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Abstract 
 
This paper provides insight into the relationship between intermittent wind power 
generation and electricity price behaviour in Germany. Using a GARCH model, the 
effect of wind electricity in-feed on level and volatility of the electricity price can be 
evaluated in an integrated approach. The results show that variable wind power reduces 
the price level but increases its volatility. With a low and volatile wholesale price, the 
profitability of electricity plants, conventional or renewable, is more uncertain. 
Consequently, the construction of new plants is at risk, which has major implications 
for the energy market and the security of supply. These challenges, related to the 
integration of renewables, require adjustments to the regulatory and the policy 
framework of the electricity market. This paper’s results suggest that regulatory change 
is able to stabilise the wholesale price. It is found that the electricity price volatility has 
decreased in Germany after the marketing mechanism of renewable electricity was 
modified. This gives confidence that further adjustments to regulation and policy may 
foster a better integration of renewables into the power system. 
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1 Introduction

Renewable electricity has come to dominate the debate over and the develop-

ment of the European electricity market. Among European countries, most

wind turbines and solar panels are installed in Germany where renewable

electricity has become even more important since the March 2011 decision

regarding the nuclear phase-out. Figure 1 shows that Germany’s wind capac-

ity reached 29 gigawatt (GW) in 2011. Its solar photovoltaic (PV) capacity

soared in the last two years: overall installed solar PV capacity reached al-

most 25 GW in 2011 (BMU, 2012). In 2011, wind electricity accounted for

8 per cent of gross electricity production in Germany, solar PV for 3 per

cent. All renewable sources combined made up 20 per cent of gross electric-

ity production in 2011 and are Germany’s second most important source of

electricity generation after lignite (BDEW, 2011). The German government

plans to raise this share to 35 per cent by 2020 and to 50 per cent by 2030

(BMU and BMWi, 2011). Onshore and offshore wind will play an important

role in this expansion of renewable electricity capacity.

System and market operators face two main challenges as more renewable

power generation is added. First, electricity generated by wind turbines and

photovoltaic panels is intermittent and hardly adjustable to electricity de-

mand.1 Therefore, variable electricity generation is not a perfect substitute

for conventional energy sources. Figure 2 shows the variability of wind elec-

tricity generation. The horizontal line, the so-called capacity credit, gives an

impression how much conventional capacity can be replaced by the existing

wind power capacity, given the current power plant fleet and maintaining the

security of supply (IEA, 2011).2 The graph illustrates that the wind power

generation is subject to strong variation and that only a fraction of installed

wind capacity, depicted by the capacity credit line, is expected to contribute

to the power mix with certainty. Second, Germany’s renewable energy pol-

1By contrast, electricity generation from hydro or biomass sources can be managed
more easily. The following conclusions hold for sources like wind and solar PV where
intermittency is particularly pronounced.

2In line with calculations from Hulle (2009), IEA (2011), and Schaber et al. (2012), the
capacity credit is assumed to be 6%. A wind installation of 29075 MW in 2011 was used
in the calculation for this capacity credit line (BMU, 2012).
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Figure 1: Installed capacity and generated electricity in Germany
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icy grants priority dispatch and fixed feed-in tariffs for renewable electricity

generation. Renewable electricity can be fed into the grid whenever it is

produced, regardless of energy demand, and in-feed can be switched off only

if grid stability is at risk (Bundesnetzagentur, 2011).3 As storage is not

yet a viable option, high levels of variable renewable electricity production

can be balanced only by adjusting output from traditional power plants or

by exporting excess electricity. Similarly, when too little wind or sunshine is

available during times of peak demand, reserve capacity has to be dispatched

at higher costs.

Grid operators are obliged to feed-in renewable electricity independent

of the market price. However, the spot electricity price is not independent

from renewable electricity. On the one hand, variable renewable power pro-

duction is negatively correlated with the electricity price. Whenever large

3The operator continues to receive feed-in tariff payments even if the installation is
disconnected from the grid due to capacity constraints of transmission cables.
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Figure 2: Hourly wind in-feed
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Note: Hourly wind in-feed in MW. The horizontal line illustrates how much electricity
German wind installations (29075 MW in 2011) are expected to reliably generate during
peak demand. This measure is referred to as capacity credit. In line with calculations
from IEA (2011), Schaber et al. (2012) and Hulle (2009) the capacity credit is assumed to
be 6%. Source: www.eeg-kwk.de.

volumes of intermittent renewable electricity are fed into the power grid, the

electricity price tends to decline. As renewable installations are very capital-

intensive but have almost zero operational generation cost, they are certainly

dispatched to meet demand. More expensive conventional power plants are

crowded out, and the electricity price declines. This dampening of the whole-

sale electricity price is called merit-order effect. Various assessments uncover

this effect for wind electricity generation (Neubarth et al., 2006; Nicolosi,

2010; Ray et al., 2010). Due to increasing production levels, the merit-order

effect can also be observed for solar PV electricity (Milstein and Tishler,

2011). On the other hand, intermittent renewable power not only influences

price level, but also price volatility (Klinge Jacobsen and Zvingilaite, 2010;

Cramton and Ockenfels, 2011). This is confirmed by Jónsson et al. (2010)

and Woo et al. (2011) who show that wind generation tends to lower the

spot price but increase its variance. The aim of this chapter is to further in-

vestigate the effects of intermittent wind power generation on the electricity

4



price development in Germany.

The literature shows that wind power generation has a dampening effect

on the electricity price but does not explicitly model the impact of wind power

on the volatility of the electricity price nor elaborate on the development of

this relationship over time. The present analysis introduces daily levels of

German wind power generation as explanatory variable in the mean and the

variance equation of a GARCH model of the German day-ahead electricity

price.4 This study makes two contributions to the literature. First, it explores

the effect of wind power generation on the level and volatility of the electricity

price in an integrated approach. In Germany, where renewables prospered

exceptionally from feed-in tariffs, the effect on the electricity market should

be particularly pronounced. Second, it investigates a regulatory change in

the German marketing mechanism of renewable electricity and its impact on

the relationship between wind power and the electricity price.

This study’s findings suggest that wind power generation decreased the

wholesale electricity price in Germany in the period from 2006 to 2011 but

increased the price volatility. These results are particularly important given

European and German aspirations to usher an energy system dominated by

renewables. A low and volatile electricity price might alter or delay invest-

ment decisions in new capacity, renewable and conventional, required for the

transformation of the energy system. To advance the energy transformation,

it should therefore be in the interest of policy makers to secure a reliable and

predictable electricity price. The present analysis shows that adjusting the

electricity market design can stabilise the development of the electricity price

to some extent. Price volatility reduced in Germany after a modification to

the renewable electricity regulation.

The remainder of this chapter is structured as follows. Section 3.2 sum-

marises the relevant literature on the interaction of wind power generation

and the electricity price. Section 3.3 describes the data, Section 3.4 the

employed methods. The results are presented and discussed in Section 3.5.

4The wind in-feed is estimated in megawatt hours (MWh) per day. Data on solar
PV in-feed are only available a much shorter period from 2010 onwards. Due to data
restrictions, the impact of solar PV electricity is not explicitly estimated in this chapter.
It would be interesting to evaluate this issue at a later point in time.
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Section 3.6 gives some policy recommendations and Section 3.7 concludes.

2 Literature Overview

It is widely argued that electricity from variable renewable energy sources –

wind and solar PV – is hard to incorporate in the generation mix. Although

the interruptive effect of variable wind electricity can already be observed

today, little empirical research evaluates its current influence on the wholesale

electricity price.

Most studies employ power system models to simulate the effect of in-

creased var-RE production on the level of electricity price. In the short term,

the so-called merit-order effect is quantified as the difference between a simu-

lated electricity price with and without the renewable in-feed.5 For Germany,

Bode and Groscurth (2006) and Sensfuß (2011) find that renewable power

generation lowers the electricity price. Despite being very capital-intensive,

renewable installations have almost zero marginal generation cost and thus

are certainly dispatched to meet demand. More expensive conventional power

plants are crowded out, and the electricity price declines. This dampening of

the wholesale electricity price is also shown for Denmark (Munksgaard and

Morthorst, 2008) and Spain (Sáenz de Miera et al., 2008). A recent litera-

ture overview of the merit-order effect in the European context is provided

by Ray et al. (2010). Taking a more long-term perspective, Green and Vasi-

lakos (2010) and Pöyry (2011) simulate the effects of fluctuating renewable

electricity for the next two decades. Green and Vasilakos (2010) find that the

British electricity price level will be significantly affected by variable wind

power generation in 2020. Pöyry (2011) reports a strong merit-order effect

by 2030 that decreases the wholesale electricity price. The consumer price

is expected to rise due to soaring costs for subsidies to renewable electric-

ity. Both studies conclude that the volatility of electricity price will increase

remarkably in the next 10 to 20 years.

Very few papers investigate the importance of intermittent renewable

5The merit-order effect can be observed for the wholesale price but not for the end-use
price which also reflects the increasing costs for renewables support and for investments
in the electricity grid. The end-use price does therefore not necessarily decrease.
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power production for the electricity price using current market data. Neubarth

et al. (2006) evaluate the relationship between wind and price for Germany

using an OLS regression model. Woo et al. (2011) estimate an AR(1) model

for high-frequency power data from Texas, controlling for the gas price, nu-

clear generation and seasonal effects. Jónsson et al. (2010) analyse hourly

Danish electricity data in a non-parametric regression model, assessing the

effects of wind power forecasts on the average electricity price and its distri-

butional properties in western Denmark. Both studies conclude that wind

power in-feed has a significant effect on the level and volatility of the electric-

ity price. The present analysis builds on these findings but takes a different

methodological approach. It explicitly models the influence of intermittent

renewable electricity generation on the price level and volatility in Germany

by using a GARCH model. The aim is to track the development of both com-

ponents over time and discover whether a regulatory change in the German

electricity market had an impact on the relationship between wind power

in-feed and the wholesale price.

3 Data

This chapter introduces daily data for wind electricity generation in the mean

and variance equation of a GARCH model to better explain the unsteady

behaviour of the electricity price. Figure 3 illustrates the negative correlation

of daily wind in-feed and the spot electricity price. Whenever high wind

speeds allow above-average electricity generation, one can observe a price

dip. An in-depth study will reveal more insights into this relationship as well

as the development of price volatility.

In the following analysis, I use the day-ahead spot electricity price, Phe-

lix Day Base, from the European Energy Exchange (EEX) as dependent

variable.6 Electricity is traded on the day-ahead spot market for physical

delivery on the next day. Separate contracts for every hour of the next day

are available. Prices and volumes for all 24 contracts are determined in a

single auction at noon. The Phelix Day Base is then calculated as the av-

6The time series is downloaded from Datastream.
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Figure 3: Forecasted wind in-feed and day-ahead electricity price
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Note: Daily wind electricity generation in MWh per day (blue line) and spot electricity
price Phelix Day Base (red line). Source: European Energy Exchange (EEX).

erage, weighted price over these hourly contracts. Generally, the German

electricity wholesale market is dominated by over-the-counter trading, and

the contracts are mostly of a long-term nature (Bundesnetzagentur, 2010).

However, trading volumes on the spot market are increasing and the Phe-

lix is an important benchmark for all other electricity market transactions

(Nicolosi, 2010; Monopolkommission, 2011).7

The development of the electricity price, Phelix Day Base, is illustrated in

Figure 4. This study covers the period from January 2006 to January 2012.

As illustrated in Figure 1, the wind installation already exceeded 20 GW

during this period and played an important role in the German electricity

mix. Table 1 reports extreme kurtosis and skewness for the electricity price

which can either arise from extreme values or autocorrelation (Bierbrauer

et al., 2007). Therefore, outliers are detected before conducting the empirical

analysis. In line with the literature, I filter values that exceed three times the

standard deviation of the original price series (Mugele et al., 2005; Gianfreda,

7The volume on the EEX spot market increased from 203 TWh in 2009 to 279 TWh in
2010. For comparison, the German gross electricity production was 628 TWh in 2010 (AG
Energiebilanzen, 2011). Electricity is also traded on the intraday market, but this market
is less liquid and mainly used to address electricity market imbalances in the short-run.
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Figure 4: Electricity price development
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2010).8 The outliers are replaced with the value of three times the standard

deviation for the respective weekday.9

Table 1: Descriptive statistics

Mean Median Max Min Std. Dev. Skewness Kurtosis
Original Price 48.06 46.07 301.54 -35.57 18.80 2.31 22.94
Deseasonalized 48.06 45.80 114.52 1.96 15.18 0.85 4.11
Log Deseasonalized 3.82 3.82 4.74 0.67 0.32 -0.70 8.09

After smoothing outliers, the seasonal cycle is removed from the time

series. Given that pt=yt+st, the observed price pt comprises a stochastic part

yt and a seasonal component st. Figure 5 shows that the average electricity

price varies across the week because of changes in the electricity demand.

Similarly, the price follows a yearly pattern as the different seasons influence

the energy demand. Weekly and yearly seasonality is addressed by using

8The standard deviation is calculated individually for all seven weekdays to compare
like with like. For example, a Monday is compared with the mean and the standard
deviation of all Mondays in the sample (Bierbrauer et al., 2007).

9The outlier detection is repeated after the first round of outliers have been replaced,
but no additional outliers are found. In an alternative run, the median is used to replace
outliers. This does not lead to significant differences in the regression results.
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Figure 5: Electricity price variation within the week
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constant step functions which consist of dummies for each seasonal cycle

(Trück and Weron, 2004). Dummies for week days di and months mj are

included in the following function to capture seasonality:10

st = c +
7∑

i=1

ξidi +
12∑

j=1

νmj. (1)

The results for the deseasonalisation are shown in Table 2. The coefficients

for weekday dummies in Table 2 follow the same pattern as shown in Figure

5: the price remains high at the beginning of the week, declines from Friday

onward, and reaches its minimum on Sundays. The dummies for months

are not all significant, but a relevant electricity price reduction is observed

in March, April, May, and August. In October and November, the price

is significantly higher than in January. Finally, the seasonal component is

deducted from the original price series, and the mean of both series is aligned.

Finally, the logarithmic electricity price is calculated and employed in the

10Seasonal effects could also be addressed by trigonometric components (Lucia and
Schwartz, 2002; Bierbrauer et al., 2007). However, such sinusoidal trends cannot be de-
tected in the German electricity data from 2006 to 2012.
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Table 2: Removing seasonality

Coefficient p-value
c 51.89 (<0.0001)
Tue 2.76 (0.0226)
Wed 2.59 (0.0321)
Thu 2.04 (0.0912)
Fri -0.85 (0.4784)
Sat -9.47 (<0.0001)
Sun -17.49 (<0.0001)
Feb 1.07 (0.4934)
Mar -3.80 (0.0126)
Apr -4.54 (0.0032)
May -6.90 (<0.0001)
Jun -2.82 (0.0670)
Jul -0.56 (0.7100)
Aug -5.66 (0.0002)
Sep 2.00 (0.1913)
Oct 6.27 (<0.0001)
Nov 3.73 (0.0152)
Dec -2.39 (0.1170)

Note: OLS regression with the Phelix Day Base, corrected for outliers, as dependent
variable. Monday and January are used as reference variables. p-values in parentheses.

following analysis.11 Figure 6 illustrates the original and the deseasonalised

electricity price series. The descriptive statistics of both series can be found

in Table 1.

The main explanatory variable is the wind electricity generation in Ger-

many. An illustration how the in-feed of variable renewable electricity affects

the existing power system can be found in Annex B, Figure 13. To match

the day-ahead horizon of the dependent variable, I use the predictions for

daily wind power generation. These short-term forecasts are accurate and,

more importantly, reflect the information available to participants in the

day-ahead market. The forecasts are made and published by the four Ger-

man transmission system operators (TSO). The TSOs then sell the predicted

11Estimating the logarithmic price series has the advantage that the coefficients have
a straight forward interpretation. The augmented Dickey-Fuller test statistic is -3.57274
whereas the 1% critical value is -3.4331. The null hypothesis of a unit root is therefore
rejected. The same holds for the Phillips-Perron test, employed by Knittel and Roberts
(2005), with a test statistic of -17.37986 and a 1% critical value of -3.4330. Hence, it is
not necessary to estimate the differences or returns.
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Figure 6: Deseasonalised electricity price
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amount of renewable electricity on the day-ahead electricity market.12 The

wind volumes are normally placed as price-independent bids to assure that

they are certainly sold in the day-ahead auction. When the price falls below

-150e in the daily auction, the energy exchange calls a second auction, in

which the wind volumes can be auctioned with a price limit between -350e

and -150e (Bundesnetzagentur, 2012). This rule was first introduced by the

regulator in 2010 and revised in 2011 to avoid extreme negative prices as

experienced during 2009. It was only necessary once, on 5. January 2012, to

call a second auction.13 The daily schedule of forecasting and selling wind

is schematically illustrated in Figure 7. The TSOs should have no incentive

to systematically mispredict the expected renewable electricity generation: if

the TSOs sell too much or too little renewable electricity on the day-ahead

market, they have to balance it on the intraday market the following day

(von Roon, 2011). The wind electricity generation depends on the weather

development and installed capacity but is independent from the electricity

price.14

Of course, electricity price is not solely determined by wind electricity

generation. Several papers indicate that the total electricity load, which re-

flects the demand profile, plays an important role in price behaviour. In fact,

research shows that the combination of both factors is particularly important

in this regard. Jónsson et al. (2010) show that the ratio between wind and

conventional power production affects the electricity price most. They use

the ratio between wind and load which is termed wind penetration. Simi-

larly, Nicolosi and Fürsch (2009) find that the residual load, the electricity

demand that needs to be met by conventional power, is a crucial parameter.

12The data can be downloaded from the homepages of Tennet, Amprion, EnBW and
50Hertz. For a shorter period they are also available from www.eeg-kwk.de and the EEX
Transparency Platform, www.transparency.eex.com. The data are available in hourly and
15-minute format. For this study, 15-minute MW data are averaged for each hour and
then summarised to MWh per day.

13Personal communication with Thomas Drescher, Head of Market Operations EPEX
Leipzig, in May 2012.

14How much renewable capacity is installed depends greatly on subsidies, namely, the
German feed-in tariff (FIT) system. The FIT does not influence the wholesale electricity
price traded on the energy exchange, but it influences the end-use price because the FIT
costs are socialised among almost all electricity users.
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Figure 7: Stylised scheduling in the day-ahead electricity market
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Coupling Company. Information regarding the daily operations is obtained from
www.marketcoupling.de and www.epexspot.com.

The share of wind shows how much wind power contributes to meeting total

electricity demand and illustrates its relative importance. The same amount

of wind electricity will have a different impact on the price during a phase

of high electricity demand than it will during low demand. Load data which

reflect the demand for electricity should be used in the estimations in order

to put the wind data into context.15

ENTSO-E, the association of European transmission operators, publishes

data on the vertical load and the total load in Germany. The vertical load

reflects the net flows from the transmission to the distribution grid and there-

fore only a fraction of total electricity demand.16 Therefore, a better proxy

for the demand profile on a given day is the total load which also includes elec-

tricity from small and renewable sources in the distribution grid (ENTSO-E,

2012).17 ENTSO-E does not yet provide forecasts for the total load. In line

with Jónsson et al. (2010), the predicted load is constructed according to the

15The demand for electricity should be independent from the variable wind in-feed and
should therefore be an appropriate variable choice to avoid endogeneity problems.

16As the wind electricity is fed into the distribution grid, it is not included in the vertical
load data. However, the vertical load data are most accurate as this can be measured
directly by the TSO.

17However, care should be taken with the quality of the total load data. TSOs can
only estimate the total load, as they do not directly observe all flows in subordinated
distribution grids.
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following relationship:

Lt = L̂t + et, (2)

where Lt is the actual load, L̂t is the predicted load, and et ∼ N(0, σ2) a

residual. By adding noise to the actual load, a load forecast is simulated. The

standard deviation of the error is chosen, in line with Jónsson et al. (2010),

as 2 per cent of the average load in the sample. According to Jónsson et al.

(2010) and Weber (2010), this is consistent with the errors that modern fore-

casting models produce.18 The advantage of Jónsson et al.’s (2010) method

is that the error of the simulated load forecast and the wind forecast are

independent. Otherwise, both errors would be influenced by the weather

forecast.19 When the wind forecast is put in perspective with electricity de-

mand L̂t, its relative importance for the power system becomes clear. Figure

8 shows that the share of wind fluctuates between 0 and 40 per cent. The dis-

cussed explanatory variables, wind and load, will be included in an extended

GARCH model of the electricity price. The methodology is elaborated in the

next section.

4 Model

The liberalisation of power markets turned electricity into a tradable com-

modity and engendered a great deal of interest in understanding and mod-

elling its price performance. Deng (2000), Huisman and Mahieu (2003),

Lucia and Schwartz (2002), and Knittel and Roberts (2005) pioneered this

research area. These studies emphasise that distinct features of the elec-

tricity price should be included in an empirical price model. Electricity, for

example, is not storable: supply and demand have to be matched instantly

to avoid temporary imbalances. This can lead to extreme prices that usually

revert quickly once supply and demand reconciled. Hence, mean reversion

18ENTSO-E publishes forecasts and actual values for the vertical load for 2010 and
2011. The error has a standard deviation of 1.1 per cent of the average load in this period.
However, the vertical load data are more accurate and easier to predict than the total
load. Therefore, 2 per cent seems a reasonable assumption.

19The load forecast is simulated several times to test whether the regression results
depend on the randomly generated noise process. This is not the case.

15



Figure 8: Share of wind power generation
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is common in electricity markets and should be included in a price model

(Deng, 2000; Huisman and Mahieu, 2003). Another important characteristic

of electricity, reflected in its price, is seasonality. Demand varies throughout

the day and during the week, as well as across the year. Therefore, models

of electricity price should incorporate seasonality, as exemplified by Knittel

and Roberts (2005) or Lucia and Schwartz (2002).

Given the pronounced volatility in the liberalised markets, conditional

heteroscedasticity models lend themselves well to correctly explain price per-

formance (Higgs and Worthington, 2010). These so-called GARCH models

date back to Bollerslev (1986). As they appropriately capture the fluctu-

ation and clustering of volatility, GARCH models are a widely employed

method in financial and commodity markets. Knittel and Roberts (2005)

were among the first to apply a GARCH model to the electricity price. They

use an asymmetric GARCH model to capture price responses to positive

and negative shocks and do indeed detect an inverse leverage effect. Other

GARCH applications that have a bearing on this study are Solibakke (2002)

and Mugele et al. (2005). Furthermore, Escribano et al. (2011) contribute to

the literature by combining jumps and GARCH to explicitly control for price
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spikes. They show that taking into account mean reversion, seasonality, and

jumps improves the GARCH model.

To better understand the performance of the electricity price, market

fundamentals should be reflected in the calculations (Janczura and Weron,

2010). Mount et al. (2006) and Karakatsani and Bunn (2010) emphasise

that variables for demand and reserve margins should be included to better

understand price movements. Huisman (2008) also recognises the need to

enrich the price model with fundamentals and uses temperature variables to

detect changes in price behaviour. Similarly, Hadsell and Marathe (2006)

and Gianfreda (2010) estimate an asymmetric GARCH model and include

traded electricity volume in the variance equation. They find that the trading

volume has an effect on price volatility, which is in line with findings from

stock markets, see for example Bollerslev and Jubinski (1999) or Le and

Zurbruegg (2010). Hadsell (2007) and Petrella and Sapio (2010) touch on

another decisive factor for the electricity price and use a GARCH model to

test whether changes in market design have an effect on price volatility.

Using a GARCH model allows to explicitly test the effect of the wind

power generation on the mean and volatility of the electricity price in an

integrated approach. Moreover, a GARCH model seems most appropriate

to mimic the volatility behaviour of the electricity price. Figure 6 illustrates

that volatility clustering is present which is typical in financial markets. This

feature hints at autocorrelation in the data, which is emphasised by the Q-

statistic for the squared and the absolute returns (Zivot, 2009).20 Further-

more, Engle’s (1982) test for autoregressive conditional heteroscedasticity

(ARCH) in the residuals confirms that ARCH effects are present.21

As electricity is not storable, the price tends to spike and then revert as

soon as the divergence of supply and demand is resolved (Bierbrauer et al.,

2007; Escribano et al., 2011). This mean reverting characteristic of the elec-

tricity price motivates the specification of the GARCH mean equation. To

capture mean reversion, the electricity price can be described by an Ornstein-

20From an auxiliary OLS regression with the log price, autoregression is detected in the
squared returns. This suggests the estimation of a GARCH model.

21The null hypothesis of no ARCH effects in the residuals is rejected with a highly
significant test statistic of 54.720 (<0.0001) when including two significant lags of ϵ2.
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Uhlenbeck process (Vasiček, 1977),

dpt = κ(µ − pt)dt + σdwt. (3)

Here, pt is the electricity price and wt a standard Wiener process. After

deviating from the mean, µ−pt, the price is corrected back to its mean. The

speed of the reversion is given by κ. According to Bierbrauer et al. (2007),

Equation 3 can be rewritten for the deseasonalised log price in discrete time

as Gaussian AR(1) process: yt = c + ϕyt−1 + ηt, where c = α · µ, ϕ = 1 − κ

and η ∼ iidN(0, σ2).22 Hence, the speed of the mean reversion can be calcu-

lated from the coefficient for the autoregressive parameter. Mean reversion

models have often been employed in the literature (Clewlow and Strickland,

2000; Lucia and Schwartz, 2002), but a plain mean-reverting process is found

to overestimate the variance and the mean reversion driven by volatile pe-

riods (Huisman and Mahieu, 2003). Similar to Knittel and Roberts (2005),

this motivates the estimation of an AR-GARCH model, including a mean

reversion parameter, in the following specification:

yt = µ +
l∑

i=1

ϕiyt−i + ϵt (4)

ht = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjht−j, (5)

where yt is the log electricity price and ht is its conditional variance. ϵt =
√

htzt and zt ∼ NID(0, 1). ω is the long-run variance. For the model to be

stationary, αi + βj < 1 and αi, βj > 0.

The daily data for wind generation, wt, are included in the mean and the

variance equation of this model. Given this extension, the specification for

22For the deseasonalised log price, Equation 3 can be written in discrete time as △yt =
κ(µ − yt)△t + sigma△wt. Given △yt = yt+1 − yt, the formula becomes yt = κµ + (1 −
κ)yt−1 + ηt. Check for example Dixit and Pindyck (1994) for a more detailed description
of the transformation from continuous to discrete time.
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the ARX-GARCHX model becomes:

yt = µ +
l∑

i=1

ϕiyt−i +
m∑

j=1

θjwt−j + ϵt (6)

ht = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjht−j +
s∑

k=1

γkwt−k. (7)

In the normal GARCH model, the coefficients in the variance equation, in-

cluding the additional coefficients for γ, should be positive to ensure that

the variance is always positive (Gallo and Pacini, 1998; Zivot, 2009). When

a coefficient in the GARCH variance equation is negative, one can inspect

the conditional variance and check whether it is always positive. In case of

a negative coefficient, the variance stability of the GARCH is linked to the

specific sample.23 The empirical strategy of this paper is to first estimate the

GARCH model with Equation 7 for the German day-ahead electricity price,

extended by covariates for the wind power forecast. All specifications are

first estimated including one AR(1) parameter as derived from the Ornstein-

Uhlenbeck process. To capture serial correlation present in the price series, I

then include the number of autoregressive lags which minimise the Bayesian

information criterion (Escribano et al., 2011). I will report both specifications

to show that the coefficients vary only slightly.

The aim of this study is not only to investigate the impact of wind power

generation on the electricity price, but also the regulatory modification to

wind electricity marketing. The German regulator amended the rules appli-

cable to marketing of renewable electricity in the so-called Ausgleichsmecha-

nismusverordnung in January 2010. In line with Antoniou and Foster (1992),

Holmes and Antoniou (1995), Bomfim (2003), and Hadsell (2007), a dummy

variable is introduced to capture this regulatory change. The dummy takes

the value of 1 after the change. This gives a first impression as to whether

change can be observed in the volatility of the electricity price after the

regulation was amended.

23As the aim of this study is not to forecast the price, checking that the actual conditional
variance is positive assures stability.
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5 Estimation Results

5.1 Impact of Wind Power

The results for the GARCH(1,1) estimations can be found in Table 3.24 All

standard errors are calculated using the Bollerslev and Wooldridge (1992)

method which assured that the test statistics are robust to non-normality

of the residual. The first column (A) shows the GARCH benchmark spec-

ification for the log level of the electricity price. All coefficients are highly

significant, the variance parameters are all positive, and their sum is smaller

than one. The size of the GARCH term β with 0.56 indicates that the au-

toregressive persistence β is not particularly strong for the electricity price.

The GARCH term α reflects the impact of new shocks the conditional vari-

ance ht, transmitted though the error term ϵt from Equation 4. The AR term

depicts a specificity of the power market. The coefficient of 0.88 in (A) shows

that the price reverts back to its long-run mean. But the speed of reversion,

given by 1 − ϕ1, is low.

The Ljung-Box Q-statistic suggests that serial correlation is not well ap-

proximated by a single autoregressive term. Therefore, a more dynamic

specification is estimated and further autoregressive parameters added. By

minimising the Bayesian information criterion, seven lags are included in the

specification (A*) in Table 4. The significant seventh lag mirrors the weekly

seasonal component and is in line with Escribano et al. (2011). The GARCH

coefficients remain fairly stable with an increase in β and, vice versa, a reduc-

tion of α. Their sum, however, stays below 1. This shows that the conditional

variance is mean-reverting, and shocks only have a temporary effect on ht

(Hadsell, 2007).25

In column (B) and (B*) the logarithms of wind and load are included in

the mean as well as the variance equation of the GARCH(1,1).26 The negative

coefficient for the wind variable shows that the day-ahead price decreases

24The ARCH LM test confirms that the volatility clustering is well captured for all
further specifications. Hence, no ARCH effects remain.

25The half-live of shocks can be calculated by ln(0.5)/ln(α+β), and the conditional
variance reverts back to its mean after 5.91 days (Zivot, 2009).

26Both variables added in logarithms to normalise the size and fluctuation of the series.
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when high wind electricity generation is forecasted. This confirms findings

by Jónsson et al. (2010) as well as Woo et al. (2011) and underlines the merit-

order effect. In the present specification (B) and (B*), the coefficients can be

interpreted as elasticities. When the wind electricity in-feed (MWh per day)

increases by 1 per cent, the price decreases between 0.09 and 0.10 per cent.

In the variance equation, the wind variable is significantly different from zero

and positive. Hence, the fluctuating wind in-feed increases the volatility of

the electricity price. To make sure that these results are not driven by the

outliers that remain in the log electricity price, an outlier dummy is included

in all mean equations.27 The coefficient for the load variable is only significant

in specification (B*) in Table 4, and illustrates that the price increases with

higher electricity demand. The variance, however, is reduced in times of high

demand, which might arise from higher liquidity of the electricity market.

A similar picture arises in column (C) and (C*) when the share of wind is

included in the GARCH model. The wind variable reflects the share of wind

relative to total electricity load. The coefficient for this wind penetration

measure turns out as expected: a strong wind in-feed lowers the electric-

ity price but increases its variance. When the share of wind rises by one

percentage point, the electricity price decreases by 1.32 or 1.46 per cent in

specification (C) and (C*). The coefficient is higher than before because the

wind variable is now expressed as a share of total load. For the wind share

to rise by one percentage point, the wind electricity production needs to gain

quite substantially.28 When the wind variables are added in (B) and (C),

respectively (B*) and (C*), the coefficient for the GARCH term α increases

slightly, accompanied by a downward adjustment of β. This suggests that a

omitted variable bias skewed their coefficients in the previous specification

(A*). Generally, the fit of the model, measured by the information criteria,

improves when more autoregressive parameters are included in specifications

27The dummy captures the 1.1.2007, 1.1.2008, 4.10.2009, and 25.12.2009. When AR
terms are included in the regression, the respective number of lagged dummies is included
as well.

28This can be illustrated as follows. The mean wind forecast is 111 GWh per day, the
mean load reaches 1.332 GWh. The average share therefore is 8 per cent. To reach 9 per
cent, wind has to rise a substantial 13 MWh or 12 per cent.
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(B) and (C), respectively (B*) and (C*).

Figure 9: Rolling regressions for specification (C) with a three year window
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Note: The regressions have been estimated for a moving window of three years. The first
window starts on 1.1.2006 and ends on 31.12.2008. The dates in the legend indicate the
end of each three-year window. The lines show the development of the coefficients for each
consecutive regression.

To arrive at a first impression of how wind power’s influence on the elec-

tricity price evolved over time, rolling regressions are calculated for specifi-

cation (C).29 Figure 9 shows how the coefficients evolve, using a three-year

window. The rolling regressions illustrate, on the one hand, that the wind

coefficient from the variance equation remains fairly constant. On the other

hand, the coefficient for the wind share in the mean equation, depicted by

the orange line, becomes less negative over time. The wind in-feed can no

longer decrease the price level as much. Stated differently, the merit-order

effect lessens over time. Sensfuß (2011) find the same effect for Germany.

A plausible explanation for the weaker merit-order effect is the increasing

share of solar PV in-feed. Already, a merit-order effect from wind power can

be observed for solar PV in Germany (Bundesnetzagentur, 2012). As Figure

29Rolling regressions with a 2 year window have been calculated as well and give a
broadly similar picture. However, a longer window is preferred for the coefficients to be
significant. Moreover, the picture for specification (B), including log levels for wind and
load separately, looks very much the same.
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10 shows, electricity generation from solar PV depresses mainly peak power

prices. Lower peak power prices reduce the daily average wholesale price

used in this study. When the average price is lower on days with little wind,

the calculated merit-order effect for wind will be smaller. This also explains

the dip during winter 2010 when solar PV was not able to lower peak prices.

Investigating this interaction in an analysis with hourly prices would be in-

teresting but is left for further research. Another reason for the weakening

merit-order effect could be the stronger electivity trade within Europe. The

possibility to export excess wind electricity generation smoothes the price

development (Hulle, 2009). This effect is further explained at the end of this

section.

Figure 10: Solar PV in-feed and peak prices
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Note: The solid lines denote the 7-day moving average. The transparent lines the daily
values. The difference between peak and off-peak prices shows that solar PV mainly
depresses peak hour prices. In summer 2011 the off-peak price was even above the peak
price on three days. Source: Bundesnetzagentur (2012).

After April 2011, the impact of wind on the electricity price diminishes

even further. This is most likely related to the nuclear phase-out in Germany.

Shutting down nuclear power plants shifts the merit-order curve as illustrated

by Figure 11. The price decrease, induced by wind, is less strong when

the nuclear capacity is removed. This results are confirmed by findings of
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Thoenes (2011).

Figure 11: Stylised merit-order curve before and after the nuclear phase-out
M
a
rg
in
a
l
co
st
in
E
u
ro

p
e
r
M
W
h

Capacity per technology in MW

Wholesale price without nuclear

Wholesale price with nuclear

Demand

Note: Simplified merit order curve in line with von Roon and Huck (2010) and Gruet
(2011). The blue line illustrates marginal costs for electricity from wind, yellow stands
for nuclear, brown for lignite, black for hard coal, orange for gas, and purple for oil. The
dotted line illustrates the case without nuclear.

5.2 Impact of Regulatory Change

The empirical framework is used to evaluate modifications to the power mar-

ket design and the renewables regulation. The German regulator amended

the marketing of renewable electricity in the so-called Ausgleichsmechanis-

musverordnung in January 2010. All TSOs are now required to forecast the

renewable power production one day in advance and to sell the total pre-

dicted amount on the day-ahead market. TSOs then receive the revenues

from selling the renewable power volumes at the wholesale market price (see

Figure 12). However, these funds are most likely insufficient to remunerate

the producers of renewable electricity according to the feed-in tariff rates.

Therefore, TSOs also receive the so-called EEG levy which is after all raised

from the electricity users.30 The EEG levy covers payments for feed-in tar-

30EEG stands for Erneuerbare Energien Gesetz. The EEG levy is payed by the energy
suppliers who then pass the costs to consumers and industry. Some electricity users are
exempt from the levy.
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iffs as well as costs from forecasting, balancing, and marketing of renewable

electricity.

Figure 12: Marketing mechanism after the regulatory change in 2010

TSOsDSO

Electricity ExchangeEnergy

supplier

Electricity price

EEG FITEEG FIT

DSO Distribution system operator

TSO Transmission system operator

EEG Erneuerbare Energien Gesetz

FIT Feed in tariff

Financial

balancing

Note: Illustration adapted from Buchmüller and Schnutenhaus (2009). Blue arrows show
the flows of renewable electricity from the installations to the final electricity users. Orange
arrows indicate monetary flows that finally remunerate the operators of renewable elec-
tricity installations. More detailed information is available at: www.bundesnetzagentur.de

The previous marketing mechanism was more complicated. TSOs had

to predict the renewable electricity production a month in advance. These

forecasts were quite inaccurate as the wind and solar PV power production

is highly dependent on meteorological factors.31 Energy suppliers and TSOs

then agreed on a fixed schedule for renewable electricity delivery on each

day of the following month (Buchmüller and Schnutenhaus, 2009). These

volumes had to be physically delivered from a TSO to the energy supplier

(see Annex B, Figure 14 for an illustration). As the final wind in-feed was

uncertain, the physical delivery of renewable electricity via the TSOs to the

energy companies was an inefficient mechanism (Monopolkommission, 2009).

When wind power generation was lower than expected, the missing electric-

ity volumes had to be bought by the TSOs on the day-ahead or intrady

31Other renewable electricity generation, for example biomass, is less problematic in this
respect.
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market. A surplus of renewable electricity, on the contrary, had to be sold

on the market (Erdmann, 2008). More sudden shortfalls had to be fixed on

the balancing market. This mechanism led to substantial balancing costs for

adjustments in the spot markets. In 2008, they reached 595 million Euro

for all TSOs (Bundesnetzagentur, 2012). With the new regulation, the fore-

casting uncertainty and interventions on the spot markets could be reduced.

The related costs shrank substantially to 127 Mio in 2010, and the electricity

users were disburdened (Bundesnetzagentur, 2012).32 Under the old regula-

tion, the expenses for spot and balancing market interventions were hidden in

the network charge (Buchmüller and Schnutenhaus, 2009). Since 2010, these

costs are added to the EEG levy. This increases the transparency for elec-

tricity users who get a clearer picture of the renewable subsidy and system

costs.

Transparency also increases with regard to the marketed renewable energy

volumes as they have to be sold on the day-ahead market. The additional

wind volumes increase liquidity of the day-ahead and the intraday market

significantly (Bundesnetzagentur, 2012). This is expected to reduce price

volatility as smoother prices can generally be observed in a more liquid mar-

ket (Figlewski, 1981; Weber, 2010). Moreover, TSOs had no incentive under

the old regulation to optimise activities on the day-ahead and the intraday

market because they could socialise these expenses via the network charge

(UoSC) to electricity users (Buchmüller and Schnutenhaus, 2009). According

to Klessmann et al. (2008), integration of renewable electricity in Germany

was opaque and inefficient before 2010. Under the new regulation, the inter-

ventions on the day-ahead market become obsolete and related disturbances

are expected to reduce.

To test for the effect of the regulatory change on the price volatility,

a dummy variable is included in the variance regression. This procedure

follows Antoniou and Foster (1992), Holmes and Antoniou (1995), Bomfim

(2003), and Hadsell (2007). The dummy variable captures the effect on the

variance after the regulatory change in 1. January 2010. The dummy is not

32The overall EEG levy still continues to rise due to high liabilities from feed-in tariff
payments, just the burden from the balancing costs is reduced.
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included in the mean equation as the new regulatory design only alters the

way renewable electricity volumes are absorbed from the market. The overall

electricity supply – whether it be generated from renewable or conventional

power plants – remains unaffected by the regulation. Therefore, the price

level should not be affected from the regulatory change, and the focus lies

on the price variance.33

The results from specification (D) and (D*) can be found in Table 3 and

Table 4. In both cases, the negative and significant coefficient for the dummy

variable indicates a reduction of the conditional variance after the regulatory

change. The effects of wind and load, discussed earlier, remain robust. De-

spite the negative coefficient for the dummy, the conditional variance does not

become negative for the given sample. Therefore, the specification remains

valid.

5.3 Impact of Market Coupling

The German market is not isolated, and electricity flows to neighbouring

countries are important, especially for the integration of intermittent renew-

able electricity. A good example is the wind power from northern Germany

which can often not be transmitted to the southern parts of the country

due to capacity constraints in grid. High wind energy generation results

in exports to neighbour countries, although the electricity could be used in

southern Germany. To make sure that the reduction in the variance from

2010 onwards is not simply a result of the better integrated electricity market,

I control for cross-border trade in the European electricity market.

The integration of the European electricity market has gained consider-

able importance from the creation of the European Market Coupling Com-

pany (EMCC). Since November 2009, Germany and Denmark pursuit day-

ahead volume coupling on the two interconnectors between Germany and

Denmark. In May 2010, the Baltic cable between Germany and Sweden

joined. On 10. November 2010, the countries of the CWE region (Bel-

gium, France, Germany, Luxembourg and the Netherlands) and the so-called

33This assumption was double-checked by adding the dummy variable to the mean
equation. It stays insignificant and the results for the variance equation are not affected.
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Table 5: Results AR-GARCH models with additional explanatory variables

Dependent variable: log electricity price
Sample: 1.1.2006 31.1.2012

(E) Wind/Load (E*) Wind/Load
Regulation Regulation

EMCC capacity EMCC capacity
Mean equation

Constant 3.863 (<0.0001) 3.775 (<0.0001)
ϕ1 0.873 (<0.0001) 0.593 (<0.0001)
ϕ2 0.005 (0.8501)
ϕ3 0.058 (0.0351)
ϕ4 -0.01 (0.6912)
ϕ5 0.050 (0.1745)
ϕ6 0.124 (<0.0001)
ϕ7 0.147 (<0.0001)
Wind/Load -1.243 (<0.0001) -1.402 (<0.0001)
log(EMCC capacity) 0.007 (0.6425) 0.018 (0.1713)

Variance equation
ω -0.017 (0.0391) 0.015 (0.6472)
α1 0.249 (<0.0001) 0.260 (<0.0001)
β1 0.296 (0.0001) 0.279 (<0.0002)
Wind/Load 0.051 (0.0002) 0.045 (0.0001)
Regulation dummy -0.010 (<0.0001) -0.008 (<0.0001)
log(EMCC capacity) -0.001 (0.4515) -0.001 (0.5029)
Adj. R2 0.742 0.784
Log likelihood 1152.265 1334.536
AIC -1.026 -1.187
BIC -0.996 -1.125
Note: An asterisk * labels the specifications that include seven
autoregressive lags of the price. EMCC capacity is the day-
ahead available transfer capacity from Germany to Sweden and
Denmark. AIC stands for Akaike information criterion, BIC for
Bayesian information criterion. p-values are in parentheses.A
dummy for outliers in the log price and its lags are included in all
mean equations.
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Northern region (Denmark, Sweden and Norway) coupled their electricity

markets.34 The electricity flows of these countries are now jointly optimised,

and electricity is exported from low-price to high-price areas, as a matter of

efficiency. The necessary congestion management is carried out by the EMCC

in a so-called interim tight volume coupling (Monopolkommission, 2009).35

For this study, I use the interconnector capacities that can be used to export

excess wind production.36 The capacities are reported to the EMCC before

the price setting on the day-ahead market and are therefore exogenous from

the dependent variable.37 For reasons of data availability, I use data for

the interconnectors between Germany and the Northern region only (Baltic

Cable, DK West and DK East).

The “north-bound” interconnector capacity is included in specification

(E) and (E*) in Table 5. The coefficients of the EMCC capacity do not turn

out significant. However, the conclusions regarding the regulatory change

and the wind in-feed remain valid. Therefore, previous specifications that

omit the interconnector capacity seem not to be misspecified.

34CWE stands for Central Western Europe. Countries connected in the CWE and
the Nordic region account for approximately 55% of the European electricity generation
(Böttcher, 2011).

35The TSOs from the participating countries report the interconnector capacities one
day in advance to the EMCC (see Figure 7). In addition, the EMCC receives the
anonymised order books from the participating electricity exchanges after the day-ahead
spot market closed at 12am. The buying and selling orders, including the volumes of
renewable electricity and the interconnector capacity, are optimised by the EMCC. The
algorithm determines the price-independent volumes that have to be sold additionally on
those markets that had too high prices. The EMCC only calculates the additional elec-
tricity quantities that are needed to equalise the price amongst participating countries.
The auctioning and price setting remains in the hands of the local exchanges (Böttcher,
2011).

36The so-called Available Transfer Capacity (ATC) is included in the regressions. ATC
is the physical interconnector capacity which is not yet allocated and is free to use. This
export potential reflects the technical and physical restrictions in the neighbour country.

37The electricity trade flows are an outcome variable as they are determined together
with the price on the day-ahead markets. The data on the electricity trade are therefore
not included in this study.
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6 Policy Implications

This chapter shows that intermittent renewable generation already transmits

volatility to the electricity price. The question is how to integrate electricity

from variable sources more smoothly.

First, better geographical integration is important. Building renewable

installations throughout Germany would even out the regional fluctuation

and assure that wind and sunshine are captured at different sites (Klinge

Jacobsen and Zvingilaite, 2010). However, optimal sites for renewable in-

stallations are limited within one country. It seems more efficient to connect

renewable installations throughout Europe. Schaber et al. (2012) project

that improved interconnection within Europe will reduce market effects of

variable renewable electricity substantially. Hulle (2009) also emphasise that

grid extensions lead to steadier wind generation levels. Better grid connection

can be fostered by new cables but also by using existing capacity more effi-

ciently. Experience in Europe has shown that modifying the market coupling

regime is helpful in this regard (Hulle, 2009; Monopolkommission, 2011).

Second, flexible conventional power plants as well as electricity storage

help balancing fluctuations of renewable energy. In times of high renewables

in-feed, storage can collect and save excess electricity. Flexible generation

units are power plants with low ramping costs, for example gas turbines.

These plants operate at high variable but low fixed costs and can therefore

be switched on and off to equalise low renewable power in-feed. The main

difficulty of both options, storage and flexible generation capacity, is their

investment cost. Providing responsive generation capacity needs to be prof-

itable. With more and more renewables in the power system, conventional

plants will mainly balance renewable fluctuation and therefore operate fewer

full-load hours. Recovering the investment costs for flexible conventional

units during these load hours will become more difficult (Klessmann et al.,

2008; Klinge Jacobsen and Zvingilaite, 2010; Steggals et al., 2011). Periods

with peak prices, which allow plant operators to generate revenues, become

less certain and predictable due to the high variability of renewable elec-

tricity generation. The increased refinancing risk questions the viability of
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investments in flexible conventional capacity, and the market mechanisms

might fail to give sufficiently strong investment signals. The literature dis-

cusses various policy options, such as capacity markets, capacity payments,

or reliability options, to support the construction and availability of flexible

capacity. All these policy models are subject of some controversial debate

(Cramton and Ockenfels, 2011). It is not clear that introducing such new pol-

icy instruments is beneficial and necessary. For the time being, ifo and FfE

(2012) rather suggest using the existing structure of the balancing market to

auction more long-term capacity.

Finally, this study emphasises that regulatory changes can encourage a

better integration of intermittent renewable electricity in the power system.

Going forward, the regulatory and the policy framework should be further

adjusted to the challenges arising from the decarbonisation of the electric-

ity market. Regarding the regulatory setting, on the one hand, intermittent

renewables could be better integrated if gate closure on day-ahead and in-

traday markets would be later (Hiroux and Saguan, 2010). A later gate

closure would reduce uncertainty on the spot markets and balancing costs

because a shorter forecasting horizon makes actual wind generation more pre-

dictable.38 Another small step towards a better integration of renewables is to

offer different products on the spot markets. Since December 2011, the Ger-

man intraday market offers not only hourly, but 15 minute electricity blocks

(Bundesnetzagentur, 2012). Given the stochastic generation profile of wind

and solar PV, this product increases flexibility for market participants. Such

smaller products should probably be introduced to the day-ahead market as

well. With respect to the policy framework, on the other hand, renewable

support schemes should be revisited. Currently, renewable energy is not ex-

posed to any market risk in Germany due to guaranteed feed-in tariffs. A

more market-based system would give incentives to realign renewable elec-

tricity supply with demand. Support schemes that depend on the wholesale

electricity price make generation most attractive during peak load. Ger-

many already offers renewable electricity producers to choose between fixed

38The implementation may not be straight forward as all action needs to be coordinated
among European states.
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feed-in tariffs and price-dependent feed-in premiums. Since the beginning

of 2012, renewable electricity producers are given a third option: they can

sell their renewable electricity directly on the market without using TSO ser-

vices. They forego the feed-in tariff but currently receive a similar payment

to make this option attractive. This so-called Direktvermarktung does not

yet reduce subsidy payments but creates another market-based channel to

integrate renewable power. Together with a transition to feed-in premiums,

this approach should be rigorously pursued. Simultaneously, balancing costs

should be partly shifted to the operators of renewable installations. In Ger-

many, these integration costs are currently passed on to energy users, in other

countries, for example Spain or the UK, the operator of renewable installa-

tions has to bear these costs partly (Klessmann et al., 2008). When exposing

renewables to more market risk, the maturity of the technology and the func-

tionality of the market need to be taken into account. Surely, intermittent

installations have a limited ability to respond to price signals and should not

be exposed to full risk (Klessmann et al., 2008). But renewable electricity

generation now plays an important role in the German power system and

should therefore assume more responsibility. A completely protected envi-

ronment can hardly be sustained when planning to increase the renewables

share to 35 per cent of gross electricity production in 2020. Market-based

support could give positive long-run incentives to exploit portfolio effects,

to choose optimal installation sites, and to improve the generation forecasts

(Hiroux and Saguan, 2010).

7 Conclusions

With the aim of reducing carbon emissions and increasing energy security,

renewable electricity generation is strongly supported by politicians and in-

terest groups. This has led, especially during the last decade, to a rapid

increase of renewable electricity generation in many parts of the world. In

Germany, renewables now make up 20 per cent of the country’s gross electric-

ity production. The share of intermittent electricity generation from wind

and solar PV has grown particularly quickly. Large amounts of stochastic
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wind electricity pose new challenges for the power system. Assuring a stable

electricity supply and price becomes increasingly difficult. Given that Ger-

many strives for an electricity mix with 35 per cent renewables in 2020 and

50 per cent in 2030, resilient integration of intermittent renewable electricity

becomes absolutely crucial.

The presented results show that intermittent wind power generation does

not only decrease the wholesale electricity price in Germany but also increases

its volatility. This conclusion holds across various specifications underlining

the robustness of the results. The disruptive effect of variable renewables

on the wholesale price is relevant for the entire energy system. A lower

and more volatile electricity price probably provides insufficient incentives

to investment in new generation capacity, both in renewable as well as con-

ventional capacity. The higher price volatility introduces uncertainty which,

according to Dixit and Pindyck (1994), might lead to a delay of investments.

After all, flexible generation plants become more important to back-up an

increasing share of intermittent renewable electricity, but more difficult to

finance. It is of the utmost importance that the electricity price continues

to induce investments – in carbon-free renewables capacity and in back-up

capacity needed to maintain security of supply.

This study finds evidence that a more reliable price signal can be achieved.

The volatility of the German electricity price decreased after a regulatory

change in 2010. Hence, the market design can to some extent smoothen the

volatility of the electricity price and stabilise its level. Going from here, re-

newable electricity regulation should be developed further, towards a more

market-orientated structure that remunerates renewable electricity during

phases of high electricity prices. In Germany, the transformation of the en-

ergy system brings along many challenges. A framework that sets appropriate

incentives for new investments and stabilises the wholesale price is prereq-

uisite to meet these requirements. An efficient and more market-based inte-

gration of variable renewable electricity would unburden the consumers who

currently pay most of the energy transition. This, in turn, could strengthen

public support for the necessary transformations.
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Bewerung von Potentialen und Handlungsmöglickeiten. Report in prepara-
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A Renewables and the Power System

Figure 13: Variable renewable electricity and the power system
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Source: Illustration adapted from Neubarth (2011).

This figure shows how variable renewable electricity influences the power

system. First, the variable renewable electricity in-feed poses challenges to

the grid which has to absorb the electricity at any point in time. Currently,

the German transmission grid does not have enough capacity to transport

the renewable electricity in-feed southwards. This problem is particularly ap-

parent for wind power which is mainly generated in northern Germany but

is needed in the south. This implies the need for massive investment in addi-

tional transmission cables. Until these cables are in place, any electricity that

exceeds the demand in northern Germany is exported to neighbouring coun-

tries. Second, the impact on the level and volatility of the electricity price

is studied in Chapter 3. Finally, renewable installations affect the existing

power plants which need to balance the intermittent renewable electricity

in-feed. Gas and coal plants in Germany have to satisfy electricity demand

not met by renewables generation but have to be switched off when enough

renewable electricity is generated.



B Marketing Mechanism Before 2010

Figure 14: Marketing mechanism before 2010
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Note: Illustration adapted from Buchmüller and Schnutenhaus (2009). Blue arrows show
the flows of renewable electricity from the installations to the final electricity users. Or-
ange arrows indicate monetary flows that finally remunerate the operators of renewable
electricity installations. Source: Illustration adapted from Buchmüller and Schnutenhaus
(2009).
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