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Abstract

In this article we propose a two stage procedure to model demand
decisions by customers who are balancing several dimensions of a prod-
uct. We then test our procedure by analyzing the behavior of buyers
from an Austrian price comparison site. Although in such a market
a consumer will typically search for the cheapest price for a given
product, reliability and service of the supplier are other important
characteristics of a retailer. In our data, consumers follow such a two
stage procedure: they select a shortlist of suppliers by using the price
variable only; finally, they trade off reliability and price among these
shortlisted suppliers.
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1 Introduction

Consumers’ decision making in realistic purchasing situations is often more
complex than a standard utility maximization model can cope for. Due to
time constraints, high search costs, lack of computational power or simply
lack of cognitive knowledge in such situations, psychologists and decision
theorists in marketing often refer to heuristical procedures (Gigerenzer et
al., 1999) which are often able to perform better than more complicated
algorithms suggested by economists.

In many cases, two-stage procedures are suggested, where the decision
process is structured with different governing rules in the different stages.
Assume you are buying a car: as cars have dozens of quality dimensions
and there is a lot of different varieties available on the market a rational
decision balancing all these dimensions seems almost impossible. Typically, a
consumer makes a shortlist of potential varieties where only a limited number
of features of the cars are taken into account. This is the first stage of
the decision process. Once this shortlist is given, the consumer inspects
the cars in more detail, arranges for a test drive, etc in order to come to
a final decision(”consider-then-choose model” by Gaskin et al. (2008), Yee
et al. (2007)). Similar shortlist ideas are often used for literature prizes,
recruitment decisions or investment projects 1.

Two-stage decision procedures are related to Herbert Simon’s satisficing
behavior (Simon, 1957): individuals fix a satisfactory aspiration level and
then take the first object which satisfies this criterium. Theories of elimi-
nation by aspects (Tversky, 1972) or ”fast and frugal heuristics” (Gigeren-
zer and Goldstein, 1996) evoke lexicographic preferences 2. In simple cases,
where binary decisions on product characteristics are possible, individuals
decide first which characteristics are the most important ones and then they
eliminate products step by step if required characteristics are missing. These
heuristics are non-compensatory: bad features of one model cannot be com-
pensated by good performance in another one. While they do describe many
decision situations quite well, they suffer from some problems: How do in-
dividuals decide about the ranking of features in the lexicographic ordering?
How can the non-compensatory principle be upheld if the varieties differ

1Academics are familiar with these procedures from conference paper evaluations: ref-
erees are often asked to mark papers with A(definite accept), B(possible accept), C(definite
reject), where only B papers will additionally be checked by the program committee - the
committee decisions follow different rules.

2See also Kohli and Jedidi (2007) for experiments on computer buyers and Payne (1976)
for an early application on apartment choice.
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widely in some features, like quality and price? 3

In the following we will look at consumer decisions of online buyers. Rel-
ative to brick-and-mortar retailing, in online markets information is much
easier to get and search costs are much lower. An extreme case are so-called
price comparison sites or shopbots. On these websites, shoppers can com-
pare prices for thousands of products with one mouse-click: a comfortable
list of suppliers with information about prices but also on the reliability of
the seller - typically given by evaluations of past customers - is available at
practically no cost.

Such markets are close to perfect competition, so we should expect all
shoppers to buy at the cheapest price only. Despite of this, price dispersion
on the internet is not much lower as in brick-and-mortar stores (Brynjolfsson
and Smith, 2000) because buyers value accessability of the site and the shop,
reliability of order fulfilment and the modalities of delivery (Betancourt and
Gautschi (1993) and Pan et al. (2002)). As information is practically costless
in such markets - shoppers can see all the relevant price and quality infor-
mation on one screen - they have every incentive to make a well-informed
rational decision: they should take all the specifics of the seller into account
and trade off a higher price for higher reliability of the seller. In other words,
such markets are the least ones to expect heuristical procedures.

In this paper we will present a theoretical model capable to explain that
consumers make shortcuts in their consumer decisions. Typically, shoppers
decide on a shortlist of suppliers; a decision where the price is the most
important determinant. Reliability considerations of the supplier don’t play
a big role here. In the second stage quality, reliability, and other supplier-
specific characteristics are much more important aspects of the decision of
the consumers. Supporting empirical evidence of consumer behavior for our
decision model in a price search engine where the low information cost should
represent the best prerequisites for completely rational behavior shows the
importance of alternative concepts for the model for the standard utility
maximizing decision model.

3Researchers in Marketing (Gensch, 1987) have developed two-stage decision models
as well, but most of them have to assume the decision in the first stage as unobservable
and latent. See Moe (2006) for a model where customers decide between different meal
replacement products of one online retailer, where the costumers have to decide first which
product they should take and second whether to buy it or not.
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2 A Decision Procedure

In this section we introduce a simplified model of a decision process. The
process is a shortlist method (SM) (Manzini and Mariotti, 2007). We assume
that a buyer knows which good he wants to buy. Retailers of this good are
plenty and they differ in the additional service they offer. These services may
be availability of the good, pre and post sales services, payment options, etc.
Without loss of generality we assume that the good in it’s inert characteris-
tics is homogeneous. For a given product let X = {x1, .., xn} ⊂ R2

+ denote
the set of available offers, with n > 2 denoting the number of retailers offer-
ing this product. Each option represents the offer of one seller. We model
the offer of a seller as having two components, the price and the service
characteristic of the seller: xi = (pi, si) where pi is the price seller i charges
for the product and si is the seller’s service characteristic. For simplicity we
assume that each seller’s characteristics can be represented by a single num-
ber. One can easily extend the model to allow for product differentiation (i.e.
consumers compare several differentiated products) or several dimensions of
sellers’ characteristics. Given our focus on buyers’ decision procedure and
for reasons of simplicity, we model X is exogenously given.

To model the decision of a buyer we assume each buyer has a complete
binary preference relation P ⊆ X ×X over all elements in X and we denote
by x � y, x, y ∈ X, that the customer likes option x at least as much as
option y, i.e. (x, y) ∈ P . Hence, we assume that a buyer in principle has
complete preferences when asked to choose between any sets of options. Our
method is based on the assumption that a buyer first reduces his or her choice
set before making a final decision. We need the following notation to identify
utility maximizing choices from a set Y ⊆ X:

max(Y ; P ) = {xi ∈ X |@z ∈ Y such that z � xi} .

Even though our decision process will model boundedly rational choice,
we assume that the preference relation is complete. A SM is characterized
as a process that the preference relation is applied only to a shortlist, a set
S(v,X) ⊂ X. The procedure, we want to study, generates a shortlist S
which is based on a consumer’s individual cut-off price v. This cut-off price
may be determined by a maximum willingness to pay for the good. We
assume v is independent of service characteristics of a retailer. Given that it
is a characteristic of a consumer, we assume it to be exogenous. The second
stage of the decision procedure is to apply the complete preference relation P
to S(v, X). Let C(v,X) denote the choice based on this procedure.4 Hence
our procedure consists of two steps:

4Mandler et al. (2008) propose a checklist method that can provide a choice method to
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1. The customer generates a shortlist S(v, X) := {xi ∈ X |pi < v}.

2. Customers choose according to their preferences from S(v, X): C(v,X) :=
max(S(v, X); P ).

To compare this procedure to the standard rational choice procedure we
define the rational choice R(X) as R(X) := max(X; P ). If one interprets
the service characteristic of a seller as a characteristic of the good, then the
otherwise homogeneous product differentiates itself according to the retailers’
service characteristic. To compare our decision process to the literature, the
standard approach in the literature is to follow Rosen (1974). His hedonic
pricing approach would in our case state that among all the offers one can
derive a hedonic price function p(s) = min

{xi|si≥s}
pi which gives the best price for

the product given a certain minimum characteristic of the seller. The hedonic
pricing approach is another way to simplify the decision by eliminating all
options which have a higher price given a certain level of service. A decision is
then made among all elements of a restricted set. This yields the same result
as R(X). For our process this is not necessarily the case: ∃(X, v) C(v, X) 6=
R(X). In contrast to this, our process allows customers to consider all offers;
if they do so then their choice will be the same as in a rational choice decision,
i.e. C(max pi, X) = R(X).

In the following, we state some of the characteristics of C(v, X). Proofs
are generally omitted, as they are straightforward. For notational purposes
denote by p(C(v, X)) and s(C(v, X)) the respective element of C(v, X):

• If for ∀xi ∈ X pi = p, i.e. all sellers charge the same price then
C(v, X) = R(X).

• C(v, X) does not fulfill the weak axiom of revealed preferences (WARP):
∃X, Y with Y ⊆ X such that C(v,X) 6= C(v, Y ) and p(C(v, X)) <
p(C(v, Y )).5

• For v1 < v2, iff s(C(v2, X)) ≥ s(C(v1, X)) then p(C(v2, X)) ≥ p(C(v1, X)).

mirror complete preferences. We do not specify how consumers make their choice among
the items on the shortlist. The checklist method is a good candidate to model this decision,
in this case our method just prescribes a first item on the checklist, i.e. the price.

5Proof: Given that we have unit demand, a choice process W (X) fullfills WARP iff Y ⊆
X ⇒if W (X) 6= W (Y ) then p(W (X)) > p(W (Y )). See Varian (2006) for a recent survey.
A counter example proofs that our two stage decision process do not fulfils the WARP:
Let P = {(x, y) |p(x)− s(x) < p(y)− s(y)} i.e. a higher value of s denotes a preferable
quality and price and quality are perfectly substitutable. If X = {(1, 7), (2, 5), (3, 3)}
and Y = {(1, 7), (3, 3)} then with v = 2.1 C(2.1, X) = (2, 5) and C(2.1, Y ) = (1, 7)
contradicting WARP.
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• For X, Y ⊂ R2
+, C(v, X) fulfills the expansion property, i.e. C(v, X ∪

Y ) ∈ {C(v,X), C(v, Y )}.

Note that we differ from the rational shortlist methods by allowing for
complete preferences over X. Manzini and Mariotti (2007) as well as Kfir and
Ok (2006) assume that preferences are not complete, i.e. there exist options
where neither � nor � applies. By allowing only two dimensions and having
a natural ordering at least on the price, our choice method shares some
features with these methods but it comes up with not conventional choices
for a different reason. While in the cited procedures WARP is contradicted
because the procedures determine which options are eliminated from the
choice set given incomplete preferences, in our case the short list depends
just on one characteristic, namely the price. The main difference to the cited
procedures is that our sequential selection process is not affected by irrelevant
alternatives.

Our two-stage procedure shares the dependence on irrelevant alternatives
with the models suggested by Manzini and Mariotti (2007) or Kfir and Ok
(2006) if v is determined endogenously, i.e. v is a function of X. Why?
If v(X) is such a function and X0 = X ∩ {x0} then consumers short list
S(v(X), X) 6= S(v(X0), X0) and thus the choice may change, even though
x0 /∈ S(v(X0), X0).

To see the similarity of the procedures, we can translate our first step,
i.e. S(v, X) := {xi |pi < v} into notation of Manzini and Mariotti (2007):
{xi, xj} ∈ P1 iff pi ≤ v and pj > v.6

Compared to the mentioned choice methods, our choice procedure - in-
dependent of whether v is exogenous or a function v(X) - always generates
a unique decision of a buyer given a set of alternatives X.

In the following empirical section we will take two views on shortlists.
The first view is to exogeneousely enforce a shortlist, i.e. assuming that
customers really consider only the 5, 10 or 20 cheapest offers. Our second
view is that the decision to put an offer on the shortlist - i.e. to consider an
offer further - and the purchase decision are two separate steps. Given that
we can observe clicks and can distinguish them from purchases, we consider
all offers having been clicked at least once as those on the shortlist. With
our simple theory in mind, the following states hypotheses resulting from the
proposed procedure.

Hypothesis 1 If clicks determine the shortlist then prices strongly deter-
mine the selection of shops that are visited at least once.

6If v is a function X, for example v(X) = 1
|X|

∑
pi, then, indeed, irrelevant alternatives

can affect the choice because they change v(X), namely if p(x0) > 1
|X|

∑
pi.
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Hypothesis 2 Service will be more important among the sellers that are
visited / are on the shortlist.

3 Data and Estimation Strategy

For our empirical analysis we use the database of www.geizhals.at7. This
web-site offers a ’price search engine’ which collects the price offers via stan-
dardized protocols from a predefined group of sellers and presents them elec-
tronically via its web-platform. Typically the quality and reliability of price
offers in price search engines are higher and more serious in contrast to ’shop-
bots’ which do an arbitrary price search for products on the whole web and
offer the results of this web search online.

Geizhals.at has contracts with about 3,000 sellers which can list their
price offerings for a total of 280,000 products on the Geizhals.at website8.

Since Geizhals.at is by far the dominating firm in providing price compar-
isons in Austria, this price search engine is well-known and widely used by
webshoppers. Hence, all e-tailers have an incentive to get their prices listed
and we observe practically the complete Austrian market for online-traded
goods on Geizhals.at. Due to computational limitations we have to restrict
our data to an arbitrary week in the year 2006. The data in our analysis in-
cludes price offers for 38,374 products from a total of 449 sellers. From sellers’
price offers we know the exact name of the product and the producer together
with the products’ mapping into a hierarchical classification system for the
products (categories, subcategories, and subsubcategories). Furthermore,
sellers’ price offers include information on availability and shipping charges.
Customers have the possibility to evaluate the (service)quality of the firms:
32,626 customers did so. Geizhals.at offers the possibility to evaluate the
retailers’ service quality on a 5-point scale between 1(=very satisfying) and
5 (=very unsatisfying)9. To a certain extent, these firm evaluations can be
interpreted as a form of vertical firm differentiation. Furthermore, the data
comprise detailed information on about 556,311 customer clicks requesting
the referral to retail shops during this week.

7Geizhals means stingy in German.
8For the time span April 23, 2006 till June 25, 2007 we have in total 2,917 sellers,

279,973 products, 106,289,817 price offers, 49,594,757 clicks, 78,369 retailer evaluations,
185,310 product evaluations in our database.

9Customers who want to evaluate a shop have to register at the Geizhals.at website
which enhances the reliability of the evaluations. Besides the identification of the shopper
which is deterring rude behavior, Geizhals.at has a firm policy to check these evaluations:
strategic evaluations coming from suspect IPs or from competitors are removed.
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For obvious reasons, it is not possible to verify the above presented two-
stage decision strategy with our dataset in a direct way - a combination of
mind protocols together with the detailed clickstream of consumers would be
necessary to do that. However, our dataset is perfectly suitable to pursue an
indirect approach: By estimating an indirect hedonic price function we will
show that the price is the dominant variable in the first stage of the decision
process; but the closer we are moving towards the actual purchase decision,
the more important are other firm characteristics (e. g. firms’ evaluation,
country of origin, ...) relatively to the price. In particular, when we identify
clicks with a higher purchase probability10 we see that the importance of
variables other than the price increases considerably. We will show that this
is not an artefact of the way Geizhals.at presents their data on the website
but rather a heuristic which is used irrespective of the way the information
is presented.

We use the following indirect hedonic price function:

#clicksij = f(relpriceij, evaluationj, ...) (1)

In this equation #clicksij counts the consumers’ referral requests on the
Geizhals.at website (clicks) to retailer j for product i. The variable relpriceij

measures the price of product i of retailer j divided by the average price of
product i across all firms offering this product (hence relpriceij =

pij∑N
j=1 pij/N

)11.

Customers’ average firm evaluations are depicted with the variable evaluationj.
Other control variables are included: shipping costj for retailers were calcu-
lated from the information given at Geizhals.at. Since this variable was not
available (or was not unambiguously constructible) for all retailers, we inter-
polated with the average shipping cost and included additionally a missing
shipping cost dummy. Germanyj is equal to 1 if the online shop is located in
Germany - as opposed to Austria, availj is equal to 1 if the product is deliver-
able at short notice, pickupj is equal to 1 if the retailer has a pick up store as
well. Controlling for the general type of the e-tailer (discounter versus high-
priced online-shop) the pricelevelj indicates the average of relpriceij for firm
j for all offered products divided by the average over all firms and products.
As we observe relative prices and demand for different products, we include
also product fixed effects to control for different demand conditions across
products. Table 1 shows descriptive statistics for these variables.

10For that purpose we use the known ’Last-Click-Through’ concept discussed below.
11Since a retailer can change the prices up to 10 times a day we are using the retailers’

average price over the observation period.
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4 Empirical Results

The number of clicks to a retailer is highly skewed. 82.7 percent of the
products across the retailers are never selected from the customers due to
the large number of offers available to them; the mean offer attracts 0.62
clicks during the week of observation. As our dependent variable represents
typical non negative count data, we are using negative binomial panel esti-
mations including fixed effects for products to control for other unobservable
characteristics of the respective markets12.

Table 2 includes our main results. We show marginal effects of the relative
price, the firm evaluation by the customers and some control variables. The
first Column includes all product offers, whereas in Columns (2) to (4) we
increasingly focus our analysis on top-listed firms, i.e. firms with the lowest
prices among the shown list. Due to the large number of observations all
variables are significantly estimated and almost all have the expected sign.
If we concentrate first on all product offers we see that both the relative price
as well as the firm evaluation (our service quality indicator) are important
to explain demand for these products. Increasing the relative price by 10%
would decrease demand by 0.13 clicks, which is considerable given a mean
of 0.62 clicks per period. Likewise, increasing the numerical value of firm
evaluation (which is coded as a decrease of firm quality) by one standard
deviation (0.47) will decrease demand by 0.013 clicks.

Columns (2) to (4) restrict our sample step by step: if we look only among
the 20 cheapest, the ten cheapest or the five cheapest shops, the coefficient
of the relative price increases steadily – from -2.5 to -4.8. This is not sur-
prising, because the offers with the highest prices - getting no clicks at all -
are eliminated. More remarkable is the development of the firm evaluation
coefficient. It increases by about tenfold and reaches the value -0.28. Among
the five top-listed shops an increase of the firms’ quality evaluation by half a
grade will increase the number of clicks by 0.14. To show this realignment of
coefficients more clearly, we calculate the “relative importance of price over
service”: while the marginal effect of relative price relative to firm evaluation
is 47 in Column (1) with all firms this relation falls to only 17.1 in Column (4)
using only the top five firms. While this comparison is somewhat arbitrary as
we compare different measurement units, the development across Columns is
instructive. Apparently these results support our suggested decision strategy,
in which consumers select a short list of potential retailers according to the
price in the first step and consider other variables more carefully only in the
second step through which the relative importance of firm quality increases

12In all our models the likelihood ratio test for overdispersion rejects the poisson model.
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if we restrict our dataset to the products with a higher purchase probability.
Results from other product- or firm-specific characteristics corroborate

this picture. We find other quality or service components of an online shop
to have important effects on demand as well: these effects are in general
several times larger if we look at the sub-sample of the cheapest shops. If
the shop is located in Germany demand is considerably lower, presumably
because customers fear warranty or delivery problems across borders. If the
product in a shop is immediately available or if there is an additional pick up
possibility, i.e. the online shop also has a brick-and-mortar store aside, these
features are increasing the number of clicks: again, the importance of these
effects increases with the focus to the cheapest price offers. The number of
firm evaluations has a positive effect on demand, because customers might
trust the reliability of the shop itself and also the evaluations of the shop to
a larger extent.

As a control for the general type of the e-tailer we included the general
price level in the shop, which has a negative effect on buying a particular
product, given the relative price of this particular product. This not surpris-
ing result indicates consumers’ preferences for discounters rather than high
priced shops. This might reflect the psychological effect that on average con-
sumers believe more strongly in a good bargain if they buy in a web-shop
well-known for their cheap prices than in a high priced shop even if they ask
for the same price. The effect of shipping costs is inconclusive: If all offers
are included, relative shipping costs have a small positive effect on demand;
this coefficient turns duly negative once we concentrate upon the selection
among the 20 or even five cheapest firms. It seems that customers only start
looking at shipping costs once they consider seriously about buying from the
shop.There is no unambiguous expectation concerning the sign of the dummy
variable for the missing shipping cost. The coefficient should be negative if
consumers are not informed about this important variable in e-commerce
business. It should be positive if the missing shipping cost are an indicator
for special cheap rates. Shipping cost is the only variable which we have
to parse from a text field. Obviously the parsing procedure requires some
formal structure of the text field which will not be usable if the web-shop
deviates from the default guideline because of special rates. Therefore we
interpret the positive sign as an indicator for especially cheap shipping cost.

5 Robustness Checks

In the following subsections we will provide additional evidence for our result
by using different subsamples and alternative interpretations of our dataset.

9



Bottom-Listed Firms

As a reverse check we look in Table 3 at firms which are bottom listed, i.e.
whose prices are supposed to be above the unknown reservation price of the
shoppers. If shoppers follow a two stage strategy - fixing the reservation
price first and making a more elaborate evaluation among price and service
quality later on - they should not care about firm evaluation in the case of
offers above this reservation price. This is in fact, what we find: if we restrict
firms to those ranked fortieth or above, firm evaluation turns minuscule and
insignificant.

Few Suppliers

Another way to check the two stage procedure is to restrict the attention to
products such that a heuristic is not necessary. If the number of shops is
large, even the most meticulous shopper has to make shortcuts: she cannot
check all details of the offers, a reservation price strategy might be a nec-
essary first step in the decision process. However, if the number of shops
is manageable, a full-fledged deliberation between price and service quality
might be reasonable and possible. In Table 4 we restrict our analysis to prod-
ucts which are offered by a maximum of 20, 10 or only five firms. Column
(1) shows again our baseline model from Table 2 using all products offered.
Looking again horizontally across Columns we see that the impact of firm
evaluation increases dramatically as we restrict the market size further and
further: In markets with only 20, 10 or five firms, the coefficient for firm
evaluation increases from -0.03 to -0.14, -0.29 up to -0.51. Comparing again
this influence of relative price with the impact of service quality, we find the
relative importance drop from 47 to 8.6 in the case of five firms. This is clear
evidence for a different strategy in these markets: if many firms offer the
good, the trade-off between price and service quality is less strong; the less
firms there are, the more important quality dimensions get. The impact of
other characteristics, like being a foreign (German) firm, having the product
immediately available, having pickup possibilities and the number of evalua-
tions for the firm, corroborates the conclusions: All these characteristics are
much more important in small markets.

Last-Click-Through as indicators for actual purchases

A completely different view of the data offers additional support for our two
stage decision process for the choice of the shortlist and the actual purchase.
Looking at clicks to the website of an online shop - as we have done before
- is the ideal way to define the shortlist of shops the customer is interested
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in. This should be contrasted with actual purchases. Unfortunately, the
actual act of purchasing a product is unknown, because it happens at the
e-tailer’s own web site. In the literature, the concept of ’Last-Click-Through’
(LCT) is often used as a proxy for the purchasing decision (e.g. Smith and
Brynjolfsson (2001) or Bai (2004)). If a customer is searching for a product,
she might meander around different web sites, comparing characteristics of
the shops, but she will finally settle for the preferred shop and buy there
online. The last click to a shop selling the product is usually identified as
the click with the highest purchase probability.

In practice, it is not so simple to determine the ’Last-Click-Through’
because buyers can shop for a specific product several times in a particular
time interval. Analyzing the click behavior of a customer over time we have
to define a ’searching period’ which is finished with an actual purchase. If the
customer searches for several days, say, then interrupts the search for a month
or so, and reappears again, we might have the situation that a consumer buys
more than one specific good at different points in time. Two approaches can
be chosen for identification of such different search periods. By hierarchical
clustering which sequentially adds the clicks with respect to their minimal
temporal distance we get a dendrogramm in which the fixing of a hierarchical
level results in a certain amount of search intervals. Choosing a low level
results in many search spells, choosing a high level gives us fewer intervals.
Since the definition of the hierarchical level is arbitrary we decided to find
the different search intervals with the Grubbs’ Test for Outlier Detection.
By choosing a significance level of 95% those especially long time differences
can be found out which are distinguishing different search intervals13. Since
by definition a search requires the comparison of several alternatives even a
search period of one hour would have outliers. Hence, we have to introduce
additionally some minimal requirements - in one version a maximal time span
has to be one week with at least 3 clicks, in a second version a maximal time
span has to be one month with a least 5 clicks.

To complicate matters even more, customers might not only search for
one specific product, they might look at substitutes during their search as
well. The hierarchical mapping of the products into subsubcategories, sub-
categories and categories in the Geizhals.at data allows to cope with this
issue since this classification scheme just describes the degree of substitu-
tional relationship between the products (products in a subsubcategory are
close substitutes, products in categories reflect a looser substitutional re-

13It can be shown that for each level in the hierarchical clustering a certain significance
level for the Grubbs’ Test for Outlier Detection can be found which results in identical
search spells.
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lationship between products). Hence, the consumers’ different search spells
can be analyzed at the level of products, subsubcategories, and subcategories
(categories seem to be a too general classification)14.

Given these possibilities we come up with three different measures for the
identification of actual purchase clicks indicating the length of the presumed
search period15, and the substitutional relationship of search products: ’LCT
prod-week’, ’LCT subsubc-week’, ’LCT subc-week’.

In Table 5 we report estimates using these three alternative measures to
check for robustness. For comparison reasons we also show our benchmark
results from Table 2 using all clicks (Column 1). Comparing all three LCT-
variants with the benchmark results we see that in all cases the impact of
firm evaluation increases considerably up to nearly twofold. Hence, for all
of our three different measures of “purchase clicks” we can show that the
firm evaluation has a much stronger relativ impact on the final selection of
a product/firm compared to the situation where each referral request (click)
is interpreted as final product decision. This again confirms our two stage
selection model: The closer we come to the actual purchasing decision the
more important other decision variables than the price get - this relies both
to firm evaluation as such as well as other quality indicators, like availability,
pick up possibility, etc.

Censored Dataset

To display the relevance of our two stage procedure from an other point of
view we restrict our data to only those shops, where the potential buyer
has already checked the firm-specific web-site due to the referral request to
the respective online shops. Hence, all product offers with no clicks at all
are dropped from the dataset. This corresponds to the idea, that making
an actual purchasing decision requires that the shop was shortlisted before
(censored purchase clicks). Table 6 shows these results again using the Last-
Click-Through for counting the clicks with higher purchase probability. The
results are very similar, the additional importance of firm evaluation is even
higher as compared to Table 5. These results corroborate our previous find-
ings: shoppers use different strategies when deciding about a shortlist of
shops and when making a final buying decision: i) if a shopper clicks to an
e-tailer’s web-site this shop is part of the short-list, ii) among those on the

14In total 358 subsubcategories and 40 subcategories are given. As an example the
category ’Video/Foto/TV’ contains the subcategory ’TV-Sets’ and the subsubcategory
’LCD TV sets with 30-39 inches’.

15We do not report the estimates for the search period of one month as they are very
similar to our main results.
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short-list, the shopper is making a rational decision balancing quality and
price.

Substitutional Relationship between Offered Products

As Geizhals.at is typically ordering the offers increasing in prices, the price
search engine is anticipating the natural way to think about the attention
and cognitive reasoning of potential shoppers. The question arises if our
empirical results are driven by the way the data are presented by the price
search engine.

We can use information about the search behavior of shoppers by explic-
itly taking into account the substitutional relationship between the products.
If someone is interested not in a specific product but rather in a specific type
of product (eg. LCD TV sets with 30-39 inches) Geizhals.at allows to search
for such a type, but the results are not ordered according to price16. This
variation of product viewing at Geizhals.at, thus, gives a way to check the
importance of ordering according to price for the two-stage decision process.
If we can show in this new setting with no explicit price-ordering that the
importance of quality vs. relative price increases as well if we concentrate on
final purchases, this result would reinforce our suggested heuristic. In doing
so we take advantage of the different firm specific product assortment within
the subsubcategories resulting in different firm performances measured by
the click frequency. Table 7 presents the results for this strategy.

In order to control for the substitutional relationship between the prod-
ucts on the subsubcategorial level we have collapsed the dataset by averaging
the variables on the subsubcategorial level for each firm - some of these vari-
ables are firm specific constants anyway). In the resulting dataset the firm’s
success measured with the average purchase clicks in the subsubcategory can
be regressed again on firm specific variables (eg. average price of substitutes
in the subsubcategory, firm evaluation, ...). It should be noted that by av-
eraging purchase clicks over the various products a firm offers changes the
character of the dependent variable from a count to a continuous variable.
We can therefore use Ordinary Least Squares estimations with a fixed ef-
fect on the subsubcategorial level. Whereas Column(1) includes the offers
of all products, Columns (2) to (4) are reduced to the 120 cheapest, the 80
cheapest and the 40 cheapest shops17.

16It should be mentioned that Geizhals.at has offered this feature at a later point in
time.

17Due to averaging over different products and the fact that we only have 366 subsub-
categories we have to increase the number of top-listed firms in order to get a meaningful
dataset.
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Although no price ranking is available on the website for the substitutes
within a subcategory at this point in time we find our two stage decision
strategy confirmed. Whereas the coefficient for the price variable declines
considerably and turns into insignificance the coefficient for the firm eval-
uation increases over the different sub-samples. Again the relative impor-
tance of the price variable is decreasing in support of a much stronger in-
fluence of non price related variables if we focus on the set of firms with a
higher purchase probability. This applies to firm evaluation, but also to other
reliability-related characteristics, like the firm being located abroad, pick-up
possibilities and availability. Consumers construct a short-list according to
the price on the first stage, in the second stage other variables have a much
stronger influence on the actual decision process.

6 Conclusions

We suggest a new sequential decision strategy for shoppers who have the
choice between several different dimensions of a product. For the empirical
validation of the procedure a new comprehensive data set from an Austrian
price search engine is used. The dataset is unique because it covers a very
large number of products and firms and allows to control for substitutional
relationships between the various products.

Our two stage decisions model proposes that consumers fix a reservation
price and winnow all product offers with higher prices on the first stage.
Within the remaining shortlist of product offers consumers will carry out a
comprehensive consideration of the different choice alternatives. We found
convincing evidence for this decision model in data from an Austrian price
search engine www.geizhals.at: Although we could not test the two stage
decision procedure directly we can show with indirect hedonic price func-
tions that the price variable is the dominant variable in the first stage of
the decision process - however, the more we restrict our dataset to the set of
product offers with a higher purchase probability the more important become
other variables like firms’ service evaluation by customers, product availabil-
ity, pick up facility of a web-shop etc. Identification of referral requests with
higher purchase probability is being done by restricting our data to different
subsamples as well as the usage of the so-called Last Click Through concept.

This result is quite remarkable and robust; in particular in light of our
special market situation: buying online with a price comparison site is proba-
bly the decision making situation where a fully informed and rational decision
is easiest to accomplish and still we find overwhelming evidence of a short-
list behavior. While we cannot extrapolate our results to other markets, the
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suspicion remains that in other markets non-fully rational procedures might
abound.
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Table 2: Demand for Top-listed Firms

Data Sample all product top-listed top-listed top-listed
offers 20 firms 10 firms 5 firms

Rel. Price -1.3210*** -2.4633*** -3.3768*** -4.8273***
(0.0098) (0.0257) (0.0455) (0.0918)

Firm evaluation -0.0281*** -0.0800*** -0.1508*** -0.2831***
(0.0014) (0.0033) (0.0056) (0.0108)

Rel. Shipping costs 0.0127*** -0.0011 -0.0136*** -0.0234**
(0.0014) (0.0032) (0.0052) (0.0095)

Germany -0.2202*** -0.5148*** -0.6374*** -0.6996***
(0.0024) (0.0072) (0.0122) (0.0214)

Availability 0.0990*** 0.1674*** 0.2313*** 0.3357***
(0.0016) (0.0036) (0.006) (0.0113)

Pick Up 0.0495*** 0.1008*** 0.1640*** 0.2758***
(0.0016) (0.0039) (0.0069) (0.0135)

Pricelevel -0.3773*** -0.4238*** -0.4752*** -0.5431***
(0.0121) (0.0278) (0.0455) (0.0833)

Miss. ship. cost 0.1256*** 0.1989*** 0.2394*** 0.3014***
(0.0025) (0.0052) (0.0082) (0.0148)

#evaluations 0.0003*** 0.0005*** 0.0006*** 0.0007***
(0.00001) (0.00002) (0.00003) (0.00008)

Observations 847641 416623 247697 135250
Products 34139 33500 32296 30408
χ2 89682 44299 24564 11354
LL -422771 -284898 -197681 -118157
rel. Importance
of price over service 47.0 30.8 22.4 17.1

Method of Estimation: Negative Binomial with product fixed effects - marginal effects with respective
standard errors are shown. *, ** and *** indicate statistical significance at the 10-percent, 5-percent and
1-percent level. Constant is not shown in Table. Marginal effects for dummy variables represent discrete
change from 0 to 1.
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Table 3: Demand for Bottom-listed Firms

Data Sample all product offers with offers with offers with
offers firm rank firm rank firm rank

>20 >40 >60

Rel. Price -1.3210*** -0.3281*** -0.1023*** -0.0096
(0.0098) (0.0088) (0.0091) (0.0099)

Firm evaluation -0.0281*** -0.0121*** -0.0050* -0.0001
(0.0014) (0.002) (0.0029) (0.0046)

Rel. Shipping costs 0.0127*** 0.0143*** 0.0175*** 0.0180***
(0.0014) (0.0019) (0.0027) (0.0042)

Germany -0.2202*** -0.2066*** -0.1617*** -0.1304***
(0.0024) (0.0035) (0.0044) (0.0061)

Availability 0.0990*** 0.0831*** 0.0866*** 0.0840***
(0.0016) (0.0023) (0.0036) (0.0058)

Pick Up 0.0495*** 0.0319*** 0.0368*** 0.0452***
(0.0016) (0.0019) (0.0028) (0.0046)

Pricelevel -0.3773*** -0.1689*** -0.1946*** -0.1695***
(0.0121) (0.0165) (0.0229) (0.0344)

Miss. ship. cost 0.1256*** 0.0874*** 0.0864*** 0.0819***
(0.0025) (0.0037) (0.0057) (0.0092)

#evaluations 0.0003*** 0.0003*** 0.0002*** 0.0002***
(0.00001) (0.00001) (0.00001) (0.00001)

Observations 847641 289784 118970 46094
Products 34139 7350 3182 1339
χ2 89682 30854 11511 3683
LL -422771 -99553 -37619 -13688
rel. Importance
of price over service 47.0 27.1 20.5 -

Method of Estimation: Negative Binomial with product fixed effects - marginal effects with respective
standard errors are shown. *, ** and *** indicate statistical significance at the 10-percent, 5-percent and
1-percent level. Constant is not shown in Table. Marginal effects for dummy variables represent discrete
change from 0 to 1.
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Table 4: Demand for Products with Few Suppliers

Data Sample all product products with products with products with
offers max. 20 firms max. 10 firms max. 5 firms

Rel. Price -1.3210*** -2.7662*** -3.6066*** -4.3609***
(0.0098) (0.0457) (0.0904) (0.1815)

Firm evaluation -0.0281*** -0.1422*** -0.2860*** -0.5061***
(0.0014) (0.0081) (0.0182) (0.0414)

Rel. Shipping costs 0.0127*** 0.0362*** 0.0343** 0.0043
(0.0014) (0.0081) (0.0172) (0.0372)

Germany -0.2202*** -0.5133*** -0.6470*** -0.5792***
(0.0024) (0.0122) (0.0235) (0.0409)

Availability 0.0990*** 0.2447*** 0.3452*** 0.4666***
(0.0016) (0.0089) (0.0184) (0.0405)

Pick Up 0.0495*** 0.0985*** 0.1551*** 0.2607***
(0.0016) (0.0085) (0.0179) (0.0399)

Pricelevel -0.3773*** -1.0575*** -0.9622*** -0.3212
(0.0121) (0.0604) (0.1218) (0.2572)

Miss. ship. cost 0.1256*** 0.1873*** 0.2527*** 0.3624***
(0.0025) (0.0095) (0.0187) (0.0413)

#evaluations 0.0003*** 0.0006*** 0.0007*** 0.0009***
(0.00001) (0.00001) (0.00001) (0.0001)

Observations 847641 158843 73187 29375
Products 34139 20611 14845 9233
χ2 89682 15904 6840 2233
LL -422771 -108389 -52715 -21183
rel. Importance
of price over service 47.0 19.5 12.6 8.6

Method of Estimation: Negative Binomial with product fixed effects - marginal effects with respective
standard errors are shown. *, ** and *** indicate statistical significance at the 10-percent, 5-percent and
1-percent level. Constant is not shown in Table. Marginal effects for dummy variables represent discrete
change from 0 to 1.
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Table 5: Purchase Clicks

Type LCT
all clicks prod-week subsubc-week subc-week

Rel. Price -1.3210*** -1.48647*** -1.61231*** -1.61925***
(0.0098) (0.03755) (0.05816) (0.1172)

Firm evaluation -0.0281*** -0.05018*** -0.04296*** -0.04580***
(0.0014) (0.00414) (0.00495) (0.00743)

Rel. Shipping costs 0.0127*** 0.00948** 0.01276*** 0.0082
(0.0014) (0.0037) (0.00435) (0.00608)

Germany -0.2202*** -0.26541*** -0.27207*** -0.24097***
(0.0024) (0.00805) (0.01126) (0.01918)

Availability 0.0990*** 0.14722*** 0.14358*** 0.12140***
(0.0016) (0.00539) (0.00702) (0.0111)

Pick Up 0.0495*** 0.08132*** 0.07975*** 0.08005***
(0.0016) (0.00478) (0.00597) (0.00959)

Pricelevel -0.3773*** -0.25630*** -0.16887*** -0.18842***
(0.0121) (0.03335) (0.03935) (0.05695)

Miss. ship. cost 0.1256*** 0.11645*** 0.13371*** 0.10464***
(0.0025) (0.00679) (0.00885) (0.01268)

#evaluations 0.0003*** 0.00033*** 0.00033*** 0.00028***
(0.00001) (0.00001) (0.00001) (0.00002)

Observations 847641 400841 306764 157748
Products 34139 11239 8624 4028
χ2 89682 15027 10696 4143
LL -422771 -74727 -45813 -17889
rel. Importance
of price over service 47.0 29.6 37.5 35.4

Method of Estimation: Negative Binomial with product fixed effects - marginal effects with respective
standard errors are shown. *, ** and *** indicate statistical significance at the 10-percent, 5-percent and
1-percent level. Additional variables as in Table 2.
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Table 6: Censored Purchase Clicks

Type LCT
all clicks prod-week subsubc-week subc-week

Rel. Price -1.3210*** -1.20991*** -1.60663*** -1.61672***
(0.0098) (0.07018) (0.09541) (0.14524)

Firm evaluation -0.0281*** -0.12654*** -0.08137*** -0.09036***
(0.0014) (0.0156) (0.01684) (0.02026)

Rel. Shipping costs 0.0127*** 0.00005 0.01653 0.01306
(0.0014) (0.01387) (0.01488) (0.01718)

Germany -0.2202*** -0.19232*** -0.22925*** -0.18690***
(0.0024) (0.01711) (0.01993) (0.02499)

Availability 0.0990*** 0.22887*** 0.22498*** 0.15518***
(0.0016) (0.01509) (0.01719) (0.02061)

Pick Up 0.0495*** 0.15470*** 0.14852*** 0.12998***
(0.0016) (0.01589) (0.01785) (0.0221)

Pricelevel -0.3773*** -0.04051 0.00189 -0.15841
(0.0121) (0.12088) (0.13176) (0.15555)

Miss. ship. cost 0.1256*** 0.17042*** 0.21094*** 0.14228***
(0.0025) (0.01999) (0.02297) (0.02681)

#evaluations 0.0003*** 0.00038*** 0.00044*** 0.00035***
0.00001 0.00003 0.00003 0.00004

Observations 847641 90638 73691 43436
Products 34139 10910 8086 3841
χ2 89682 1299 1307 643.5
LL -422771 -51610 -32658 -13478
rel. Importance
of price over service 47.0 9.6 19.7 17.9

Method of Estimation: Negative Binomial with product fixed effects - marginal effects with respective
standard errors are shown. *, ** and *** indicate statistical significance at the 10-percent, 5-percent and
1-percent level. Additional variables as in Table 2.
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Table 7: Choice Among Close Substitutes

Data Sample all offers top-listed 120 top-listed 80 top-listed 40
within sub- firms within firms within firms within
subcategory subsub- subsub- subsub-

category category category

Rel. Price -0.04651*** -0.04038*** -0.03080* -0.01768
(0.01251) (0.01419) (0.01717) (0.02565)

Firm evaluation -0.01112*** -0.01111*** -0.00985** -0.01484**
(0.00406) (0.00425) (0.00466) (0.00592)

Rel. Ship. costs 0. -0.00127 -0.00275 -0.00328 -0.00313
(0.00403) (0.0042) (0.00457) (0.00585)

Germany -0.02974*** -0.02919*** -0.03145*** -0.03923***
(0.00426) (0.00458) (0.00529) (0.00742)

Availability 0.03243*** 0.02936*** 0.02709*** 0.02703***
(0.00424) (0.00445) (0.0049) (0.00632)

Pick Up 0.01878*** 0.01893*** 0.01806*** 0.01413**
(0.00408) (0.00432) (0.00486) (0.00648)

Pricelevel -0.03174 -0.01822 0.00172 -0.04506
(0.03136) (0.0338) (0.0383) (0.0498)

#evaluations 0.00006*** 0.00006*** 0.00006*** 0.00005***
(0.00001) (0.00001) (0.00001) (0.00001)

Observations 23472 21501 18324 11782
Subsubcategories 366 366 366 366
R2 0.01 0.009 0.008 0.008
LL -1926 -1867 -1936 -1611
rel. Importance
of price over service 3.7 3.6 3.1 1.2

Method of Estimation: Ordinary Least Squares Estimation with product fixed effects - marginal effects
with respective standard errors are shown. Dependent Variable: Firms’ average of Last-Click-Throughs
for all products within subsubcategory. *, ** and *** indicate statistical significance at the 10-percent,
5-percent and 1-percent level. Constant is not shown in Table. Marginal effects for dummy variables
represent discrete change from 0 to 1.
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