample size of 2,043 indi-
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Figure 5: Munich rent index: spatial effects on the median (in the middle) and the
outer quantiles (7 = 0.05 on the top and 7 = 0.95 at the bottom). On the left:
centralized effects, on the right: quarters with significant negative effect in white,
quarters with significant positive effect in black and quarters with nonsignificant
effects in grey.

viduals. Collected covariates are sex (gender), breast (nutrition until the age of 4
months, 0 = bottle-fed or mixture of bottle-fed and breast-fed, 1 = breast-fed only),

mSmoke (maternal smoking during pregnancy, 0 = no, 1 = yes), area (0 = rural,
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Figure 6: Munich rent index: examples for regularized linear effects with different
behaviour in different quantiles; the grey boxes represent significant effects and the
white ones non significant effects.

1= urban), ageY (age in years), mBMI (maternal BMI at pregnancy begin) and
mDiffBMI (maternal BMI gain during pregnancy). The latter two variables were
used in centered form.

We consider a quantile-specific version of model equation (2), where the temporal
trend is specified as a cubic P-spline with twenty inner knots and second order ran-
dom walk prior. The random effects comprise subject-specific intercepts, a random
slope for a linear time trend and an additional random slope for the nonlinear time
transformation log(¢ + 1)/(¢t + 1)?. The prior for the precision of the DPM was a
gamma distribution with a = 0.5 and b = 10, the rest of the priors was handeled
in the same way as in the analysis of the Munich rental guide. The analysis was
performed for the same five quantiles (5%, 20%, 50%, 80% and 95%) as in the Mu-
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Figure 7: Munich rent index: parallel coordinate plots of risk functions for LASSO,
expert and mean regression model.

nich rental guide while the number of MCMC iterations had to be higher to achieve
satisfactory results for mixing and convergence. Due to high autocorrelations espe-
cially in the estimation for the nonlinear trend function, we used a burn in period of
100,000 iterations, a thinning parameter of 200 and did a total of 300,000 iterations
in order to obtain posteriors of the size of 1,000 samples. Note that the mixing
performance of all parameters (in particular the random effects) except the time
trend was satisfactory already after a much smaller number of iterations.

To account for correlations arising from the longitudinal arrangement of the data
while allowing for potential non-normality of the random effects distribution, we
included random effects using the Dirichlet process mixtures as explained in Sec-
tion 2.4. The resulting number of clusters varies between eight and ten clusters for
the different quantiles. The clusters are not build analogously for the quantiles, that
means that for different parts of the distribution children may belong to different
groups.

The results for the median regression are quite similar to those of the mean regression
obtained by Heinzl et al. (2012), with the obvious difference in robustness. Figure 8

shows the BMI conditional on time for four different individuals for the median
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0.05 0.2 0.5 0.8 0.95

sex 0.2260 0.2254 0.1915 0.1977 0.2177

breast 0.0874 0.0752 0.0557 0.0526  0.0696
mSmoke  0.0367  0.0097 -0.0123 0.0166 0.0163
area -0.0120 -0.0341 -0.0757 -0.0752 -0.0868
mBMI  0.0468 0.0454 0.0453 0.0485 0.0491
mDiff BMI  0.0712  0.0755 0.0828  0.0871  0.0895

Table 2: Obesity study: Linear effects for the five different quantiles.
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Figure 8: Obesity study: effect of the age on the BMI in 50% — quantile (on the
left) and 95% — quantile regression (on the right).

regression (on the left side) and the 95%-quantile regression on the right. While the
outlier for the children shown in grey and green are ignored in the median regression,
they are obviously taken into account in the curve on the right side. The same effect
arises for the clustered version.

The linear effects are presented in Table 2 and Figure 9. In the latter, significant
effects, i.e. the ones in which did not contain zero in their 95% posterior credible
interval, are marked in grey. The most interesting result is the observation, that
breastfeeding does only have a significant effect on the lowest quantile. This is a
fact, which was already stated in the work of Beyerlein et al. (2008). The negative
effect on the higher quantiles, which was seen as even more important in this work,
could not be confirmed by our analysis.

The calculated models were compared to two simpler models via the DIC. The DIC
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Figure 9: Obesity Study: boxplots of the different effects on the different quantiles;
the grey boxes represent significant effects and the white ones non significant effects.

was calculated as

B
DIC =2 " dev(6,)

b=1

— dev(0)

i.e. as the difference of two times the mean over the deviance in each sample and

the deviance which is calculated with the sample mean of the parameters where
b indexes the MCMC iterations. The DPM-Model outperformed a model without

random effects with high difference in all quantiles (the mean difference was 6447.81).

Using a normal Gaussian prior for the random effects performed worse than the
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T DPM Gaussian random effects no random effects
0.05 15296.03 16586.32 23031.73
0.20 32957.19 34246.35 38377.08
0.50 34665.83 35774.21 39813.83
0.80 34379.04 35301.70 40103.93
0.95 16636.18 17732.05 24846.75

Table 3: Obesity study: DIC for different models.

more complex DPM-Model over all quantiles, too (mean difference: 1141.272). For
an overview over the different DICs see table 3. These results can, however, only
be accepted with reservation, since the DIC calculations are based on the auxiliary
assumption of the asymmetric Laplace distribution for the error terms.

The MCMC algorithm for the DPM random effects model was implemented in C++
and R. Just like the scheme itself the program was based on work by Heinzl et al.
(2012).

4 Conclusions and Discussion

The presented possibilities of modeling quantiles are useful extensions for the regres-
sion toolbox. Obviously the mixture representation of ALD allows for considerable
flexibility and, in particular, other Bayesian approaches from mean regression can
easily be incorporated. Especially the combination of different effects is rendered
possible and seems to be nearly unlimited when using latent Gaussian model for-
mulations. In future work, this concept could be transferred to variational approxi-
mations Ormerod and Wand (2010), which have the advantage to avoid simulation-
based inference.

One principle difficulty with Bayesian quantile regression is that the ALD is only
a working model that yields a model misspecification. Therefore significance and
uncertainty statements or quantities derived from the samples, like the DIC, have
to be interpreted with care. A possible alternative is to include the estimation
of the error density in the MCMC algorithm, for example via mixtures — see for
example Kottas and Krnjajic (2009), Dunson and Taylor (2005) and Taddy and
Kottas (2010). Apart from this drawback, the presented method is still a progress
in calculating highly demanding models for conditional quantiles. The possibility to

regularize linear effects individually for each quantile can lead to interesting findings,
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concerning different influential structures, while using Dirichlet process mixtures for
the random effects gives rise to a model which accounts for dependencies in clusters.
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Abstract

Quantile regression provides a convenient framework for analyzing the impact of
covariates on the complete conditional distribution of a response variable instead of
only the mean. While frequentist treatments of quantile regression are typically com-
pletely nonparametric, a Bayesian formulation relies on assuming the asymmetric
Laplace distribution as auxiliary error distribution that yields posterior modes equi-
valent to frequentist estimates. In this paper, we utilize a location-scale-mixture of
normals representation of the asymmetric Laplace distribution to transfer different
flexible modeling concepts from Gaussian mean regression to Bayesian semiparame-
tric quantile regression. In particular, we will consider high-dimensional geoadditive
models comprising LASSO regularization priors and mixed models with potentially
non-normal random effects distribution modeled via a Dirichlet process mixture.
These extensions are illustrated using two large-scale applications on net rents in
Munich and longitudinal measurements on obesity among children.

ISSN 1993-4378 (Print)
ISSN 1993-6885 (Online)



	template.pdf
	LASSO_DP.pdf
	abstract_2012.pdf

